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ABSTRACT. A major goal of the Partnership for Interdisciplinary Studies of Coastal
Oceans (PISCO) has been to understand the impacts of climate change and variabil-

ity on the coastal ecosystems of the inner shelf of the California Current Large Marine

System in particular, and other marine and even nonmarine systems more generally.

Insights can result from determination of impacts of climatic perturbations such as
the El Nifio-Southern Oscillation, the North Pacific Gyre Oscillation, and the Pacific
Decadal Oscillation, as well as impacts of climate-related surprises on populations,

communities, and ecosystems. To gain insight into warming impacts at organismal

levels, we also investigated mechanistic suborganismal (physiological, molecular)

responses to thermal conditions. Warmer water was connected to changes in eco-

logical subsidies, growth of dominant space occupiers (mussels and barnacles), and

heightened physiological stress impacts. Fortuitously, PISCO researchers were ideally

positioned to document ecosystem vulnerability and resilience to an unprecedented

ecological surprise—coast-wide collapse of keystone predator (sea star) populations—

and to investigate its consequences. As these examples suggest, long-term sampling is

critically important for helping society anticipate and adapt to present and future dis-

ruptions caused by global change.

INTRODUCTION

Global change (GC) due to increasing
CO, and other greenhouse gases is per-
haps the overarching challenge of our time
(IPCC, 2014). GC is manifested in the
atmosphere and ocean; increasing ocean
stratification, deoxygenation, and acidifi-
cation; and disruption of ecological sys-
tems, among other things. Understanding
ecological responses to GC requires long-
term biological and environmental data
sets (Poloczanska et al., 2008; Brown et al.,
2011). In the late 1990s, such data sets
were rare, so a major long-term goal of the
Partnership for Interdisciplinary Studies
of Coastal Oceans (PISCO) was targeting
GC ecological impacts. However, natural
climatic variability such as the El Nifo-
Southern Oscillation (ENSO), the North
Pacific Gyre Oscillation (NPGO), and
the Pacific Decadal Oscillation (PDO)
complicates efforts to identify anthro-
pogenic GC effects (Francis and Hare,
1994; Di Lorenzo et al., 2008; Brown et al,,
2011). Moreover, GC also alters ENSO
frequency and intensity (Cai et al., 2018;
Ham, 2018) and possibly also NPGO and
PDO (e.g., Zhang and Delworth, 2016).
These natural patterns and GC have a
common feature—they directly or indi-
rectly alter thermal regimes, with alter-
nating warmer- and colder-than-average
water and air temperatures. Thus, investi-
gating ecological responses to the shorter-

term climatic variability, ideally coupled
with mechanistic physiological research,
may provide insight into likely coastal
ecosystem responses to GC.

Rocky intertidal and subtidal ecosys-
tems are ideal model systems for inves-
tigation of impacts of GC. They are
dominated by organisms with research-
favorable traits, including relatively short
generation times, sessile or sluggish
mobility, mostly small size, ease of obser-
vation, and, in the intertidal, amenabil-
ity to experimentation. Benthic habitats
in the California Current Large Marine
System (CCLME) have been relatively
intensely investigated, enabling pursuit of
timely research questions.

Below, we summarize responses of
key CCLME processes to climatic modes
like ENSO, NPGO, and PDO, examine
research into how intertidal organisms
deal with physiological stress, and sum-
marize the 2013 sea star wasting event
and its consequences.

CLIMATIC VARIABILITY AND

INNER SHELF ECOSYSTEMS

Upwelling—the wind-driven injection
of deep, cold, salty, nutrient- and CO,-
rich, and O,-poor water from depth to
coastal ecosystems (Huyer, 1983)—is the
dominant feature of Eastern Boundary
Upwelling Systems (EBUS; Chavez and
Messié, 2009; Checkley and Barth, 2009)

such as the CCLME. How sensitive is
benthic community structure to climatic
variability relative to thermal, nutrient,
and chemical changes occurring during
upwelling? This issue is complex: upwell-
ing, storm surge, and temperatures are all
reflections of climate, including natural
multi-year patterns and anthropogenic-
driven components. For example, as veri-
fied by recent evidence (Garcia-Reyes and
Largier, 2012; Iles et al., 2012), upwelling
intensity increases with GC (Bakun, 1990).
Analyses of model climate projections
suggest that upwelling will last longer and
be more intense by 2100 in most EBUS
under business-as-usual scenarios (Wang
et al., 2015). Increasing wave heights con-
sistent with climate change predictions
have also been documented (Ruggiero
etal., 2010). Such complications challenge
efforts to sort GC-driven from naturally
occurring variation.

Globally, mussels and barnacles are
dominant components of temperate
rocky intertidal communities (Lewis,
1964; Stephenson and Stephenson, 1972).
Mussels in particular are critically import-
ant elements in these systems, dominating
space on the shore, harboring enormously
diverse biota (Lafferty and Suchanek,
2016), and supporting abundant and
functionally important apex predators
(Paine, 1974, 1994; Robles et al., 2009).
Hence, understanding links between oce-
anic conditions and sessile invertebrate
performance is critical in forecasting
potential future climate-related changes.

Impact of Natural Climate Variation
on Ecological Subsidies

As summarized in Menge et al. (2019, in
this issue), ecological subsidies (inputs
of nutrients, propagules, and particu-
late food from pelagic environments)
vary with coastal oceanic conditions. To
explore the dependence of ecological
subsidies on climatic variation, we built
on data sets collected in the period from
1989 to 1998, prior to PISCO’s beginning
in 1999. Compared to the 1990s, in the
2000s phytoplankton and mussel recruit
subsidies increased by orders of magni-
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tude (Menge et al., 2009). Further, phyto-
plankton and mussel recruitment phe-
nologies shifted to earlier and later in
the year, respectively. These changes cor-
related with the 10- to 15-year NPGO
(e.g., Figure 1). Mussel recruitment also
increased with phytoplankton abundance,
suggesting an important bottom-up effect
on the supply of mussels to rocky shores.
Remarkably, these relatively local supply-
side measures were sensitive to long-term,
ocean basin-scale climatic fluctuation
(Figure 2), suggesting likely future alter-
ations of local-scale inputs with changing
climate (Menge et al., 2009).

Using a longer (1989-2009) data set,
we found that upwelling and multiple cli-
mate modes (ENSO, NPGO, PDO) influ-
enced barnacle (Balanus glandula and
Chthamalus dalli) and mussel (Mytilus
spp.) recruitment (Menge et al., 2011).
However, recruitment of all species varied
most strongly with the NPGO and upwell-
ing (Figure 3). Overall, large-scale climate
and upwelling variability explained 37%-
40% of recruitment variance across the
central to southern Oregon coast.

In 2005, coastal upwelling onset was
delayed by ~1 month, and was weak early
and strong late in the season (Barth et al,,
2007). Consequently, coastal waters were
warmer, had low nutrient levels, low lev-
els of primary production, and low bar-
nacle and mussel recruitment. Whether
these “intraseasonal oscillations” influ-
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ence the northern CCLME more under
GC remains to be seen, but the predicted
northward movement of the atmospheric
jet stream under GC influences their prev-
alence in this region (Meehl et al., 2007).

Impact of Natural Climate Variability
on Secondary Production

To determine the responses of intertidal
organisms to oceanic processes during
their benthic, adult stages, Sanford and
(2001)
growth rates of two abundant intertidal

Menge investigated barnacle
species, B. glandula and C. dalli, in rela-
tion to upwelling-driven differences in
phytoplankton and zooplankton abun-
dances and thermal conditions. They
found that these factors jointly explained
differences in barnacle growth. Increased
growth in response to phytoplankton
blooms was observed, but also occurred
post-blooms, when zooplankton abun-
dances (e.g., crustacean larvae) and tem-
peratures were relatively high (Sanford
and Menge, 2001), suggesting these bar-
nacles were omnivorous.

Mussel growth in relation to environ-
mental variation was similarly context-
dependent (Blanchette et al., 2007; Menge
et al., 2008). Around Point Conception,
growth
increased southward with temperature

California, intertidal mussel
(Figures 4 and 5). Further, in contrast to
intertidal mussels (faster growth south of

Point Conception), mooring mussels grew
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FIGURE 1. Multiple linear regression describing Mytilus spp. recruitment in relation to upwelling on
PCA axis 2 (loading = 0.96) and North Pacific Gyre Oscillation (NPGO) on PCA axis 3 (loading = 0.82)
(adjusted R?=0.300, p < 2.2 x 107%). PCA = Principal Component Analysis. From Menge et al. (2011)
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equally fast around the Point (Figure 5).
Blanchette et al. (2007) suggested that
similar growth rates of submerged mus-
sels were likely a reflection of opposing
gradients in temperature (warmer south-
ward) and food (higher northward).

In Oregon, mussel growth var-
ied with both short-term ENSO- and
long-term PDO-influenced tempera-
ture and food abundance (Menge et al.,
2008; Figure 6). In the 1990s, mussel
growth rates were slower at less produc-
tive sites than they were at more produc-
tive sites, but in the 2000s, growth rates
increased at the less productive sites to
levels seen at the more productive sites.
Mussel growth at less productive sites
was slower during cool phases of ENSO
and PDO and faster during warm phases,
but did not vary among the more pro-
ductive sites. Both temperature (vari-
ance explained = 32%) and phytoplank-
ton (variance explained = 12.5%) were
climate-driven proximate factors under-
lying mussel growth rate differences.

Mechanistic Insight into Organismal
Responses to Climate Change:
Large-Scale Eco-physiological
Approaches

Anthropogenic GC increases traditional
stresses on marine organisms and also
creates new ones (Somero, 2012). Such
stresses have population, community,
and ecosystem consequences, so under-
standing biological system responses
is an essential aspect of climate change
research (Poloczanska et al., 2008; Doney,
2010; Somero, 2012).

The mussel M. californianus spans a
broad vertical range on relatively wave-
exposed shores along most of the North
American west coast. Hence, it exhibits
increasing thermal stress with increasing
height on the shore (Gracey et al., 2008;
Petes et al., 2008a,b). Further, it is exposed
to a broad wave-exposure range, from
wave-beaten headlands to gently wave-
swept coves, so thermal stress increases
as wave splash decreases (Dahlhoff et al.,
2002). In response to increased stress
(higher on the shore, in more protected



shore areas), several researchers docu-
mented increases in mussel physiolog-
ical responses. Specific responses were
observed in heat shock proteins and ubig-
uitin (Halpin et al., 2002, 2004), heart rate
(Braby and Somero, 2006), carotenoid
concentration (Petes et al., 2008a), and
gene expression (stress response genes;
Gracey et al., 2008; Place et al., 2011).
Integration of physiological and eco-
logical approaches has led to valuable
insights into the physiological responses
of key species such as mussels, whelks,

and sea stars to joint influences of thermal
stress and food abundance. For instance,
among-site differences in growth of mus-
sels (M. californianus) observed in Oregon
(Menge et al., 2008) were based on differ-
ences in metabolic enzymes (citrate syn-
thase and malate dehydrogenase) and pro-
tein synthetic capacity (RNA:DNA ratios;
Dahlhoff and Menge, 1996). This differ-
ence was highly plastic: the physiology of
reciprocally transplanted mussels quickly
converged with that of resident mus-
sels (Dahlhoff and Menge, 1996). More

b satellite SSH

recent research on gene expression (using
microarrays) has shown that metabolic
genes are up-regulated in M. californianus
with increasing food (Gracey et al., 2008;
Place et al., 2012; Somero 2012).

These examples suggest that mussel
physiology appears exquisitely attuned to
variable living conditions. Despite highly
plastic physiological stress responses,
however, GC, especially if it is rapid, can
have severe impacts on the distribution
and abundance of mussels. For example,
Jones et al. (2009, 2010) documented a
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FIGURE 2. (a) Time series of normalized mussel recruitment at four locations (Seal Rock: 44.50°N, 124.08°W; Strawberry Hill: 44.25°N, 124.115°W; Fogarty
Creek: 44.84°N, 123.97°W; and Boiler Bay: 44.83°N, 124.06°W) compared to the North Pacific Gyre Oscillation (NPGO) index. The time series are normal-
ized by their standard deviation (std; the y-axis scale numbers indicate the actual standard deviations of the NPGO index, by which the index is stan-
dardized). (b) Difference in satellite sea surface height (SSH) between the periods 2000-2006 and 1990-1999 (shaded colors) and mean SSH (black
contours). The strong dipole of SSH in the Northeast Pacific indicates an intensification of the North Pacific Current and its branches along the eastern
boundary (red arrows), which is consistent with the positive phase of the NPGO. (c) Same as (b) for the NOAA sea surface temperatures (SST). From

Menge et al. (2009)
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warming-related sharp contraction north-  coast over the past 30+ years. Are consumers affected similarly? The
ward of the mussel M. edulis along the US Such results indicate that the con-  consumer-stress model of environmen-
mid-Atlantic coast. Similarly, Sorte et al. ~ sequences of oceanic variability can be tal stress theory (Menge and Olson, 1990;
(2017) demonstrated a >60% decrease in  seen even at the level of gene expression ~ Menge et al., 2002; Siddon and Witman,
mussel abundance along the New England ~ and thus will likely be sensitive to GC.  2003) suggests that consumers are

more stress-susceptible than their prey

(i.e., there is a mobility-stress tolerance

‘ , , , , ‘ trade-off). Although consumer mobility
6 — Recruits *Day' —NPGO  — Upwelling | enables survival by allowing movement to
low-stress microhabitats, reduced activ-
ity leads to reduced consumption in more
stressful environments. In contrast, sessile
prey are fixed in place and must tolerate

conditions or die, so would be expected to

Standardized values

evolve greater stress tolerance.

Similar to the findings for mussels,

0690 0393 12-95 09-98 05-01 02-04 11-06 both mobile predatory whelks and ses-
Time sile barnacle prey showed greater met-
b Recruitment and NPGO abolic activity, increased growth capac-
0 ity, and enhanced production of stress
4k 0.8 proteins with increases in stress and
food at scales ranging from meters to
7 8 ; 0.6 tens of kilometers (Dahlhoff et al., 2001,
T 16 2002). In contrast, sea stars (P ochraceus)

o 0.4 . . )
showed minimal physiological response
32 5 to thermal stress (Dahlhoff et al., 2002;
. . Monaco et al., 2016), but as predicted by
s :);_’9; — ;2I95' - e s g T theory, died when experimentally forced
Time to live without access to shelter higher
C Reenitment and Uswaiiing than normal on the shore (Petes et al.,
‘ 1.0 2008b). Consistent with this result, other
researchers have shown that P. ochraceus
% activity is sensitive to temperature, both
i cold and hot (Pincebourde et al., 2008,
2009, 2012; Sanford, 1999), and modi-
0.4 fies its activity to minimize exposure to
thermal extremes (Szathmary et al., 2009;

0.2 Monaco et al., 2016).

: 6l Thus, research testing physiological
06-90  03-93  12-95 0998 0501 02-04 11-06 responses to stress can provide critically

Time important information useful in predict-
FIGURE 3. (a) Standardized time series and pairwise wavelet coherence of Mytilus spp.
recruitment, (b) NPGO, and (c) upwelling from 1989 to 2008 (month-year on x-axis).
Period (y-axis) is in months, so for the NPGO, red blobs indicate correlations of mus- GC. Can theY mOdifY their PhYSiOIOgY or
sel recruitment at periods of, for example, ~12 months (05-01) and ~24 months (12-95). behavior to adjust to the changing condi-
Wavelet coherence describes the amount of correlation (color bar; O = blue, no cor-
relation; 1 = dark red, complete correlation) in the fluctuations of two time series, in
this case the NPGO and mussel recruitment. Black arrows indicate the phase angle tiV@lY quCle, can they alter gene expres-
between the fluctuations of the two time series. Arrows pointing to the left indi- sion or genetically adapt quickly enough
cate anti-phase (inverse) fluctuations, whereas arrows pointing to the right indicate t ist ( S 2012)? The US
in-phase (positive) fluctuations. Black contour lines indicate regions in which the O persist (€.g., SOmero, : €

observed wavelet coherence values are statistically significantly (a = 0.05) based on east coast mussel example (Jones et al.,
Monte Carlo randomizations applied to 1,000 pairs of surrogate time series whose first 2009, 2010) is sobering, but temperature
order autoregressive coefficients match those of the original time series. Translucent
areas represent the “cone-of-influence” where edge effects can influence the analy-
sis. From Menge et al. (2011) places on Earth (Pershing et al., 2015).

ing responses of marine organisms to

tions? Because change is occurring rela-

change there has been faster than at most
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Further, thermal and wave size variation
in coastal habitats is more extreme in the
northwest Atlantic than in the northeast-
ern Pacific (Menge and Sutherland, 1976).
However, another stress, ocean acidifica-
tion, is globally most severe in the north-
east Pacific, posing an additional threat
and complicating efforts to predict future
ecosystem states based simply on thermal
changes (Chan et al., 2017; see also Chan
etal, 2019, in this issue).

Long-Term Data Sets Enable
Detection and Interpretation of
Ecological Surprises
In addition to their utility and impor-
tance for evaluating ecosystem responses
to climate change, long-term data sets
provide a critical context for understand-
ing sudden, dramatic changes in species’
abundance. For example, in fall 2013,
observers in British Columbia and south-
ern California reported startling, mas-
sive die-offs of sea stars (Hewson et al,,
2014; Stokstad, 2014). By spring 2014,
this event had reached epizootic propor-
tions, afflicting all 20+ species of sea star
along the entire North American west
coast (Hewson et al, 2014; Eisenlord
et al., 2016; Montecino-Latorre et al,
2016; Harvell et al., 2019).

This was not the first sea star mass mor-
tality event (Dungan et al., 1982; Menge,
1983; Eckert et al., 2000; Blanchette et al.,

2005; Bates et al., 2009). However, it was
unprecedented in two aspects: the spatial
extent of the event was exceptionally large
(thousands of kilometers of coastline), and
it afflicted all sea star species, not just one.
With collaborators in British Columbia,
Washington, and Baja California, PISCO
researchers immediately began (1) docu-
menting the impact of the wasting disease
on coastal sea star populations, (2) inves-
tigating sea star resilience to such massive
losses, and (3) assessing impacts on inter-
tidal and subtidal communities.
Combining contemporary surveys
with prior time series (back to 2000 or
earlier) showed that abundances of the sea
star P. ochraceus decreased by 60% to 90%
or more compared to long-term averages
(Menge et al., 2016; Miner et al., 2018).
This led to an immediate, sharp decline in
the rate of predation on mussels (Menge
et al., 2016). However, mussel response
was more spatially variable and slower
than expected (unpublished data from
authors Gravem and Menge). Perhaps the
most striking response was a dramatic
but also spatially variable increase in sea
star recruitment in spring 2015 (Menge
et al., 2016; Miner et al., 2018; Moritsch
and Raimondi, 2018). It led to increased
sea star abundance, often to levels higher
than before wasting, but because most of
the stars were small, biomass recovery
was slow (Menge et al., 2016; Moritsch
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and Raimondi, 2018). As of summer
2019, predation rate at most sites was still
less than pre-2013. However, as expected,
mussel abundance in the primarily mac-
rophyte-dominated low intertidal has
increased, displacing macrophytes at
increasing numbers of sites (unpublished
data from authors Gravem and Menge).
At present, sea stars are losing the battle
to mussels, but slowly enough that sea star
populations may be able to recover suffi-
ciently to prevent an alternative mussel-
dominated low intertidal state.

In contrast, coastal populations of
the subtidal sea star Pycnopodia helian-
thoides have been nearly extirpated with
as yet no sign of recovery (Harvell et al,,
2019). From shallow, kelp bed depths
to 1,280 m water depth, this large sun-
flower star declined by 80% to 100% from
Alaska through California, a ~3,000 km
distance. Although the sunflower star
is a diet generalist (Mauzey et al., 1968;
Duggins, 1983), sea urchins are a pri-
mary prey. Prior small-scale experi-
ments indicated that P. helianthoides pre-
dation could have cascading effects on
kelp through predation on urchins, but
the spatial generality of this effect was
unclear (Duggins, 1983). However, com-
munity consequences of sea star wasting
suggest P. helianthoides was indeed a key-
stone predator in kelp beds. The collapse
of shallow-water populations evidently
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FIGURE 4. Representative seasonal composite satellite images of (a) sea surface temperature, and (b) chlorophyll-a (in mg m=3, from SeaWIFS)
from summer 2000. Note the sharp discontinuity in temperature around Point Conception and the high concentration of offshore chlorophyll-a
north of Point Arguello relative to the Santa Barbara Channel. Images created by Mark Otero, ICESS, UCSB. From Blanchette et al. (2007)
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triggered sea urchin outbreaks in several
locations, with subsequent reductions in
kelp abundance through an indirect tro-
phic cascade effect (Schultz et al., 2016;
Burt et al., 2018). Unlike the P. ochraceus
example, however, P helianthoides loss
apparently was not followed by a recruit-
ment event of sunflower stars (Harvell
et al,, 2019). Although sea otters are also
major predators of sea urchins (Estes
and Palmisano, 1974; Estes and Duggins,
1995; Burt et al., 2018), otters are absent
south of Cape Flattery, Washington, to the
San Francisco Bay Area of California, and
no other subtidal predator in this region
seems capable of controlling sea urchin
populations. This system is presently in a
highly dynamic state, so the longer-term
consequences of these changes will only
be revealed with time, but it is clear that
kelp domination is threatened.

DISCUSSION

The impacts of variation in ENSO and
PDO on marine pelagic ecosystems are
well known (e.g., selected citations from
an extensive literature include Barber and
Chavez, 1983; Francis and Hare, 1994,
Mantua et al., 1997; Chavez et al., 2003;
Peterson and Schwing, 2003), as are,
increasingly, effects of NPGO (Di Lorenzo
etal., 2008; Chenillat et al., 2012; Sydeman
etal., 2013). Coral reefs and kelp beds also
suffer extensive damage during warm-
ing events (e.g., El Nifio and marine heat-
waves; Glynn, 1988; Wernberg et al., 2016;
Hughes, et al. 2018). Effects on temperate
marine benthic ecosystems, however, are
mixed. For example, in his decades-long
research on the Washington intertidal sys-
tem, Paine (1986) found little detectable
effect of the 1982-1983 El Nifio. Navarrete
et al. (2002) found little to no effect of
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mooring sites (b, d, and f). In (a) and (b), we were interested in comparing growth of mussels from
a single, common source (dark green bars; site near Santa Cruz, California) to that of mussels from
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data for some sites/years. Data are site means *1 standard error of the mean. Means with different
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isons. From Blanchette et al. (2007)
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the 1997-1998 El Nifio on invertebrate
recruitment in Chile. In contrast, kelp
(Macrocystis pyrifera) beds were found
to be highly sensitive to El Nifio (Dayton
and Tegner, 1984; Dayton et al., 1999), as
was algal composition in the Galapagos
(Vinueza et al., 2006, 2014), and barna-
cle recruitment was elevated in California
during the 1997-1998 El Nifio (Connolly
and Roughgarden, 1999).

During PISCO’s existence, benthic pro-
cesses such as recruitment and growth
appeared responsive to climatic varia-
tion as expressed in ENSO, NPGO, and
PDO. In these and all cases cited above,
these responses seem likely to be primar-
ily either positive or negative to thermal
changes. Mussel and barnacle growth
were faster under warmer conditions,
and mussel and barnacle recruitment
was increased by cool-water-associated
increases in phytoplankton abundance.
Further, these responses appear to be
detectable at physiological and molec-
ular levels, suggesting an approach that
will facilitate prediction of future species’
responses to global change. Remarkably,
these hard-bottom biological systems also
respond to basin- to subregional-scale
climatic variation across a wide range of
spatial, temporal, and organismal scales,
even down to the molecular level (see also
Palumbi et al., 2019, in this issue).

Until recently, a hallmark of northeast-
ern Pacific coastal ecosystems was con-
sistency in local to large-scale patterns
of abundance, distribution, diversity, and
biogeography (Paine, 1986, 1994; Dayton
etal, 1992). Although seasonal and short-
term variability resulting from, for exam-
ple, ENSO cycles was often dramatic, the
system seemed resilient to such pertur-
bations, typically recovering within a few
months to years (Dayton et al., 1992).
With global change, however, these sys-
tems appear to have entered a new phase
characterized by greater variation in pat-
tern and process, biogeographic shifts
(see Sanford et al., 2019; Raimondi et al,,
2019, in this issue), and often dramatic
changes in the abundance of key spe-
cies. Consequences of these changes are
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FIGURE 6. Influence of food availability (proxied by chlorophyll-a) and tempera-
ture (mean annual growing season, June through the following May) on growth
of Mytilus californianus. Statistics are from a multiple least squares regression
test. Regression is mussel growth = -2.53 + (0.081 x (chl-a) + (0.293 x tempera-
ture); F =14.2, p <0.001, adj R? = 0.44, n = 39. From Menge et al. (2008)

sometimes large and sometimes sub-
tle or slow to occur (e.g., sea star wast-
ing consequences exhibit both). PISCO
data streams have been crucial in discov-
ering, monitoring, and analyzing changes,
and identifying coastal “hot” and “cold”
spots, defined as areas that are more or
less productive, respond to or rebound
from change quickly or slowly, or are
exposed to more or fewer extreme envi-
ronmental variations (e.g., Guichard
et al., 2003; Menge et al., 2004; Helmuth
et al,, 2006; Krumhansl et al., 2016; Chan
et al., 2017). An era of unprecedented
and difficult-to-predict change in coastal
ecosystems is dawning, and with oth-
ers (e.g., Poloczanska et al., 2008; Brown
etal., 2011) we believe strongly that main-
taining and evolving long-term, coupled
research and monitoring programs is one
of the most powerful tools available to
deal with such challenges.
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