Manuscript Click here to access/download;Manuscript;LE100919.pdf =

Click here to view linked References

Landscape Ecology, in press

1 Linear Downscaling from MODIS to Landsat: Connecting Landscape Composition with

2 Ecosystem Functions

3 Jiquan Chen' 2*, Pietro Sciusco' 2, Zutao Ouyang':?, Rong Zhang?, Geoffrey M. Henebry': 2,

4 Ranjeet John®, and David. P. Roy"?

5 ! Department of Geography, Environment, and Spatial Sciences, Michigan State University, MI

6 48824, USA
7  ?Center for Global Change and Earth Observations, Michigan State University, MI 48823, USA
8 3 Department of Biology, University of South Dakota, Vermillion, SD 57069, USA

9  Corresponding Author: Dr. Jiquan Chen, Email: jgchen@msu.edu; Phone: 517-884-1884

10  Date of manuscript revision: 10/9/2019


mailto:jqchen@msu.edu
https://www.editorialmanager.com/land/download.aspx?id=117767&guid=0c024831-1d43-44e7-a615-0f632496295b&scheme=1
https://www.editorialmanager.com/land/download.aspx?id=117767&guid=0c024831-1d43-44e7-a615-0f632496295b&scheme=1
https://www.editorialmanager.com/land/viewRCResults.aspx?pdf=1&docID=9780&rev=1&fileID=117767&msid=6b59f379-7671-4970-832b-2ee7658ae2bf

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Abstract

Context

The open and free access to Landsat and MODIS products have greatly promoted scientific
investigations on spatiotemporal change in land mosaics and ecosystem functions at landscape to
regional scales. Unfortunately, there is a major mismatch in spatial resolution between MODIS
products at coarser resolution (2250 m) and landscape structure based on classified Landsat scenes at

finer resolution (30 m).

Objectives

Based on practical needs for downscaling popular MODIS products at 500 m resolution to match
classified land cover at Landsat 30 m resolution, we proposed an innovative modelling approach so
that landscape structure and ecosystem functions can be directly studied for their interconnections.
As a proof-of-concept of our downscaling approach, we selected the watershed of the Kalamazoo

River in southwestern Michigan, USA as the testbed.

Methods

MODIS products for three fundamental variables of ecosystem function are downscaled to ensure the
approach can be extrapolated to multiple functional measurements. They are blue-sky albedo (0-1),
evapotranspiration (ET, mm), and gross primary production (GPP, Mg C ha' yr'"). An object-
oriented classification of Landsat images in 2011 was processed to generate a land cover map
indicating landscape structure. The downscaling model was tested for the five Level IV ecoregions

within the watershed.

Results
We achieved satisfactory downscaling models for albedo, ET, and GPP for all five ecoregions. The

adjusted R* was >0.995 for albedo, 0.915-0.997 for ET, and 0.902-0.962 for GPP. The estimated
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albedo, ET, and GPP values appear different in the region. The estimated albedo was the lowest for
water (0.076-0.107) and the highest for cropland (0.166-0.172). Estimated ET was the highest for the
built-up cover type (525.6-687.1 mm) and the lowest for forest (209.7-459.7 mm). The estimated

GPP was the highest for the build-up cover type (8.65-9.85 MgC ha! yr'!') and the lowest for forest.

Conclusions

Estimated values for albedo, ET, and GPP appear reasonable for their ranges in the Kalamazoo River
region and are consistent with values reported in the literature. Despite these promising results, the
downscaling approach relies on strong assumptions and can carry substantial uncertainty. It is only
valid at a spatial scale where similar climate, soil, and landforms exist (i.e., values in isolated patches
of the same cover type are similar). Plausibly, the uncertainties associated with each estimation, as
well as the model residuals, can be explored for other pattern-process relationships within the

landscape.

Keywords: Downscaling, MODIS, Landsat, GPP, ET, Albedo, Kalamazoo River watershed
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1. Introduction

The last two decades have witnessed a rapid increase in the application of remote sensing imagery in
various fields of natural science and resource management, especially using data from the Landsat
satellite series and from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensors on
board NASA’s Terra and Aqua satellites. These images and derived value-added products provide
the scientific community, practitioners, and natural resource managers with powerful tools for
quantifying spatial and temporal changes in land surface properties. Landsat data, for example, have
been widely used to create regional to global land cover maps and to describe the landscape structure,
ecosystem dynamics, land use change, and their connections with landscape processes (e.g.,
fragmentation, succession) (Bresee et al. 2004; Hansen and Loveland 2012; Kennedy et al. 2014;
Waulder et al. 2018). Systematically derived, quality assessed, validated, and reprocessed NASA
MODIS products (Justice et al. 2002) meanwhile have been widely used to create global products of
gross ecosystem production (GPP) (Zhao et al. 2005), land cover (Friedl et al. 2010),
evapotranspiration (ET; Mu et al. 2007), land surface temperature (Wan 2013), albedo (Schaaf et al.
2002), disturbance (e.g., fire; Giglio et al. 2018), and land surface phenology (Zhang et al. 2003;
Moon et al. 2019). The open and free access to both Landsat and MODIS products further promoted
their use and influence in scientific investigations. Explorations of landscape structure and dynamics
based on the Landsat archive, as another example, have seen a substantial increase in applications
(Bresee et al. 2004; Roy et al. 2014; Krehbiel et al. 2017; Wulder et al. 2019).

Connecting ecosystem functions (e.g., ecosystem production, biological diversity) with
landscape structure (e.g., patch type, characteristics and spatial configuration) and processes (e.g.,
fragmentation, movement of species and materials across the landscape) has long been an interest of
landscape ecologists (Franklin and Forman 1987; Forman 1995; Wu and Hobbs 2007; Turner and

Gardner 2015). As an example, John et al. (2016) examined the long-term changes of vegetation
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indices from MODIS and AVHRR (Advanced Very High Resolution Radiometer), ecosystem
production, livestock, and land cover and land use changes on the Mongolian Plateau to tease apart
the contributions of climatic change and human influences, which is a scientific frontier in global
change science (Alberti et al. 2011; Chen et al. 2013; Mills et al. 2017). Their studies, along with
many other similar ones, were often conducted at coarser spatial resolutions of 500-1000 m (i.e., the
pixel size of sensor data such as MODIS and AVHRR). Meanwhile, Landsat images have been
widely used to produce multiple versions of accurate land cover maps at 30 m resolution that better
represents cover types (patches) and their spatial configurations at landscape to regional scales
(Wulder et al. 2018). Higher spatial resolution is desirable because many patches in a landscape may
be substantially smaller than the finest resolution of a MODIS pixel (250 m). Recently, the Landsat
data has been complemented by twin satellites from the European Space Agency (Sentinel-2A and
2B) that provide Landsat-like imagery but at finer (10-20 m) spatial resolution (Drusch et al. 2012).
Clearly, there exists a major mismatch in the spatial resolution between MODIS products at coarser
resolution and landscape structure from Landsat scenes at finer resolution.

Downscaling to finer spatiotemporal resolution has been a research focus in remote sensing
(see Atkinson 2013 for an overview). Both mechanistically and empirically based approaches have
been attempted in landscape studies. One approach is to quantify ecosystem functions directly at
Landsat resolution by integrating ecosystem models with patches (e.g., Zheng et al. 2004; Gitelson et
al. 2012; Semmens et al. 2016; Yao et al. 2017). Another approach is to downscale coarse resolution
data through spatial interpolation, such as block cokriging where the landscape is categorized into
multiple classes (i.e., blocks). However, the first approach requires extensive and detailed
measurements at near surface and ground levels for model parameterization and validation; whereas,
the products from the second approach are often not matched with the patch boundaries and require
an assumption of statistical stationarity rarely met in landscapes (Saunders et al. 2005). An

alternative is to take the advantage of the available, coarser spatial resolution MODIS products and
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downscale them to the finer spatial resolution of Landsat imagery through dasymetric modeling,
an approach to thematic mapping that uses land cover information as ancillary information and
spatially disaggregates coarser resolution information (Fisher and Langford 1996; Petrov 2012).
Dasymetric modeling has been widely applied in human geography (Nagle et al. 2014; Jia and
Gaughan 2016), but not in landscape studies. Here we applied the principles of dasymetric modeling
to estimate higher resolution (30 m) ecosystem functions from MODIS products by treating finer
spatial resolution land cover data (i.e., the ancillary layer) that are accurately classified from Landsat
imagery.

The idea is simple. Consider the value of gross primary productivity (GPP) defined by a

MODIS pixel to be the linear sum of GPP; of land cover type (i), expressed as (Fig. 1):

GPP =Y (ki x GPPj) + ¢ [1]

where «; is the compositional portion (0-1) of land cover type i within a MODIS pixel where ) (ki) =
1, and ¢ is the model residual errors to include uncertainties from both the land cover classification
and the MODIS estimates of GPP. Through multiple linear regression constrained to a zero intercept,
GPP; can be estimated empirically for a landscape composed of multiple MODIS pixels and land
cover types. The zero intercept constraint is necessary to ensure that the mathematical weight of each
land cover type is allocated properly. A key assumption of this downscaling approach is that
ecosystem functions of the same land cover type remain the same in different MODIS pixels. With
this downscaling model, the uncertainty of GPP; estimates from Eq. 1 (i.e., the standard error
associated with GPP; estimate in Eq. 1), as well as the residuals (&) can be examined for their
relationships with other landscape characteristics (e.g., interactions between patches, landscape
composition, etc.) for further investigation of pattern-process relationships.

As a proof-of-concept of our downscaling approach, we selected the watershed of the

Kalamazoo River in the southwestern Michigan as a testbed. MODIS products for three fundamental
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variables of ecosystem function—albedo, ET, and GPP—were downscaled to ensure the approach
can be extrapolated to multiple functional measurements. To simplify our demonstration, we focused
on the year of 2011 when we developed an accurate, Landsat-derived land cover map for the
watershed. To meet the model assumptions, we based our model at the scale of a single Level IV
ecoregion, within which climate, soils, and potential vegetation are similar (Omernik and Griffith
2014). Our modeling effort was then independently repeated for each of the five Level IV ecoregions

within the watershed to demonstrate the validity of the approach.

2. Methods

2.1. Study area

The Kalamazoo River watershed (5261 km?) includes portions of 10 counties (Allegan, Ottawa, Van
Buren, Kent, Barry, Kalamazoo, Calhoun, Eaton, Jackson, and Hillsdale) in southwestern Michigan,
USA. The watershed is dominated by cultivated crops, deciduous forest, mixed prairies, lakes and
ponds, wooded wetlands, and urban areas. Prior to European settlement and land conversion to
agriculture, this region had a mosaic of tallgrass prairies, savannas, and oak openings, including both
Cs and C;4 grasses as well as forbs (Chapman and Brewer 2008). Kalamazoo and Battle Creek are the
two major urban centers within the watershed, and the Kalamazoo—Battle Creek—Portage Combined
Statistical Area had a population of more than 524,000 in 2010.

The Kalamazoo River has a moderate stream gradient and drops 165 m in elevation from its
headwaters, which are >300 m a.s.l. The River drains a landscape consisting of thick glacial deposits.
Alfisols are the most common soil formation and reflect the dominance of deciduous forests in the
past. The watershed is covered with prime agricultural soils, including 70% coarse soils that are
permeable to rainwater and help in the recharge of groundwater (Schaetzl et al. 2009). The annual
average precipitation is 890 mm, with ~65% returned as evapotranspiration (Fongers 2008). The

recent growth in urban area can cause the local hydrology to become more “flashy”, owing to the
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sharp increase in impervious surface areas and could contribute to higher phosphorus loading from
urban land uses (Bass 2009).

While 96% of the land is privately owned, there are major inclusions of public lands (e.g.,
Allegan State Game area, Fort Custer Recreation Area, Yankee Springs Recreation Area). The land
use history in the watershed shows that row crop agriculture takes place in the more productive soils;
whereas, croplands have been abandoned in marginal areas including land with steep slopes, lands
that were excessively drained, or that had poor drainage (Schaetzl et al. 2009). Five Level IV
ecoregions of the United States Environmental Protection Agency fall within the watershed
(Omernik and Griffith 2014) (Fig. 2): Battle Creek Outwash Plain (56b); Michigan Lake Plain (56d);
Lake Michigan Moraines (56f); Lansing Loamy Plain (56g); and Interlobate Dead Ice Moraines
(56h). Detailed descriptions of these ecoregions can be found online at EPA:

https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20.

2.2 Data sources and pre-processing
We used MODIS products with Landsat images to demonstrate the broader applications of the
downscaling model (Eq. 1). Three MODIS products were used: blue-sky albedo (0-1),
evapotranspiration (ET, mm), and gross primary production (GPP, Mg C ha' yr'"). Ecosystem water
use efficiency (WUE, g kg™!), defined as the ratio between GPP and ET, was further calculated with
estimated GPP and ET values by land cover type to expand from the downscaled predictions to other
potential ecological applications. It is worth noting that ET in units of mm is converted to kg ha™ yr’!
based on water density of 1.0 Mg m™.

We used Google Earth Engine (GEE) to process the most recent Collection 6 MODIS ET and
GPP products. ET and GPP were provided by the MODIS 500m 8 day Evapotranspiration/Latent

Heat Flux (MOD16A2-V6) (https://doi.org/10.5067/MODIS/MOD16A2.006) and Gross Primary

Productivity (MOD17A2H-V6) (https://doi.org/10.5067/MODIS/MOD17A2H.006) products. We
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filtered the ET and GPP data using the MODIS product quality bands “NPP_QC” for ET, and
“PSN_QC” for GPP, to ensure only the high quality (QC=0) data were retained.
For albedo, we used the blue-sky albedo product available as a global annual mean for 2000-2015

(http://rslab.gr/downloads_blue_sky.html). The blue-sky albedo was estimated using the MCD43A 1

product (https://doi.org/10.5067/MODIS/MCD43A1.006). This MODIS product was generated daily

at 500 m by inversion of a Bidirectional Reflectance Distribution Function (BRDF) model against
16-day moving window of MODIS 500m observations and then the BRDF model is used to derive
the black-sky and white-sky albedos (Wang et al. 2018). The blue-sky albedo was estimated every 8
days as a weighted average of both black- and white-sky albedos and using the MODIS aerosol
Optical Thickness product (Chrysoulakis et al. 2018).

The three MODIS products defined from January 1% to Dec 31% 2011 were used to calculate
annual mean blue-sky albedo (ranging 0 to 1), total GPP (Mg ha™! yr'!) and total annual ET (mm) at
each 500 m MODIS pixel. The results were clipped spatially to the extent of the Kalamazoo River
watershed and Level IV ecoregion boundaries. Zonal statistical analyses were performed in ArcMap
10.6 to extract values of albedo, ET, and GPP data by ecoregion and by each MODIS pixel into data
tables. The extracted data tables were then analyzed in RStudio (RStudio 1.1.453,

https://www.rstudio.com/) to compute mean, standard deviation, and probability densities.

A land cover map of the watershed was created using an object-oriented classification of
Landsat Thematic Mapper (TM) images that were acquired on 6" and 31% July of 2011 over the three
Landsat scenes (WRS-2 Path/Rows (21/30, 21/31, and 22/30) that completely cover the watershed.
The most recent cloud-free Collection 1 Landsat TM images processed to surface reflectance were

obtained from Earth Explorer (https://earthexplorer.usgs.gov/). The Collection 1 Landsat images are

defined with per-pixel cloud and quality information (Dwyer et al. 2018) and for this study cloudy

pixels were removed. Following the Level 1 classification scheme of Anderson et al. (1976), seven
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land cover types were identified at 30 m resolution: barren, built-up (mainly as urban and roads),
cropland, forest, grassland, open water, and wetland (Table 1). The image classification was
conducted using the eCognition software (eCognition, 2019, version 9.2). Our first step of the
classification was to generate homogeneous image objects through segmentation. We applied a
multi-resolution segmentation algorithm based on both the spectral and shape information that
quantify homogeneity using a set of parameters including scale, band weights, shape smoothness and
compactness. First, rule sets were used to identify the water and urban object/classes using the
Modified Normalized Difference Water Index (MNDWI) (McFeeters 1996) and Normalized
Diftference built-up Index (NDBI) (Zha et al. 2003) (viz., MNDWI>0.0 and NDBI>0.2, respectively).
The remaining object/classes were classified using the nearest neighborhood classifier with training
samples carefully selected by expert visual interpretation of the Landsat images and with the training
samples selected across the watershed.

Land cover classification accuracy assessment was conducted by stratified random sampling
of 700 Landsat TM pixels, with ~100 samples per class. The land cover of the 700 references pixels
was determined by examination of high resolution commercial and airborne true color imagery in
Google Earth supplemented by field visits. Standard confusion matrices were derived as cross-
tabulations of the classified versus the reference class and used to estimate the overall, user’s, and
producer’s accuracies (Foody 2002). The overall classification accuracy was 86.4%, with user and

producer’s accuracy of individual classes from 64.8-93.3% and 82.4-91.4%, respectively (Table 1).

2.3 Linear downscaling of albedo, ET and GPP
We calculated the proportions of the seven land cover types (k;, i =1, 2 ... 7) in each 500 m MODIS
pixel for each Level IV ecoregion (Fig. 3). The annual mean blue-sky albedo, total annual ET, and

annual mean GPP (hereafter referred to as albedo, ET, and GPP) of each MODIS 500 m pixel were

10
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used as the dependent variables in Eq. 1 to empirically estimate for each land cover type albedoi, ETi,

and GPP;:
Albedo =} (ki x albedo;) + ¢ [2]
ET=Y (xi x ETj) + ¢ [3]
GPP =Y (i x GPP;) + ¢ [4]

where ¢ is the residuals of the ordinary least squares linear regression. RStudio (RStudio 1.1.453,

https://www.rstudio.com/) was used to perform the downscaling with zero intercept and «; is the

compositional portion (0-1) of land cover type i within the MODIS pixel, and the sum of «; must
equal 1. The estimated albedo, ET, GPP and WUE for each cover type were quantified by cover type

and ecoregion with their means and standard errors (SE) reported through boxplots.

3. Results

3.1 Landscape Characterization

Over 41.2% of the Kalamazoo River watershed falls in the ecoregion “Battle Creek Outwash Plain —
56b”, which is characterized as broad and flat post-glacial plain. The “Lake Michigan Moraines -56f”
and “Michigan Lake Plain — 5fd” ecoregions cover 22.5% and 9.6% of the watershed, respectively,
and the remaining two ecoregions occupy 13.4%. The four dominant classified land cover types are
cropland (57.1%), forest (28.1%), built-up (16.8%), and wetland (13.7%). Water, barren and
grasslands each account for 0.5% to 3.0% of the watershed. There are large differences in landscape
composition among the five ecoregions. The portion of cropland (40.9%) and forest (21.5%) in
ecoregion 56b are substantially lower than the watershed mean, due to large portion of built-up land
(21.8%) that includes the two largest cities: Kalamazoo and Battle Creek. In contrast, 45.6% of

ecoregion 56d is classified as forest, resulting in a much lower cropland coverage (21.0%). The
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portion of wetland is higher than the watershed mean in 56d (14.4%) and 56g (14.6%). Build-up land

in four of the ecoregions accounts for 7.5%-11.0% of the watershed (Fig. 2).

3.2 Land Surface Properties

The mean (SE) albedo of the five ecoregions is 0.154 (+0.016), with the highest value found in
ecoregion 56g (0.163 £0.010) and the lowest value in 56h (0.141 £ 0.016) (Table 2). Interestingly,
frequency distributions of albedo in the five ecoregions are all left skewed (y <0), with the most
skewed distribution found in 56g (y =-2.18) and the least skewed distribution in 56f (y = -0.72) (Fig.
3a2). For ET, the mean (SE) is 450.7 (£135.1) mm, but with a minimum of 365.9 (+179.4) in
ecoregion 56d and a maximum of 477.5 (£94.5) mm in 56g. For GPP, the watershed mean (SE) of
7.27 (£2.36) MgC ha yr! shows a deviation from a maximum of 7.71 (£1.71) MgC ha yr! in
ecoregion 56g and a minimum of 5.92 (£2.97) MgC ha! yr'! in 56d (Table 2). As a result, WUE
varies from 1.52 g kg in ecoregion 56d to 1.63 g kg™ in 56g (Table 2). Unlike the frequency
distribution of albedo, both ET and GPP have bimodal density functions, except in ecoregion 56g
(Fig. 3b2, c2). The first ET peak appears at ~210 mm and the second at ~515 mm. For GPP, similar
peaks are at ~3 MgC ha™ yr'! and ~8 MgC ha! yr'. By comparing the spatial changes of ET, GPP,
and land cover, the forest-dominated ecoregions exhibit lower ET and GPP than the cropland
dominated ecoregions (Figs. 3, 4). For example, forest cover in 56d has the highest ET and GPP,
which corresponds well with the lowest albedo. Whereas, in 56g, cropland accounts 61.6% of the
landscape, and the corresponding albedo, ET, GPP, and WUE are the highest among the five Level

IV ecoregions (Table 2, Fig. 4).

3.3 Downscaling
We achieved satisfactory downscaled results for albedo, ET, and GPP in all five ecoregions (Table

3). The adjusted R? is >0.995 for albedo, 0.915-0.971 for ET, and 0.902-0.962 for GPP. Values

12
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appear generally higher in ecoregions dominated by croplands (56g, 56h) than those dominated by
forests (56d). Among the five ecoregions, 56f and 56d have higher variations (i.e., standard errors) in
estimated albedo (Fig. 5a). The overall means for ET and GPP are the lowest in 56d compared with
the four other ecoregions. Higher estimated variation is found in 56d and 56f, while lower variation
in 56g appear in cropland dominant (Fig. 5b, c). Surprisingly, the WUE, based on estimated values of
ET and GPP, appears very similar among the ecoregions, except in 56d where it is remarkably lower
than other ecoregions and with high variation (Fig. 5d).

The downscaled estimates of albedo, ET, and GPP based on Egs. 2-3 are reasonable (Table 3)
and fall within the range of MODIS products (Fig. 3). The estimated albedo is the lowest for water
(0.076-0.107) and the highest for cropland cover type (0.166-0.172). The albedo of the forest (0.136-
0.153), wetland (0.141-0.155), and urban (0.136-0.152) cover types are similar, while grassland
albedo (0.136-0.172) is slightly lower than that of cropland. Additionally, estimated albedo exhibits
higher variation in barren, grasslands, and water than that of the four major cover types (Fig. 4a),
likely because of their small sampling size (i.e., small portion of the landscape, Fig. 2) and large
interannual variation. The high variation of albedo in the water cover type among the five ecoregions
likely arises from seasonal variations in lake vegetation, sediment loading and waves.

Estimated ET (mm) is the highest for built-up cover type (525.6-687.1) and the lowest at
forest (209.7-459.7), with a mean (SE) of 588.3 (47.7) and 318.3(69.9), respectively, among the five
ecoregions (Table 3, Fig. 4b). Interestingly, the estimated ET for cropland land cover and water is not
high as expected, especially from the water cover where ET source is sufficient (Fig. 4b). The
variation associated with ET estimates for barren and grasslands are high, but not for water, possibly
because of high similarity of evaporation among the open water bodies.

Estimated GPP (MgC ha™' yr'') is the highest for the build-up cover type (8.65-9.85) and the
lowest for the forest (4.81-7.42), with a mean (SE) of 9.71 (£0.76) and 5.13 (£1.09), respectively

(Table 3, Fig. 4c). While a low GPP (6.42 + 0.99) is reasonable for the wetland cover type, the high

13



285

286

287

288

289

290

201

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

estimated GPP for barren cover (7.61 £+ 3.67) and water (7.49 + 0.86) need to be explored further to
discover the source of the discrepancies in underlying mechanisms (e.g., small sampling size).
Finally, WUE (g kg') among the seven cover types are similar at an overall mean of 1.57, with the
highest and the lowest WUE found in the built-up cover type (1.66) and barren (1.49) (Fig. 4d).
Again, high variation in estimated WUE appears in grassland cover type, but not in the built-up and

water cover type.

4. Discussion

Development of this downscaling approach was stimulated by the practical need to estimate
ecosystem functioning at the Landsat spatial resolution of 30 m from coarser spatial resolution
MODIS products at 500 m (Robinson et al. 2018). Alternative efforts had been made to derive or
model functional measures directly from Landsat data (Zheng et al. 2004; Dieye et al. 2012; Gitelson
et al. 2012; Semmens et al. 2016; Yao et al. 2017), or resample of Landsat within the MODIS frame
(Wang et al. 2017; Trlica et al. 2017). Our approach offers a direct downscaling option by avoiding
time-consuming processing or modeling efforts through integrating land cover maps with available
MODIS products.

To demonstrate the concept, we applied the approach for blue-sky albedo, ET, and GPP in a
watershed consisting of five Level IV ecoregions in southwestern Michigan. The estimated albedo,
ET, and GPP values appear reasonable for the ecosystems in the region. Among the ecosystems,
croplands and grasslands have higher albedos than the other cover types, with the water cover type
showing the lowest values, as expected (Table 3). This pattern is consistent with snow-free albedo
variations among ecosystems (Campbell and Norman 1998) and across the conterminous United
States (Barnes and Roy 2010) and to widely reported values in similar ecosystems (e.g., Bonan 1997;
Wang et al. 2017; Zhou et al. 2019). For example, Trlica et al. (2017) applied Landsat images and

estimated albedo across the urban landscape of Boston. They reported a mean and range of 0.152
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(0.112-0.187), which are comparable to our estimate of 0.136-0.152 (Table 3). Similarly, the ET and
GPP estimates of our initial modeling appear in good agreements with those of in situ measurements
(e.g., Papale et al. 2015), remote sensing modeling (Xiao et al. 2004; Yuan et al. 2010), or those from
ecosystem models (Sun et al. 2011). For example, Abraha et al. (2015) reported the annual ET of
measurements from eddy-covariance flux towers in seven bioenergy crops (2009-2012) that are
within the 56b ecoregion of our watershed. Their annual ET ranged between 480 mm and 639 mm,

which is similar to our estimate of the cropland in 2011 (512.2 mm).

4.1. Prerequisites of the downscaling approach
Our approach for downscaling available MODIS data to higher resolution products requires at least
three strong assumptions. First, the dependent variable (e.g., functional measures albedo, ET, or
GPP) is considered to be the linear sum of the independent values from each cover type. To estimate
the contribution of each cover type empirically, its portion within a MODIS pixel is used in a
multiple linear regression model with zero intercept (Eq. 1). A fundamental prerequisite is that the
functional measure (e.g., albedo, ET, or GPP) is assumed to have the same value within each land
cover type for every finer resolution pixel within among coarser resolution MODIS pixels. This
constraint suggests that our approach can be only applied a spatial extent where the climate, soils,
and landforms across the landscape are the same (or similar). The proper scale for model application
will depend on the heterogeneity of the region studied (e.g., complexity of land forms, distribution of
soils, climatic variation, etc.). For instance, strong terrain effects (elevation, aspect, slope) may
require further subdivision beyond land cover type to portray spatial distributions effectively.

To satisfy this assumption, one would need to explore the changes of the functional measure
with scale and spatial extent to determine an appropriate regionalization for the model application. In
modeling of landscape that is stationary in the statistical sense (Saunders et al. 2005), geostatistical

tools such as semivariance analysis (Atkinson 2013) can be applied to quantify the geostatistical
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range as the proper scale (Cressie and Wikle 2015). Lacunarity and wavelet analysis are alternative
choices for non-stationary landscapes (Saunders et al. 2005). These preliminary analyses for
identifying the minimal extent can be performed for MODIS products, and/or climate/soils data, if
they are available prior to downscaling. Violations of this assumption will significantly reduce the
model reliability and increase the uncertainty of downscaled estimates (see next section for
discussion on uncertainty). An alternative approach to determine the minimal landscape extent for
satisfying the model assumptions is to use ecoregions that have been delineated by “similar land
forms, soils, and climate” criteria. We based our demonstrative modeling on the Level IV ecoregions
for the State of Michigan (Omernik and Griffith 2014). Other similar products, such as maps of
potential vegetation (Tucker et al. 2005; Fensholt and Proud 2012), climatic zones (Kottek et al.
2006), soils (Stoorvogel et al. 2017), or landforms (O’Loughlin et al. 2016) could be also considered
in absence of quantitative identification of the landscape scale.

The second assumption of this downscaling approach is that every land cover type (i.e., the
ancillary data used for the modeling) remains unchanged during the study period (e.g., within a year
in this study), which is untrue if there are rapid changes of land use or land cover or strong
seasonality in land cover characteristics. For example, many cropland-dominated landscapes are
managed with rotation crops (i.e., corn — soybeans — wheat), different irrigation scheduling,
conservation tillage and other land management practices (Plourde et al. 2013). Treating these
croplands as a single cover type to estimate their ecosystem function may be misleading. An
alternative is to apply the model during a shorter period so that this model assumption is not violated.
For example, one could model albedo, ET, and GPP for each 16-day composite period of the MODIS
product. The seasonal and annual values could then be summed from the series of values. One
caveat: the spatial scale of the variable of interest may vary through time (cf., Henebry 1993; Goodin

and Henebry 1998).
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The third assumption is the availability of many finer resolution pixels as well as an adequate
number of coarser resolution pixels. The modeled landscape needs to include finer spatial resolution
pixels (e.g., Landsat) that are many times the number of cover types in order to estimate the
empirical coefficients, with more pixels providing higher estimation confidence. In the limit,
mathematically, the coefficients in Eq. 1 can be calculated with the number of coarser spatial
resolution pixels (e.g., MODIS) the same as the number of land cover types. For this study, a
minimum of seven pixels were needed, which implies a minimal landscape size of 1.75 km* when
using 500-m resolution MODIS products. It is worth noting that most MODIS pixels do not include
all seven cover types (see Fig. 1), which will complicate estimation of the minimum extent.
However, the model confidence can be significantly improved with larger sample sizes. For example,
if the study landscape is 10-15 km?, one would have 400-600 MODIS pixels at 500 m. An alternative
to assure large sampling size could be done with the “sliding box’” approach (Rodriguez-Iturbe et al.
1998; Saunders et al. 2005), where the study landscape with minimal size can be slid across a large
region by allowing overlaps. However, each additional sample is a pseudo-replicate, likely with
positive spatial autocorrelation, suggesting that substantially more effort is needed to conduct
posterior analyses for model uncertainty (Hargrove and Pickering 1992). Nevertheless, the balance
between sample size and assuring similar values by cover type needs also be analyzed prior to model

application.

4.2 Uncertainties of the downscaling predictions

The conceptual downscaling model (Eq. 1) would be flawless if: (1) all model assumptions were met,
and (2) both dependent and independent variables were truly representative measures of the
ecosystem properties. The soundness of this modeling approach is demonstrated with high model R?
values in each Level 4 ecoregion in the Kalamazoo River watershed (Table 3) with reasonable

predictions of albedo, ET and GPP (Figs. 4). Unfortunately, this situation may not always be the case
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381  in practice, since uncertainties can arise from multiple sources. First, both the dependent and

382  independent variables in Egs. 2-3 are produced from satellite observations and carry uncertainties
383  associated with the algorithm used for the retrieval, including calibration, geometric, and atmospheric
384  corrections (Vermote et al. 2002; Wolfe et al. 2002; Helder et al. 2018). From a systems modeling
385  perspective, uncertainty generally increases as more steps or more variables or more algorithms are
386 involved. Here MODIS blue-sky albedo is retrieved from surface reflectance products corrected for
387  BRDF and using retrieved atmospheric aerosols, and ET and GPP are modeled with algorithms with
388  multiple inputs (e.g., climate scalars, coefficients of light use efficiency, surface roughness, etc.)

389  (Schaafetal. 2002; Zhao et al. 2005, 2006; Chrysoulakis et al. 2018). These processing chains may
390  be a potential reason for the higher confidence level in predicting albedo than ET or GPP, which

391  carry greater uncertainty. However, we note that albedo is a bounded value, unlike ET or GPP, which
392  also constrains variation. The accuracy of MODIS products are also often influenced by atmospheric
393  conditions, in particular undetected sub-pixel clouds, resulting in different predictions among pixels
394  even though their landscape composition may be the same (Schaaf et al. 2002; Yang et al. 2006).
395  These differences may also vary among the images of different times, which can further propagate
396  uncertainty, regardless of quality control and data screening process, when multiple products are

397  applied for calculating a value at longer temporal scale (e.g., annual values in this study).

398 The Landsat classified land cover type and distributions across the landscape are also not
399  without uncertainty, since classification accuracy varies by cover type (Table 1). In this pilot study,
400 the user’s accuracies were lower for barren, water, and build-up cover types than for other cover

401  types. It is well established that urban areas are difficult to classify reliably because they encompass
402  such a variety of building types and land uses, so even at the Landsat scale of 30 m, the results are
403  often mixed spatially (Zhang and Roy 2017). Similarly, water and barren are quite broad thematic
404  definitions that can be highly variable in space and in time. Thus, the number of cover types as well

405 as the variation within a single cover type can generate additional uncertainty. For example, forests
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within the watershed are treated as one cover type, although their species composition, stand
structure, age, disturbance history (including management), etc. may vary substantially across the
landscape. Similar variation in composition and structure exist among patches of the same cover type
within a MODIS pixel.

Low classification accuracy may be partially responsible for the high standard errors in
predicting albedo, ET, and GPP within an ecoregion (Table 2) and among the ecoregions (Fig. 5).
The standard errors also vary by cover type (Fig. 4), with the barren cover type having the highest
value and croplands having the lowest. While it is likely that the prevalence of nearly homogeneous
surfaces is higher in cropland than in barren and grassland covers, providing a partial explanation for
the differences in SE, we speculate that classification accuracy is also partially responsible for the
uncertainty in downscaling albedo, ET, and GPP.

The scale at which the modeling is applied provides another source of uncertainty (Levin
1992; LeMoine and Chen 2003; Saunders et al. 2005). We based our modeling example here using
the Level IV ecoregions without a quantitative exploration of the “right scale” (sensu Levin 1992).
Future efforts are strongly recommended to include scale identification prior to the modeling. More
importantly, neither MODIS nor Landsat pixels represents a homogeneous ecosystem (i.e., a cover
type). Across the Kalamazoo River watershed, there exist smaller patches and edges (<30 m),
suggesting that the composition of land cover within a Landsat pixel is an approximation or
generalization. The uncertainty will likely be higher in landscapes with more cover types, finer patch

sizes, and more edges.

4.3 Transformative applications of the downscaling approach
Our proposed downscaling approach decomposes the property of a spatially nested hierarchical
system when the structure of the lower hierarchical level is known. This linear downscaling approach

can be applied to nested spatial, temporal, or organizational hierarchies. A key advantage of this
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approach is that it enables the use of coarser spatial resolution MODIS products for predicting finer
spatial resolution values that are directly connected with landscape composition. Although this paper
focuses on downscaling MODIS products by using classified Landsat data, other finer resolution land
cover data (e.g., derived from Sentinel-2) could be used. Similarly, products from the NOAA’s
operational MODIS follow-on sensor VIIRS (VIsible Infrared Radiometer Suite) could be used in
place of MODIS products (Zhang et al. 2018). The downscaled estimates provide us the opportunity
to explore ecosystem functioning at the level of spatial detail afforded by Landsat and comparable
Sensors.

Connecting patterns and processes, for example, has been a major interest within the
landscape ecology community (Turner and Gardner 2015). While substantial knowledge has been
gained over the past 30 years to improve the understanding of the empirical and theoretical
relationships between ecosystem functioning and landscape structure, there remains a major
disconnect between the disciplines of ecosystem ecology and landscape ecology. For example, many
landscape studies have been published on landscape structure and dynamics, often based on Landsat
images. While modeling ecosystem production and other functions at 30 m have been reported (e.g.,
Zheng et al. 2004), such efforts require much ground level data for model parametrization,
calibration, and validation and intensive computations, despite often limited availability of cloud-free
data. With availability of MODIS products, one can more readily relate ecosystem functions with
landscape composition and structure.

Another promising direction is to examine the underlying landscape processes from using the
residuals (¢ in Egs. 1-4), which may point to potential driving mechanisms. For example, the
residuals from Egs. 2-4 could be examined for their latent relationships using quantitative metrics
describing landscape structure to address the question: What landscape structure and processes are

responsible for this unexplained variation in ecosystem functioning? Here we hypothesize that the
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patch patterns, variation in soils, climate and management practices within a landscape may all
contribute to the variation in residuals, especially for the high uncertainties found in ET and GPP.
The downscaling model could be further expanded to explore other landscape processes. For

example, the GPP model (Eq. 4) could be refined to include interactive terms among the cover types:
GPP =3 (i x GPPj) + (ki x GPPi%) + ¢ [5]

where the estimated GPP;#j reflects the interactive contribution of two cover types (i and ) that could
be related to edge effects between them. Once the model predictions are validated, it may provide a
great opportunity for understanding the ecosystem consequences of spatial fragmentation and

disturbances across the landscape (Franklin and Forman 1987; Chen 1991; Di Giulio et al. 2009).

5. Conclusions

Based on practical needs for downscaling popular MODIS products at 500 m resolution to match
classified land cover from Landsat data at 30 m resolution, we have proposed an innovative
modelling approach so that landscape structure and ecosystem functioning could be directly studied
for their interconnections. As a proof-of-concept, we tested this model in the five landscapes of Level
IV ecoregions found within the Kalamazoo River watershed using three key ecosystem functional
attributes: albedo, ET, and GPP. An object-oriented classification of Landsat imagery in 2011 was
processed to generate a land cover map indicating landscape stucture. Each downscaling model
exhibited high fit (R* >90%), with higher confidence levels for albedo than for GPP or ET. The
estimated values for albedo, ET, and GPP appear reasonable and within their ranges reported for the
region and consistent with values reported in the literature. Despite these promising results, this
approach relies on strong assumptions that can be difficult to characterize. It is only valid at a scale
where similar climate, soils, and landforms exist (i.e., value of the same cover type in isolated

patches are the similar). Plausibly, the uncertainties associated with each estimation, as well as the
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model residuals, can be explored further to detect other pattern-process relationships within the

landscapes.
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Table 1. Brief description of seven land cover types in the Kalamazoo River watershed, the number of validation samples by cover type,
and classification accuracies from user’s and producer's perspective.

Barren: Areas where not covered by vegetation or construction

Built-up: built-up land with a mixture of constructed materials and vegetation
Cropland: annual crops and/or pastoral land

Forest: land dominated by high tree cover

Grassland: herbaceous vegetation, including lawns

Water: open water (e.g., lakes, reservoir, and large rivers)

Wetland: mostly forested wetlands

BE;R_ Cropland Grassland Forest ~ Water Wetland Barren User's accuracy
Built-up 46 9 3 11 0 0 2 64.8%
Cropland 2 191 2 11 0 0 2 91.8%
Grassland 1 2 57 1 0 1 2 89.1%
Forest 2 10 3 154 0 1 0 90.6%
Water 0 0 0 6 53 9 0 77.9%
Wetland 0 1 0 1 3 70 0 93.3%
Barren 0 3 1 3 2 1 34 77.3%
Producer’s Accuracy 90.2% 88.4% 86.4% 82.4%  91.4% 85.4 85.0% 86.4%
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Table 2. Statistics for blue-sky albedo, evapotranspiration (ET, mm), gross primary production (GPP, MgC ha™! yr'") and water use
efficiency (g kg) in the five Level IV ecoregions of the Kalamazoo Watershed in Southwest Michigan, USA. MED is Median; v is
skewness; SE is standard error.

. Blue-sky albedo ET GPP WUE
Ecoregion Mean (SE) MED v Mean (SE)  MED y | Mean(SE) MED v Mean (SE)
Battle -56b 0.150 (£0.017) 0.151 -1.85 | 45541 (£131.79) 498.80 -0.91 | 7.35(+2.30) _ 8.09 -0.83 1.60 (£0.01)
Michigan - 56d 0.141 (£0.016)  0.140 -1.19 | 365.86 (£179.41) 270.50  0.41 | 5.92(+2.97) 444  0.43 1.52 (+0.13)
Lake - 56f 0.161 (£0.014)  0.161  -0.72 | 470.30 (£130.23) 508.60 -1.02 | 7.63 (+2.33) 828  -0.96 1.58 (+0.01)
Lansing - 56g 0.163 (£0.010)  0.165 -2.18 | 477.47 (£94.49) 492.00 -1.41 |7.71(+1.71) 798 -1.23 1.63 (+0.03)
Interlobate - 56h | 0.155 (0.012) 0.156 -0.99 | 444.89 (£132.44) 486.60 -0.87 | 7.13 (+2.34)  7.80 -0.78 1.59 (+0.03)
Overall 0.154 (£0.016) 0.156 -1.49 | 450.65 (x135.13) 492.70 -0.84 | 7.27 (¥2.36)  7.98 -0.76 1.57 (£0.11)
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Table 3. Estimated mean (standard error, SE) of blue-sky albedo, evapotranspiration (ET, mm) and gross primary production (GPP, MgC

ha! yr'!) by cover type and Level IV ecoregions in the Kalamazoo River watershed in southwestern Michigan, USA.

Cover Battle (56b) Michigan (56d) Lake (56f) Lansing (56g) Interlobate (56h)
Type
Albedo| ET | GPP | Albedo| ET| GPP | Albedo| ET | GPP | Albedo| ET | GPP | Albedo| ET | GPP
Built-up 0.1419 | 555.6 | 9.25| 0.1362 | 687.1 | 9.75| 0.1490 | 597.0 | 9.85| 0.1518 | 525.6 | 8.65| 0.1436 | 576.0 | 9.47
(0.0004) | (5.9) | (0.10) | (0.0018) | (23.9) | (0.16) | (0.0011 | (15.4) | (0.28) | (0.0014) | (17.7) | (0.33) | (0.0006) | (9.3) | (0.17)
Cropland 0.1664 | 515.7 8.27 0.1685 | 600.6 9.72 0.1728 | 512.2 8.35 0.1699 479.7 7.71 0.1673 | 511.0 8.21
(0.0003) | (2.7) | (0.05) | (0.0007) | (9.1) | (1.01) | (0.0003 | (3.3) | (0.06) | (0.0003) | (3.3) | (0.06) | (0.0002) | (3.0) | (0.05)
Grassland 0.1606 | 489.4 7.49 0.1356 | 766.6 3.60 0.1723 | 7133 | 11.63 0.1706 442.7 7.15 0.1654 | 510.6 8.08
(0.0035) | (39.1) | (0.70) | (0.0046) | (58.4) | (0.12) | (0.0066 | (84.2) | (1.53) | (0.0085) | (92.6) | (1.73) | (0.0033) | (43.9) | (0.79)
Forest 0.1380 | 300.5 | 4.81 | 0.1359 | 209.7 | 5.64 | 0.1425 | 3343 | 533 | 0.1530 | 459.7 | 7.42| 0.1429 | 2872 | 4.49
(0.0005) | (5.2) | (0.09) | (0.0005) | (6.9) | (0.58) | (0.0007 | (8.8) | (0.16) | (0.0010) | (11.0) | (0.21) | (0.0004) | (5.5) | (0.10)
Water 0.0764 | 514.1 | 828 | 0.0807 | 408.6 | 4.64 | 0.1072 | 4729 | 749 | 0.1024 | 541.4 | 8.06| 0.1000 | 489.2 | 7.37
(0.001) | (17.1) | (0.30) | (0.0018) | (33.4) | (0.20) | (0.0017 | (26.5) | (0.48) | (0.0020) | (33.7) | (0.63) | (0.0015) | (22.8) | (0.41)
Wetland 0.1482 | 391.7 6.23 0.1408 | 307.3 5.51 0.1456 | 399.9 6.31 0.1553 496.2 8.10 0.1490 | 425.5 6.81
(0.0007) | (7.7) | (0.14) | (0.0009) | (11.6) | (0.68) | (0.0011 | (14.1) | (0.26) | (0.0008) | (9.0) | (0.17) | (0.0005) | (6.9) | (0.12)
Barren 0.1535 | 5243 | 850 | 0.1362| 3762 | 985| 0.1107 | 201.4 | 237 | 0.1471| 795.7 | 12.51 | 0.1546 | 571.8 | 9.18
(0.0023) | (25.1) | (0.45) | (0.0018) | (39.2) | (0.28) | (0.0055 | (69.3) | (1.26) | (0.0101) | (114.9) | (2.15) | (0.0043) | (56.0) | (1.01)
s 2
Adj. R 0.995 | 0.944 | 0.933 0.996 | 0.915 | 0.902 0.997 | 0.947 | 0.935 0.998 0.971 | 0.962 0.997 | 0.943 | 0.929
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Figure Captions

Figure 1. A snapshot of land cover overlaid with the 500 m MODIS grids within the Kalamazoo
River Watershed. The portion of each cover type in each MODIS grid is calculated as k; that

ranges from 0 to 1 for downscaling grid-level GPP to cover type GPP; (Eq. 1).

Figure 2. Landscape cover of the Kalamazoo River Watershed in 2011 in southwestern Michigan,
USA. The table includes the total land area (km?) of each cover type and its portion (%) within

the Level IV Ecoregion.

Figure 3. Spatial distributions of blue-sky albedo (%), evapotranspiration (ET, mm) and gross
primary production (GPP, MgC ha yr') in 2011, as well as their frequency distributions
described with probability density function (PDF). The PDF distributions were generated with

the density function in RStudio with the bandwidth (bw) of standard deviation.

Figure 4. Boxplots of: (a) blue-sky albedo, (b) evapotranspiration (ET, mm), (c) gross primary
production (GPP, MgC ha yr"), and (d) ecosystem water use efficiency WUE (g kg™') within the
Kalamazoo River Watershed in southwestern Michigan, USA. The statistics were calculated
among the five Level IV Ecoregions in 2011 (see Fig. 5). The horizontal line and the number

inside the circle are the grand mean of the watershed.

Figure 5. Boxplots of: (a) albedo, (b) evapotranspiration (ET, mm), (c) gross primary ecosystem
production (GPP, MgC ha yr"), and (d) ecosystem water use efficiency (WUE, g kg') at five
Level IV Ecoregions within the Kalamazoo River Watershed in southwestern Michigan, USA.
The statistics were calculated among the seven land cover types in 2011 (see Fig. 4). The

horizontal line and the number inside the circle are the grand mean of the watershed.

33






Fig. 2

Boundary Cover type
Kalamazoo I Urban

[ Ecoregion subdivisions | Cropland
B Earren
B Forest
I Water
[ IWetland -
___ | Grassland ? ) 1? . 2.0 . 4;0
o Level IV Ecoregion
il s6b s6d s6f s6g s6h
= 389.3 38.0 91.8 43.6 164.7
i (21.8) (9.1) (9.4) (7.5) (11.0)
729.1 87.2 583.9 356.8 719.3
Cropland
(40.9) (21.0) (59.8) (61.6) (47.8)
T 24.6 18.9 10.1 3.0 13.8
S (1.4) (4.5) (1.0) (0.5) (0.9)
383.0 189.5 189.1 81.9 376.0
Forest
(21.5) (45.6) (19.4) (14.2) (25.0)
= 61.1 15.4 18.5 9.0 24.7
ater (3.4) (3.7) (1.9) (1.6) (1.7)
Wetland 184.7 59.7 165 80.8 194.1
stian (10.4) (14.4) (7.8) (14.0) (12.9)
. 8.7 3.4 4.0 1.3 6.2
SRR (0.5) (0.8) (0.4) (0.2) (0.4)
Total 1785 416 977 579 579

35



Fig. 3
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Fig. 4.
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Fig. 5
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