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Abstract

Motivated by random evolutions which do not start from equilibrium, in a recent work, Peligrad and
Volný (2018) showed that the central limit theorem (CLT) holds for stationary ortho-martingale
random fields when they are started from a fixed past trajectory. In this paper, we study this type of
behavior, also known under the name of quenched CLT, for a class of random fields larger than the
ortho-martingales. We impose sufficient conditions in terms of projective criteria under which the
partial sums of a stationary random field admit an ortho-martingale approximation. More precisely,
the sufficient conditions are of the Hannan’s projective type. We also discuss some aspects of the
functional form of the quenched CLT. As applications, we establish new quenched CLT’s and their
functional form for linear and nonlinear random fields with independent innovations.

Key words: random fields, quenched central limit theorem, ortho-martingale approximation, pro-
jective criteria.
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1 Introduction

An interesting problem, with many practical applications, is to study limit theorems for processes
conditioned to start from a fixed past trajectory. This problem is difficult, since the stationary
processes started from a fixed past trajectory, or from a point, are no longer stationary. Further-
more, the validity of a limit theorem is not enough to assure that the convergence still holds when
the process is not started from its equilibrium. This type of convergence is also known under the
name of almost sure conditional limit theorem or the quenched limit theorem. The issue of the
quenched CLT for stationary processes has been widely explored for the last few decades. Among
many others, we mention papers by Derriennic and Lin (2001), Cuny and Peligrad (2012), Cuny
and Volný (2013), Cuny and Merlevède (2014), Volný and Woodroofe (2014), Barrera et al. (2016).
Some of these results were surveyed in Peligrad (2015).

A random field consists of multi-indexed random variables (Xu)u∈Zd , where d is a positive integer.
The main difficulty when analyzing the asymptotic properties of random fields, is the fact that the
future and the past do not have a unique interpretation. To compensate for the lack of ordering
of the filtration, it is customary to use the notion of commuting filtrations. Traditionally, this
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kind of filtration is constructed based on random fields which are functions of independent and
identically distributed random variables. Alternatively, commuting filtrations can be induced by
stationary random fields with independent columns or rows. See for example, El Machkouri et al.
(2013) and Peligrad and Zhang (2018a). As in the case of random processes, a fruitful approach for
proving limit theorems for random fields is via the martingale approximation method, which was
started by Rosenblatt (1972) and its development is still in progress. Recently, the interest is in
the approximation by ortho-martingales which were introduced by Cairoli (1969). We would like
to mention several important recent contributions in this direction by Gordin (2009), Volný and
Wang (2014), Volný (2015), Cuny et al. (2015), Peligrad and Zhang (2018a), Giraudo (2017) and
Peligrad and Zhang (2018b). However, the corresponding quenched version of these results have
rarely been explored. To the best of our knowledge, so far, the only quenched invariance principle
for random fields is due to Peligrad and Volný (2018). Their paper contains a quenched functional
CLT for ortho-martingales and a quenched functional CLT for random fields via co-boundary de-
composition. By constructing an example of an ortho-martingale which satisfies the CLT but not
its quenched form, Peligrad and Volný (2018) showed that, contrary with the one dimensional index
set, the finite second moment condition is not enough for the quenched CLT. For the validity of this
type of results, they provided a minimal moment condition, that is: E

(
X2

0 logd−1(1 + |X0|)
)
<∞,

where 0 = (0, · · · , 0) ∈ Zd and d is the dimension.

Here, we aim to establish sufficient conditions in terms of projective criteria such that a quenched
CLT holds. One of the results of this paper is a natural extension of the quenched CLT for ortho-
martingales in Peligrad and Volný (2018) to more general random fields under the generalized
Hannan projective condition (1973). Our result is also a quenched version of the main theorem
in Peligrad and Zhang (2018a). The functional form of a quenched CLT that we shall use in our
applications will also be explored in this paper. The tools for proving these results consist of ortho-
martingale approximations, projective decompositions and ergodic theorems for Dunford-Schwartz
operators.

Our paper is organized as follows. In the next section, we introduce the preliminaries and our
main results for double-indexed random fields. In Section 3, we prove the quench CLT’s for double-
indexed random fields. Extensions to general indexed random fields and their proofs are given in
Section 4. Section 5 contains a functional CLT which will be used in applications. In Section 6,
we apply our results to linear and Volterra random fields with independent innovations, which are
often encountered in economics. For the convenience of the reader, in the Appendix, we provide a
well-known inequality for martingales and an important theorem in decoupling theory which will
be of great importance for the proof of our main results.

2 Preliminaries and Results

For the sake of clarity, especially due to the complicated notation, in this section, we shall only talk
about the double-indexed random fields. After obtaining results for double-indexed random fields,
we will extend them to random fields indexed by Zd, d > 2. We shall introduce first a stationary
random field adapted to a stationary filtration. In order to construct a flexible filtration it is
customary to start with a stationary real valued random field (ξn,m)n,m∈Z defined on a probability
space (Ω,K, P ) and define the filtrations

Fk,` = σ(ξj,u : j ≤ k, u ≤ `). (1)

For all i, j ∈ Z, we also define the following sigma algebras generated by the union of sigma alge-
bras: F∞,j = ∨n∈ZFn,j , Fi,∞ = ∨m∈ZFi,m and F∞,∞ = ∨i,j∈ZFi,j .

2



To ease the notation, sometimes the conditional expectation will be denoted by

Ea,bX = E(X|Fa,b).

In addition we consider that the filtration is commuting in the sense that

Eu,vEa,bX = Ea∧u,b∧vX, (2)

where the symbol a ∧ b stands for the minimum between a and b. As we mentioned before, this
type of filtration is induced, for instance, by an initial random field (ξn,m)n,m∈Z of independent
random variables or more generally can be induced by stationary random fields (ξn,m)n,m∈Z where
only the columns are independent, i.e. η̄m = (ξn,m)n∈Z are independent. This model often appears
in statistical applications when one deals with repeated realizations of a stationary sequence.
It is interesting to point out that commuting filtrations can be described by the equivalent formu-
lation: for a ≥ u we have

Eu,vEa,bX = Eu,b∧vX.

This follows from the Markovian-type property (see for instance Problem 34.11 in Billingsley, 1995).

Without restricting the generality we shall define (ξu)u∈Z2 in a canonical way on the probability
space Ω = RZ

2
, endowed with the σ−field, B(Ω), generated by cylinders. Now on RZ

2
we shall

introduce the operators
Tu((xv)v∈Z2) = (xv+u)v∈Z2 .

Two of them will play an important role in our paper namely, when u =(1, 0) and when u =(0, 1).
By interpreting the indexes as notations for the lines and columns of a matrix, we shall call

T ((xu,v)(u,v)∈Z2) = (xu+1,v)(u,v)∈Z2

the vertical shift and
S((xu,v)(u,v)∈Z2) = (xu,v+1)(u,v)∈Z2

the horizontal shift.

Now we introduce the stationary random field (Xm)m∈Z2 in the following way. For a real-valued
measurable function f on RN

2
, we define

Xj,k = f(T jSk(ξa,b)a≤0,b≤0). (3)

The variable X0,0 will be assumed to be square integrable (in L2) and with mean 0. We notice that
the variables (Xn,m)n,m∈Z are adapted to the filtration (Fn,m)n,m∈Z .

Let φ : [0,∞)→ [0,∞) be a Young function, that is, a convex function satisfying

lim
x→0

φ(x)

x
= 0 and lim

x→∞

φ(x)

x
=∞.

We shall define the Luxemburg norm associated with φ which will be needed in the sequel. For any
measurable function f from Ω to R, the Luxemburg norm of f is defined by (see relation 9.18 and
9.19 on page 79 of Krasnosel’skii and Rutitskii (1961))

‖f‖φ = inf{k ∈ (0,∞) : Eφ(|f |/k) ≤ 1}. (4)

In the sequel, we use the notations

Sk,j =
∑k,j

u,v=1
Xu,v, P

ω(·) = P (·|F0,0)(ω) for any ω ∈ Ω.
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Also, we shall denote by Eω the expectation corresponding to Pω and ⇒ the convergence in
distribution.
For an integrable random variable X, we introduce the projection operators defined by

P0̃,0(X) := (E0,0 − E−1,0)(X)

P0,0̃(X) := (E0,0 − E0,−1)(X).

Note that, by (2), we have

P0(X) := P0̃,0 ◦ P0,0̃(X) = P0,0̃ ◦ P0̃,0(X) = (E0,0 − E0,−1 − E−1,0 + E−1,−1)(X).

Then for (u, v) ∈ Z2, we can define the projections Pu,v as follows

Pu,v(·) := (Eu,v − Eu,v−1 − Eu−1,v + Eu−1,v−1)(·)

We shall introduce the definition of an ortho-martingale, which will be referred to as a martingale
with multiple indexes or simply martingale.

Definition 2.1 Let d be a function and define

Dn,m = d(ξi,j , i ≤ n, j ≤ m). (5)

Assume integrability. We say that (Dn,m)n,m∈Z is a field of martingale differences if Ea,b(Dn,m) = 0
if either a < n or b < m.

Set

Mk,j =
∑k,j

u,v=1
Du,v.

Definition 2.2 We say that a random field (Xn,m)n,m∈Z defined by (3) admits a martingale ap-
proximation if there is a field of martingale differences (Dn,m)n,m∈Z defined by (5) such that

lim
n∧m→∞

1

nm
Eω(Sn,m −Mn,m)2 = 0 for almost all ω ∈ Ω. (6)

The following theorem is an extension of the quenched CLT for ortho-martingales in Peligrad and
Volný (2018) to stationary random fields satisfying the generalized Hannan condition (1973). It
also can be viewed as a random field version of Proposition 11 in Cuny and Peligrad (2012) (see
also Volný and Woodroofe (2014)).

Throughout the paper we shall assume the setting above namely:

Condition A. (Xn,m)n,m∈Z is defined by (3), the filtrations are commuting and either T or S is
ergodic.

Theorem 2.3 Assume Condition A and in addition∑
u,v≥0

‖P0,0(Xu,v)‖2 <∞. (7)

Then, for almost all ω ∈ Ω,

1

n
S̄n,n ⇒ N(0, σ2) under Pω when n→∞.

where S̄n,n = Sn,n −Rn,n with Rn,n = En,0(Sn,n) + E0,n(Sn,n)− E0,0(Sn,n) and

σ2 = ‖
∑
u,v≥0

P0,0(Xu,v)‖22 = lim
n∧m→∞

E(S̄2
n,n)

n2
.

.
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In Theorem 2.3 the random centering Rn,n cannot be avoided. As a matter of fact, for d = 1,
Volný and Woodroofe (2010) constructed an example showing that the CLT for partial sums need
not be quenched. It should also be noticed that, for a stationary ortho-martingale, the existence
of finite second moment is not enough for the validity of a quenched CLT when the summation in
taken on rectangles (see Peligrad and Volný (2018)). In order to assure the validity of a martingale
approximation with a suitable moment condition we shall reinforce condition (7) when dealing with
indexes n and m which converge independently to infinity.

Theorem 2.4 Assume now that (7) is reinforced to∑
u,v≥0

‖P0,0(Xu,v)‖φ <∞, (8)

where φ(x) = x2 log(1 + |x|) and ‖·‖φ is defined by (4). Then, for almost all ω ∈ Ω,

1

(nm)1/2
S̄n,m ⇒ N(0, σ2) under Pω when n ∧m→∞, (9)

where S̄n,m = Sn,m −Rn,m with Rn,m = En,0(Sn,m) + E0,m(Sn,m)− E0,0(Sn,m) and

σ2 = ‖
∑
u,v≥0

P0,0(Xu,v)‖22 = lim
n∧m→∞

E(S̄2
n,m)

nm
.

The random centering is not needed if we impose two regularity conditions.

Corollary 2.5 Assume that the conditions of Theorem 2.4 hold. If

E0,0

(
E2

0,m(Sn,m)
)

nm
→ 0 a.s. and

E0,0

(
E2
n,0(Sn,m)

)
nm

→ 0 a.s. when n ∧m→∞, (10)

then for almost all ω ∈ Ω,

1

(nm)1/2
Sn,m ⇒ N(0, σ2) under Pω when n ∧m→∞. (11)

If the conditions of Theorem 2.3 hold and (10) holds with m = n, then for almost all ω ∈ Ω,

1

n
Sn,n ⇒ N(0, σ2) under Pω when n→∞. (12)

For the sake of applications, we provide a sufficient condition which takes care of the regularity
assumptions (10).

Theorem 2.6 Assume that ∑
u,v≥1

‖E1,1(Xu,v)‖2
(uv)1/2

<∞. (13)

(a) Then for almost all ω ∈ Ω (12) holds.
(b) If in addition (8) is satisfied, then for almost all ω ∈ Ω (11) holds.
(c) If for some q > 2 ∑

u,v≥1

‖E1,1(Xu,v)‖q
(uv)1/q

<∞, (14)

then the quenched convergence in (11) holds.

Remark 2.7 In Corollary 2.5 and Theorem 2.6, σ2 can be identified as σ2 = limn∧m→∞ES
2
n,m/nm

(limn→∞ES
2
n,n/n

2 respectively).

Remark 2.8 Theorem 2.6 can be viewed as an extension to the random fields of Proposition 12 in
Cuny and Peligrad (2012). As we shall see, the proof for random fields is much more involved and
requires several intermediary steps and new ideas.
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3 Proofs

Let us point out the main idea of the proof. Since Peligrad and Volný (2018) proved a quenched
CLT for ortho-martingales, we reduce the proof to the existence of an almost sure ortho-martingale
approximation. We prove first Theorem 2.4, since the proof of Theorem 2.3 is similar with the
exception that we use different ergodic theorems.
Let us denote by T̂ and Ŝ the operators on L2 defined by T̂ f = f ◦ T , Ŝf = f ◦ S.

Proof of Theorem 2.4. Starting from condition (8), by triangle inequality we have that

f0 :=
∑
u,v≥0

|P0,0(Xu,v)| <∞ a.s. (15)

and
‖f0‖φ ≤

∑
u,v≥0

‖P0,0(Xu,v)‖φ <∞. (16)

Note that by (15) P1,1(Sn,m) is convergent almost surely. Denote the pointwise limit by

D1,1 = lim
n∧m→∞

P1,1(Sn,m) =
∑
u,v≥1

P1,1(Xu,v).

Meanwhile, by the triangle inequality and (8), we obtain

sup
n,m≥1

|P1,1(Sn,m)| ≤
∑
u,v≥1

|P1,1(Xu,v)| a.s.

and

E

(∑
u,v≥1

|P1,1(Xu,v)|
)2

≤
(∑
u,v≥1

‖P1,1(Xu,v)‖2
)2

<∞.

Thus, by the dominated convergence theorem, P1,1(Sn,m) converges to D1,1 a.s. and in L2(P ) as
n ∧m→∞.
Since E0,1(P1,1(Sn,m)) = 0 a.s. and E1,0(P1,1(Sn,m)) = 0 a.s., by defining for every i, j ∈ Z,
Di,j = T̂ i−1Ŝj−1D1,1, we conclude that (Di,j)i,j∈Z is a field of martingale differences. By the
expression of D1,1 above,

Di,j =
∑

(u,v)≥(i,j)

Pi,j(Xu,v).

Now we look into the decomposition of Sn,m (see Peligrad and Zhang (2018b) for details):

Sn,m −Rn,m =

n∑
i=1

m∑
j=1

Pi,j(
n∑
u=i

m∑
v=j

Xu,v) (17)

where
Rn,m = En,0(Sn,m) + E0,m(Sn,m)− E0,0(Sn,m).

Therefore
Sn,m −Rn,m −Mn,m√

nm
=

1√
nm

n∑
i=1

m∑
j=1

(
Pi,j(

n∑
u=i

m∑
v=j

Xu,v)−Di,j

)
.

By the orthogonality of the field of martingale differences (Pi,j(
n∑
u=i

m∑
v=j

Xu,v) − Di,j)i,j∈Z and the

assumption that the filtration is commuting, we have
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1

nm
E0,0 (Sn,m −Rn,m −Mn,m)2 =

1

nm

n∑
i=1

m∑
j=1

E0,0

(
Pi,j(

n∑
u=i

m∑
v=j

Xu,v)−Di,j

)2

.

From Theorem 1 in Peligrad and Volný (2018), we know that the quenched CLT holds forMn,m/
√
nm.

Therefore by Theorem 25.4 in Billingsley (1995), in order to prove the conclusion of this theorem,
it is enough to show that

lim
n∧m→∞

1

nm
E0,0 (Sn,m −Rn,m −Mn,m)2 = 0 a.s. (18)

Define the operators
Q1(f) = E0,∞(T̂ f); Q2(f) = E∞,0(Ŝf)

Note that Q1 and Q2 are commuting Dunford-Schwartz operators and we can write

E0,0 (Pi,j(Xu,v))
2 = Qi1Q

j
2(P0,0(Xu−i,v−j))

2.

By simple algebra we obtain

E0,0

(
Pi,j(

n∑
u=i

m∑
v=j

Xu,v)−Di,j

)2

= E0,0

( ∞∑
u=n+1

m∑
v=j

Pi,j(Xu,v) +
∞∑
u=i

∞∑
v=m+1

Pi,j(Xu,v)

)2

.

Therefore, by elementary inequalities we have the following bound

1

nm
E0,0 (Sn,m −Rn,m −Mn,m)2 =

1

nm

n∑
i=1

m∑
j=1

E0,0

(
Pi,j(

n∑
u=i

m∑
v=j

Xu,v)−Di,j

)2

≤ 2(In,m + IIn,m),

where we have used the notations

In,m =
1

nm

n∑
i=1

m∑
j=1

Qi1Q
j
2

( ∞∑
u=n+1−i

∞∑
v=0

|P0,0(Xu,v)|
)2

and

IIn,m =
1

nm

n∑
i=1

m∑
j=1

Qi1Q
j
2

( ∞∑
u=0

∞∑
v=m+1−j

|P0,0(Xu,v)|
)2

.

The task is now to show the almost sure negligibility of each term. By symmetry we treat only one
of them.
Let c be a fixed integer satisfying c < n. We decompose In,m into two parts

1

nm

n−c∑
i=1

m∑
j=1

Qi1Q
j
2

( ∞∑
u=n+1−i

∞∑
v=0

|P0,0(Xu,v)|
)2

:= An,m(c) (19)

and
1

nm

n∑
i=n−c+1

m∑
j=1

Qi1Q
j
2

( ∞∑
u=n+1−i

∞∑
v=0

|P0,0(Xu,v)|
)2

:= Bn,m(c). (20)
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Note that

Bn,m(c) ≤ 1

nm

n∑
i=n−c+1

m∑
j=1

Qi1Q
j
2f

2
0

=
1

nm

n∑
i=1

m∑
j=1

Qi1Q
j
2f

2
0 −

1

nm

n−c∑
i=1

m∑
j=1

Qi1Q
j
2f

2
0 ,

where f0 is given by (15).
Since Q1 and Q2 are commuting Dunford-Schwartz operators, and by (16) we have that E(f20 log(1+
|f0|)) <∞, by the ergodic theorem (Krengel (1985), Theorem 1.1, Ch. 6), for each c fixed,

lim
n∧m→∞

1

nm

n−c∑
i=1

m∑
j=1

Qi1Q
j
2f

2
0 = g a.s. (21)

where

g = lim
n→∞

1

n

n−c∑
i=1

Qi1

 lim
m→∞

1

m

m∑
j=1

Qj2(f0)

 .

Since we assume that either S or T is ergodic, without loss of generality, here we assume that S is
ergodic. By applying Lemma 7.1 in Dedecker et al. (2014), we obtain that

lim
m→∞

1

m

m∑
j=1

Qj2(f0) = E
(
f20
)

a.s. ,

which implies that g in (21) is a constant almost surely and g = E
(
f20
)
.

Therefore, for all c > 0
lim

n∧m→∞
Bn,m(c) = 0 a.s.

In order to treat the first term in the decomposition of In,m, note that

An,m(c) ≤ 1

nm

n−c∑
i=1

m∑
j=1

Qi1Q
j
2f

2
0(c) where f0(c) =

∞∑
u=c

∞∑
v=0

|P0,0(Xu,v)|.

Again, by the ergodic theorem for Dunford-Schwartz operators (Krengel (1985), Theorem 1.1, Ch.
6) and Lemma 7.1 in Dedecker et al. (2014), for each c fixed

lim
n∧m→∞

1

nm

n−c∑
i=1

m∑
j=1

Qi1Q
j
2f

2
0(c) = E

(
f20(c)

)
a.s. (22)

In addition, by (15), we know that limc→∞ |f0(c)| = 0. So, by the dominated convergence theorem,
we have

lim
c→∞

lim
n∧m→∞

An,m(c) ≤ lim
c→∞

E(f20(c)) = 0 a.s.

The proof of the theorem is now complete.

The proof of Theorem 2.3 requires only a slight modification of the proof of Theorem 2.4. Indeed,
instead of Theorem 1.1 in Ch. 6 in Krengel (1985), we shall use Theorem 2.8 in Ch. 6 in the same
book.

Proof of Corollary 2.5. By Theorem 2.4 together with Theorem 25.4 in Billingsley (1995), it
suffices to show that (10) implies that
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lim
n∧m→∞

1

nm
E0,0(R

2
n,m) = 0 a.s. (23)

Simple computations, involving the fact that the filtration is commuting, gives that

E0,0(R
2
n,m) = E0,0

(
E2
n,0(Sn,m)

)
+ E0,0

(
E2

0,m(Sn,m)
)
− E2

0,0(Sn,m) (24)

and since E2
0,0(Sn,m) ≤ E0,0

(
E2

0,m(Sn,m)
)

a.s., we have

lim
n∧m→∞

1

nm
E0,0(R

2
n,m) = 0 a.s. by condition (10).

We give next the proof of Theorem 2.6. Before proving this theorems, we shall first establish several
preliminary facts presented as three lemmas.

Lemma 3.1 Let q ≥ 2. Condition (14) implies∑
u≥1

1

u1/q

∑
v≥0
‖P0,0̃(Xu,v)‖q <∞. (25)

Proof. Throughout the proof, denote by Cq > 0 a generic constant depending on q which may
take different values from line to line. By the Hölder inequality and the Rosenthal inequality for
martingales (see Theorem 7.1 in the Appendix), we have

∑
v≥1
‖P0,0̃(Xu,v)‖q =

∑
v≥1
‖P−u,−ṽ(X0,0)‖q ≤

∑
n≥0

(2n)
q−1
q

2n+1−1∑
v=2n

‖P−u,−ṽ(X0,0)‖qq

 1
q

≤ Cq
∑
n≥0

(2n)
q−1
q ‖

2n+1−1∑
v=2n

P−u,−ṽ(X0,0)‖q ≤ 2Cq
∑
n≥0

(2n)
q−1
q ‖E−u,−2n(X0,0)‖q.

Since the sequence (‖E−u,−n(X0,0)‖q)n≥1 is non-increasing in n, it follows that

(2n)
q−1
q ‖E−u,−2n(X0,0)‖q ≤ 2

2n−1∑
k=2n−1

‖E−u,−k(X0,0)‖q
k1/q

.

So
∞∑
v=1

‖P0,0̃(Xu,v)‖q ≤ Cq
∑
k≥1

‖E−u,−k(X0,0)‖q
k1/q

. (26)

Thus relation (25) holds by (14), (26) and stationarity.
In addition, for any u ≥ 0, we also have

∞∑
v=1

‖P0,0̃(Xu,v)‖q <∞. (27)

By the symmetric roles of m and n, for any v ≥ 0, we have

∞∑
u=1

‖P0̃,0(Xu,v)‖q <∞. (28)
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Lemma 3.2 Condition (13) implies

lim
n∧m→∞

1

nm
E0,0(R

2
n,m) = 0 a.s. (29)

Proof. First we show that (13) implies that

E2
0,0(Sn,m)

nm
→ 0 a.s. when n ∧m→∞.

We bound this term in the following way

|E0,0(Sn,m)|√
nm

≤ 1√
nm

n∑
u=1

m∑
v=1

|E0,0(Xu,v)|

≤ 1√
n

c∑
u=1

∞∑
v=1

|E0,0(Xu,v)|√
v

+

∞∑
u=c+1

∞∑
v=1

|E0,0(Xu,v)|√
uv

≤ c√
n

sup
1≤u≤c

∞∑
v=1

|E0,0(Xu,v)|√
v

+
∞∑

u=c+1

∞∑
v=1

|E0,0(Xu,v)|√
uv

.

Now, (13) implies that
∞∑
u=1

∞∑
v=1

|E0,0(Xu,v)|√
uv

<∞ a.s.

Therefore,
|E0,0(Sn,m)|√

nm
→ 0 a.s. (30)

by letting n→∞ followed by c→∞.
By (24) and the symmetric roles of m and n, the theorem will follow if we can show that

E0,0

(E2
0,m(Sn,m))

nm
→ 0 a.s. when n ∧m→∞.

By (30) this is equivalent to showing that

1

nm
E0,0 (E0,m(Sn,m)− E0,0(Sn,m))2 → 0 a.s. when n ∧m→∞.

We start from the representation

E0,0 (E0,m(Sn,m)− E0,0(Sn,m))2 =
m∑
j=1

E0,0

[
P0,j̃

( n∑
u=1

m∑
v=j

Xu,v

)]2

=
m∑
j=1

E0,0

[
Ŝj
(
P0,0̃(

n∑
u=1

m−j∑
v=0

Xu,v)

)2]
.
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So,

1

nm
E0,0 (E0,m(Sn,m)− E0,0(Sn,m))2 =

1

mn

m∑
j=1

E0,0

[
Ŝj
( n∑
u=1

m−j∑
v=0

P0,0̃(Xu,v)

)2]

≤ 2

mn

m∑
j=1

E0,0

[
Ŝj
( c∑
u=1

m−j∑
v=0

|P0,0̃(Xu,v)|
)2]

+
2

m

m∑
j=1

E0,0

[
Ŝj
( n∑
u=c+1

1√
u

m−j∑
v=0

|P0,0̃(Xu,v)|
)2]

= In,m,c + IIn,m,c.

Let us introduce the operator
Q0(f) = E0,0(Ŝf).

We treat first the term In,m,c. For c fixed

In,m,c ≤
2c2

mn
sup

1≤u≤c

m∑
j=1

E0,0

[
Ŝj
( ∞∑
v=0

|P0,0̃(Xu,v)|
)2]

=
2c2

mn
sup

1≤u≤c

m∑
j=1

Qj0

[( ∞∑
v=0

|P0,0̃(Xu,v)|
)2]

.

By (27), the function

g(u) =
∞∑
v=0

|P0,0̃(Xu,v)|

is square integrable. By the ergodic theorem for Dunford-Schwartz operators (see Theorem 11.4
in Eisner et al., 2015 or Corollary 3.8 in Ch. 3, Krengel, 1985) and Lemma 7.1 in Dedecker et al.
(2014),

1

m

m∑
j=1

Qj0
[
g2(u)

]
→ E(g2(u)) a.s.

and therefore, since c is fixed,
lim

n∧m→∞
In,m,c = 0 a.s.

In order to treat the second term, note that

IIn,m,c ≤
2

m

m∑
j=1

Qj0

[( ∞∑
u=c

1√
u

∞∑
v=0

|P0,0̃(Xu,v)|
)2]

.

Denote

h(c) =
∞∑
u=c

1√
u

∞∑
v=0

|P0,0̃(Xu,v)|.

By (25), we know that
∞∑
u=1

1√
u

∞∑
v=0

‖P0,0̃(Xu,v)‖2 <∞. (31)

So, E(h2(c)) <∞. Again, by the ergodic theorem for the Dunford-Schwartz operators (see Theorem
11.4 in Eisner et al., 2015 or Corollary 3.8 in Ch. 3, Krengel, 1985), we obtain

1

m

m∑
j=1

Qj0(h
2(c))→ E

(
h2(c)

)
≤

( ∞∑
u=c

1√
u

∞∑
v=0

‖P0,1̃(Xu,v)‖2

)2

.
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So, by (31)

lim
c→∞

lim
m→∞

1

m

m∑
j=1

Qj0(h
2(c)) = 0 a.s.

Lemma 3.3 Let q ≥ 2. Condition (14) implies∑
u,v≥0

‖P0,0(Xu,v)‖q <∞, (32)

which clearly implies (8).

Proof. By applying twice the Rosenthal inequality for martingales (see Theorem 7.1 in the Ap-
pendix), for any integers a ≤ b and c ≤ d, we have

b∑
k=a

d∑
k′=c

∥∥P−k,−k′(X0,0)
∥∥q
q
≤ Cq‖

b∑
k=a

d∑
k′=c

P−k,−k′(X0,0)‖qq. (33)

In addition, note that for any integers a ≤ b and c ≤ d, we have

‖
b∑

k=a

d∑
k′=c

P−k,−k′(X0,0)‖qq ≤ 4q‖E−a,−c(X0,0)‖qq. (34)

Then by the Hölder’s inequality together with (33) and (34), we obtain

∑
u,v≥1

‖P−u,−v(X0,0)‖q ≤
∑
n,m≥0

(2n2m)
q−1
q

2n+1−1∑
k=2n

2m+1−1∑
k′=2m

∥∥P−k,−k′(X0,0)
∥∥q
q

 1
q

≤ 4Cq
∑
n,m≥0

(2n2m)
q−1
q ‖E−2n,−2m(X0,0)‖q .

Since ‖E−2n,−2m(X0,0)‖ is non-increasing in n and m, it follows that

(2n2m)
q−1
q ‖E−2n,−2m(X0,0)‖q ≤ 4

2n−1∑
u=2n−1

2m−1∑
v=2m−1

‖E−u,−v(X0,0)‖q
(uv)1/q

.

Therefore, by the relations above, we have proved that (14) implies∑
u,v≥1

‖P−u,−v(X0,0)‖q <∞.

Similarly we have
∞∑
u=1

‖P−u,0(X0,0)‖q <∞ and
∞∑
v=1

‖P0,−v(X0,0)‖q <∞.

Thus by stationarity (32) holds.

Proof of Theorem 2.6. The item (a) of the theorem follows as a combination of Theorem 2.3
with Lemmas 3.2 and 3.3, applied with q = 2.
To prove item (b) of this theorem we combine Theorem 2.4 with Lemmas 3.2.
Finaly, the conclusion (c) is a consequence of 2.4 combined with Lemmas 3.2 and 3.3, applied with
q > 2.
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4 Random fields with multidimensional index sets

In this section we extend our results to random fields indexed by Zd, d > 2. By u ≤ n we
understand u =(u1, ..., ud), n =(n1, ..., nd) and 1 ≤ u1≤n1,...,1 ≤ ud≤nd. We shall start with a
strictly stationary real-valued random field ξ = (ξu)u∈Zd , defined on the canonical probability

space RZ
d

and define the filtrations Fu = σ(ξj : j ≤ u). We shall assume that the filtration is
commuting if EuEa(X) = Eu∧a(X), where the minimum is taken coordinate-wise and we used
notation Eu(X) = E(X|Fu). We define

Xm = f((ξj)j≤m) and set Sk =
∑k

u=1
Xu. (35)

The variable X0 is assumed to be square integrable (in L2) and with mean 0. We also define Ti
the coordinate-wise translations and then

Xk = f(T k11 ◦ ... ◦ T
kd
d (ξu)u≤0).

Let d be a function and define

Dm = d((ξj)j≤m) and set Mk =
∑k

u=1
Du. (36)

Assume integrability. We say that (Dm)m∈Zd is a field of martingale differences if Ea(Dm) = 0
if at least one coordinate of a is strictly smaller than the corresponding coordinate of m. Now we
introduce the d-dimensional projection operator. By using the fact that the filtration is commuting,
it is convenient to define projections Pu in the following way

Pu(X) := Pu(1) ◦ Pu(2) ◦ ... ◦ Pu(d)(X),

where
Pu(j)(Y ) := E(Y |Fu)− E(Y |Fu(j)), (37)

where u(j) has all the coordinates of u with the exception of the j-th coordinate, which is uj − 1.
For instance when d = 3, Pu(2)(Y ) = E(Y |Fu1,u2,u3)− E(Y |Fu1,u2−1,u3).
We say that a random field (Xn)n∈Zd admits a martingale approximation if there is a field of
martingale differences (Dm)m∈Zd such that for almost all ω ∈ Ω

1

|n|
Eω (Sn −Mn)2 → 0 when min

1≤i≤d
ni →∞, (38)

where |n| =n1...nd.
Let Rn be the remainder term of the decomposition of Sn such that

Sn =
n∑

u=1

Pu(Sn) +Rn.

In this context we have:

Theorem 4.1 Assume that (Xn)n∈Zd is defined by (35) and there is an integer i, 1 ≤ i ≤ d, such
that Ti is ergodic and the filtrations are commuting. In addition assume that∑

u≥0
‖P0(Xu)‖2 <∞. (39)

Then, for almost all ω ∈ Ω,

(Sn,··· ,n −Rn,··· ,n)/nd/2 ⇒ N(0, σ2) under Pω when n→∞.
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Theorem 4.2 Furthermore, assume now condition (39) is reinforced to∑
u≥0
‖P0(Xu)‖ϕ <∞, (40)

where ϕ(x) = x2 logd−1(1 + |x|) and ‖·‖ϕ is defined by (4).
Then, for almost all ω ∈ Ω,

1√
|n|

(Sn −Rn)⇒ N(0, σ2) under Pω when min
1≤i≤d

ni →∞.

Corollary 4.3 Assume that the conditions of Theorem 4.2 hold and for all j, 1 ≤ j ≤ d we have

1

|n|
E0

(
E2

nj
(Sn)

)
→ 0 a.s. when min

1≤i≤d
ni →∞. (41)

where nj∈Zd has the j-th coordinate 0 and the other coordinates equal to the coordinates of n.
Then, for almost all ω ∈ Ω,

Sn/
√
|n| ⇒ N(0, σ2) under Pω when min

1≤i≤d
ni →∞. (42)

If the conditions of Theorem 4.1 hold and (41) holds with n = (n, n, · · · , n), then for almost all
ω ∈ Ω,

1

nd/2
Sn,··· ,n ⇒ N(0, σ2) under Pω when n→∞. (43)

Theorem 4.4 Assume that (Xn)n∈Zd is defined by (35) and the filtrations are commuting. Also
assume that there is an integer i, 1 ≤ i ≤ d, such that Ti is ergodic and in addition for q > 2,∑

u≥1

‖E1(Xu)‖q
|u|1/q

<∞. (44)

(a) If q = 2, then the quenched convergence in (43) holds
(b) If q > 2, then the quenched convergence in (42) holds.

As for the case of random fields with two indexes, we start with the proof of Theorem 4.2, since
the proof of Theorem 4.1 is similar with the exception that we use different ergodic theorems.

Proof of Theorem 4.2. The proof of this theorem is straightforward following the same lines of
proofs as for a double-indexed random field. It is easy to see that, by using the commutativity prop-
erty of the filtration, the martingale approximation argument in the proof of Theorem 2.4 remains
unchanged if we replace Z2 with Zd for d ≥ 3. The definition of the approximating martingale is
also clear. The only difference in the proof is that for the validation of the limit in (21) and (22)
when min1≤i≤d ni → ∞, in order to apply the ergodic theorem for Dunford-Schwartz operators,
conform to Theorem 1.1 in Ch. 6 in Krengel (1985), we have to assume E

[
f20 logd−1(1 + |f0|)

]
<∞,

which is implied by (40).

More precisely, let us denote by T̂i, 1 ≤ i ≤ d, the operators defined by T̂if = f ◦ Ti. Then
for i = (i1, · · · , id) ∈ Zd, we define Qi = Πd

k=1Q
ik
k where (Qi)1≤i≤d are operators associated with

coordinate-wise translations (Ti)1≤i≤d defined as follows

Q1(f) = E0,∞,··· ,∞(T̂1f), Q2(f) = E∞,0,∞,··· ,∞(T̂2f), · · · , Qd(f) = E∞,··· ,∞,0(T̂df).
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Then, we bound the following quantity

1

|n|
E0

[
|Sn −Rn −Mn|2

]
by the sum of d terms with the first term of them in the form

In =
1

|n|

n∑
i=1

Qi

 ∞∑
u=n1+1−i1

∑
v≥0
|P0(Xu,v)|

2

where v ∈ Zd−1.

By symmetry, we only need to deal with this one. Let c be a fixed integer satisfying c < n1, we
decompose In into two parts:

1

|n|

n1−c∑
i1=1

n′∑
i′=1

Qi

 ∞∑
u=n1+1−i1

∑
v≥0
|P0(Xu,v)|

2

:= An(c)

and

1

|n|

n1∑
i1=n1−c+1

n′∑
i′=1

Qi

 ∞∑
u=n1+1−i1

∑
v≥0
|P0(Xu,v)|

2

:= Bn(c)

with i′ = (i2, · · · , id) and n′ = (n2, · · · , nd). Afterwards, we just proceed by following step by step
the proof for negligibility of An,m(c) and Bn,m (see (19) and (20) from the proof of Theorem 2.4).
The proof of Theorem 4.1 follows by similar arguments, just replacing Theorem 1.1 in Ch. 6 in
Krengel (1985) by Theorem 2.8 in Ch. 6 in the same book.

Proof of Corollary 4.3. The negligibility of the reminder Rn can be shown exactly in the same
way as the negligibility of the term Rn,m in the proof of Corollary 2.5.

Proof of Theorem 4.4. As in the proof of (46) and (47) in Theorem 2.6, we can show that (44)
implies the following facts: ∑

u≥1

1√
|u|

∑
v≥0
‖P0(d)(Xu,v)‖q <∞, (45)

∑
v≥0
‖P0(Xu,v)‖q <∞ (46)

and ∑
u≥1

1√
u

∑
v≥0
‖P0(Xu,v)‖q <∞, (47)

where 0 = (0, · · · , 0) ∈ Zd,u,v ∈ Zd−1 and P0 = P0(2) ◦ P0(3) ◦ · · · ◦ P0(d) with P0(j) defined by
(37).
To prove the corollary, we need to show that

1

|n|
E0

(
E2

n(k)(Sn)
)
→ 0 a.s. when min

1≤i≤d
ni →∞, (48)

where n(k) ∈ Zd has k coordinates equal to the corresponding coordinates of n and the other n− k
coordinates zero for all 0 ≤ k ≤ d− 1. We will proceed by induction.
First, we have to show that

E2
0(Sn)

|n|
→ 0 a.s. and

1

|n|
E0

(
E2

0,··· ,0,nd
(Sn)

)
→ 0 a.s. when min

1≤i≤d
ni →∞,
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which are easy to establish by similar arguments as in the proof of Theorem 2.6, by using (44) and
(45). That is, (48) holds for k = 0 and k = 1. Now assume that for k < d− 1 the result holds. The
fact that the result holds for k = d − 1 follows straightforward by using (46) and (47). The proof
of this theorem is complete now.

5 Functional CLT

In this section we give the functional CLT form for Theorem 2.6. It should be noted that for
d = 1 the quenched functional CLT in the corresponding setting is due to Cuny and Volný (2013).
Their approach is based on an almost sure maximal martingale approximation and involves the
introduction of two new parameters. This method cannot be easily applied for random fields since it
leads to quite complicated remainder terms in the maximal martingale approximation. Fortunately,
their innovative idea of using the maximal operator can be also applied for random fields, as we
shall see in the direct proof bellow.
For (s, t) ∈ [0, 1]2, we introduce the stochastic process

Wn,m(t, s) =
1√
nm

S[nt],[ms].

where [x] denotes the integer part of x. We shall denote by (W (t, s))(t,s)∈[0,1]2 the standard 2-
dimensional Brownian sheet and we shall investigate the weak convergence in D([0, 1]2) endowed
with the uniform topology of (Wn,m(t, s)) to (W (t, s)). As usual, the proof of this theorem in-
volves two steps, namely the proof of the convergence of the finite dimensional distributions to the
corresponding ones of the standard 2-dimensional Brownian sheet and tightness.
We call the random field (Xk,`) defined by (3) regular if

E(X0,0|F0,−∞) = 0 a.s. and E(X0,0|F−∞,0) = 0 a.s. (49)

Our first result provides a necessary condition for tightness.

Proposition 5.1 Assume that the random field is regular and in addition, for q > 2, we have∑
i,j≥0
‖P−i,−j(X0,0)‖q <∞. (50)

Then Wn,m(t, s) is tight in D([0, 1]2) endowed with the uniform topology.

Proof of Proposition 5.1. We shall start the proof of this theorem by a preliminary consideration:
For 2 < p < q, let us introduce the functions

f∗i,j,p = sup
n,v≥1

1

nv
sup
n,v

n∑
k=1

v∑
`=1

Eω(|Pk−i,`−j(Xk,`)|p)

= sup
n,v≥1

1

nv

n∑
k=1

v∑
`=1

Qk1Q
`
2(|P−i,−j(X0,0)|p).

Let us mention first that, by Corollary 1.7 in Chapter 6 of Krengel (1985) applied to the function
|P−i,−j(X0,0)|p, for λ > 1 we have

λpP
((
f∗i,j,p

)1/p
> λ

)
≤ CE

(
|P−i,−j(0,0)|p log+ |P−i,−j(0,0)|

)
≤ CE|P−i,−j(X0,0)|q.

It follows that
(
f∗i,j,p

)1/p
belongs to the weak space Lp,weak defined by

Lp,weak = {f real-valued measurable function defined on Ω : sup
λ>0

λpP (|f | > λ) <∞}.
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This is a Banach space whose norm will be denoted by ‖·‖p,weak and it is equivalent to the pseudo-

norm (supλ>0 λ
pP (|f | > λ))1/p. We have that∥∥∥∥∥∥
∑
i,j≥0

(
f∗i,j,p

)1/p∥∥∥∥∥∥
p,weak

≤
∑
i,j≥0

∥∥∥(f∗i,j,p)1/p∥∥∥
p,weak

≤
∑
i,j≥0
‖P−i,−j(X0,0)‖q .

Therefore, if
∑

i,j≥0 ‖P−i,−j(X0,0)‖q <∞ then∑
i,j≥0

(
f∗i,j,p

)1/p
<∞ P − a.s.

For proving tightness we shall verify the moment condition given in relation (3) in Bickel and
Wichura (1971). To verify it, denote an increment of the process Wn,m(t, s) on the rectangle
A = [t1, t2)× [s1, s2) by

∆(A) =
1√
nm
|
∑[nt2]−1

k=[nt1]

∑[ms2]−1

`=[ms1]
Xk,`|.

Let us note that by (49) we have the representation

Xk,` =
∑
i,j≥0
Pk−i,`−j(Xk,`) a.s.

Fix ω where this representation holds for all k and ` and also
∑

i,j≥0

(
f∗i,j,p

)1/p
<∞. Therefore we

have

‖∆(A)‖ω,p ≤
1√
nm

∑
i,j≥0
‖
∑[nt2]−1

k=[nt1]

∑[ms2]−1

`=[ms1]
Pk−i,`−j(Xk,`)‖ω,p ,

where ‖·‖ω,p denotes the norm in Lp(Pω). Note that, because we have to compute the p-th moments
of an ortho-martingale, we can use the Burkholder inequality as given in Theorem 3.1 of Fazekas
(2005) and obtain

‖∆(A)‖ω,p ≤
Cp√
nm

∑
i,j≥0
‖
∑[nt2]−1

k=[nt1]

∑[ms2]−1

`=[ms1]
P2
k−i,`−j(Xk,`)‖

1/2
ω,p/2.

By applying now twice, consecutively, the Cauchy-Schwartz inequality, we obtain

Eω(∆p(A)) ≤ Cp[(t2 − t1)(s2 − s1)]p/2
∑
i,j≥0

(
f∗i,j,p(ω)

)1/p
p

.

If B is a neighboring rectangle of A, by the Hölder inequality we have

Eω(∆p/2(A)∆p/2(B)) ≤ Kp,ω (µ(A)µ(B))p/4 ,

where µ is the Lebesgue measure on [0, 1]2. Therefore the moment condition in relation (3) in
Bickel and Wichura (1971) is verified with γ = p and β = p/2. Since β > 1 the tightness follows
from Theorem 3 in Bickel and Wichura (1971).

Theorem 5.2 Assume that (50) and (13) are satisfied. Then for P -almost all ω, the sequence of
processes (Wn,m(t, s))n,m≥1 converges in distribution on D([0, 1]2) endowed with uniform topology
to σW (t, s), as n ∧m→∞ under Pω.

17



Proof of Theorem 5.2. The tightness follows by Proposition 5.1. The proof of the convergence of
finite dimensional distributions is based on the following observation. By combining the martingale
approximation in (18) with the negligibility of Rn,m in (29), for almost all ω and all rational numbers
0 ≤ s, t ≤ 1 we obtain

lim
n∧m→∞

∥∥S[nt],[ms] −M[nt],[ms]

∥∥
ω,2

(nm)1/2
= 0.

Whence, by using the Cramèr-Wold device and then the triangle inequality, we deduce that the
convergence of the finite dimensional distributions follows from the corresponding result for ortho-
martingales. But this fact was already proved in Peligrad and Volný (2019). The proof is complete.

Similarly we obtain the following result

Theorem 5.3 Assume that (14) is satisfied with q > 2. Then the conclusion of Theorem 5.2 holds.

Let us formulate the multi-indexed form of this result:
For t ∈ [0, 1]d, where d is fixed a positive integer, we introduce the stochastic random field

Wn(t) =
1√
|n|

S[n1t1]...[ndtd]

and denote by (W (t))t∈[0,1]d the standard d-dimensional Brownian sheet. The following is the
d-dimensional version of Theorem 5.3.

Theorem 5.4 Under the conditions of Theorem 4.4 with q > 2, for P -almost all ω, the sequence
of processes (Wn(t))n≥1 converges in distribution to σW (t), as min1≤i≤d ni →∞ under Pω.

6 Examples

We shall give examples providing new results for linear and Volterra random fields. The interest
of considering these applications is for obtaining functional quenched CLT by using more general
sequences of constants than in Peligrad and Volný (2019), where a coboundary decomposition was
used. Let d be an integer greater than 2 and q > 2. Throughout this section, as before, we denote
by Cq > 0 a generic constant depending on q, which may be different from line to line.

Example 6.1 (Linear field) Let (ξn)n∈Zd be a random field of independent, identically distributed
random variables, which are centered and E (|ξ0|q) <∞. For k ≥ 0 define

Xk =
∑
j≥0

ajξk−j .

Assume that ∑
k≥1

1

|k|1/q

( ∑
j≥k−1

a2j

) 1
2

<∞. (51)

Then the quenched functional CLT in Theorem 5.4 holds.

Proof. Since
E1(Xk) =

∑
j≥k−1

ajξk−j,

by the independence of ξn and the Rosenthal inequality (see Theorem 7.1, given in the Appendix),
we obtain
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‖E1(Xk)‖qq = ‖
∑

j≥k−1
ajξk−j‖qq

≤ Cq

( ∑
j≥k−1

a2jE(ξ2k−j)

) q
2

+
∑

j≥k−1
E|ajξk−j|q


≤ Cq

( ∑
j≥k−1

a2j

) q
2 (
Eξ20

) q
2 +

∑
j≥k−1

|aj|qE (|ξ0|q)

 .
By the monotonicity of norms in `p, we have( ∑

j≥k−1
|aj|q

) 1
q

≤
( ∑

j≥k−1
a2j

) 1
2

.

Therefore

‖E1(Xk)‖q ≤ Cq
( ∑

j≥k−1
a2j

) 1
2

.

So condition (44) is implied by (51). Whence the result in Theorem 5.4 holds.

Remark 6.2 For the case d = 2, we can assume the following condition imposed to the coefficients:

∑
k≥1

1

|k|1/2

( ∑
j≥k−1

a2j

) 1
2

<∞. (52)

(a) If we assume E
(
ξ20
)
< ∞, then the quenched convergence in (12) holds.

(b) If we assume E
(
|ξ0|2 log(1 + |ξ0|)

)
<∞, the quenched convergence in (11) holds.

(c) If we assume E|ξ0|q < ∞, for q > 2 then, the quench functional CLT in Theorem 5.2, holds.

Proof. The first part of the remark is a direct consequence of item (a) in Theorem 2.6, since
condition (13) is implied by (52). To prove (b), notice that by algebraic manipulations similar to
those used in the proof of Lemma 3.3, we have that (52) implies that

∑
j≥0 |aj| <∞.

Note that
P0(Xu) = auξ0

and therefore we have ∑
j≥0
‖P0(Xj)‖φ =

∑
j≥0
|aj| · ‖ξ0‖φ <∞.

It follows that (52) also implies (8). Therefore the second part of the remark follows by item (b)
in Theorem 2.6. Part (c) of the remark follows in a similar way.

For example, note that (52) holds if we take

au,v =
1

uv

1

h(u)g(v)
,

with h, g slowly varying functions at infinity satisfying∑
u≥1

1

uh(u)
<∞ and

∑
v≥1

1

vg(v)
<∞.
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Also, we mention that the quenched convergence in (a) does not hold if only
∑

j≥0 |aj| < ∞ as
shown for d = 1 in Volný and Woodroofe (2010).

Example 6.3 (Volterra field) Let (ξn)n∈Zd be a random field of independent, identically dis-
tributed, and centered random variables satisfying E (|ξ0|q) <∞. For k ≥ 0, define

Xk =
∑

(u,v)≥(0,0)

au,vξk−uξk−v.

where au,v are real coefficients with au,u = 0 and
∑

u,v≥0 a
2
u,v <∞. In addition, assume that

∑
k≥1

1

|k|1/q

( ∑
(u,v)≥(k−1,k−1)

u6=v

a2u,v

)1/2

<∞. (53)

Then the quenched functional CLT in Theorem 5.4 holds.

Proof. Note that

E1(Xk) =
∑

(u,v)≥(k−1,k−1)

au,vξk−uξk−v.

Let (ξ′n)n∈Zd and (ξ′′n)n∈Zd be two independent copies of (ξn)n∈Zd . By independence and the fact
that ak,k = 0, by applying the decoupling inequality together with the Rosenthal inequality, both
of which are given for convenience in the Appendix, (see Theorem 7.2 and Theorem 7.1 from the
Appendix), we obtain

‖E1(Xk)‖qq = ‖
∑

(u,v)≥(k−1,k−1)
u6=v

au,vξk−uξk−v‖qq ≤ C2‖
∑

(u,v)≥(k−1,k−1)
u6=v

au,vξ
′
k−uξ

′′
k−v‖qq

≤ Cq
[( ∑

(u,v)≥(k−1,k−1)
u6=v

a2u,vE(ξ′k−uξ
′′
k−v)2

) q
2

+
∑

(u,v)≥(k−1,k−1)
u6=v

|au,v|qE
(
|ξ′k−uξ′′k−v|q

)]

≤ Cq
[( ∑

(u,v)≥(k−1,k−1)
u6=v

a2u,v

) q
2

E(ξ20)q +
∑

(u,v)≥(k−1,k−1)
u6=v

|au,v|qE (|ξ0|q)2
]
.

Above, the first inequality holds by Theorem 7.2 while the second one is implied by Theorem 7.1.
Again by the monotonicity of norms in `p, we have

‖E1(Xk)‖q ≤ Cq
( ∑

u,v≥k−1
a2u,v

) 1
2

.

Thus the results of Theorem 5.4 hold.

7 Appendix

For convenience, we mention one classical inequality for martingales, see Theorem 2.11, p. 23, Hall
and Heyde (1980) and also Theorem 6.6.7 Ch. 6, p. 322, de la Peña and Giné (1999).
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Theorem 7.1 (Rosenthal’s Inequality) Let p ≥ 2. Let Mn =
∑n

k=1Xk where {Mn,Fn} is a
martingale with martingale differences (Xn). Then there are constants 0 < cp, Cp <∞ such that

cp

{ n∑
k=1

E|Xk|p + E

[( n∑
k=1

E(X2
k |Fk−1)

)p/2]}

≤ ‖Mn‖pp ≤ Cp
{
E

[( n∑
k=1

E(X2
k |Fk−1)

)p/2]
+

n∑
k=1

E|Xk|p
}
.

The following theorem is a decoupling result for U-statistics, which can be found on p. 99, Theorem
3.1.1, de la Peña and Giné (1999).

Theorem 7.2 (Decoupling inequality) Let (Xi)1≤i≤n be n independent random variables and
let (Xk

i )1≤i≤n, k = 1, · · · ,m, be m independent copies of this sequences. For each (i1, i2, · · · , im) ∈
Imn , let hi1,··· ,im : Rm → R be a measurable function such E|hi1,··· ,im(Xi1 , · · · , Xim)| < ∞. Let f :
[0,∞) → [0,∞) be a convex non-decreasing function such that Ef(|hi1,··· ,im(Xi1 , · · · , Xim)|) < ∞
for all (i1, i2, · · · , im) ∈ Imn , where Imn = {(i1, · · · , im) : ij ∈ N, 1 ≤ ij ≤ n, ij 6= ik, if j 6= k}. Then
there exists Cm > 0 such that

Ef(|
∑
Imn

hi1,··· ,im(Xi1 , · · · , Xim)|) ≤ Ef(Cm|
∑
Imn

hi1,··· ,im(X1
i1 , · · · , X

m
im)|).
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