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Mechanical rotation via optical pumping of paramagnetic impurities
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Hybrid quantum systems exhibiting coupled optical, spin, and mechanical degrees of freedom can serve
as a platform for sensing, or as a bus to mediate interactions between qubits with disparate energy scales.
These systems are also creating opportunities to test foundational ideas in quantum mechanics, including
direct observations of the quantum regime in macroscopic objects. Here, we make use of angular momentum
conservation to study the dynamics of a pair of paramagnetic centers featuring different spin numbers in the
presence of a properly tuned external magnetic field. We examine the interplay between optical excitation, spin
evolution, and mechanical motion, and theoretically show that in the presence of continuous optical illumination,
interspin cross relaxation must induce rigid rotation of the host crystal. The system dynamics is robust to
scattering of spin-polarized phonons, a result we build on to show this form of angular momentum transfer
should be observable using state-of-the-art torsional oscillators or trapped nanoparticles.
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I. INTRODUCTION

Growing applications in metrology and quantum informa-
tion science are driving renewed interest in the interplay be-
tween spin and mechanical degrees of freedom, using one or
the other as an interface to mediate quantized excitations [1,2].
Ingenious paths to controllably couple and manipulate spin
and physical motion are also being explored as test beds for
generating macroscopic quantum superposition and studying
the boundaries between the quantum and classical worlds.
For example, recent proposals on wave matter interferometry
suggest the use of color centers in diamond as a handle to
create translation [3] or rotation [4,5] superposition states in
∼100-nm-size particles. Conversion between spin and me-
chanical rotation also lies at the heart of the Einstein–de
Haas and Barnett effects [6,7], long exploited as the preferred
routes to determine the effective gyromagnetic ratio of charge
carriers in ferromagnetic materials. Recent extensions have
built on the higher sensitivity of torsional microcantilevers
to investigate, for instance, engineered magnetic multilayers
[8], systems where the generation of a mechanical torque
arises from domain wall displacements [9]. Other studies
have examined torques generated by electron spin-flips in
nanoscale systems [10], and magnetization tunneling in a
single-molecule magnet coupled to a carbon nanotube res-
onator [11].

On a complementary front, active feedback and cavity-
assisted schemes have been developed to gain control of the
dynamics of optically trapped dielectric particles including
both their center-of-mass motion and rotation [12,13]. Driving
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this effort is the race to attain high rotation speeds as a
strategy to explore centrifugal forces and vacuum-friction
effects [14]. Unlike translational degrees of freedom (evolving
under harmonic oscillator forces and hence characterized by
equidistant energy levels), rotational degrees of freedom have
a nonlinear energy spectrum and zero ground state energy,
which can be exploited, e.g., to better study the superposition
of rotational states in mesoscopic systems (the analog of
persistent counter-propagating currents in a superconducting
circuit), or for practical applications such as gyroscopy [15].

Thus far, all routes to driving particle rotation—both pro-
posed and demonstrated—rely on the rotator’s birefringence
[16], or on the transfer of angular momentum from the light
beam, assumed either circularly polarized or endowed of
orbital angular momentum [17]. Here, we theoretically inves-
tigate an alternative form of optomechanics arising from a pair
of interacting paramagnetic centers subject to light-induced
spin pumping; an external magnetic field is adjusted so that
the defects—assumed to have different spin numbers—can
cross relax. For concreteness, we focus on the pair formed
by a negatively charged nitrogen vacancy (NV) and a P1
center in diamond, though our ideas can be generalized to
alternative pairs of defects, both in diamond and in other
semiconductors such as SiC. We show that in the presence
of continuous optical excitation, energy-conserving spin -flips
between the NV and P1 lead to a net transfer of angular
momentum from the spin pair to the lattice, both in the form
of spin-polarized phonons and rigid rotation of the crystal
as a whole, with the latter being dominant. We find that
even in the absence of external friction the system gradually
slows down to attain a pseudoterminal velocity, which can
be tuned by varying the applied magnetic field. With an eye
on experiment, we discuss the more realistic case of particles
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FIG. 1. The interplay between optical spin pumping and the crystal’s mechanical degrees of freedom. (a) Schematics of a coupled NV-P1
pair in a diamond crystal. The P1 center interacts with other P1s farther removed from the NV. (b) Energy level diagram of the NV and P1 spins
(top and bottom respectively. At ∼51 mT the energies associated with each individual spin transition match, i.e., δES ≈ δEI. (c) Starting with
NV spin optical initialization, the NV-P1 pair undergoes a cycle of cross relaxation and generation of spin-polarized phonons and rigid lattice
rotation. The cycle completes with P1 spin diffusion and spin-lattice relaxation accompanied by the emission of spin-polarized phonons.

hosting multiple paramagnetic defects, and show that rigid
rotation can, in principle, generate entanglement between
noninteracting pairs. This finding, however, should not be
seen as a practical hurdle since the coupling rate—inversely
proportional to the crystal moment of inertia—is exceedingly
slow, meaning that the additive action of multiple defect pairs
controlled via magnetic resonance techniques can serve as a
handle to act on the particle rotational dynamics.

II. ROTATIONALLY INVARIANT HAMILTONIAN

While the notion of spin-to-rotation conversion can, in
principle, find various incarnations (see below), here we focus
for concreteness on the spin pair formed by a P1 center (or
neutral substitutional nitrogen impurity) and an NV center
(in turn comprising a substitutional nitrogen adjacent to a va-
cancy). Figures 1(a) and 1(b), respectively show a schematic
and a simplified energy level diagram in the presence of an
external magnetic field B aligned with the symmetry axis of
the NV. In its negatively charged state, the latter features a
spin-1 ground state with a zero-field splitting of 2.87 GHz.
Near 51 mT, the energy separation between the mS = 0 and
mS = −1 ground state levels of the NV spin matches the
Zeeman splitting between the mI = ±1/2 levels of the P1.
Continuous optical illumination (e.g., at 532 nm) preferen-
tially pumps the NV spin into the mS = 0 state, from where it
subsequently transitions to the mS = −1 state through dipolar-
field-mediated cross relaxation with the P1. In a typical type
Ib diamond, the P1 concentration is comparatively higher,
meaning that the polarization gained by the P1 proximal to the
source NV can easily spin-diffuse to other, farther-removed
defects. The end result is a one-directional spin-pumping pro-
cess, from the NV to the ensemble of P1 centers, with the P1
steady-state polarization emerging from the interplay between
the P1 concentration (defining the spin diffusion constant),
and the defect’s spin-lattice relaxation time. This process has
already been investigated using optically detected magnetic
resonance both in the lab- and rotating-frames [18–21], and,
more recently, has been exploited to induce high levels of 13C
spin polarization in diamond [22,23].

A closer inspection of the energy diagram in Fig. 1(b)
indicates the above spin pumping process is deceivingly

simple: While it is apparent that energy conservation can
be ensured with the proper selection of the magnetic field,
cross relaxation of the NV-P1 pair entails a simultaneous flip
to spin states with lower quantum projection numbers, thus
leading to a net reduction of the total spin angular momentum
by 2h̄. In other words, cross polarization of the P1 spin
requires the transfer of angular momentum to “lattice” degrees
of freedom, either through the generation of spin-polarized
phonons [24,25], or the rigid rotation of the crystal [Fig. 1(c)].

To gain a more formal understanding, we first consider
the case of a perfectly rigid solid (as we show later, a rea-
sonable approximation for diamond). In this limit, the P1-
NV virtual-atom pair can be thought of as forming a rigid
diatomic molecule, featuring the crystal’s moment of inertia
J . Correspondingly, we write the system Hamiltonian as

H = �S2
z + ω0Sz + ω0Iz + Hd + L2

z

2J , (1)

where S (I) is the NV (P1) vector spin operator, � is the
NV zero field splitting, ω0 ≡ |γe|B is the electron Zeeman
frequency in the magnetic field B (assumed along the z -axis
and parallel to the NV), γe denotes the electron gyromagnetic
ratio, L is the vector operator representing the crystal angular
momentum, and we assume for simplicity the system can only
rotate about the z axis. In Eq. (1), Hd expresses the NV–P1
dipolar interaction, here viewed as the coupling Hamiltonian
Hs−r between the spin pair and the (rigid) crystal rotation. To
expose interconversion between spin and crystal rotation, we
write

Hs−r ≈ Hd = d0(r)δ0 + d1(r)λ+δ1−
+ d∗

1 (r)λ−δ1+ + d2(r)λ2
+δ2− + d∗

2 (r)λ2
−δ2+, (2)

where δ0 = SzIz − 1
4 (S−I+ + S+I−), δ1± = SzI± + S±Iz,

δ2± = S±I± are the two-spin operators in spherical tensor
form. By the same token, we denote d0 = α

r3 (1 − 3cos2θ ),
d1 = − 3α

2r3 sin θ cos θeiϕ , d2 = − 3α
4r3 sin2θe2iϕ, and λ± = e±iφ .

In the above expressions r = rNV − rP1 is the interspin vector
with polar and azimuthal angles θ and φ + ϕ, respectively;
the latter is expressed as the sum of the angle φ formed by the
crystal relative to the laboratory frame and the (fixed) crystal
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frame azimuthal coordinate ϕ. Finally, α = μ0γ
2
e /4π , where

μ0 denotes the vacuum permeability.
Assuming for now the regime where the crystal’s rota-

tional energy is smaller than the dipolar energy, we choose
the external magnetic field so that ω0 = �/2, the “en-
ergy matching” condition required for NV–P1 cross relax-
ation. Limiting our description to the spin subspace spanned
by |mS, mI〉 = {|0,+1/2〉, |−1,−1/2〉}, only the last two
“double-flip” terms in Hd are (nearly) energy conserving,
meaning that all first three contributions can be effectively
truncated. In this limit, we rewrite the Hamiltonian as

H = d2(r)λ2
+δ2− + d∗

2 (r)λ2
−δ2+ + L2

z

2J . (3)

Note that since [Lz, λ±] = ±h̄λ±, the λ± operators can be
thought of as ladder operators to Lz. Therefore, Eq. (3) explic-
itly shows how angular momentum is conserved, namely, a net
spin angular momentum loss from a double quantum flip is
accompanied by a corresponding crystal angular momentum
gain (and vice versa). The above dynamics is in strong contrast
with the spin-conserving zero-quantum “flip-flops” usually
governing spin diffusion processes through terms of the form
d0I±S∓ in Hd. The key difference stems from the asymmetry
created by the crystal field, acting on the NV but not the P1,

and hence rendering flip-flop contributions to the Hamiltonian
nonsecular.

III. SPIN-CRYSTAL ANGULAR MOMENTUM
INTER-CONVERSION

To intuitively grasp the system dynamics in the pres-
ence of optical excitation, it is instructive to first consider
the simplified case where the crystal—here seen as a free
rotor—initially occupies a state |mL〉 of mechanical angular
momentum mL h̄, and a light pulse instantaneously projects the
spin system into |0, +1/2〉 (we ignore for now the different
initialization mechanisms in the NV and P1). Driven by the
dipolar coupling, the NV–P1 pair evolves into |−1, −1/2〉
and, in so doing, changes the orbital part of the wave function
into |mL + 2〉. Reinitializing the spin system into |0, +1/2〉
repeats the process, but this time the rotor state evolves
from |mL + 2〉 into |mL + 4〉, corresponding to buildup of the
crystal angular momentum and hence to macroscopic physical
rotation.

Under continuous optical excitation, this spin-induced ro-
tational pumping can be best computed via the tight-binding
representation of Fig. 2(a) where each linear chain corre-
sponds to one of the two possible spin states and the site

FIG. 2. Modeling spin-crystal momentum conversion. (a) “Tight-binding” representation of the rotor pumping process: Upper and lower
chains correspond to spin states |0, +1/2〉 and |−1, −1/2〉, respectively, while chain sites indicate rotational states |mL〉. Starting from a state
|mS, mI, mL〉, the system evolution is governed by the dipolar rate �d, the optical pumping rate �o, and the rotor decoherence rate �L. (b)
Occupational probability of rotational states after evolution in the presence of continuous optical excitation for a fixed time interval t = 500 µs
and various rotor depahasing rates �L; the faint black trace indicates the population distribution assumed for t = 0. The dynamics is evaluated
using the Trotter-Suzuki method (see Methods); each curve shows the result after 50 averages. (c) Mean angular momentum Lz as a function
of the normalized evolution time �dt for some rotor decoherence rates �L; the initial rotor state is that of (b). (d) Long-term evolution for
the case �L = 0. At sufficiently large rotational energies, the spin-crystal momentum transfer is inefficient and the system evolves towards a
pseudoterminal angular speed, whose value can be adjusted by shifting the magnetic field (shaded region of the plot). In (b), (c), and (d) we
use �d = 0.5 MHz, �o = 1 MHz, and h̄/2J = 10 Hz.
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energies take values EmL = m2
L h̄2/(2J ). In the regime where

the rotational energy is negligible (i.e., EmL � h̄2|d2|, see
below), the time evolution can be cast in terms of a se-
ries of interchain hops governed by unit time probabilities
�d = h̄|d2|/(2π ) and �o, respectively, representing the NV–
P1 dipolar coupling and optical pumping rates. To realistically
compute the system evolution, we must also take into account
the rotor decoherence, which we model by imposing a de-
phasing rate �L on rotation states |mL〉. Assuming a crystal
with no net initial angular momentum (i.e., 〈Lz〉(t = 0) = 0)
at some nonzero initial temperature Ti (i.e., 〈L2

z 〉(t = 0) ∝ Ti),
Fig. 2(b) compares the probability density of rotational states
before and after a time interval t of continuous optical exci-
tation. Consistent with a crystal momentum gain, the initial
distribution (faint black trace) invariably evolves to yield a
net 〈Lz〉—as reflected by the nonzero 〈mL〉—with significant
momentum buildup even when �L � �d.

Figure 2(c) shows the average angular momentum 〈Lz〉
as a function of time—expressed in units of the spin-crystal
momentum transfer time �−1

d —for various rates of dissipation
�L. In all cases, we observe a linear growth, indicative of
a constant torque on the crystal with value approximately
proportional to (�2

d + �2
L)−1/2. This process, however, can-

not be sustained indefinitely (even if �L = 0) since, as 〈Lz〉
grows, so does the crystal’s rotational energy [last term in
Eq. (3)], whose increasingly larger energy steps δEmL ≡
EmL+2 − EmL = 2(mL + 1)h̄2/J become gradually compara-
ble to the NV–P1 spin energy (i.e., δEmL ∼ 2π h̄�d), thus slow-
ing down the spin-crystal momentum conversion [Fig. 2(d)].
Considering the extreme angular velocities demonstrated re-
cently for optically driven nanoparticles [12,13] (� 2π ×
1 GHz), this “pseudoterminal” regime—first reached for an-
gular frequencies of order ∼ �d—should be readily observ-
able. Efficient rotational pumping, however, can be regained
by changing the magnetic field so as to recover the “energy
matching” condition, i.e., � − 2ω′

0 + δEmL = 0, where we
use the prime to highlight the shift relative to the value ω0 =
�/2 at early stages [shaded half of Fig. 2(d)].

For future reference, it is possible to use Fermi’s “golden
rule” to analytically calculate the rate of interconversion be-
tween NV spin polarization and crystal rotation. In the limit
where �o � �d, we find [26]

�s−r ≈ 4π2ηα2

5h̄2r3
min

ρss(�d, �L) ≈ �2
d(

�2
d + �2

L

)1/2 , (4)

where ρss(�d, �L) is a line-shape factor, and we assume a ran-
dom distribution of NV–P1 pairs with number concentration η

and minimum separation rmin = 1 nm.

IV. INTERACTION WITH SPIN-POLARIZED PHONONS

An alternative channel of momentum conservation is
via phonons, recently shown [24,25] to carry an intrinsic
“phonon-spin” angular momentum L′ = ∫V d3r′ρ u(r′) ×
u̇(r′), where u(r′) denotes the local lattice displacement vec-
tor, ρ is the crystal density, and the integral extends over
the crystal volume V . To explicitly describe the spin-phonon
interaction we express the displacement vector as u(r′) =√

h̄/(2ρV )
∑

k, j ek, j exp(ik · r′) ak, j/
√

ωk, j + H.c., where

H.c. denotes Hermitian conjugate, the sum extends over all
wave vectors k and (Cartesian) polarization branches j, ek, j

denotes the phonon polarization vector, ωk, j is the phonon
frequency, and we use the standard notation for the phonon
creation and annihilation operators, respectively, a†

k, j and ak, j .
Replacing in the expression for L′, one finds [27,28]

L′ = h̄
∑

k

k
k

(a†
k+ak+ − a†

k−ak−), (5)

where a†
k± ≡ ∓(a†

k1 ± ia†
k2)/

√
2, and the positive (negative)

signs indicate left (right) circular polarization. Equation (5)
expresses the lattice spin angular momentum as the difference
between populations of phonons, each carrying a unit h̄ of
angular momentum parallel or antiparallel to the direction
of propagation (i.e., positive or negative quantum of angular
momentum, respectively).

To include the effect of spin-polarized phonons into the
model, we expand Hd to first order in the lattice displacements
via the correspondence r → r + δr, where δr = u(rNV) −
u(rP1). After some algebra, we find [26]

Hd ≈ Hs−r + Hs−p, (6)

where Hs−r is the spin-rotation interaction derived above for
the rigid rotator model [Eq. (2)], and

Hs−p ≈
∑

k

i k · r(b0πk,0δ0 + b1πk,1+δ1− + b1πk,1−δ1+).

(7)
Above we use the notation πk,0 = [ h̄

2ρV ωk
](ak, z − a†

k,z),

πk,1± = ±[ h̄
2ρV ωk

](a†
k,± + ak, ∓), b0 = − 3α

2r4 cos θ (1−,

5 cos 2θ ), and b1 = − 3α
16r4 (3 cos θ + 4 cos 3θ ). We also

assume that r is small compared to the relevant phonon
wavelengths [26], i.e., k · r � 1. As in Eq. (3), the
Hamiltonian of Eq. (7) makes rotational invariance explicit,
this time through the interconversion of spin and phonon
angular momentum. Unlike Hs−r , however, Hs−p connects
states differing, at most, by a single quantum of angular
momentum. Since individual spin flips take place at a
rate �

(1)
s−p not greater than the inverse of the spin-lattice

relaxation time T (NV)
1 ∼ T (P1)

1 (induced via Hs−p or other
spin-lattice relaxation processes [29], typically ∼1 ms at
room temperature), we conclude �

(1)
s−p � �s−r .

A possibility that must be considered separately, however,
is one where double spin flips are allowed via second-order
processes involving simultaneous absorption and emission
of phonons. In this case, the combined spin-phonon system
transitions from an initial state |ik〉 = | . . . nk,−, nk,+, . . . , 0,

+1/2〉 to a final state | fk〉 = | . . . nk,− − 1, nk,+ + 1, . . . ,

−1,−1/2〉. Here, the net spin of phonons with wave vector
k—represented through spin-polarized phonon populations
nk,− and nk,+—grows by two units of h̄, hence compensating
for the angular momentum change from NV–P1 spin cross
relaxation (last two quantum numbers in the kets). Note that
other final states—involving, e.g., phonons with wave vector
different from the initial one—are forbidden, because spin
cross relaxation must conserve the total linear momentum and
energy, i.e., k must remain unchanged.

To calculate the rate of spin-phonon momentum transfer
via these second order pathways, we consider two types of
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FIG. 3. Spin-phonon angular momentum conversion. (a) Nonresonant mechanism of spin-phonon conversion, i.e., c|k| > ω0. Straight
(wavy) arrows indicate spin (phonon spin) change; clockwise (counter clockwise) corresponds to phonons with negative (positive) angular
momentum. The initial and final states are |ik〉 = |. . . nk−, nk+, . . . 0, +1/2〉 and | fk〉 = |. . . nk− − 1, nk+ + 1, . . . − 1, −1/2〉, respectively.
The upper and lower virtual states are |gk,1〉 = |. . . nk− − 1, nk+, . . . − 1, +1/2〉, and |gk,2〉 = |. . . nk−, nk+ + 1, . . . − 1, +1/2〉, respectively.
(b) Resonant mechanism, i.e., c|k0| = ω0. The notation used for all kets is the same as in (a), except that k → k0, and the intermediate state
is |gk0 〉 = |. . . nk0− − 1, nk0+, . . . − 1, +1/2〉. (c) Resonant spin-phonon conversion rate as a function of the crystal volume; λ0 ≡ 2πc/ω0

denotes the wavelength of resonant phonons, not supported by crystals of smaller size. (d) NV–P1 spin “reset” involving NV spin pumping
and P1 spin diffusion into the bulk. Spin-phonon relaxation subsequently transfers the P1 polarization to the phonon bath. (e) Schematic
representation of the NV–P1 spin cycle. Repeated sequences of NV spin pumping, P1-enabled spin cross relaxation, and NV–P1 spin resets
simultaneously produce crystal rotation and polarization of the phonon bath spin.

mechanisms [26]. In the first category, we group all off-
resonance processes (i.e., |k| > |k0| ≡ ω0/c, with c denoting
the speed of sound in diamond) where the transition from state
|ik〉 to | fk〉 takes place via virtual states |gk, j〉, j = 1, 2 involv-
ing an NV spin flip |0〉 → |−1〉 and the creation (annihilation)
of a phonon with positive (negative) spin [Fig. 3(a)]. The sec-
ond group corresponds to resonant processes (i.e., |k| = |k0|)
involving an intermediate state |gk0〉 with the same energy
as |ik0〉 or | fk0〉 [Fig. 3(b)]. Despite the massive majority of
nonresonant relaxation channels, this second group of pro-
cesses is more efficient in inducing spin-phonon conversion
of angular momentum (at least at room temperature and be-
low), mainly because phonon states with greater wave vectors
quickly depopulate due to the stiffness of diamond [26]. After
a lengthy calculation, we find the characteristic spin-phonon
conversion rate from these resonant, second-order processes
is approximately given by the formula

�
(2)
s−p

∼= �
(2,res)
s−p ≈ α

10ch̄

(
kBT

ρV

) 1
2
(

2πη

r9
min

) 1
4

, (8)

where kB denotes Boltzmann’s constant, and T is the tempera-
ture. Interestingly, �

(2)
s−p grows with the inverse square root of

the crystal volume, implying that spin-phonon conversion is
greater for diamond microparticles. Since the wavelength of
resonant phonon modes λ0 ≡ 2π/|k0| = 2πc/ω0 is of order
60 µm, this mechanism is quenched in sufficiently small
crystals (unable to support these phonon modes). In all cases,
nonetheless, we find �

(2)
s−p

<∼ 10−1 s−1 � �s−r [Fig. 3(c)],
hence allowing us to conclude spin-phonon angular momen-

tum conversion is not a sizable competing mechanism to
spin-crystal rotation transfer.

The latter must not be interpreted, however, as implying
phonons play no role in the crystal-rotation-pumping process.
Phonons are key to optically repolarizing the NV center,
though this process has zero net input of angular momentum
into the phonon bath (see Refs. [26], [30], and [31]). On
the other hand, spin-lattice relaxation of bulk P1s (which
spin polarize into |−1/2〉 via spin diffusion from NV-coupled
P1s) ultimately requires the transfer of (negative) angular
momentum into the phonon bath. Therefore, the cycle of NV–
P1 spin initialization, evolution, and reset must be viewed as
one simultaneously leading to net crystal rotation and phonon-
bath-spin pumping, as sketched in Figs. 3(d) and 3(e).

V. DISCUSSION AND OUTLOOK

While our description thus far has been limited to a single
NV–P1 pair, the experimental observation of spin-to-crystal
momentum conversion will likely require the use of spin
ensembles. Since the dynamics of each pair is coupled to
the rotation of the solid—in turn, impacting all members of
the ensemble—it is natural to wonder about the conditions
required to treat individual contributions to the torque on
the crystal as independent from each other. To address this
question, we first rewrite the Hamiltonian in Eq. (3) as [26]

Hφ = J2
z

2J +
∑

j

d2, j (r)δ2−, j + d∗
2, j (r)δ2+, j, (9)

where Hφ ≡ UφHU †
φ with Uφ ≡ exp(−iφ(Sz + Iz )/h̄), and

Jz = Sz + Iz + Lz is the total angular momentum (we denote
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Sz ≡ ∑
j Sz, j , Iz ≡ ∑

j Iz, j). The sum in Eq. (9) represents
the standard (truncated) dipolar interaction of an ensemble
of NV–P1 pairs in a static solid under energy matching
conditions, implying that all rotation-derived effects are en-
capsulated in the first term. To make these effects explicit,
we transform Hφ to the basis set where all terms in the sum
are diagonal, i.e., where Uμ(d2, j (r)δ2−, j + d∗

2, j (r)δ2+, j )U †
μ =

h̄2d ′
2, jμz′, j with μz′, j denoting a Pauli operator along a (pair-

dependent) virtual axis z’. Limiting our description to the
subspace involving states of crystal angular momentum mL,
the Hamiltonian takes the final form

H (m)
φ,μ ≡ UμH (m)

φ U †
μ ≈ −h̄2

∑
j

(d ′
2, jμz′, j − (m − 1)μx′, j/J )

+ (h̄2/J )
∑
j �=i

′
(μ+, jμ−,i + μ−, jμ+,i ), (10)

where we ignore constant terms, and we assume [26] ‖d ′
2‖ �

1/J . In the Hamiltonian representation of Eq. (10), the first
term in the upper sum can be viewed as a (local) Zeeman in-
teraction with an effective magnetic field of amplitude propor-
tional to the NV–P1 pair dipolar coupling, whereas the second
term represents a (global) transverse field whose amplitude
grows with faster crystal rotation. Finally, the primed sum
(comprising only NV–P1 pairs of similar dipolar interaction
strength) amounts to a rotation-induced interpair coupling
term, independent of the interpair distance. Remarkably, this
interaction can mediate entanglement between remote NV–
P1 pairs, but because the coupling amplitude is inversely
proportional to the crystal’s moment of inertia, long rotational
coherence lifetimes—of order J /h̄—would be required to
make this process observable. Under optical excitation, the
system coherence time is dictated (at best) by the inverse op-
tical pumping rate, �−1

o , much smaller than J /h̄ for realistic
conditions. In our present regime, therefore, we can correctly
describe the impact of the ensemble on the crystal dynamics
simply as a sum of independent spin-pair contributions.

Experimentally observing the interplay between spin and
crystalline angular momenta can capitalize on a variety of
techniques explicitly conceived to sense weak forces [32,33].
Among them, silicon-crystal double-paddle oscillators [34]—
capable of detecting torques as weak as 10−18 Nm at room
temperature [35]—are well suited to the present application,
because their large footprint can support mm-sized diamond
crystals. For a crude comparison, we express the expected
torque as

τ = d〈Lz〉
dt

∼ 2h̄ηV �s−r, (11)

where we assume [26], for simplicity, near optimum NV-P1
polarization in |0, +1/2〉, a condition one can approach with
reasonable illumination power densities of ∼ 1 mW/μm2.
For crystals with moderate NV–P1 pair concentrations (η ∼
5 ppm), we find τ ∼ 10−17Nm for optical excitation over a
50-μm radius spot in a 300-μm-thick crystal. Further, the
mechanically detected spectrum that emerges—dominated by
the strong P1 hyperfine interaction with its host nitrogen—
serves as a signature to distinguish spin-induced torques from
undesired sources [26,36].

In the opposite limit of diamond nanoparticles [37–39],
much higher detection sensitivities—from 10−21 Nm/Hz1/2

and up to 10−29 Nm/Hz1/2—have been predicted [40] and
demonstrated [41] using optical tweezers hence making this
route also feasible; in particular, sample heating (and the
ensuing NV–P1 spin energy mismatch it creates [22]) can be
minimized with the use of Paul traps [42–44]. As an alterna-
tive to torque sensing, here one could capitalize on schemes
adapted to detecting rotational velocities via birefringence-
induced modulation of a probe laser [15]. Unlike the former,
this latter strategy reveals the time integrated effect of optical
excitation, and thus could help expose spin-rotation conver-
sion in systems where the NV–P1 pair density is low.

Although our description centered on NV and P1 centers
in diamond, similar derivations apply to other spin systems
provided that: (i) one of the defects can be optically pumped
(through spin-dependent optical excitation or via broadband
illumination and spin-selective intersystem crossing); (ii) the
spin numbers are different and only one has total angular
momentum greater than 1

2 (either in the form of an orbital
singlet with spin number S � 1 or an orbital doublet with
S = 1/2 and sufficiently large spin orbit interaction); and (iii)
both spins have suitably long lifetimes (so that they can be
tuned in and out of resonance with sufficient change in flip-
flop rate that the effect can be observed). Besides the NV–P1
pair discussed herein, other defect combinations in systems
such as SiC or garnet materials appear plausible.

Extending the ideas introduced herein promises intriguing
opportunities in various uncharted fronts. For example, unlike
present schemes to inducing rotation, the ability to initialize
and manipulate paramagnetic centers provides a versatile
handle to control the rotational dynamics of the host crystal,
which could be exploited to investigate the limits of quantum
superposition in mesoscopic systems. Provided the rotational
coherence of the host crystal is sufficiently long, it will also
be interesting to investigate the impact of rotation on the
collective dynamics of the spin ensemble, which, perhaps,
could lead to forms of “coherence protection” akin to that
observed in heterogeneous ensembles of oscillators confined
to an optical cavity [45,46].

Along the same lines, the interplay between spin-lattice
relaxation and chiral phonons—here found comparatively
inefficient at the NV–P1 pair level—could nonetheless be
exploited at the single defect level. One possibility could be
to mechanically pump the NV (and/or P1) spin, for instance,
by stimulating spin-polarized acoustic phonons matched to
the spin resonance frequency. To this end, one could resort to
existing photoacoustic methods based on timed femtosecond
laser pulses [47,48], in this case tailored so as to coherently
inject chiral phonons into the diamond lattice.
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APPENDIX: METHODS

Dynamics using the Trotter-Suzuki decomposition. The
tight-binding representation in Fig. 2(a) corresponds to the
unitary dynamics given by the Hamiltonian in Eq. (3) and

the nonunitary processes �o and �L (optical pumping and
rotational dephasing, respectively). The standard Trotteriza-
tion allows for a step-wise evolution, where the system is
evolved in small time steps �t . Here, �t is much smaller than
the shortest time-scale in the problem, including �d, �o, and
�L. The projection due to optical pumping (and the reset of the
P1 spin state) follows the standard quantum jump recipe [49].
In practice, this implies a stochastic projection of population
from state |−1,−1/2〉 to the state |0,+1/2〉. The dephasing
�L corresponds to the analog quantum drift procedure [50],
and consists in a stochastic randomization of the phase of each
state |mL〉. The time dependence of the observable (in this
case, the probability density associated to the wave function)
is obtained after averaging trajectories.
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