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Abstract—Spectre attacks exploit serious vulnerabilities in modern CPU design to
extract sensitive data through side channels. Completely fixing the problem would
require a redesign of the architecture for conditional execution which cannot be
backported. Researchers have proposed to detect Spectre with promising accuracy
by monitoring deviations in microarchitectural events using existing hardware
performance counters. However, the attacker may attempt to evade detection by
reshaping the microarchitectural profile of Spectre so as to mimic benign programs.
This letter thus identifies the challenges in detecting “Evasive Spectre” attacks by
showing that the detection accuracy drops significantly after the attackerinserted
carefully chosen instructions inthe middle of an attack or periodically put the attack
to sleep at a frequency higher than the victim's sampling rate when operating the
attack at a lower bandwidth, yet with reasonable success rate.

Index Terms—Evasive malware, microarchitectural attacks, security
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1 INTRODUCTION

MODERN processors use speculative execution to improve perfor-
mance by pre-executing a predicted path before knowing the actual
condition. However, this can open some unintended microarchitec-
tural side channels. Recent Spectre attacks [1] exploit speculative
execution fo leak confidential information through unintended
cache side channels by tricking the processor into taking a carefully
crafted malicious branch.

Current software patches usually incur significant performance
overhead and hardware fixes are not backportable to old machines.
In addition, mitigation techniques may not prevent zero-day
attacks. Therefore, it is important to proactively detect malicious
attacks as an extra layer of defense. Recent research [2], [3], [4] has
shown that malware can be detected by using dynamic microarchi-
tectural execution patterns gleaned from existing Hardware Perfor-
mance Counters (HPC). An HPC-based detector can effectively
detect Spectre with high accuracy using machine learning classi-
fiers [5], [6].

In this paper, we study how the original Spectre [1] could be
even more maliciously updated to operate effectively without
being detected by HPC-based dlassifiers. Previous research [7], [8],
[9], [10] suggested generating evasive malware (also known as mim-
icry attack) by instruction insertion, code obfuscation, or calling of
benign functions in between malignant payloads. Researchers [10]
add instructions in the control flow graph of the malware in a way
that does not affect the execution state of the program to evade
HPC-based detectors. However, the inserted instructions may
change the microarchitectural state such as the cache content of the
victim. Compared with the above-mentioned evasive malware,
developing evasive microarchitectural side channel attacks such as
Spectre has additional requirements, because they are time sensi-
tive and the attacker must ensure relevant microarchitectural status
is unchanged in order to perform successful attacks. This research
studies the feasibility of constructing evasive Spectre that is able
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to bypass HPC-based detector while maintaining a reasonable
attack success rate, and also the trade-off between attack success
rate and attack evasiveness. To achieve reasonable attack success
rates, the attacker has to insert instructions or put the attack to
sleep at coarser granularity than a basic block in the control flow
graph. Therefore, We define atomic tasks (detailed definition in
Section 3.2) and reshape the microarchitectural features in the
granularity of atomic task level. If an atomic task is interrupted, the
attack success rate would be greatly reduced. We also quantita-
tively compare different strategies to determine the best way an
attacker could use to evade detection while maintaining a reason-
able success rate and speed.

2 THREAT MODEL

We assume that the victim’s machine is running an HPC-based
malware detector such as proposed in [5] to defend from Spectre
attacks. The detector monitors four microarchitectural features
including Last-Level Cache references (LLC references), Last-Level
Cache misses (LLC misses), branch instructions retired (branches)
and branch mispredict retired (branch mispredictions) at a fixed
sampling rate on a separated core. In future research, the condition
will be relaxed for mixed sampling rate and the detector can be
implemented in dedicated hardware to reduce performance over-
head. We assume the attacker’s goal is to reveal some confidential
memory content on the victim machine without being detected as
malware. To achieve this goal, we further assume the attacker can
observe the behavior of the malware classifier from a machine with
a similar HPC-based detector as the victim machine. The attacker
can evade detection by changing the microarchitectural character-
istics of the updated Spectre so as to behave like benign programs.

We assume the attacker knows the features being monitored by
the malware classifier. This is reasonable because the attacker
knows that the original Spectre [1] would cause increased cache
misses and reduced branch mispredictions. However, the attacker
does not know the sampling period of the detector. Yet this can be
reverse engineered (see [10]).

As a Spectre attack runs in a loop, we assume the attacker can
slow down the attack by calling the victim function/API at specific
intervals. In addition, we assume the attacker can manipulate the
performance counters by inserting instructions that reduce LLC
cache misses and increase branch mispredictions by exploiting
other vulnerabilities such as just-in-time code reuse attacks. This
gives the attacker more privileges and could help us test the
detector’s resilience to evasion in extreme conditions.

Previous work [10] shows that the accuracy of HPC-based
detectors decreases significantly as the number of instructions
inserted in the original attack increases and assumes the attacker is
interested in maintaining the performance of the attack. However,
this did not consider how the inserted instructions may affect the
success rate of the detector in inferring the correct content. Since
Spectre is time sensitive, the inserted instructions may change or
provide opportunities for other running programs to change the
cache status and cause the attack to read the wrong content. There-
fore, we further assume the attacker aims at maintaining a reason-
able success rate.

3 DESIGNING AN “EVASIVE SPECTRE”

To avoid detection by HPC-based detectors, the attacker would seek
to shape its microarchitectural trace to mimic that of benign pro-
grams. In so doing, the attacker would have to sacrifice the efficiency
of the attack and perform it more slowly (reduced side channel band-
width). However, slowing down Spectre could result in a failure
of the attack. In this section, we first introduce the experimental
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TABLE 1
Attack Success Rate After Interruption at Different Levels
Task 1 Task 2 Task 3
Interrupt During Atomic Task 65% 58% 60%
Interrupt After Atomic Task 89% 90% 92%

environment that we use to develop “Evasive Spectre.” We then pro-
file the original Spectre to study its feasibility to perform an attack
without detection and discuss strategies to develop an “Evasive
Spectre.”

3.1 Experimental Setup
We designed an attack on a machine similar to a typical victim lap-
top computer with Debian Linux 4.8.5 OS on an Intel Core i3-
3217U 1.8 GHz processor with 3 MB cache and 4 GB of memory.
We used the standard profiling infrastructure on Linux perf tools to
obtain four performance counters data as discussed in Section 2
including branch mispredictions, LLC misses, branches, and LLC
references at each sampling interval.

In the clean environment, we sought to create realistic scenarios
by browsing popular websites and streaming videos or running a
text editor. For data collection when the system is under attack, we
launched Spectre variant 1 proof of concept and “Evasive Spectre”
attacks using the strategies proposed in Section 3.3 on top of nor-
mal applications. The system status was reset after each run to
ensure the measurements were independent across different runs.

Overfitting is a common problem for machine learning classi-
fiers. To allay this problem, we first sought to include more data by
collecting data in 10 independent runs and use the same number
(1200) of samples from malicious and normal classes. Then, we ran-
domly divided the collected data into training (80 percent) and
test (20 percent) data, then separated the training data into training
(80 percent) and validation (20 percent) data for cross-validation.
We also included regularization parameters in the machine learn-
ing models during training.

3.2 Feasibility Analysis of “Evasive Spectre”

In order for the attack to be successful, the attacker has to complete
malicious tasks faster than the detection frequency. Thus, the micro-
architectural trace of the attack should be reshaped so the attack can
make progress at each detection interval. We thus define an atomic
task as a sequence of instructions that should not be interrupted dur-
ing execution if progress is to be made towards the completion of a
malicious task to achieve successful attack. We identified three
atomic tasks in the proof of concept Spectre-V1 [11]: (1) Flushing cache
lines, (2) Mistraining branch predictor, (3) Attempting to infer the secret
byte that is loaded into cache. We compare the attack success rate of
interrupting the attack during atomic tasks and between atomic
tasks by inserting the same instructions. Table 1 shows that the
attack success rate drops significantly when defined atomic tasks
are interrupted. Therefore, we choose to reshape the microarchitec-
tural features for evasion at the atomic task level rather than a finer
granularity in the control flow graph. We profiled the attack on
the machine mentioned in Section 3.1. The three atomic tasks res-
pectively take 10 us, 13 pus, 38 us to complete on average. For each
byte, the three tasks were performed multiple times to get the best
results. The original attack read secret bytes at an approximate rate
of 2KB/second on average.

As discussed in Section 2, we assumed the attacker knows the
features being monitored but does not know the classification
period. we used the method proposed in [10], to collect multiple
pairs of testing and training data sets of the same features using
different collection periods and train a reverse-engineered detector
for each data set. The victim's collection period (100 ms) is the
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Fig. 1. Branch miss rate versus LLC miss rate for evasive spectre.

same as the collection period of the reverse-engineered detector
with the highest accuracy.

Since the sampling period of the victim detector is much larger
than the time taken to perform each atomic task, the attacker can
transform the microarchitectural profile of Spectre by inserting
instructions or “sleeping” at a finer granularity than the sampling
rate of the detector. To analyze the feasibility of evading detection,
we execute atomic tasks using 20 percent of each sampling period
and put the attack to sleep for the remainder. Fig. 1 shows the distri-
bution of (1) benign, (2) malicious and (3) evasive sample points
using cache miss rate and branch miss rate features. It shows a clear
boundary between normal and malicious sample points while the
evasive sample points shift the original malicious to overlap with
normal ones (they cannot fully overlap because unlike normal pro-
grams, the evasive attack still needs to perform malicious tasks).
Modified Spectre is performs with an 89 percent success rate. This
shows the feasibility of constructing an “Evasive Spectre.”

3.3 Stirategies to Construct Evasive Spectre

As discussed in [5], the original Spectre increases LLC misses and
reduces branch mispredictions. To evade detection, the attack
could be slowed by putting it to sleep or inserting instructions that
reduce the number of LLC misses (reading the same memory
bytes) and increase the number of branch mispredictions (adding
unpredictable branches). Assuming the attack runs in a loop, at
each cycle, the attacker needs to complete a series of atomic attacks
to retrieve one secret byte from the victim. We thus considered the
following four strategies:

1)  Put the attack to sleep in between atomic tasks.

2)  Put the attack to sleep after all tasks have completed.

3) Insert instructions in between atomic tasks.

4) Insert instructions after all tasks have completed.

The first two strategies slow down the attack and strategies 3 &
4 directly manipulate the performance counters.

Varying sleep time or looping the instructions that reshape the
microarchitectural profile different times will accordingly change
the attack bandwidth. We studied the effectiveness of different
strategies by gradually reducing the attack bandwidth and analyz-
ing the results in the following section.

4 EXPERIMENTAL RESULTS

We now evaluate different evasion strategies proposed in
Section 3.3 by varying the bandwidth reduction from 1X to 7X
and comparing the detection accuracy and the attack success
rate. We define the success rate as the percentage of correct bytes
inferred by the attacker over the total number of bytes inferred.
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Fig. 2. Detection accuracy - strategy 1 (sleep after all tasks).
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Fig. 3. Detection accuracy - strategy 2 (sleep between atomic tasks).
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Fig. 4. Detection accuracy - strategy 3 (insert instructions after all tasks).

Putting the attack to sleep or inserting instructions to reshape the
microarchitectural profile of the attack reduces the rate of confi-
dential content read. The longer the attack takes to reshape the
profile, the more bandwidth reduction it will incur and the lower
the success rate, due to higher TLB and cache pollution. There-
fore, an effective evasion strategy should result in a low detec-
tion accuracy and maintain a reasonable attack success rate and
bandwidth.

For each experimental setup with different evasion strategies
and bandwidth reduction, we record the attack success rate and
detection accuracy using the existing victim detector with different
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Fig. 5. Detection accuracy - strategy 4 (insert instructions between atomic tasks).
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Fig. 6. Detection accuracy using multi-layer perceptron.

Machine Learning classifiers (Logistic Regression (LR), Support
Vector Machine (SVM), and Multi-Layer Perceptron (MLP)). We
collect data in 10 independent runs for each setup and calculate the
average values to avoid bias.

Figs. 2, 3, 4 and 5 show detection accuracy versus bandwidth
reduction using different ML classifiers for each of the four strate-
gies. In all cases, the detection accuracy drops with the bandwidth
because the attack becomes more evasive and closer to benign pro-
grams as it runs slower. In addition, the MLP classifier retains a
better detection accuracy as the bandwidth drops. Therefore, MLP
has a higher resiliency to evasive attacks. In contrast, it is easier to
avoid detection by a simple LR classifier.

Fig. 6 show the detection accuracy of different evasion strategies
as bandwidth decreases using MLP. Strategy 1 causes the detection
accuracy to drop fastest as bandwidth drops. The detection accu-
racy diminishes to around 50 percent (random guess) when the
bandwidth reduction is 7X. Therefore, strategy 1 produces the
most evasive attack. On the other hand, strategy 4 performs
the worst in this regard. Strategy 2 and 3 perform similarly in terms
of evading detection. Note that shaping the microarchitectural pro-
file in between atomic tasks yields a more evasive attack than shap-
ing it after all the tasks are done no matter what method (sleep or
insert instructions) is used.

Fig. 7 shows the attack success rate using different evasion strat-
egies. As the attack bandwidth decreases, so does the success rate.
Therefore, an attack is more likely to fail when it is running more
slowly due to possible TLB and cache pollution by other processes.
Similarly, inserting instructions or sleeping between atomic tasks
has a higher chance to fail than inserting or sleeping after all tasks
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Fig. 7. Attack success rate using the proposed evasion strategies.

are done. The success rate drops below 50 percent with strategy 1
at 7X bandwidth reduction.

To better evade detection (or to reduce detection accuracy), the
attack must run at lower bandwidth and success rate. Considering
the trade-off between detection accuracy and attack success rate,
strategy 1 produces the most evasive attacks but the lowest success
rate. Conversely, strategy 4 has the best success rate but is the least
evasive. Strategy 2 gives slightly more evasive attacks than strategy
3 as bandwidth reduces further; strategy 2 has a better attack success
rate than strategy 3. Therefore, strategy 2 is on the overall most
effective. At a 7X bandwidth reduction, the LR classifier can only
perform at 58.77 percent accuracy, ie., no better than a random
guess. Meanwhile, the attack success rate remains at 85 percent.
Therefore, with strategy 2, the attacker can evade detection by an
LR classifier without sacrificing much in terms of success rate and
bandwidth. To evade the scrutiny of a more complex classifier such
as MLP, the attacker can further reduce the bandwidth for a lower
detection accuracy. At 10X bandwidth reduction, the MLP classifier
performs at 70 percent accuracy and the attack success rate remains
at 85 percent.

5 CONCLUSIONS AND FUTURE RESEARCH

We have demonstrated the feasibility of a re-written Spectre which
evades HPC-based malware detectors and proposed evasion
strategies indluding putting attacks to sleep and inserting instruc-
tions. We have shown that putting Spectre to sleep after it has per-
formed malicious tasks allows an attacker to effectively evade
simple LR malware classifiers and maintain as high a success rate
as 86 percent with a concomitant 7X bandwidth reduction. Com-
plex models such as MLP mean higher resiliency to evasion, how-
ever, with further bandwidth reduction at 10X, the detection
accuracy reduced to 70 percent.

More sophisticated detectors using other ML models such as
Recurrent Neural Network with more features for different var-
iants of Spectre will be studied. They can be used to counter eva-
sion by using a higher or randomized sampling rate. Also, a
strategy to reduce the performance overhead of the detector such
as using dedicated hardware to implement the malware classifier
will be explored. As malware becomes pervasive and stealthier,
future security mechanism should actively monitor even the sub-
tlest anomalies or signs of malware infection in every layer of the
system from networks, software applications to hardware. The
defense system should also be able to proactively respond to and
remedy threats and be easily reconfigured to future attacks.
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