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Abstract
In this paper we study the central limit theorem for additive functionals of stationary Markov chains

with general state space by using a new idea involving conditioning with respect to both the past and
future of the chain. Practically, we show that any additive functionals of a stationary and totally ergodic
Markov chain with var(Sn)/n uniformly bounded, satisfies a

√
n−central limit theorem with a random

centering. We do not assume that the Markov chain is irreducible and aperiodic. However, the random
centering is not needed if the Markov chain satisfies stronger forms of ergodicity. In absence of ergodicity
the convergence in distribution still holds, but the limiting distribution might not be normal.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction 1

A basic result in probability theory is the central limit theorem. To go beyond the 2

independent case, the dependence is often restricted by using projective criteria. For instance, 3

the martingales are defined by using a projective condition with respect to the past sigma field. 4

There also is an abundance of martingale-like conditions, which define classes of processes 5

satisfying the CLT. Among them Gordin’s condition [14], Gordin and Lifshits condition [15], 6

Heyde’s projective condition [17], [37], mixingales [23], Maxwell and Woodroofe condition 7

[22], just to name a few. All of them have in common that the conditions are imposed on the 8

conditional expectation of a variable with respect to the past sigma field. 9

There is, however, the following philosophical question. Note that a partial sum does not 10

depend on the direction of time, i.e. 11

Sn = X1 + X2 + · · · + Xn = Xn + Xn−1 + · · · + X1. 12
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However a condition of type “martingale-like” depends on the direction of time. Therefore, in1

order to get results for Sn , it is natural to also study projective conditions that are symmetric2

with respect to the direction of time. Furthermore, many mixing conditions (see [5], for a3

survey) and harnesses (see for instance [21,38]) are independent of the direction of time.4

For additive functionals of reversible, stationary and ergodic Markov chains, with centered5

and square integrable variables, Kipnis and Varadhan [20] proved that if E(S2
n )/n converges to a6

finite limit, then the CLT holds. This is not true without assuming reversibility (see for instance7

[4] or [8], Prop. 9.5(ii), among other examples). On the other hand, for additive functionals8

of Harris recurrent and aperiodic Markov chains with centered and square integrable variables,9

Chen [7, Theorem II. 3.1] proved that if Sn/
√

n is stochastically bounded, it satisfies the CLT.10

These results suggest and motivate the study of limiting distribution for stationary Markov11

chains with additive functionals satisfying supn E(S2
n )/n < ∞. With this aim, we introduce12

a new idea, which involves conditioning with respect to both the past and the future of the13

process. By using this idea together with a blocking argument and martingale approximation14

techniques, we shall prove that functions of a Markov chain which is stationary and totally15

ergodic (in the ergodic theoretical sense) satisfy the CLT, provided that we use a random16

centering and we assume that var(Sn)/n is uniformly bounded. In case when the stationary17

Markov chain satisfies stronger forms of ergodicity, the random centering is not needed. Among18

these classes are the absolutely regular Markov chains. For this class, our result gives as19

a corollary, a new interpretation of the limiting variance in the CLT in Theorem II. 2.3 of20

Chen [7] and a totally different new approach. We also provide a new proof for the CLT for21

interlaced mixing Markov chains. We also point out that, when the Markov chain is stationary22

but not necessarily ergodic, the limiting distribution still exists and we express it as a mixture23

of distributions.24

Our paper is organized as follows. In Section 2 we present the results. Section 3 is dedicated25

to their proofs.26

2. Results27

Throughout the paper we assume that (ξn)n∈Z is a stationary Markov chain, defined on28

a probability space (Ω ,F ,P) with values in a measurable space (S,A). Denote by Fn =29

σ (ξk, k ≤ n) and by Fn
= σ (ξk, k ≥ n). The marginal distribution on A is denoted by30

π (A) = P(ξ0 ∈ A). To settle the concern about the existence of a Markov chain with general31

state space, we shall construct the Markov chain from a kernel P(x, A), we assume an invariant32

distribution π exists and invoke the Ionescu Tulcea [18] result.33

Next, let L2
0(π ) be the set of measurable functions on S such that

∫
f 2dπ < ∞ and34 ∫

f dπ = 0. For a function f ∈L2
0(π ) let35

X i = f (ξi ), Sn =

n∑
i=1

X i . (1)36

We denote by ∥X∥ the norm in L2(Ω ,F ,P).37

With the exception of Remark 3, in all the other results we shall assume the total ergodicity38

of the shift θ of the sequence (ξn)n∈Z with respect to P, i.e. θm is ergodic for every m ≥ 1. For39

the definition of the ergodicity of the shift we direct the reader to the subsection “A return to40

Ergodic Theory” in [2] p. 494.41

Let us consider the operator P induced by the kernel P(x, A) on bounded measurable42

functions on (S,A) defined by P f (x) =
∫

S f (y)P(x, dy). By using Corollary 5 p. 97 in [33],43
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the shift of (ξn)n∈Z is totally ergodic with respect to P if and only if the powers Pm are 1

ergodic with respect to π for all natural m (i.e. Pm f = f for f bounded on (S,A) implies f 2

is constant π−a.e.). For more information on total ergodicity, we refer to the survey paper by 3

Quas [30]. 4

Below, ⇒ denotes the convergence in distribution and by N (µ, σ 2) we denote a normally 5

distributed random variable with mean µ and variance σ 2. 6

2.1. Central limit theorem 7

We shall establish the following CLT. 8

Theorem 1. Assume that 9

sup
n≥1

E(S2
n )

n
< ∞. (2) 10

Then, the following limit exists 11

lim
n→∞

1
n
∥Sn − E(Sn|ξ0, ξn)∥2

= σ 2 (3) 12

and 13

Sn − E(Sn|ξ0, ξn)
√

n
⇒ N (0, σ 2). 14

Remark 2. It should be noted that, by condition (2), it follows that 0 ≤ σ 2 < ∞. When 15

σ 2
= 0 then (Sn − E(Sn|ξ0, ξn))/

√
n →

P 0 as n → ∞. Also, for any stationary sequence, 16

starting from the identity 17

E(S2
n ) = E(X2

0) + 2
n−1∑
k=1

k∑
j=1

E(X0 X j ), 18

note that the convergence of sums of the covariances implies that E(S2
n )/n is convergent. 19

Furthermore, if the sums of covariances are bounded by a constant then (2) holds. 20

We would like to mention that, as in the stationary martingale case, in the absence of 21

ergodicity the limiting distribution still exists and it is a mixture of distributions. 22

Remark 3. If (ξn)n∈Z is any stationary Markov chain, (Xn)n∈Z and (Sn)n≥1 are defined by (1) 23

and (2) holds, then there is a random variable η2 such that 24

Sn − E(Sn|ξ0, ξn)
√

n
⇒ η2 N (0, 1), (4) 25

where η2 is independent of N (0, 1). 26

If the random centering is not present, we have the following result: 27

Corollary 4. Assume that (2) holds and in addition 28

E(Sn|ξ0, ξn)
√

n
→

P 0 as n → ∞. 29
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Then the following limit exists1

lim
n→∞

π

2n
(E |Sn|)

2
= σ 2

2

and3

Sn
√

n
⇒ N (0, σ 2). (5)4

As an immediate consequence of Theorem 1, we give next sufficient conditions for the CLT5

with the traditional limiting variance.6

Corollary 5. Assume that (2) holds and in addition7

lim
n→∞

1
n
∥E(Sn|ξ0, ξn)∥2

= 0. (6)8

Then9

lim
n→∞

E(S2
n )

n
= σ 2 (7)10

and11

Sn
√

n
⇒ N (0, σ 2). (8)12

We can also give a sufficient condition for (6) in terms of individual random variables.13

Proposition 6. Assume that (2) holds and the following condition is satisfied14

lim
n→∞

n∥E(X0|ξ−n, ξn)∥2
= 0. (9)15

Then (7) and (8) hold.16

In Section 2.2, in the context of absolutely regular Markov chains, we shall comment that17

condition (9) alone does not imply (8). However, a reinforced condition does:18

Corollary 7. Assume that19 ∑
k≥1

∥E(X0|ξ−k, ξk)∥2 < ∞. (10)20

Then (7) and (8) hold with σ 2
= ∥X0∥

2
+ 2

∑
k≥1 E(X0 Xk).21

2.2. Absolutely regular Markov chains22

Relevant to this section is the coefficient of absolute regularity, which was introduced by23

Volkonskii and Rozanov [36] and was attributed there to Kolmogorov. For a stationary sequence24

ξ = (ξk)k∈Z , not necessarily Markov, with values in a separable Banach space, the coefficient25

of absolute regularity is defined by26

βn = βn(ξ ) = E
(

sup
A∈Fn

|P(A|F0) − P(A)|
)

.27

The chain is called absolutely regular if βn → 0. We can easily see from this definition that28

βn is monotonic. Furthermore βn is symmetric, in the sense that β(ξ0, ξn) = β(ξn, ξ0). This29



SPA: 3663

Please cite this article as: M. Peligrad, A new CLT for additive functionals of Markov chains, Stochastic Processes and their Applications (2020),
https://doi.org/10.1016/j.spa.2020.04.004.

M. Peligrad / Stochastic Processes and their Applications xxx (xxxx) xxx 5

fact can be easily seen by using the equivalent definition for βn in terms of partitions (see 1

Definitions 3.3 and 3.5 in [6]). For such sequences, Bradley [4] constructed an example of a 2

stationary, pairwise independent, absolutely regular sequence for which a nondegenerate central 3

limit theorem cannot hold. 4

For a Markov chain ξ = (ξk)k∈Z , with values in a separable Banach space, the coefficient 5

of absolute regularity is equal to (see Proposition 3.22 (III,5) in [6]) 6

βn = βn(ξ ) = β(ξ0, ξn) = E
(

sup
A∈B

|P(ξn ∈ A|ξ0) − P(ξ0 ∈ A)|
)

, 7

where B denotes the Borel sigma field. 8

Let us mention that there are numerous examples of stationary absolutely regular Markov 9

chains. For easy reference we refer to Section 3 in [5] survey paper and to the references 10

mentioned there. We know that a strictly stationary, countable state Markov chain is absolutely 11

regular if and only if the chain is irreducible and aperiodic. Also, any strictly stationary 12

Harris recurrent and aperiodic Markov chain is absolutely regular. It is also well-known that 13

βn → 0 implies total ergodicity in the measure theoretical sense. Also, in many situations these 14

coefficients are tractable. The computation of the coefficients of absolute regularity is an area 15

of intense research, with numerous applications to time series and statistics. There is a vast 16

literature on this subject. See for instance [1,9,11–13,26], [6, Vol. 1,2,3] among others. 17

Due to their importance for the Monte Carlo simulations, the central limit theorem for 18

Markov chains was intensively studied under the absolute regularity condition. In this direction 19

we mention the books by Nummelin [28], Meyn and Tweedie [25] and Chen [7] and we also 20

refer to the survey paper by Jones [19]. 21

In the works mentioned above, the vast majority of results concerning the CLT for absolutely 22

regular Markov chains require sufficient conditions in terms of moments and mixing rates. 23

Some of them require rates which combine the tail distribution of a variable with the mixing 24

coefficients. 25

By using regeneration techniques and partition in independent blocks (Nummelin’s splitting 26

technique, [27]) it was proven that, in this setting, a necessary and sufficient condition for the 27

CLT is that Sn/
√

n is stochastically bounded (Theorem II.2.3 in [7]). However, the limit has a 28

variance which is described in terms of the split chain and it is difficult to describe. Our next 29

Corollary is obtained under a more general condition than in Theorem II. 3.1 in [7], and sheds 30

new light on the asymptotic variance in Chen’s Theorem II.2.3. The advantage of these results 31

is that no rate of convergence to zero of the mixing coefficients is required. However, some 32

information about the variance of partial sums is needed. 33

Corollary 8. Assume that (2) holds and the sequence is absolutely regular. Then (5) holds 34

with σ 2
= limn→∞ π (E |Sn|)

2 /2n. 35

To give a CLT where the limiting variance is σ 2 defined in (7), we shall verify condition (9) 36

of Proposition 6. Denote by Q the quantile function of |X0|, i.e., the inverse function of 37

t ↦→ P(|X0| > t). We obtain the following result: 38

Corollary 9. Assume that (2) holds and the following condition is satisfied 39

lim
n→∞

n
∫ βn

0
Q2(u)du = 0. (11) 40

Then (7) and (8) hold. 41
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In terms of moments, by Hölder’s inequality, (11) is implied by E(|X0|
2+δ) < ∞ and1

nβδ/(2+δ)
n → 0, for some δ > 0. If X0 is bounded a.s., the mixing rate required for this corollary2

is nβn → 0.3

Finally, condition (10) is verified if4 ∑
n≥1

∫ βn

0
Q2(u)du < ∞, (12)5

and then (7) and (8) hold. Further reaching results could be found in [13], where a larger class6

of processes was considered. According to Corollary 1 Doukhan et al. [13], (11) alone is not7

enough for (8). Actually, the stronger condition (12) is a minimal condition for the CLT for8

Sn/
√

n in the following sense. In their Corollary 1, Doukhan et al. [13] constructed a stationary9

absolutely regular Markov chain (ξk)k∈Z and a function f ∈L2
0(π ), which barely does not satisfy10

(12) and Sn/
√

n does not satisfy the CLT. For instance, this is the case when for an a > 1,11

βn = cn−a and Q2(u) behaves as u−1+1/a
| log u|

−1 as u → 0+. In this case12 ∑
n≥1

∫ βn

0
Q2(u)du =

∫ 1

0
β−1

n (u)Q2(u)du = ∞13

and, according to Corollary 1 in Doukhan et al. [13], there exists a Markov chain with these14

specifications, such that Sn/
√

n does not satisfy the CLT. However, for these specifications15

(11) is satisfied. If in addition we know that (2) holds, then, by Corollary 9, the CLT holds for16

Sn/
√

n.17

Let us point out for instance, a situation where Corollary 9 is useful. Let Y = (Yi ) and18

Z = (Z j ) be two absolutely regular Markov chains of centered, bounded random variables,19

independent among them and satisfying the following conditions
∑

n≥1 βn(Y ) < ∞ and20

nβn(Z ) → 0. If we define now the sequence X = (Xn), where for each n we set Xn = Yn Zn ,21

then, by Theorem 6.2 in [6], we have βn(X ) ≤ βn(Y ) + βn(Z ). As a consequence, by using22

the monotonicity of βn , we have nβn(X ) → 0 and condition (11) is satisfied. Certainly, this23

condition alone does not assure that the CLT holds. In order to apply Corollary 9 we have24

to verify that condition (2) holds. Conditioned by Z the partial sum of (Xn) becomes a linear25

combination of the variables of Y and we can apply Corollary 7 in [29]. It follows that there26

is a positive constant C such that27

EY(
n∑

k=1

Yk Zk)2
≤ C(

n∑
k=1

Z2
k ) a.s., (13)28

where EY denotes the partial integral with respect to the variables of Y. By the independence29

of the sequences Y and Z we obtain30

E(
n∑

k=1

Yk Zk)2
≤ CnE(Z2

0). (14)31

Therefore condition (2) holds. By Corollary 9 we obtain that (7) and (8) hold for the sequence32

(Xn).33

As a particular example of this kind let us consider two stationary renewal processes ξ = (ξi )34

and η = (ηi ), with countable state space {0, 1, 2, . . .} and independent among them. For the35

transition probabilities of (ξi ) we take for i ≥ 1, P(ξ1 = i − 1|ξ0 = i) = 1, pi = P(ξ1 =36

i |ξ0 = 0) =
(
2i3(log(i + 1))2

)−1, and p0 = P(ξ1 = 0|ξ0 = 0) = 1 − P(ξ1 ≥ 1|ξ0 = 0).37
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For (ηi ) we take for i ≥ 1, P(η1 = i − 1|η0 = i) = 1, qi = P(η1 = i |η0 = 0) = 1(
2i3(log(i + 1))

)−1 and q0 = P(η1 = 0|η0 = 0) = 1 − P(η1 ≥ 1|η0 = 0). From Theorem 5 in 2

[9], we know that the β−mixing coefficients for these sequences are of orders 3

βn(ξ ) ≤ c
1

n(log(n + 1))2 and βn(η) ≤ c
1

n log(n + 1)
, 4

where c is a positive constant. Now, let f and g be two bounded function and define the 5

sequences Y and Z by Yi = f (ξi ) − E( f (ξi )) and Z i = g(ηi ) − E(g(ηi )) and set X i = 6

X i Yi . Clearly, for this example
∑

n≥1 βn(Y ) < ∞ and nβn(Z ) → 0 and we can apply 7

Corollary 9 for the sequence (Xn). 8

2.3. Interlaced mixing Markov chains 9

Another example where Corollary 5 applies is the class of interlaced mixing Markov chains. 10

Let A,B be two sub σ -algebras of F . Define the maximal coefficient of correlation 11

ρ(A,B) = sup
f ∈L2

0(A), g∈L2
0(B)

|E( f g)|
∥ f ∥ · ∥g∥

, 12

where L2
0(A) (L2

0(B)) is the space of random variables that are A−measurable (respectively 13

B−measurable), zero mean and square integrable. For a sequence of random variables, (ξk)k∈Z, 14

we define 15

ρ∗

n = sup ρ(σ (ξi , i ∈ S), σ (ξ j , j ∈ T )) , 16

where the supremum is taken over all pairs of disjoint sets, T and S or R such that min{|t − s| : 17

t ∈ T , s ∈ S} ≥ n. We call the sequence ρ∗
−mixing if ρ∗

n → 0 as n → ∞. 18

The ρ∗-mixing condition goes back to Stein [35] and to Rosenblatt [34]. It is well-known 19

that ρ∗
−mixing implies total ergodicity. Also, there are known examples (see Example 7.16 20

in [6]) of ρ∗
−mixing sequences which are not absolutely regular. 21

Our next Corollary shows that our result provides an alternative proof of the CLT for inter- 22

laced ρ∗-mixing Markov chains. Although the result itself is not new, it provides another exam- 23

ple where condition (6) is verified. For further reaching results see for instance Theorem 11.18 24

in [6] and Corollary 9.16 in [24]. 25

Corollary 10. Assume that (ξk)k∈Z is a stationary ρ∗-mixing Markov chain. Then (6), (7) and 26

(8) hold. 27

3. Proofs 28

Proof of Theorem 1. The proof of this central limit theorem is based on the martingale 29

approximation technique. Fix m (m < n) a positive integer and make consecutive blocks of 30

size m. Denote by Yk the sum of variables in the k’th block. Let u = un(m) = [n/m]. So, for 31

k = 0, 1, . . . , u − 1, we have 32

Yk = Yk(m) = (Xkm+1 + · · · + X (k+1)m). 33

Also denote 34

Yu = Yu(m) = (Xum+1 + · · · + Xn). 35
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For k = 0, 1, . . . , u − 1 let us consider the random variables1

Dk = Dk(m) =
1

√
m

(Yk − E(Yk |ξkm, ξ(k+1)m)).2

By the Markov property, conditioning by σ (ξkm, ξ(k+1)m) is equivalent to conditioning by3

Fkm ∨ F (k+1)m . Note that Dk is adapted to F(k+1)m = Gk . Then we have E(D1|G0) = 0 a.s.4

Since we assumed that the shift θ of the sequence (ξn)n∈Z is totally ergodic, we deduce that we5

have a stationary and ergodic sequence of square integrable martingale differences (Dk,Gk)k≥0.6

Therefore, by the classical central limit theorem for ergodic martingales, for every m, a fixed7

positive integer, we have8

1
√

u
Mu(m) :=

1
√

u

u−1∑
k=0

Dk(m) ⇒ Nm as n → ∞,9

where Nm is a normally distributed random variable with mean 0 and variance m−1
∥Y0 −10

E(Y0|ξ0, ξm)∥2. Now consider (m ′) a subsequence of N such that11

lim
m′→∞

1
m ′

∥Y0 − E(Y0|ξ0, ξm′ )∥2
= lim sup

n→∞

1
n
∥Sn − E(Sn|ξ0, ξn)∥2

= η2. (15)12

Note that by (2) it follows that η2 < ∞. This means that13

Nm′ ⇒ N (0, η2) as m ′
→ ∞.14

Whence, according to Theorem 3.2 in [3], in order to establish the CLT for
∑u−1

i=0 Yi/
√

n we15

have only to show that16

lim
m′→∞

lim sup
n→∞

∥
1

√
n

(Sn − E(Sn|ξ0, ξn)) −
1

√
u

Mu(m ′)∥2
= 0. (16)17

Denote by Zk = m−1/2 E(Yk |ξkm, ξ(k+1)m) and let Ru(m) =
∑u−1

k=0 Zk . Set18

Su(m) = Mu(m) + Ru(m). (17)19

Let us show that Mn(m) and Rn(m) are orthogonal. We show this by analyzing the expected
value of all the terms of the product Mn(m)Rn(m). Note that if j < k, since F( j+1)m ⊂ Fkm ,
we have

E[(Yk − E(Yk |ξkm, ξ(k+1)m))E(Y j |ξ jm, ξ( j+1)m)]

= E[E(Yk − E(Yk |Fkm ∨ F (k+1)m)|F( j+1)m)E(Y j |ξ jm, ξ( j+1)m)] = 0.

On the other hand, if j > k, since F jm ⊂ F (k+1)m then

E[(Yk − E(Yk |ξkm, ξ(k+1)m))E(Y j |ξ jm, ξ( j+1)m)]

= E[E(Yk − E(Yk |Fkm ∨ F (k+1)m)|F jm )E(Y j |ξ jm, ξ( j+1)m)] = 0.

For j = k, by conditioning with respect to σ (ξkm, ξ(k+1)m), we note that20

E[(Yk − E(Yk |ξkm, ξ(k+1)m))E(Yk |ξkm, ξ(k+1)m)] = 0.21

Therefore Mn(m) and Rn(m) are indeed orthogonal. By using now the decomposition (17), the22

fact that Mn(m) and Rn(m) are orthogonal and Mn(m) is a martingale, we obtain the identity23

1
u

∥Su(m)∥2
=

1
m

∥Sm − E(Sm |ξ0, ξm)∥2
+

1
u

∥Ru(m)∥2. (18)24
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Also, note that (2) and the definition of Yu imply that for some positive constant C , we have 1

∥Yu∥ ≤ Cm. Hence, by the properties of conditional expectations, for every m fixed, we have 2

∥
1

√
n

(Sn − E(Sn|ξ0, ξn)) −
1

√
u

(Su(m) − E(Su(m)|ξ0, ξn))∥ → 0 as n → ∞. (19) 3

Recall the definition of Mu(m), which is orthogonal to F0 ∨Fum . By using again the properties
of conditional expectations and the identity (18), for every m we have

1
u

∥Su(m) − E(Su(m)|ξ0, ξn) − Mu(m)∥2
=

1
u

∥Ru(m)∥2
−

1
u

∥E(Su(m)|ξ0, ξn)∥2

=
1
u

(
∥Su(m)∥2

− ∥E(Su(m)|ξ0, ξn)∥2)
−

1
m

∥Sm − E(Sm |ξ0, ξm)∥2

=
1
u

∥(Su(m) − E(Su(m)|ξ0, ξn))∥2
−

1
m

∥Sm − E(Sm |ξ0, ξm)∥2.

By passing now to the limit in the last identity with n → ∞, by (15) and (19) we obtain

lim sup
n→∞

∥
1

√
n

(Sn − E(Sn|ξ0, ξn)) −
1

√
u

Mu(m)∥2

= η2
−

(
1
m

∥Sm − E(Sm |ξ0, ξm)∥2
)

.

By letting now m ′
→ ∞ on the subsequence defined in (15) and taking into account (19), we 4

have that (16) follows. Therefore 5

Sn − E(Sn|ξ0, ξn)
√

n
⇒ N (0, η2). 6

Then, by (15), Skorohod’s representation theorem (i.e. Theorem 6.7 in [3]) and by Fatou’s 7

lemma we get 8

lim sup
n→∞

E(Sn − E(Sn|ξ0, ξn))2

n
= η2

≤ lim inf
n→∞

E(Sn − E(Sn|ξ0, ξn))2

n
. 9

It follows that (3) holds as well as the CLT in Theorem 1. □ 10

Proof of Corollary 4. From Theorem 1 and Theorem 3.1 in [3] we immediately obtain (5). 11

Note that, by (2), we have that |Sn|/
√

n is uniformly integrable and therefore, by (5) and the 12

convergence of moments theorem (Theorem 3.5, [3]) we have that E |Sn|/
√

n →
√

2/πσ . □ 13

Proof of Remark 3. The proof of this remark is based on two facts. 14

Fact 1. Raikov-type CLT for stationary martingale differences. (see Theorem 3.6 in [16]). 15

If (Dk)k∈Z is a square integrable sequence of martingale differences and Mn = D1 + · · · + Dn , 16

then there is a random variable η2 such that 17

Mn
√

n
⇒ η2 N (0, 1), 18

where η2 is independent on N (0, 1). 19

Fact 2. A variant of Theorem 3.2 in [3] for complete separable metric spaces (Theorem 2 20

in [10]). For random variables (Xn(m ′), Yn) with n ∈ N and m ′ belonging to a subsequence of 21

N which tends to ∞, assume that for every ε > 0 22

lim
m′→∞

lim sup
n→∞

P(|Xn(m ′) − Yn| > ε) = 0, 23
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and for every m ′, Xn(m ′) ⇒ Z (m ′) as n → ∞. Then there is a random variable X such that1

Z (m ′) ⇒ X as m ′
→ ∞ and Yn ⇒ X as n → ∞.2

To prove Remark 3, we define the subsequence (m ′) by (15) and start from relation (16). We3

apply next Fact 1 to the sequence of stationary martingale differences (Dk(m ′))k≥0 and obtain4

that5

Mu(m ′)
√

m ′
⇒ η2

m′ N (0, 1) as m ′
→ ∞,6

where η2
m′ are random variables independent on N (0, 1). Then, we apply Fact 2 and deduce that,7

for some random variable X , both ηm′ N (0, 1) ⇒ X and Sn/
√

n ⇒ X . But the characteristic8

function of η2
m′ N (0, 1) is E

(
exp(−t2η2

m′/2)
)

and therefore η2
m′ converges in distribution to some9

random variable η implying (4). □10

Proof of Proposition 6. This proposition follows by applying Corollary 5. Note that we have11

only to show that (9) implies (6).12

We start the proof of this fact by fixing 0 < ε < 1 and writing13

Sn = S[εn] + Vn(ε) + (Sn − Sn−[εn]),14

where15

Vn(ε) =

n−[εn]∑
j=[εn]+1

X j .16

Note that, by the triangle inequality, properties of the norm of the conditional expectation,17

condition (2) and stationarity, we easily get18

lim sup
n→∞

1
√

n
∥E(Sn|ξ0, ξn)∥ ≤ lim

ε→0
lim sup

n→∞

1
√

n
∥E(Vn(ε)|ξ0, ξn)∥. (20)19

By the Cauchy–Schwartz inequality, for 1 ≤ a ≤ b ≤ n,20

∥E(
b∑

j=a

X j |ξ0, ξn)∥2
≤ n

b∑
j=a

∥E(X j |ξ0, ξn)∥2.21

So, by stationarity22

1
n
∥E(Vn(ε)|ξ0, ξn)∥2

≤

n−[εn]∑
j=[εn]+1

∥E(X0|ξ− j , ξn− j )∥2.23

Since for [εn] + 1 ≤ j ≤ n − [εn] we have F− j ∨ Fn− j
⊂ F−[εn] ∨ F [εn] it follows that24

1
n
∥E(Vn(ε)|ξ0, ξn)∥2

≤ n∥E(X0|ξ−[εn], ξ[εn])∥2.25

We obtain (6) by passing to the limit with n → ∞ in the last inequality and taking into account26

(9) and (20). □27

Proof of Corollary 7. By the monotonicity of ∥E(X0|ξ−k, ξk)∥, condition (10) implies (9).28

Condition (10) also implies the couple of conditions29 ∑
k≥1

∥E(X0|ξ−k)∥2 < ∞ and
∑
k≥1

∥E(X0|ξk)∥2 < ∞. (21)30
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Now note that by the properties of the conditional expectations, the Markov property and
stationarity, for all k ≥ 1 we easily obtain

|E(X0 X2k)| = |E(X0 E(X2k |ξk))| = |E(E(X0|ξk)E(X2k |ξk))| ≤

∥E(X0|ξk)∥ · ∥E(X0|ξ−k)∥ ≤ (∥E(X0|ξ−k)∥2
+ ∥E(X0|ξk)∥2)/2.

A similar relation holds for |E(X0 X2k+1)|. Hence the two conditions in (21) lead to (2). The 1

result follows by applying Proposition 6. □ 2

Before proving the corollaries in Section 2.2 we give a more general definition of the 3

coefficient of absolute regularity β. As in relation (5) in Proposition 3.22 in Bradley, given 4

two sigma algebras A and B with B separable and for any B ∈ B there is a regular conditional 5

probability P(B|A), then 6

β(A,B) = E(sup
B∈B

|P(B|A) − P(B)|). 7

We also need a technical lemma whose proof is given later. 8

Lemma 11. Let X, Z be two random variables on a probability space (Ω ,K, P) with values 9

in a separable Banach space. Let B ⊂ K be a sub σ−algebra. Assume that X and Z are 10

conditionally independent given B. Then 11

β(B,A ∨ C) ≤ β(A,B) + β(C,B) + β(A, C), 12

where A = σ (X ) and C = σ (Z ). 13

Proof of Corollary 8. In order to apply Corollary 4 it is enough to verify that 14

E |E(Sn|ξ0, ξn)|
√

n
→ 0. 15

Let v ≤ n be a positive integer. Then, by (2) we have 16

lim sup
n→∞

E |E(Sn|ξ0, ξn)|
√

n
= lim sup

n→∞

E |E(Vn(v)|ξ0, ξn)|
√

n
, (22) 17

where Vn(v) =
∑n−v

j=v+1 X j . But, it is well-known that (see Ch.4 in [6]) 18

E |E(Vn(v)|ξ0, ξn)| ≤ 8β1/2(σ (ξi ; v ≤ i ≤ n − v), σ (ξ0, ξn))∥Sn−2v∥2. 19

By Lemma 11, applied with A = σ (ξ0), B = σ (ξi ; v ≤ i ≤ n − v), and C = σ (ξn) and taking 20

into account the properties βv listed at the beginning of Section 2.2 along with stationarity, we 21

obtain that 22

β(σ (ξi ; m ≤ i ≤ n − m), σ (ξ0, ξn)) ≤ β(ξ0, ξv) + β(ξn, ξn−v) + β(ξ0, ξn) ≤ 3βv. 23

Therefore, for all v ∈ N 24

lim sup
n→∞

E |E(Sn|ξ0, ξn)|
√

n
≤ 24β1/2

v sup
n

1
√

n
∥Sn∥2, 25

and the result follows by letting v → ∞. □ 26
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Proof of Corollary 9. This corollary follows by verifying the conditions of Proposition 6. By1

Rio’s [31] covariance inequality (see also Theorem 1.1 in [32]) we know that2

∥E(X0|ξ−n, ξn)∥2
≤ 2

∫ β̄n

0
Q2(u)du,3

where β̄n = β(σ (ξ0), σ (ξ−n, ξn)).4

But, according to Lemma 11, applied with A = σ (ξ−n), B = σ (ξ0), and C = σ (ξn) we5

obtain6

β̄n = β(σ (ξ0), σ (ξ−n, ξn)) ≤ 3β(σ (ξ0), σ (ξn)) = 3βn7

and the result follows. □8

Proof of Corollary 10. For this class of random variables it is well-known that condition (2)9

is satisfied (see for instance Lemma 8.23 in [6]). According to Corollary 5 we have only to10

verify condition (6). Note that by (22) it is enough to show that11

lim
v→∞

lim sup
n→∞

1
√

n
∥E(Vn(v)|ξ0, ξn)∥ = 0,12

with Vn(v) =
∑n−v

j=v+1 X j . By the definition of ρ∗
v we observe that13

∥E(Vn(v)|ξ0, ξn)∥2
= |E(Vn(v)E(Vn(ε)|ξ0, ξn))| ≤ ρ∗

v∥Vn(v)∥ · ∥E(Vn(v)|ξ0, ξn)∥.14

Whence,15

1
√

n
∥E(Vn(v)|ξ0, ξn)∥ ≤ ρ∗

v

1
√

n
∥Vn(v)∥.16

The result follows by (2). □17

Proof of Lemma 11. Denote the law of X by PX , the law of Z by PZ . Also by PX |B we18

denote the regular conditional distribution of X given B and by PZ |B the regular conditional19

distribution of Z given B. By using the definition of β(B,A ∨ C) we have to evaluate the20

expression I = E[supH |P(H |B) − P(H )|], where the supremum is taken over all H ⊂ A∨C.21

Denote by IH the indicator function of H . Since X and Z are conditionally independent given22

B we have23

P(H |B) =

∫∫
IH (x, z)PX |B(dx)PZ |B(dz) a.s.24

Also,25

P(H ) =

∫∫
IH (x, z)P(X,Z )(dx, dz).26

By the triangle inequality we can write I ≤ I1 + I2 + I3 where27

I1 = E
(

sup
H

|

∫∫
IH (x, z)

(
PX |B(dx)PZ |B(dz) − PX (dx)PZ |B(dz)

)
|

)
,28

I2 = E
(

sup
H

|

∫∫
IH (x, z)

(
PX (dx)PZ |B(dz) − PX (dx)PZ (dz)

)
|

)
29

and30

I3 = sup
H

|

∫∫
IH (x, z)

(
PX,Z (dx, dz) − PX (dx)PZ (dz)

)
|.31



SPA: 3663

Please cite this article as: M. Peligrad, A new CLT for additive functionals of Markov chains, Stochastic Processes and their Applications (2020),
https://doi.org/10.1016/j.spa.2020.04.004.

M. Peligrad / Stochastic Processes and their Applications xxx (xxxx) xxx 13

Now, because IH is bounded by 1, we get 1

I1 ≤ E
(

sup
D⊂R

|PX |B(D) − PX (D)|
)

, 2

I2 ≤ E
(

sup
D⊂R

|PZ |B(D) − PZ (D)|
)

, 3

and 4

I3 ≤

∫∫
|PX,Z (dx, dz) − PX,Z∗ |dxdz, 5

where R denote the Borel sigma field and Z∗ is a random variable distributed as Z and 6

independent of X . 7

The result follows by using the definition of β and Theorem 3.29, both in [6]. □ 8
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