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Abstract

In this paper we study the central limit theorem for additive functionals of stationary Markov chains
with general state space by using a new idea involving conditioning with respect to both the past and
future of the chain. Practically, we show that any additive functionals of a stationary and totally ergodic
Markov chain with var(S,)/n uniformly bounded, satisfies a /n—central limit theorem with a random
centering. We do not assume that the Markov chain is irreducible and aperiodic. However, the random
centering is not needed if the Markov chain satisfies stronger forms of ergodicity. In absence of ergodicity
the convergence in distribution still holds, but the limiting distribution might not be normal.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

A basic result in probability theory is the central limit theorem. To go beyond the
independent case, the dependence is often restricted by using projective criteria. For instance,
the martingales are defined by using a projective condition with respect to the past sigma field.
There also is an abundance of martingale-like conditions, which define classes of processes
satisfying the CLT. Among them Gordin’s condition [14], Gordin and Lifshits condition [15],
Heyde’s projective condition [17], [37], mixingales [23], Maxwell and Woodroofe condition
[22], just to name a few. All of them have in common that the conditions are imposed on the
conditional expectation of a variable with respect to the past sigma field.

There is, however, the following philosophical question. Note that a partial sum does not
depend on the direction of time, i.e.

S, =X1+Xo0+- -+ X, =X, + Xt + -+ X
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However a condition of type “martingale-like” depends on the direction of time. Therefore, in
order to get results for §,, it is natural to also study projective conditions that are symmetric
with respect to the direction of time. Furthermore, many mixing conditions (see [5], for a
survey) and harnesses (see for instance [21,38]) are independent of the direction of time.

For additive functionals of reversible, stationary and ergodic Markov chains, with centered
and square integrable variables, Kipnis and Varadhan [20] proved that if E(S?)/n converges to a
finite limit, then the CLT holds. This is not true without assuming reversibility (see for instance
[4] or [8], Prop. 9.5(ii), among other examples). On the other hand, for additive functionals
of Harris recurrent and aperiodic Markov chains with centered and square integrable variables,
Chen [7, Theorem IL. 3.1] proved that if S,/+/n is stochastically bounded, it satisfies the CLT.

These results suggest and motivate the study of limiting distribution for stationary Markov
chains with additive functionals satisfying sup, E(S2)/n < oo. With this aim, we introduce
a new idea, which involves conditioning with respect to both the past and the future of the
process. By using this idea together with a blocking argument and martingale approximation
techniques, we shall prove that functions of a Markov chain which is stationary and totally
ergodic (in the ergodic theoretical sense) satisfy the CLT, provided that we use a random
centering and we assume that var(S,)/n is uniformly bounded. In case when the stationary
Markov chain satisfies stronger forms of ergodicity, the random centering is not needed. Among
these classes are the absolutely regular Markov chains. For this class, our result gives as
a corollary, a new interpretation of the limiting variance in the CLT in Theorem II. 2.3 of
Chen [7] and a totally different new approach. We also provide a new proof for the CLT for
interlaced mixing Markov chains. We also point out that, when the Markov chain is stationary
but not necessarily ergodic, the limiting distribution still exists and we express it as a mixture
of distributions.

Our paper is organized as follows. In Section 2 we present the results. Section 3 is dedicated
to their proofs.

2. Results

Throughout the paper we assume that (£,),cz is a stationary Markov chain, defined on
a probability space (2, F,P) with values in a measurable space (S, .A). Denote by F, =
o€,k < n) and by F" = o(&,k > n). The marginal distribution on A is denoted by
m(A) = P& € A). To settle the concern about the existence of a Markov chain with general
state space, we shall construct the Markov chain from a kernel P(x, A), we assume an invariant
distribution 7 exists and invoke the Ionescu Tulcea [18] result.

Next, let L3(r) be the set of measurable functions on S such that [ f2dwr < oo and
[ fdm = 0. For a function f €L3(r) let

Xi=f&E), Si=)Y X ()
i=1
We denote by || X|| the norm in L2(£2, F, P).

With the exception of Remark 3, in all the other results we shall assume the total ergodicity
of the shift 6 of the sequence (&,),cz With respect to P, i.e. 8 is ergodic for every m > 1. For
the definition of the ergodicity of the shift we direct the reader to the subsection “A return to
Ergodic Theory” in [2] p. 494.

Let us consider the operator P induced by the kernel P(x, A) on bounded measurable
functions on (S, A) defined by Pf(x) = fs f(O)P(x,dy). By using Corollary 5 p. 97 in [33],
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the shift of (£,),cz is totally ergodic with respect to P if and only if the powers P™ are
ergodic with respect to 7 for all natural m (i.e. P™ f = f for f bounded on (S, A) implies f
is constant w —a.e.). For more information on total ergodicity, we refer to the survey paper by
Quas [30].

Below, = denotes the convergence in distribution and by N(iu, 0%) we denote a normally

distributed random variable with mean y and variance o2.

2.1. Central limit theorem
We shall establish the following CLT.

Theorem 1. Assume that
E(S})
sup
n>1 n

< 0. @
Then, the following limit exists

. 1
lim =S, — E(Sul&0, £))I* = o 3)
n—oo n

and
Sn - E(Sn |€Oa En)
Jn

Remark 2. It should be noted that, by condition (2), it follows that 0 < 02 < 0o. When
0% = 0 then (S, — E(Sul&, &,))//n —F 0 as n — oo. Also, for any stationary sequence,
starting from the identity

= N(0, o?).

n—1 k

E(SH=EX)+2) Y E(XX)),

k=1 j=1
note that the convergence of sums of the covariances implies that E(S2)/n is convergent.

Furthermore, if the sums of covariances are bounded by a constant then (2) holds.

We would like to mention that, as in the stationary martingale case, in the absence of
ergodicity the limiting distribution still exists and it is a mixture of distributions.

Remark 3. If (§,),cz is any stationary Markov chain, (X,),cz and (S,),>; are defined by (1)
and (2) holds, then there is a random variable 772 such that

Sn - E(Sn|$0v Sn)
i

where 5? is independent of N (0, 1).

= n’N(0, 1), )

If the random centering is not present, we have the following result:

Corollary 4. Assume that (2) holds and in addition

E(S, 60, &)
Jn

—>P0asn > .
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Then the following limit exists
b4
lim — (E|S,|)? = o2
n—o00 2n

and
Su

Jn

As an immediate consequence of Theorem 1, we give next sufficient conditions for the CLT
with the traditional limiting variance.

= N(0,c?). )

Corollary 5. Assume that (2) holds and in addition

1
hm _“E(Sn|§()7 En)”z = O (6)
n—>oo n
Then
E(S?
lim ( n) = 0'2 (7)

n—o0o n
and
Su

Jn

We can also give a sufficient condition for (6) in terms of individual random variables.

= N(0,c?). ®

Proposition 6. Assume that (2) holds and the following condition is satisfied
Tim nl| E(Xolé. &)II* = 0. ©)
Then (7) and (8) hold.
In Section 2.2, in the context of absolutely regular Markov chains, we shall comment that

condition (9) alone does not imply (8). However, a reinforced condition does:

Corollary 7. Assume that

D IEXol€x, E)I7 < oc. (10)

k>1

Then (7) and (8) hold with % = || Xo|* + 221@1 E(XoXp).
2.2. Absolutely regular Markov chains

Relevant to this section is the coefficient of absolute regularity, which was introduced by
Volkonskii and Rozanov [36] and was attributed there to Kolmogorov. For a stationary sequence
& = (&)rez, not necessarily Markov, with values in a separable Banach space, the coefficient
of absolute regularity is defined by

Bn=Bu(§) =E ( sup |P(A|Fo) — ]P’(A)I> -
AeFn

The chain is called absolutely regular if 8, — 0. We can easily see from this definition that
B, is monotonic. Furthermore B, is symmetric, in the sense that B(&, &,) = B(&,, &). This
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fact can be easily seen by using the equivalent definition for 8, in terms of partitions (see
Definitions 3.3 and 3.5 in [6]). For such sequences, Bradley [4] constructed an example of a
stationary, pairwise independent, absolutely regular sequence for which a nondegenerate central
limit theorem cannot hold.

For a Markov chain & = (&)rcz, with values in a separable Banach space, the coefficient
of absolute regularity is equal to (see Proposition 3.22 (IIL,5) in [6])

Bn = Bn(§) = B0, 85) = E <:ug [P, € Al§o) — P50 € A)I) )

where B denotes the Borel sigma field.

Let us mention that there are numerous examples of stationary absolutely regular Markov
chains. For easy reference we refer to Section 3 in [5] survey paper and to the references
mentioned there. We know that a strictly stationary, countable state Markov chain is absolutely
regular if and only if the chain is irreducible and aperiodic. Also, any strictly stationary
Harris recurrent and aperiodic Markov chain is absolutely regular. It is also well-known that
B, — 0 implies total ergodicity in the measure theoretical sense. Also, in many situations these
coefficients are tractable. The computation of the coefficients of absolute regularity is an area
of intense research, with numerous applications to time series and statistics. There is a vast
literature on this subject. See for instance [1,9,11-13,26], [6, Vol. 1,2,3] among others.

Due to their importance for the Monte Carlo simulations, the central limit theorem for
Markov chains was intensively studied under the absolute regularity condition. In this direction
we mention the books by Nummelin [28], Meyn and Tweedie [25] and Chen [7] and we also
refer to the survey paper by Jones [19].

In the works mentioned above, the vast majority of results concerning the CLT for absolutely
regular Markov chains require sufficient conditions in terms of moments and mixing rates.
Some of them require rates which combine the tail distribution of a variable with the mixing
coefficients.

By using regeneration techniques and partition in independent blocks (Nummelin’s splitting
technique, [27]) it was proven that, in this setting, a necessary and sufficient condition for the
CLT is that S, /+/n is stochastically bounded (Theorem I1.2.3 in [7]). However, the limit has a
variance which is described in terms of the split chain and it is difficult to describe. Our next
Corollary is obtained under a more general condition than in Theorem II. 3.1 in [7], and sheds
new light on the asymptotic variance in Chen’s Theorem I1.2.3. The advantage of these results
is that no rate of convergence to zero of the mixing coefficients is required. However, some
information about the variance of partial sums is needed.

Corollary 8. Assume that (2) holds and the sequence is absolutely regular. Then (5) holds
with 62 = lim,_, oo 7 (E|S,|)* /2n.

To give a CLT where the limiting variance is o2 defined in (7), we shall verify condition (9)
of Proposition 6. Denote by O the quantile function of |Xy|, i.e., the inverse function of
t — P(]Xo| > t). We obtain the following result:

Corollary 9. Assume that (2) holds and the following condition is satisfied

Bn
lim n 0*(w)du = 0. (11)

n—00 0

Then (7) and (8) hold.
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In terms of moments, by Holder’s inequality, (11) is implied by E(|Xo|*"®) < oo and
npy/ @ 0, for some 8 > 0. If Xy is bounded a.s., the mixing rate required for this corollary
is nB, — 0.

Finally, condition (10) is verified if

Bn
§ / 0*(w)du < oo, (12)
0

n>1

and then (7) and (8) hold. Further reaching results could be found in [13], where a larger class
of processes was considered. According to Corollary 1 Doukhan et al. [13], (11) alone is not
enough for (8). Actually, the stronger condition (12) is a minimal condition for the CLT for
S, /+/n in the following sense. In their Corollary 1, Doukhan et al. [13] constructed a stationary
absolutely regular Markov chain (& )<z and a function f e]L(Z)(n), which barely does not satisfy
(12) and S,/+/n does not satisfy the CLT. For instance, this is the case when for an a > 1,
B, = cn~ and Q%(u) behaves as u~'*"/¢|logu|~" as u — 0*. In this case

Bn 1
> / Q*(u)du = / B, ) Q*(u)du = oo
0 0

n>1

and, according to Corollary 1 in Doukhan et al. [13], there exists a Markov chain with these
specifications, such that S,/./n does not satisfy the CLT. However, for these specifications
(11) is satisfied. If in addition we know that (2) holds, then, by Corollary 9, the CLT holds for
N

Let us point out for instance, a situation where Corollary 9 is useful. Let Y = (¥;) and
Z = (Z;) be two absolutely regular Markov chains of centered, bounded random variables,
independent among them and satisfying the following conditions Y, ., B.,(Y) < oo and
nf,(Z) — 0. If we define now the sequence X = (X,,), where for each n we set X, =Y.z,
then, by Theorem 6.2 in [6], we have B,(X) < B,(Y) + B.(Z). As a consequence, by using
the monotonicity of g,, we have nB,(X) — 0 and condition (11) is satisfied. Certainly, this
condition alone does not assure that the CLT holds. In order to apply Corollary 9 we have
to verify that condition (2) holds. Conditioned by Z the partial sum of (X,) becomes a linear
combination of the variables of Y and we can apply Corollary 7 in [29]. It follows that there
is a positive constant C such that

Ev() YWz <COQ_Z) as., (13)

k=1 k=1

where Ey denotes the partial integral with respect to the variables of Y. By the independence
of the sequences Y and Z we obtain

EQ) YiZi)* < CnE(Z)). (14)
k=1
Therefore condition (2) holds. By Corollary 9 we obtain that (7) and (8) hold for the sequence
(Xn).

As a particular example of this kind let us consider two stationary renewal processes & = (&;)
and n = (n;), with countable state space {0, 1,2, ...} and independent among them. For the
transition probabilities of (&) we take fori > 1, P(§, =i — 1§y =i) =1, p; = P =
. . . —1
ilg = 0) = (2i°(og(i + 1))*) ', and py = P(§; = 0]5 =0) =1 — P(§ = 1§ = 0).

Please cite this article as: M. Peligrad, A new CLT for additive functionals of Markov chains, Stochastic Processes and their Applications (2020),
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For (n;) we take for i > 1, P(qy =i —1lno = i) = 1, ¢ = POy = ilno = 0) =
(2i(log(i + 1)))_l and go = P(m = 0[no = 0) =1 — P(i > 1|ny = 0). From Theorem 5 in
[9], we know that the §—mixing coefficients for these sequences are of orders

Bn(§) = c and B,(n) < ¢

n(log(n + 1))? nlogn + 1)’

where ¢ is a positive constant. Now, let f and g be two bounded function and define the
sequences Y and Z by Y; = f(§) — E(f(§)) and Z; = g(n;) — E(g(n;)) and set X; =
X;Y;. Clearly, for this example anl B.(Y) < oo and nB,(Z) — 0 and we can apply
Corollary 9 for the sequence (X,,).

2.3. Interlaced mixing Markov chains

Another example where Corollary 5 applies is the class of interlaced mixing Markov chains.
Let A, B be two sub o-algebras of F. Define the maximal coefficient of correlation

E
p(A, B) = sup M,
fE]L%(.A), gE]Lg(B) ”f” : ”g”

where ]Lé(A) (]L(z)(B)) is the space of random variables that are .A—measurable (respectively
B—measurable), zero mean and square integrable. For a sequence of random variables, (§; )iz,
we define

py, =supp(o(&,i€S), o, jeT),

where the supremum is taken over all pairs of disjoint sets, 7 and S or R such that min{|¢t — s] :
teT,s €S} >n. We call the sequence p*—mixing if p; — 0 as n — oo.

The p*-mixing condition goes back to Stein [35] and to Rosenblatt [34]. It is well-known
that p*—mixing implies total ergodicity. Also, there are known examples (see Example 7.16
in [6]) of p*—mixing sequences which are not absolutely regular.

Our next Corollary shows that our result provides an alternative proof of the CLT for inter-
laced p*-mixing Markov chains. Although the result itself is not new, it provides another exam-
ple where condition (6) is verified. For further reaching results see for instance Theorem 11.18
in [6] and Corollary 9.16 in [24].

Corollary 10. Assume that (& )rez is a stationary p*-mixing Markov chain. Then (6), (7) and
(8) hold.

3. Proofs

Proof of Theorem 1. The proof of this central limit theorem is based on the martingale
approximation technique. Fix m (m < n) a positive integer and make consecutive blocks of
size m. Denote by Y} the sum of variables in the k’th block. Let u = u,(m) = [n/m]. So, for
k=0,1,...,u— 1, we have

Yi =Yi(m) = Ximy1 + -+ + Xt 1ym)-
Also denote

Y, = Yu(m) = (Xum-H +---+ Xn)
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8 M. Peligrad / Stochastic Processes and their Applications xxx (xxxx) xxx
For k =0,1,...,u — 1 let us consider the random variables

Dy = Dy(m) = ﬁ(yk — E(Yk|&xm, Ek+1ym))-
By the Markov property, conditioning by o (§xm, §k+1)ym) 18 equivalent to conditioning by
Fim Vv F&+Dm Note that Dy is adapted to Fgy1m = Gr. Then we have E(D;|Gy) = 0 as.
Since we assumed that the shift 6 of the sequence (£,),cz is totally ergodic, we deduce that we
have a stationary and ergodic sequence of square integrable martingale differences (Dy, Gy )k>o0-
Therefore, by the classical central limit theorem for ergodic martingales, for every m, a fixed
positive integer, we have

u—1

1 1
—M,(m) = — Z Dy(m) = N,, as n — 00,

Vu Nt

where N,, is a normally distributed random variable with mean O and variance m~'||Yy —
E(Yy|&0, £,)]1>. Now consider (m’) a subsequence of N such that

1 . I
lim —||¥o — E(Yoléo, &n)lI* = lim sup —|IS, — E(Syléo, &)I1* = n’. (15)

m’ n—oo N
Note that by (2) it follows that > < co. This means that
N, = N, n%) as m' — oc.

Whence, according to Theorem 3.2 in [3], in order to establish the CLT for Z?:_ol Y:/s/n we
have only to show that

. . 1 1 ,
lim lim sup |—= (S, — E(Sul&0. &) — —=M,(m")||* = 0. (16)
m’— o0 n—> 00 n ﬁ
Denote by Z; = m’l/zE(Yklékm, Ek+1ym) and let R,(m) = Z;(l) Z;. Set
Su(m) = M, (m) + R, (m). (17)

Let us show that M,,(m) and R, (m) are orthogonal. We show this by analyzing the expected
value of all the terms of the product M, (m)R,(m). Note that if j < k, since F(j+1ym C Fim>
we have

E[(Ye — Eil&rms ErymDVE Y1 jm, EGa1ym)]
= E[E(Yy — EYi|Fim v FE) Fitm) EG1E s EGi1ym)] = 0.

On the other hand, if j > k, since Fin  F&+Dm then

E[(Yk - E(Yklskma E(k-‘rl)m))E(Yj |§jms ‘i:(j-ﬁ-l)m)]
= E[E(Yy — E(Yi|Fin v FEU)Fim)EY 1€ jm, &j+1m)] = 0.

For j = k, by conditioning with respect to o (§xm, £k+1ym), We note that

E[(Yy — EYilékms g+ 1ym)) EYil&rm, Eg+1ym)] = 0.

Therefore M, (m) and R,(m) are indeed orthogonal. By using now the decomposition (17), the
fact that M,,(m) and R,(m) are orthogonal and M, (m) is a martingale, we obtain the identity

1 2 1 2 1 2
=[Sl = —1Sm — E(Sm|€0. E) " + — I Ru(m)]|”. (18)
u m u
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Also, note that (2) and the definition of Y, imply that for some positive constant C, we have
[IY, || < Cm. Hence, by the properties of conditional expectations, for every m fixed, we have
1 1

— —(S,(m) — E(S,(m)|&, &, — Q0 asn — oo. 19

IIﬁ ﬁ( (m) — E(Su(m)|&o, &) (19)

Recall the definition of M, (m), which is orthogonal to FyV F*". By using again the properties
of conditional expectations and the identity (18), for every m we have

(Sn - E(Sn|€:07 En)) -

1 2 1 2 1 2
—lSu(m) = E(Su(m)l€o. &) — My ()™ = —[Ru(m)[|” = — [ E(Su(m)[€o. &)

1 1
- (I1S.m)|1* = I E(Su(m))&, EDII7) — —[1Sn — E(Snlé0, En?

1 1
= ~(S(m) = E(Su(m)l&, ENN? — —11Sw = E(Snléo, Enl*.

By passing now to the limit in the last identity with n — oo, by (15) and (19) we obtain

1 1
1‘ = Sn - F Sn s Sn - _MM 2
im sup l - ( (Snl&0, 6n)) NG (m)]l

1
o <_||sm ~ ESulo. sm>||2) :
m

By letting now m’ — oo on the subsequence defined in (15) and taking into account (19), we
have that (16) follows. Therefore

Sn - E(Sn|§07 é:n)
Jn
Then, by (15), Skorohod’s representation theorem (i.e. Theorem 6.7 in [3]) and by Fatou’s
lemma we get

. E(Sn - E(S,,|$(), Sn))z 2 . . E(Sn - E(Sn|$0’ g_-n))2
lim sup =n° <lim inf .
n—>00 n n—00 n

It follows that (3) holds as well as the CLT in Theorem 1. [1

= N, n?).

Proof of Corollary 4. From Theorem 1 and Theorem 3.1 in [3] we immediately obtain (5).
Note that, by (2), we have that |S,|/+/n is uniformly integrable and therefore, by (5) and the
convergence of moments theorem (Theorem 3.5, [3]) we have that E|S,|//n — /2/7o. O

Proof of Remark 3. The proof of this remark is based on two facts.

Fact 1. Raikov-type CLT for stationary martingale differences. (see Theorem 3.6 in [16]).
If (Dy)rez 1s a square integrable sequence of martingale differences and M,, = D+ ---+ D,
then there is a random variable * such that

Jn
where n? is independent on N (0, 1).

Fact 2. A variant of Theorem 3.2 in [3] for complete separable metric spaces (Theorem 2
in [10]). For random variables (X,(m’), Y,)) with n € N and m’ belonging to a subsequence of
N which tends to oo, assume that for every ¢ > 0

lim lim sup P(|X,(m")—Y,| >¢e) =0,

—00 n— oo

= n>N(0, 1),
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10 M. Peligrad / Stochastic Processes and their Applications xxx (xxxx) xxx

and for every m’, X,,(m’) = Z(m') as n — oo. Then there is a random variable X such that
Zm')= X asm' - occand Y, = X as n — oo.

To prove Remark 3, we define the subsequence (m’) by (15) and start from relation (16). We
apply next Fact 1 to the sequence of stationary martingale differences (Dy(m’))i>o and obtain
that

M, (m’)
N
where nfn, are random variables independent on N (0, 1). Then, we apply Fact 2 and deduce that,
for some random variable X, both ,,N(0,1) = X and S,/./n = X. But the characteristic
function of n2,N(0, 1) is E (exp(—tn?,/2)) and therefore n?, converges in distribution to some
random variable n implying (4). O

= ni,N(O, 1) as m’" — oo,

Proof of Proposition 6. This proposition follows by applying Corollary 5. Note that we have
only to show that (9) implies (6).
We start the proof of this fact by fixing 0 < & < 1 and writing

Sn = S[sn] + Vn(g) + (Sn - Sn—[sn])’

where

n—[en]

Vie)y= Y X;.

Jj=lenl+1

Note that, by the triangle inequality, properties of the norm of the conditional expectation,
condition (2) and stationarity, we easily get

. 1 . 1
lim sup —=||E(Sy, |80, &) < limlim sup —=|[|E(V,(&)[&o, Ex)ll- (20)
n—o00 A/ e—0 n—o00 A/

By the Cauchy—Schwartz inequality, for 1 <a <b <n,

b b
IEQ  Xjl&0. &I <n Y I1EX;1&. &)1

Jj=a Jj=a
So, by stationarity

n—[en]

1
“NEWVa@)léo E0I° < Y IEXolé-j &I

j=lenl+1

Since for [en] + 1 < j < n — [en] we have F_; V F"/ C F_{zp v F it follows that

1
;IIE(Vn(e)Iéo, EDN? < nlIl E(Xol&—jens Gen) I

We obtain (6) by passing to the limit with n — o0 in the last inequality and taking into account
(9) and (20). O

Proof of Corollary 7. By the monotonicity of ||E(Xo|é_k, &)|l, condition (10) implies (9).
Condition (10) also implies the couple of conditions

D IE(Xol€-0)I* < 00 and Y | E(Xol&0)II> < 0o. @1)

k>1 k>1
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Now note that by the properties of the conditional expectations, the Markov property and
stationarity, for all k > 1 we easily obtain

|E(XoX20)| = [E(XoE(X2|§)) = |E(E(Xo|&) E(X o |&))| <
IEXolg01 - 1 E(Xol€-0)ll < (IE(Xol&-0II* + I E(Xol&0)1%)/2-

A similar relation holds for |E(XoX2+1)|.- Hence the two conditions in (21) lead to (2). The
result follows by applying Proposition 6. [

Before proving the corollaries in Section 2.2 we give a more general definition of the
coefficient of absolute regularity 8. As in relation (5) in Proposition 3.22 in Bradley, given
two sigma algebras A and B with 3 separable and for any B € B there is a regular conditional
probability P(B|.A), then

B(A, B) = E(sup | P(B|A) — P(B))).
BeB
We also need a technical lemma whose proof is given later.

Lemma 11. Let X, Z be two random variables on a probability space ({2, IC, P) with values
in a separable Banach space. Let B C K be a sub o—algebra. Assume that X and Z are
conditionally independent given B. Then

BB, AV C) < B(A, B)+ B(C, B) + B(A,C),
where A =0 (X) and C = o(2).

Proof of Corollary 8. In order to apply Corollary 4 it is enough to verify that
EIE(Sulg0- 80l
NG
Let v < n be a positive integer. Then, by (2) we have
lim sup EIESnlS0. 8 _ sup E|E(V,(v)|80, )l
00 Jn 00 NG '

where V,(v) = Z;’;ZH X ;. But, it is well-known that (see Ch.4 in [6])

E|E(V,(v)|&, &) < 88" (0 (& v < i <n — ), 0(E0, EDIISu2ll2-

By Lemma 11, applied with A = 0(&), B=0(; v<i <n—v), and C = o(&,) and taking
into account the properties 8, listed at the beginning of Section 2.2 along with stationarity, we
obtain that

BloEism <i <n—m), o6, &) < B6o, &) + BEn, Eu—v) + B0, §n) < 3Bu.
Therefore, for all v € N

lim sup E|E(S,150, 60l
n—o0 \/ﬁ

and the result follows by letting v — co. [

0.

(22)

12 1
<248,7sup ﬁ 1S 12,
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Proof of Corollary 9. This corollary follows by verifying the conditions of Proposition 6. By
Rio’s [31] covariance inequality (see also Theorem 1.1 in [32]) we know that

Bn
IEKolé—n. &I <2 /O 0% (u)du,

where B, = B(0(§0), 0 (€. &n).
But, according to Lemma 11, applied with A = o(§_,), B = 0(&), and C = o(§,) we
obtain

Bn = B(0(50), 0(5-n, &) < 3B(0(50), 9(2)) = 3B,

and the result follows. [

Proof of Corollary 10. For this class of random variables it is well-known that condition (2)
is satisfied (see for instance Lemma 8.23 in [6]). According to Corollary 5 we have only to
verify condition (6). Note that by (22) it is enough to show that

L 1
lim lim sup —n||E(Vn(U)|$o,$n)|| =0,

V=00 n—00

with V,(v) =Y """V X j- By the definition of p; we observe that

j=v+1
IE(Va()l&o, €17 = [E(Va()E(Va ()0, £ < o2V - IE(V,i(v)[€0, £l
Whence,

1
ﬁ”E(Vn(U)lgO’ &)l < oy

The result follows by (2). U

1
7 [Va()Il-

Proof of Lemma 11. Denote the law of X by Py, the law of Z by Pz. Also by Px 5 we
denote the regular conditional distribution of X given B and by Pz the regular conditional
distribution of Z given B. By using the definition of 8(B, A v C) we have to evaluate the
expression / = E[supy |P(H|B) — P(H)|], where the supremum is taken over all H C AVC.
Denote by Iy the indicator function of H. Since X and Z are conditionally independent given
B we have

P(H|B) = // IH(x, Z)PX‘B(dX)PZHg(dZ) a.s.
Also,
P(H) = // IH()C, Z)P(Xyz)(dx, dZ)

By the triangle inequality we can write I < I} 4+ I, 4+ I3 where

LI =E <Szp | // In(x, 2) (Px;8(dx) Pz 5(dz) — Px(dx)Pz3(dz)) |> ,

L=E (SEP | // In(x, 2) (Px(dx)Pzp(dz) — Px(dx)Pz(dz)) |)
and

I = Sl:IP | // In(x, 2) (Px,z(dx, dz) — Px(dx)Pz(dz2))|.
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Now, because Iy is bounded by 1, we get

th(mmH&Mm—PMmo,
DCR

L <E <sup |Pz5(D) — Pz(D)|) ;
DCR

and
hf/lﬁﬂmﬂw—&ﬁwwa

where R denote the Borel sigma field and Z* is a random variable distributed as Z and
independent of X.
The result follows by using the definition of 8 and Theorem 3.29, both in [6]. [
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