BIOLOGY

O PLOS

COMPUTATIONAL

Check for
updates

G OPEN ACCESS

Citation: Bahlai CA, Zipkin EF (2020) The Dynamic
Shift Detector: An algorithm to identify changes in
parameter values governing populations. PLoS
Comput Biol 16(1): €1007542. https://doi.org/
10.1371/journal.pcbi.1007542

Editor: Stefano Allesina, University of Chicago,
UNITED STATES

Received: March 19, 2019
Accepted: November 12, 2019
Published: January 15, 2020

Copyright: © 2020 Bahlai, Zipkin. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All simulation data
produced in the study is available within the code
and data repository provided in the methods. The
case study data are cited from publicly available
sources. We do not hold the licence to re-distribute
the data associated with the monarch study, but
the ladybeetle data was extracted from the public
database at https://Iter.kbs.msu.edu/datatables/67,
with irrelevant observations (i.e. other, non-focal
taxa) culled out and reproduced in the code
repository to facilitate re-analysis. The extracted
data are available here: https://github.com/cbahlai/

RESEARCH ARTICLE

The Dynamic Shift Detector: An algorithm to
identify changes in parameter values
governing populations

Christie A. Bahlai®'*, Elise F. Zipkin?

1 Department of Biological Sciences and Environmental Science and Design Research Initiative, Kent State
University, Kent, Ohio, United States of America, 2 Department of Integrative Biology; Program in Ecology,
Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of
America

* cbahlai@kent.edu

Abstract

Environmental factors interact with internal rules of population regulation, sometimes per-
turbing systems to alternate dynamics though changes in parameter values. Yet, pinpointing
when such changes occur in naturally fluctuating populations is difficult. An algorithmic
approach that can identify the timing and magnitude of parameter shifts would facilitate
understanding of abrupt ecological transitions with potential to inform conservation and
management of species. The “Dynamic Shift Detector” is an algorithm to identify changes in
parameter values governing temporal fluctuations in populations with nonlinear dynamics.
The algorithm examines population time series data for the presence, location, and magni-
tude of parameter shifts. It uses an iterative approach to fitting subsets of time series data,
then ranks the fit of break point combinations using model selection, assigning a relative
weight to each break. We examined the performance of the Dynamic Shift Detector with
simulations and two case studies. Under low environmental/sampling noise, the break point
sets selected by the Dynamic Shift Detector contained the true simulated breaks with 70—
100% accuracy. The weighting tool generally assigned breaks intentionally placed in simu-
lated data (i.e., true breaks) with weights averaging >0.8 and those due to sampling error
(i.e., erroneous breaks) with weights averaging <0.2. In our case study examining an inva-
sion process, the algorithm identified shifts in population cycling associated with variations
in resource availability. The shifts identified for the conservation case study highlight a
decline process that generally coincided with changing management practices affecting the
availability of hostplant resources. When interpreted in the context of species biology, the
Dynamic Shift Detector algorithm can aid management decisions and identify critical time
periods related to species’ dynamics. In an era of rapid global change, such tools can pro-
vide key insights into the conditions under which population parameters, and their corre-
sponding dynamics, can shift.
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Author summary

Populations naturally fluctuate in abundance, and the rules governing these fluctuations
are a result of both internal (density dependent) and external (environmental) processes.
For these reasons, pinpointing when changes in populations occur is difficult. In this
study, we develop a novel break-point analysis tool for population time series data. Using
a density dependent model to describe a population’s underlying dynamic process, our
tool iterates through all possible break point combinations (i.e., abrupt changes in param-
eter values) and applies information-theoretic decision tools (i.e. Akaike’s Information
Criterion corrected for small sample sizes) to determine best fits. Here, we develop the
approach, simulate data under a variety of conditions to demonstrate its utility, and apply
the tool to two case studies: an invasion of multicolored Asian ladybeetle and declining
monarch butterflies. The Dynamic Shift Detector algorithm identified parameter changes
that correspond to known environmental change events in both case studies.

Introduction

Abrupt and persistent changes in ecological processes, and methods to detect them, have long
interested ecologists [1-5]. Changes to the rules governing system dynamics are often associ-
ated with substantial changes to biodiversity and ecosystem functions. Understanding when,
and how these changes occur is critically important to broader evaluation of system behaviors.
The study of abrupt changes, discontinuities, and regime shifts is highly interdisciplinary, and
has been examined for a variety of processes related to climate [6,7], ecology [8], and economic
and social systems [9,10].

Population dynamics are determined by internal, biotic rules and also external abiotic fac-
tors, leading to both stochastic and deterministic forces affecting abundance through time
[11]. External perturbations can lead to shifts in population dynamics, such that the parame-
ters governing population abundance transition to other values [12,13]. In the context of this
study, we define the set of parameters controlling dynamics as a population’s dynamic rule,
and an abrupt shift in these parameter values as a dynamic shift. We use the term break point
to describe the location in time series data where the dynamic shift occurs.

Although theoretically straightforward, identifying dynamic shifts in noisy ecological sys-
tems is challenging using real-world data due to a lack of systematic, adaptable tools [2]. Argu-
ably, the most common approach to identify break points is through the use of segmented
regressions [12,14,15]. However, these models don’t adequately account for nonlinearities,
and uncertainties in the existence and location of breaks are typically not quantified [1,2].
Break points are often applied to time series data ad hoc, based on data visualization or specific
hypotheses surrounding factors affecting population changes [12,14-17], creating the potential
for biases in break point selection.

Several break point detection methods have been developed to address issues associated
with ad hoc approaches. Such dynamic shift analysis tools use a variety of statistical optimiza-
tion strategies, including linear and moving average methods [18-21]. For example, climato-
logical and econometrics time series data are frequently examined for stepwise statistical
deviations from the mean or variance [6,7,22]. To fit the periodicity of population time series
data, wavelet analyses have also been used to detect break points [23] but this method does not
mechanistically account for density-dependent processes such that changes in parameter val-
ues are not easily interpretable [24]. Dynamic shift detection methods that explicitly account

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007542 January 15, 2020 2/16


https://doi.org/10.1371/journal.pcbi.1007542
https://github.com/cbahlai/dynamic_shift_detector/blob/master/casestudydata/kbs_harmonia94-17.csv
https://github.com/cbahlai/dynamic_shift_detector/blob/master/casestudydata/kbs_harmonia94-17.csv
https://foundation.mozilla.org/en/
https://foundation.mozilla.org/en/
https://lter.kbs.msu.edu/
https://www.nsf.gov/

©'PLOS

COMPUTATIONAL

BIOLOGY

Dynamic Shift Detector: An algorithm to identify population changes

for non-linear population processes may be less likely to yield false positives than methods
based on summary statistics [25].

Break point detection methods based on statistical measures tend to rely on null hypothesis
testing (i.e., that no dynamic shift occurred) and thus they have low sensitivity in situations
where statistical power is limited. Additionally, such methods do not provide a means for
assessing uncertainty in the existence and magnitude of break points [1,26]. In a 2009 review,
Andersen and colleagues noted that if common break point methods were used on typical eco-
logical time series with 20-40 time steps, only the most extreme transitions occurring near the
midpoint of the time series would be deemed ‘significant’ [1]. They concluded that break point
analyses could be enhanced with respect to both sensitivity and parsimony by use of model
selection procedures. Thus, to address these limitations in the ability to identify dynamic shifts
in population processes, it is necessary to develop rigorous tools that allow users to accommo-
date non-linear population models and quantify uncertainties associated with the existence of
potential break points.

In this paper, we develop a generalizable algorithm, the Dynamic Shift Detector (DSD), to
identify dynamic shifts in populations with density-dependent growth using time series data.
The DSD algorithm uses an iterative approach, grounded in information theoretic model
selection. We illustrate the DSD using the Ricker model because of this model’s simplicity and
high performance under a variety of realistic environmental scenarios. Density-dependent
population models such as the Ricker provide a convenient, generalizable proxy for a variety
of ecological processes because of their relatively simple parameterization and potential to
explain complex dynamics [27]. Although deterministic approaches to population modelling
have largely fallen out of favor for more complex structures and stochastic elements [28-30],
simple dynamic models remain useful due to their easily interpretable and ecologically mean-
ingful parameters [31]. Further, the techniques described in our paper can be readily adapted
to other model structures, including more complicated processes such as seasonal periodicity
or lag effects.

We describe the basic structure of our DSD algorithm and how it can be used to evaluate
the presence, location, and magnitude of dynamic shifts in population parameters (i.e., break
points in time series abundance data). We demonstrate the utility of our algorithm through a
series of simulations and apply the algorithm to empirical case studies of two populations of
economic and conservation concern. First, we examine the invasion process of the multicol-
ored Asian ladybeetle (Harmonia axyridis), a cosmopolitan invasive, in the two decades follow-
ing its arrival in Midwestern US agricultural ecosystems. Then, we examine the declining
eastern monarch butterfly (Danaus plexippus) population using census data collected on its
overwintering grounds in Mexico over a similar two-decade period. In our ladybeetle case
study, the DSD algorithm identified dynamic shifts associated with known variation in prey
availability, with moderately high weight for a break coinciding with prey arrival and moder-
ately low weight for a break coinciding with management actions aimed to control the prey.
The results for the monarch population were more ambiguous, with greater uncertainty about
the number and location of breaks in the time series. Several equivalently performing break
point combinations had divergent weights for various break points, suggesting that multiple,
super-imposed biological processes drive the dynamics of this population.

Methods
The Dynamic Shift Detector algorithm

Although any time series population model can be used with our tool, we illustrate the DSD
algorithm with a Ricker population model. To do this, we assume that the population size in
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time t+1, Ny, is dependent on the population size in time t, N, and regulated by two parame-
ters: the carrying capacity of the system, K, and the annual intrinsic growth rate, r [27]:

Nt
N, ,=N,exp (r 1—? +&,.

We further assume that observed annual population abundance is partially stochastic and
may be influenced by environmental variation and sampling error. We include an error term
£, to represent this noise, which follows a normal distribution centered around zero with a var-
iance of 0”. The parameters K, r, and &, are estimated from the population time series data (N,
N,, ... N)). The Ricker model is a useful starting point for break point analyses because 1) it
does not rely on any external information (abundance in time ¢ is a function of only abun-
dance in time #-1); 2) only three parameters (including the error) need to be estimated, and
those parameters have ecologically meaningful interpretations; and 3) it is an extremely flexible
distribution, taking a variety of forms, from linear to compensatory to over-compensatory,
and thus has a wide range of applications across a variety of taxa [32,33]. Subsequent applica-
tions of the DSD algorithm can incorporate other population models if the life history of the
target organism requires a different structure.

To build the DSD algorithm, we use an iterative, model-selection process to determine if,
and when, shifts in parameter values occur within a given time series. To achieve this, we first
fit the Ricker model to the entire time series of available data. Then the population time series
is subdivided into all possible combinations of 2, 3, .. ., n subsets of sequential data points
(hereafter, ‘break point combinations’) and the Ricker model is fit to each of the subsets pro-
duced for each break point combination. To avoid overfitting, we constrain break point com-
binations to include only subsets with a minimum of four sequential data points.

After fitting all break point combinations, we evaluate the candidate set of models by calcu-
lating the Akaike Information Criteria for small sample sizes (AICc) for each segment and
summing them accordingly [34]. Fits for break point combinations with comparatively lower
AICc values are considered to have better performance. For a given time series, the DSD algo-
rithm produces a set of top performing break point combinations for cases in which model fits
produce equivalent AICc values (i.e. within 2 units of the best-performing fit; [35]). To evalu-
ate the strength of evidence for an identified break in the time series, we use the relative vari-
able importance method [35]. We compute the Akaike weight w; @ measure of the relative
likelihood of a break point combination, given the data and the set of break point combina-
tions being tested) for every identified break point across all combinations. Commonly used in
model averaging, the wy, w,,. . . w, are interpreted as the respective conditional probabilities
for each model in a set of n models [36]. Break weight (i.e., relative variable importance, sensu
[35]) is computed as the sum of the Akaike weights for all break point combinations, where
that break point appears. Break point combinations with weights <0.001 were excluded to
increase computational efficiency.

We selected AICc as our information criterion for model selection within the DSD algo-
rithm because it provides a balance of specificity and sensitivity. However, we also completed a
parallel analysis with an identical procedure using AIC as the information criterion for deci-
sion-making, which is documented in S1 Appendix. AICc is a function of AIC with a correc-
tion for small sample bias, which is appropriate for the sample sizes typical to contemporary
population time series data (i.e., 15-30 years/data points) and is designed to minimize the risk
of overfitting during model selection [35]. However, use of AIC for model selection may be
desirable when increased algorithmic sensitivity to dynamic shifts is desired.
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The DSD algorithm is implemented as a series of R functions to enable a user to quickly
generate a list of potential break points for a population time series dataset. The algorithm
(and all subsequent simulations and case studies) were scripted and run in R Version 3.3.3
[37]. For fitting the Ricker model, we used the Levenberg-Marquardt nonlinear least-squares
algorithm as implemented in the package minpack.LM [38]. All data manipulations, analyses
and figure scripts, including the complete development history, are publicly available in a
GitHub repository at https://github.com/cbahlai/dynamic_shift detector [39]. We summarize
the role of each function used in the algorithm within S2 Appendix.

Simulation study

We conducted a series of simulations to test the accuracy of the DSD algorithm under a variety
of plausible parameter spaces. For all scenarios, we fix N; = 3000, and K = 2000 in the initial
conditions, as the Ricker model is most reliably fit for populations fluctuating around their
carrying capacity. As the dynamic observed in a Ricker population is driven primarily by the
relationship of other parameters to K than by the absolute value of K itself, we held the starting
value of K constant for all simulations. For each set of simulations, we held the variables not
being varied at “base values” defined as: starting value of r = 2, change in r = +25%, change in
K =+75%, 2% noise (1; described below), with time series length of 20 years. We examined the
effect of the size of initial r on algorithm performance by creating scenarios with different
starting values of r = 0.5, 1, 1.5, 2. For each value of initial r, we modified the percent change in
r at break points from the starting values (+ no change, 10%, 25%, 50%, 75%) while holding all
other parameters at base values. We then ran a set of simulations examining the percent
change in K at break points from its starting value (+ no change, 10%, 25%, 50%, 75%) while
holding all other parameters (including r) at base values. This led to a total of 40 scenarios
(four starting values of r with five percent changes in r and five percent changes in K).

We further evaluated how the magnitude of stochasticity in the system (as measured by the
error term &;) influenced algorithm performance. For generalizability of our simulation
results, we simulated error as a percentage of the mean population size, rather than as absolute
value (as described in the model above that we used for fitting the DSD). For each annual pop-
ulation size in the simulated dataset, a random value was selected from a normal curve of
mean 0 and standard deviation of 7 (where 7= 1%, 2%, 5%, 10%, 15%) and multiplied by the
expected population size generated from the deterministic portion of the model.

We ran these simulations with all noise (7) levels across all percent change values for r and
K (with other parameters held at base values) for a total of 50 additional scenarios (five percent
noise values with five percent changes in r and five percent changes in K). Finally, we tested
the impact of time series length by modifying the length of the simulated time series at five-
year intervals over a range from 15-30 years (as the number of break point allows) while hold-
ing all other parameters constant, for four additional scenarios. We generated 250 simulated
datasets for each of the 94 possible scenarios assuming breakpoint combinations with 0, 1, 2
and 3 breaks. Break point locations were randomly selected from within the set of possible
time points. In total, we generated 93,572 data sets that we examined with our DSD algorithm.
(Note that 94,000 simulations were run but simulations for higher numbers of break points in
shorter time series occasionally failed to converge; results for such combinations are not
presented).

We evaluated the DSD algorithm’s performance for all test scenarios by examining its abil-
ity to identify the true break points within the set of the best fitting break point combinations
(i.e. the top ranked break point combination and those break point combinations whose AICc
values fell within two units of the top ranked). We also examined the performance of the
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break-point weighting tool by calculating the average weightings of all true and erroneous
break points identified in the top performing model(s) across all runs of a given scenario.

Results
Simulation study

The scenario with the correct number of breaks and their locations was detected within the

top performing break point combination sets with >70% accuracy under nearly all parameter-
izations (Fig 1). Accuracy was generally lowest in time series with three break points but above
70% for most scenarios. These results remained roughly consistent regardless of the value of
the variance (¢°) determining the annual amount of environmental/sampling noise (Fig 1A).
Results were similar across all r values tested but performance of the DSD declined slightly
when initial » was large (>2.0; Fig 1B). The DSD algorithm had the highest accuracy with
larger shifts in K (>25%; Fig 1C) and relatively smaller changes to r (<25%; Fig 1D). This
result is somewhat counter-intuitive, as we would generally expect large shifts in all parameters
to be more easily detected. However, because nonlinear models produce chaotic dynamics
with high population growth rates (e.g., r > 2.3 in the Ricker model), a large shift in parame-
ters could potentially result in a situation where multiple break point fits would perform
equally well. Finally, the accuracy of the DSD algorithm decreased as scenario length increased,
likely because of the factorial increase in potential break point combinations with additional
data in the time series (Fig 1E). Accuracy was also lower in cases where the number of break
points was high relative to the time series length (e.g., 20 years and three breaks).

The breakpoint weighting analysis revealed that in the vast majority of cases, the average
weight of a true break exceeded a value of 0.8 (Fig 2A-2E), whereas the weight of erroneous
breaks averaged less than 0.2 in weight. The notable exception occurred when true breaks
resulted from very small shifts in K (Fig 2C). Thus, our results suggest the following decision
rules to evaluate strength of evidence for a break occurring at a given time point: when a
weight of >0.8 is indicated for a break found by the DSD algorithm, we can reasonably con-
clude this is a true break, and likewise, a break with a weight of <0.2 can reasonably assumed
to be erroneous. Weight values intermediate to those two thresholds can be interpreted as a
quantification of the strength of evidence that a break occurred.
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Fig 1. Performance of the Dynamic Shift Detector (DSD) algorithm under varying parameter values. Proportion of simulation results in which the true break
scenario was detected within the top break point combinations as identified by the DSD implemented with an underlying Ricker model with varied A) noise (in the form
of normally distributed error), B) starting values of the r parameter, C) percent changes in the K parameter, D) percent changes in r, and E) simulated time series length.
Sets of 0, 1, 2 and 3 break points were randomly generated from within the set of possible values, and 250 datasets were simulated for each scenario. In each panel, other
variables (that were not being varied) were held constant at their base values (i.e., noise = 2%; starting value of r = 2; change in r = +25%; change in K = +75%; time series
length = 20 years). Trends within a set of scenarios (grey lines) are illustrated with a third-order GAM smoothing line.

https://doi.org/10.1371/journal.pchi.1007542.9001
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+75%; time series length = 20 years). Trends within a set of scenarios (grey lines) are illustrated with a third-order GAM smoothing line.

https://doi.org/10.1371/journal.pcbi.1007542.9002

Case study applications

We tested the performance of the DSD algorithm with two case studies using population time
series data from field observations. Both case studies involve approximately two decades of
observations of economically or culturally important insect species: one examines an invasion
process and the other examines a population decline, both occurring over the same time
period in recent history.

Multicolored Asian ladybeetles in southwestern Michigan

The 1994 invasion of multicolored Asian ladybeetles to southwestern Michigan, United States
was documented in monitoring data collected on agriculturally-important Coccinellidae (lady-
beetles) in landscapes dominated by field crops. Population density of ladybeetles was moni-
tored in ten plant communities weekly over the growing season using yellow sticky card glue
traps starting in 1989 at the Kellogg Biological Station at Michigan State University. We used
data on the captures of adults at the site from 1994-2017, culled at day of year 222 (August 10)
to minimize the effect of year-to-year variation in the sampling period. We then calculated the
average number of adults captured per trap, across all traps deployed within a sampling year,
and used this value in our analysis. Detailed sampling methodology is available in previous
work [40-42].

Two break points, one occurring after 2000 and one occurring after 2005, were observed in
the top performing break point combination (Fig 3A, AICc = -18.02). However, the DSD algo-
rithm indicated that two additional break point combinations, a single break after 2000 (AICc
=-17.46), and a no break series (AICc = -17.64), had equivalent performance. Break weight
analysis suggested a weight of 0.56 for the 2000 break, and a weight of 0.29 for the break after
2005. As these weights fall into a range intermediate to the 0.2 and 0.8 decision rules, we con-
clude that there is moderately strong evidence of a shift in dynamic rule after 2000, and moder-
ate-weak evidence for a shift after 2005. The shift in 2000 is characterized by substantial
increases in the values of K and r, with approximate increases of 75% and 40% over their initial
estimates, respectively (Table 1). The shift in 2005 is characterized by a return to parameter
estimates that were nearly identical to those observed at the beginning of the time series
(Table 1, Fig 3B).

Our results can be explained in the context of the known ecology of this ladybeetle. Dynam-
ics of the ladybeetle invasion appear to be closely coupled with prey availability [41,43-45],
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Fig 3. Dynamic Shift Detector breaks and Ricker model fits for an invasive species. Population data documenting the invasion of
multicolored Asian ladybeetle in Michigan, USA from 1994-2017. A) Time series data showing the average number of adults captured,
per trap, per year. Vertical blue lines indicate years in which dynamic shifts occurred, as estimated by the Dynamic Shift Detector
algorithm. B) Ricker fits of time series data segments. Ladybeetle art by M. Broussard, used under a CC-BY 3.0 license.

https://doi.org/10.1371/journal.pchi.1007542.9003

which, in turn, is driven by documented pest management practices (neonicotinoid insecticide
use; [42]) leading to a relatively simple pulsed change. The first shift in the dynamics of the
Asian ladybeetle, after 2000, corresponds to the well documented arrival and establishment of
soybean aphid to North America, a preferred prey item from the ladybeetle’s native range
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Table 1. Ricker model parameter values for each phase between break points resulting from fitting population
data of 1) multicolored Asian ladybeetles from Michigan, USA (1994-2017), and 2) the area occupied by monarch
butterflies in their winter habitat in central Mexico (1995-2017). The parameter r is the per capita yearly intrinsic
rate of increase and K is the carrying capacity (e.g., average number of adult ladybeetles captured per trap annually and
hectares occupied by monarchs annually).

Species Years in subset r (+ SE) K (+ SE)
Ladybeetle 1994-2000 13403 031 +0.02
Harmonia axyridis 2001-2005 23+03 0.43 +0.03
2006-2017 1.6+0.3 0.27 £0.03
Monarch 1995-2003 10405 10.1+1.9
Danaus plexippus 2004-2008 1.6+02 56103
2009-2017 12404 28405

https://doi.org/10.1371/journal.pcbi.1007542.t001

[46,47]. The invasion of this aphid dramatically increased resources available to the ladybeetle
in habitats where the beetles were already well-established [40], supporting both a higher car-
rying capacity and a greater intrinsic growth rate. The second shift, after 2005, was less strongly
supported, but coincides with the introduction and uptake of a management strategy for
aphids that incompletely controlled the prey item. Landscape-scale use of neonicotinoid insec-
ticides decreased prey numbers, particularly during the spring when aphids colonize new
hosts, which could limit early season reproduction of ladybeetles [42]. Indeed, in this case, we
would expect a weaker shift in dynamics as the prey item is incompletely controlled, and con-
trol tactics were not uniformly adopted across the prey’s range simultaneously.

Monarch butterflies in Mexican overwintering grounds

The eastern population of the North American monarch butterfly (Danaus plexippus) is migra-
tory, with the majority of individuals overwintering in large aggregations in Oyamel fir forests
within the transvolcanic mountains in the central region of Mexico [48]. Monarchs are highly
dispersed over their breeding season, occupying landscapes throughout the agricultural belt in
central and eastern United States and southern Canada [49]. As such, estimates of the overwin-
tering population size can provide a convenient and inclusive annual metric of the size of the
eastern migratory population [50]. This population of monarchs has been in dramatic decline
in recent decades, although the degree and cause of this decline is hotly debated [51]. We used
data on the total area occupied by monarchs from 1995-2017 (based on early winter surveys
conducted in December) compiled by the World Wildlife Fund Mexico (available at Monarch-
Watch; [52]).

The DSD algorithm estimated that the best break point combination fit for the monarch
overwintering data was a single break after 2003 (Fig 4; AICc = 120.18). However, the algo-
rithm indicated that two additional break point combinations, a single break after 2006
(AICc =121.87) and a two-break combination of 2003 and 2008 (AICc = -121.86), had equiva-
lent performance. The weight analysis computed weights of 0.49, 0.14, and 0.26, for 2003,
2006, and 2008 respectively, suggesting that the break at 2006 is erroneous and providing inter-
mediate support for the 2003 and 2008 breaks. As with our ladybeetle case study, the strength
of evidence was strongest for the first break, and weaker for the second break. The shift corre-
sponds with a >50% reduction in K in 2003, and, if the secondary break is taken at 2008, a fur-
ther reduction of K nearing 50% again at that point (Table 1; Fig 4B).

The patterns we observe are consistent with a leading hypothesis to explain monarch popu-
lation decline. Loss of milkweed hostplants due to changing agricultural practices on Midwest-
ern breeding grounds [53,54] is hypothesized to be a major driver in the dynamics of this
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Fig 4. Dynamic Shift Detector breaks and Ricker model fits for a species of conservation concern. Population data documenting the
area occupied by monarch butterflies in their winter habitat in central Mexico from 1995-2017. A) Time series data showing the total
area occupied by overwintering monarchs each year in December. Vertical blue lines indicate years in which dynamic shifts occurred, as
estimated by the Dynamic Shift Detector algorithm. B) Ricker fits of time series data segments. Butterfly art by D. Descouens and T.M.
Seesey, used under a CC-BY 3.0 license.

https://doi.org/10.1371/journal.pcbi.1007542.9004

species. Changing herbicide practices in central North America have largely eliminated milk-
weed hostplants from agricultural field crops, with fairly consistent, low levels of milkweed on
the landscape starting from about 2003-2005 [55]. Although glyphosate tolerant soybeans and
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maize were introduced to the US market in 1996 and 1998 respectively [56], actual glyphosate
use lagged behind, with dramatic increases in use of the pesticide in 1998-2003 in soybean,
and 2007-2008 in maize [57].

However, additional drivers likely play a role in monarch processes given the uncertainty in
our results. Abiotic drivers of monarch population dynamics are complex and can interact at
local, regional, and continental scales [58]. Other studies have implicated climate [59], extreme
weather events [60], changing habitat availability on wintering grounds [61], and mortality
during the fall migration [62,63] as possible factors influencing monarch population dynamics.
With many super-imposed drivers, monarch dynamics are likely driven by both press and
pulsed processes, making the detection of discrete break points associated with dynamic shifts
complicated.

Discussion

The DSD algorithm provides a novel tool for evaluating shifts in parameter values that govern
density-dependent populations, such as carrying capacity and population growth rates. As
illustrated with our simulations and case studies, the DSD algorithm can not only identify and
quantify parameter changes but also assess uncertainty in potential break points and help
detect time frames where additional research should be focused. We recommend that the
model selection approach be used to identify a list of potential break points and break point
combinations, and the weighting tool be used to evaluate the strength of evidence for each
potential break, providing a clear direction to focus downstream research on changing
dynamic processes. Characterizing dynamic transitions in population time series data has
been hindered by a lack of a common, accessible, and empirical approaches [2]. Most assess-
ments of break points in ecological research are ad hoc [12,14-17], introducing the potential
for bias in break point selection, particularly in cases where nonlinear dynamics are likely to
occur. Our DSD algorithm directly addresses this gap in tools, using an information-theoretic,
model selection approach and a framework that can incorporate a variety nonlinear popula-
tion models to assess ecological processes.

The core novelty of our tool lies in the model selection procedure used within the DSD
algorithm, which allows for greater accuracy than common break point detection models [1].
The DSD additionally allows users to assess the confidence in a given break point, as well as
providing a measure of which break points are likely to appear together, if multiple dynamic
shifts have occurred. Information-theoretic approaches such as model selection using AIC,
may be prone to over-fitting, particularly when data are limited [35]. Thus, we used AICc, the
Akaike Information Criterion corrected for small sample sizes, as the selection criterion within
the DSD algorithm. AICc is generally recommended in place of AIC in situations where small
samples sizes are being examined as it incorporates a penalty term that is inversely related to
the number of observations. As sample size increases, the penalty for model complexity is
reduced and AICc approaches AIC [35]. Break point detection methods must incorporate a
compromise between sensitivity and penalty for over-parameterization [1]. We examined the
performance of both AICc (here) and AIC (in S1 Appendix) and found that using AICc per-
formed best for our simulated data. The DSD algorithm aides in the interpretation of break
points by incorporating a metric based on Akaike weights, which allows users to assess the rel-
ative ‘strength’ of multiple breaks. Where many tools aim to identify points at which parameter
changes occur, the DSD algorithm provides a measure of the confidence in each break, as well
as a measure of how differing break sets perform in explaining variation in the data relative to
each other.
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The performance of the DSD algorithm was fairly stable among the break point simulations
we tested. We found that the amount of environmental/sampling noise (ranging from 1-15%
of the population size) had little effect on algorithm performance (Fig 1A). Other input condi-
tions had relatively greater impacts on the performance of the DSD algorithm, depending on
which parameter was changed and by how much. Large shifts in a population’s carry capacity
were more easily detected than smaller shifts (Fig 1C). However, large changes in population
growth rate were harder to detect, but this effect was most pronounced when simulated data
contained multiple breaks (Figs 1 and 2D). Although larger shifts in regression parameters
would, intuitively, lead to a higher likelihood of detection, large shifts in growth rate are also
more likely to induce variations in transient dynamics in the years immediately following the
shift, potentially making the timing of shifts more difficult to pinpoint. Similarly, longer time
series yielded results that were more error prone (Figs 1 and 2E). This is likely because there
were simply more possible break-point combinations for the algorithm to select from and
because the penalty for increasing parameterization (i.e. AICc) decreases as sample sizes grow
(leading to increasing likelihood of identifying extra, erroneous breaks).

In our case studies, we found interpretation of the ladybeetle example was straightforward
(Fig 3). Our top break point combination and the equivalently-performing set did not contain
contradictory information: each candidate set was simply a subset of breakpoints from the
most complex set, and only two break points were found. Both of these break points were asso-
ciated with moderate or greater weights, although the values of these break weights were in the
intermediate range (i.e., between 0.2 and 0.8), suggesting breaks in natural systems may not be
as well behaved as those in simulated data. The monarch butterfly case study results were
slightly more ambiguous, as the model selection tool identified a break that the weighting tool
suggested was erroneous (Fig 4). Weights of the two most strongly-supported breaks were
numerically similar to those of the ladybeetle case study and are also interpretable with knowl-
edge of the study system. However, the model selection results suggest additional, superim-
posed processes may be affecting monarch population dynamics, creating a noisier signal.

The DSD algorithm is readily adaptable to other population models and, indeed, potentially
to other nonlinear processes. Density-dependent population growth has the potential to mask
transition points because of its inherent nonlinear structure. For example, transient dynamics
occurring immediately after a temporary disturbance can result in a change in population size,
but not necessarily in the rules governing dynamics. We used the Ricker model as the core
population model within the algorithm because it had a number of useful characteristics,
namely its simple parameterization and realistic behavior [27]. However, simple density-
dependent population models including Ricker, Beverton-Holt, and logistic models have simi-
lar performance in predicting outbreaks of insects driven by food limitation [64]. Indeed, in
early iterations examining the DSD, we fit both logistic and Ricker models to real data and
found that the two models ranked break point combinations nearly identically, even while the
Ricker model generally provided a better fit for the data [42]. Thus, we expect the DSD algo-
rithm would have similar performance across models with similar structures, but performance
may vary with other model structures, particularly those that incorporate additional terms.

We recommend users carefully consider the strengths and limitations of the DSD algorithm
in the context of their own data. For example, if changes to parameter values occur frequently
(e.g., less than 3-4 years or time periods), the frequency of shifts would violate the constraints
placed on the DSD to prevent overfitting. We also observed that the likelihood of identifying
erroneous break points increased as time series length increased. Thus, in cases where a long
time series exists, but a particular time period is of interest, the DSD algorithm could be used
on the time period of interest alone to minimize the likelihood of distracting or erroneous
results. The DSD algorithm functions as a method for identifying break points within time
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series data and quantifying the strength of evidence for each potential break point. When
interpreted in the context of species biology, the DSD algorithm has the potential to aid man-
agement decisions, identify critical drivers of change in species’ dynamics, and help determine
where best to focus additional research efforts.

Supporting information

S1 Appendix. Analysis using AIC.
(DOCX)

S$2 Appendix. Function descriptions.
(DOCX)
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