

[Click here to view linked References](#)

Landscape Ecology, in press

1 Linear Downscaling from MODIS to Landsat: Connecting Landscape Composition with

2 Ecosystem Functions

3 Jiquan Chen^{1, 2*}, Pietro Sciusco^{1, 2}, Zutao Ouyang^{1, 2}, Rong Zhang², Geoffrey M. Henebry^{1, 2},
4 Ranjeet John³, and David. P. Roy^{1, 2}

5 ¹ Department of Geography, Environment, and Spatial Sciences, Michigan State University, MI
6 48824, USA

⁷ ²Center for Global Change and Earth Observations, Michigan State University, MI 48823, USA

⁸ ³ Department of Biology, University of South Dakota, Vermillion, SD 57069, USA

9 Corresponding Author: Dr. Jiquan Chen, Email: jqchen@msu.edu; Phone: 517-884-1884

10 Date of manuscript revision: 10/9/2019

11 **Abstract**

12 **Context**

13 The open and free access to Landsat and MODIS products have greatly promoted scientific
14 investigations on spatiotemporal change in land mosaics and ecosystem functions at landscape to
15 regional scales. Unfortunately, there is a major mismatch in spatial resolution between MODIS
16 products at coarser resolution (≥ 250 m) and landscape structure based on classified Landsat scenes at
17 finer resolution (30 m).

18 **Objectives**

19 Based on practical needs for downscaling popular MODIS products at 500 m resolution to match
20 classified land cover at Landsat 30 m resolution, we proposed an innovative modelling approach so
21 that landscape structure and ecosystem functions can be directly studied for their interconnections.
22 As a proof-of-concept of our downscaling approach, we selected the watershed of the Kalamazoo
23 River in southwestern Michigan, USA as the testbed.

24 **Methods**

25 MODIS products for three fundamental variables of ecosystem function are downscaled to ensure the
26 approach can be extrapolated to multiple functional measurements. They are blue-sky albedo (0-1),
27 evapotranspiration (ET, mm), and gross primary production (GPP, $\text{Mg C ha}^{-1} \text{ yr}^{-1}$). An object-
28 oriented classification of Landsat images in 2011 was processed to generate a land cover map
29 indicating landscape structure. The downscaling model was tested for the five Level IV ecoregions
30 within the watershed.

31 **Results**

32 We achieved satisfactory downscaling models for albedo, ET, and GPP for all five ecoregions. The
33 adjusted R^2 was >0.995 for albedo, 0.915-0.997 for ET, and 0.902-0.962 for GPP. The estimated

34 albedo, ET, and GPP values appear different in the region. The estimated albedo was the lowest for
35 water (0.076-0.107) and the highest for cropland (0.166-0.172). Estimated ET was the highest for the
36 built-up cover type (525.6-687.1 mm) and the lowest for forest (209.7-459.7 mm). The estimated
37 GPP was the highest for the build-up cover type ($8.65\text{-}9.85 \text{ MgC ha}^{-1} \text{ yr}^{-1}$) and the lowest for forest.

38 **Conclusions**

39 Estimated values for albedo, ET, and GPP appear reasonable for their ranges in the Kalamazoo River
40 region and are consistent with values reported in the literature. Despite these promising results, the
41 downscaling approach relies on strong assumptions and can carry substantial uncertainty. It is only
42 valid at a spatial scale where similar climate, soil, and landforms exist (i.e., values in isolated patches
43 of the same cover type are similar). Plausibly, the uncertainties associated with each estimation, as
44 well as the model residuals, can be explored for other pattern-process relationships within the
45 landscape.

46 **Keywords:** *Downscaling, MODIS, Landsat, GPP, ET, Albedo, Kalamazoo River watershed*

47 **1. Introduction**

48 The last two decades have witnessed a rapid increase in the application of remote sensing imagery in
49 various fields of natural science and resource management, especially using data from the Landsat
50 satellite series and from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensors on
51 board NASA's Terra and Aqua satellites. These images and derived value-added products provide
52 the scientific community, practitioners, and natural resource managers with powerful tools for
53 quantifying spatial and temporal changes in land surface properties. Landsat data, for example, have
54 been widely used to create regional to global land cover maps and to describe the landscape structure,
55 ecosystem dynamics, land use change, and their connections with landscape processes (e.g.,
56 fragmentation, succession) (Bresee et al. 2004; Hansen and Loveland 2012; Kennedy et al. 2014;
57 Wulder et al. 2018). Systematically derived, quality assessed, validated, and reprocessed NASA
58 MODIS products (Justice et al. 2002) meanwhile have been widely used to create global products of
59 gross ecosystem production (GPP) (Zhao et al. 2005), land cover (Friedl et al. 2010),
60 evapotranspiration (ET; Mu et al. 2007), land surface temperature (Wan 2013), albedo (Schaaf et al.
61 2002), disturbance (e.g., fire; Giglio et al. 2018), and land surface phenology (Zhang et al. 2003;
62 Moon et al. 2019). The open and free access to both Landsat and MODIS products further promoted
63 their use and influence in scientific investigations. Explorations of landscape structure and dynamics
64 based on the Landsat archive, as another example, have seen a substantial increase in applications
65 (Bresee et al. 2004; Roy et al. 2014; Krehbiel et al. 2017; Wulder et al. 2019).

66 Connecting ecosystem functions (e.g., ecosystem production, biological diversity) with
67 landscape structure (e.g., patch type, characteristics and spatial configuration) and processes (e.g.,
68 fragmentation, movement of species and materials across the landscape) has long been an interest of
69 landscape ecologists (Franklin and Forman 1987; Forman 1995; Wu and Hobbs 2007; Turner and
70 Gardner 2015). As an example, John et al. (2016) examined the long-term changes of vegetation

71 indices from MODIS and AVHRR (Advanced Very High Resolution Radiometer), ecosystem
72 production, livestock, and land cover and land use changes on the Mongolian Plateau to tease apart
73 the contributions of climatic change and human influences, which is a scientific frontier in global
74 change science (Alberti et al. 2011; Chen et al. 2013; Mills et al. 2017). Their studies, along with
75 many other similar ones, were often conducted at coarser spatial resolutions of 500-1000 m (i.e., the
76 pixel size of sensor data such as MODIS and AVHRR). Meanwhile, Landsat images have been
77 widely used to produce multiple versions of accurate land cover maps at 30 m resolution that better
78 represents cover types (patches) and their spatial configurations at landscape to regional scales
79 (Wulder et al. 2018). Higher spatial resolution is desirable because many patches in a landscape may
80 be substantially smaller than the finest resolution of a MODIS pixel (250 m). Recently, the Landsat
81 data has been complemented by twin satellites from the European Space Agency (Sentinel-2A and
82 2B) that provide Landsat-like imagery but at finer (10-20 m) spatial resolution (Drusch et al. 2012).
83 Clearly, there exists a major mismatch in the spatial resolution between MODIS products at coarser
84 resolution and landscape structure from Landsat scenes at finer resolution.

85 Downscaling to finer spatiotemporal resolution has been a research focus in remote sensing
86 (see Atkinson 2013 for an overview). Both mechanistically and empirically based approaches have
87 been attempted in landscape studies. One approach is to quantify ecosystem functions directly at
88 Landsat resolution by integrating ecosystem models with patches (e.g., Zheng et al. 2004; Gitelson et
89 al. 2012; Semmens et al. 2016; Yao et al. 2017). Another approach is to downscale coarse resolution
90 data through spatial interpolation, such as block cokriging where the landscape is categorized into
91 multiple classes (i.e., blocks). However, the first approach requires extensive and detailed
92 measurements at near surface and ground levels for model parameterization and validation; whereas,
93 the products from the second approach are often not matched with the patch boundaries and require
94 an assumption of statistical stationarity rarely met in landscapes (Saunders et al. 2005). An
95 alternative is to take the advantage of the available, coarser spatial resolution MODIS products and

96 downscale them to the finer spatial resolution of Landsat imagery through dasymetric modeling,
97 an approach to thematic mapping that uses land cover information as ancillary information and
98 spatially disaggregates coarser resolution information (Fisher and Langford 1996; Petrov 2012).
99 Dasymetric modeling has been widely applied in human geography (Nagle et al. 2014; Jia and
100 Gaughan 2016), but not in landscape studies. Here we applied the principles of dasymetric modeling
101 to estimate higher resolution (30 m) ecosystem functions from MODIS products by treating finer
102 spatial resolution land cover data (i.e., the ancillary layer) that are accurately classified from Landsat
103 imagery.

104 The idea is simple. Consider the value of gross primary productivity (GPP) defined by a
105 MODIS pixel to be the linear sum of GPP_i of land cover type (i), expressed as (Fig. 1):

106
$$GPP = \sum (\kappa_i \times GPP_i) + \epsilon \quad [1]$$

107 where κ_i is the compositional portion (0-1) of land cover type i within a MODIS pixel where $\sum (\kappa_i) =$
108 1, and ϵ is the model residual errors to include uncertainties from both the land cover classification
109 and the MODIS estimates of GPP. Through multiple linear regression constrained to a zero intercept,
110 GPP_i can be estimated empirically for a landscape composed of multiple MODIS pixels and land
111 cover types. The zero intercept constraint is necessary to ensure that the mathematical weight of each
112 land cover type is allocated properly. A key assumption of this downscaling approach is that
113 ecosystem functions of the same land cover type remain the same in different MODIS pixels. With
114 this downscaling model, the uncertainty of GPP_i estimates from Eq. 1 (i.e., the standard error
115 associated with GPP_i estimate in Eq. 1), as well as the residuals (ϵ) can be examined for their
116 relationships with other landscape characteristics (e.g., interactions between patches, landscape
117 composition, etc.) for further investigation of pattern-process relationships.

118 As a proof-of-concept of our downscaling approach, we selected the watershed of the
119 Kalamazoo River in the southwestern Michigan as a testbed. MODIS products for three fundamental

120 variables of ecosystem function—albedo, ET, and GPP—were downscaled to ensure the approach
121 can be extrapolated to multiple functional measurements. To simplify our demonstration, we focused
122 on the year of 2011 when we developed an accurate, Landsat-derived land cover map for the
123 watershed. To meet the model assumptions, we based our model at the scale of a single Level IV
124 ecoregion, within which climate, soils, and potential vegetation are similar (Omernik and Griffith
125 2014). Our modeling effort was then independently repeated for each of the five Level IV ecoregions
126 within the watershed to demonstrate the validity of the approach.

127 **2. Methods**

128 *2.1. Study area*

129 The Kalamazoo River watershed (5261 km^2) includes portions of 10 counties (Allegan, Ottawa, Van
130 Buren, Kent, Barry, Kalamazoo, Calhoun, Eaton, Jackson, and Hillsdale) in southwestern Michigan,
131 USA. The watershed is dominated by cultivated crops, deciduous forest, mixed prairies, lakes and
132 ponds, wooded wetlands, and urban areas. Prior to European settlement and land conversion to
133 agriculture, this region had a mosaic of tallgrass prairies, savannas, and oak openings, including both
134 C_3 and C_4 grasses as well as forbs (Chapman and Brewer 2008). Kalamazoo and Battle Creek are the
135 two major urban centers within the watershed, and the Kalamazoo–Battle Creek–Portage Combined
136 Statistical Area had a population of more than 524,000 in 2010.

137 The Kalamazoo River has a moderate stream gradient and drops 165 m in elevation from its
138 headwaters, which are $>300 \text{ m a.s.l}$. The River drains a landscape consisting of thick glacial deposits.
139 Alfisols are the most common soil formation and reflect the dominance of deciduous forests in the
140 past. The watershed is covered with prime agricultural soils, including 70% coarse soils that are
141 permeable to rainwater and help in the recharge of groundwater (Schaetzl et al. 2009). The annual
142 average precipitation is 890 mm, with $\sim 65\%$ returned as evapotranspiration (Fongers 2008). The
143 recent growth in urban area can cause the local hydrology to become more “flashy”, owing to the

144 sharp increase in impervious surface areas and could contribute to higher phosphorus loading from
145 urban land uses (Bass 2009).

146 While 96% of the land is privately owned, there are major inclusions of public lands (e.g.,
147 Allegan State Game area, Fort Custer Recreation Area, Yankee Springs Recreation Area). The land
148 use history in the watershed shows that row crop agriculture takes place in the more productive soils;
149 whereas, croplands have been abandoned in marginal areas including land with steep slopes, lands
150 that were excessively drained, or that had poor drainage (Schaetzl et al. 2009). Five Level IV
151 ecoregions of the United States Environmental Protection Agency fall within the watershed
152 (Omernik and Griffith 2014) (Fig. 2): Battle Creek Outwash Plain (56b); Michigan Lake Plain (56d);
153 Lake Michigan Moraines (56f); Lansing Loamy Plain (56g); and Interlobate Dead Ice Moraines
154 (56h). Detailed descriptions of these ecoregions can be found online at EPA:
155 <https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20>.

156 *2.2 Data sources and pre-processing*

157 We used MODIS products with Landsat images to demonstrate the broader applications of the
158 downscaling model (Eq. 1). Three MODIS products were used: blue-sky albedo (0-1),
159 evapotranspiration (ET, mm), and gross primary production (GPP, $Mg\ C\ ha^{-1}\ yr^{-1}$). Ecosystem water
160 use efficiency (WUE, $g\ kg^{-1}$), defined as the ratio between GPP and ET, was further calculated with
161 estimated GPP and ET values by land cover type to expand from the downscaled predictions to other
162 potential ecological applications. It is worth noting that ET in units of mm is converted to $kg\ ha^{-1}\ yr^{-1}$
163 based on water density of $1.0\ Mg\ m^{-3}$.

164 We used Google Earth Engine (GEE) to process the most recent Collection 6 MODIS ET and
165 GPP products. ET and GPP were provided by the MODIS 500m 8 day Evapotranspiration/Latent
166 Heat Flux (MOD16A2-V6) (<https://doi.org/10.5067/MODIS/MOD16A2.006>) and Gross Primary
167 Productivity (MOD17A2H-V6) (<https://doi.org/10.5067/MODIS/MOD17A2H.006>) products. We

168 filtered the ET and GPP data using the MODIS product quality bands “NPP_QC” for ET, and
169 “PSN_QC” for GPP, to ensure only the high quality (QC=0) data were retained.
170 For albedo, we used the blue-sky albedo product available as a global annual mean for 2000-2015
171 (http://rslab.gr/downloads_blue_sky.html). The blue-sky albedo was estimated using the MCD43A1
172 product (<https://doi.org/10.5067/MODIS/MCD43A1.006>). This MODIS product was generated daily
173 at 500 m by inversion of a Bidirectional Reflectance Distribution Function (BRDF) model against
174 16-day moving window of MODIS 500m observations and then the BRDF model is used to derive
175 the black-sky and white-sky albedos (Wang et al. 2018). The blue-sky albedo was estimated every 8
176 days as a weighted average of both black- and white-sky albedos and using the MODIS aerosol
177 Optical Thickness product (Chrysoulakis et al. 2018).

178 The three MODIS products defined from January 1st to Dec 31st 2011 were used to calculate
179 annual mean blue-sky albedo (ranging 0 to 1), total GPP (Mg ha⁻¹ yr⁻¹) and total annual ET (mm) at
180 each 500 m MODIS pixel. The results were clipped spatially to the extent of the Kalamazoo River
181 watershed and Level IV ecoregion boundaries. Zonal statistical analyses were performed in ArcMap
182 10.6 to extract values of albedo, ET, and GPP data by ecoregion and by each MODIS pixel into data
183 tables. The extracted data tables were then analyzed in RStudio (RStudio 1.1.453,
184 <https://www.rstudio.com/>) to compute mean, standard deviation, and probability densities.

185 A land cover map of the watershed was created using an object-oriented classification of
186 Landsat Thematic Mapper (TM) images that were acquired on 6th and 31st July of 2011 over the three
187 Landsat scenes (WRS-2 Path/Rows (21/30, 21/31, and 22/30) that completely cover the watershed.
188 The most recent cloud-free Collection 1 Landsat TM images processed to surface reflectance were
189 obtained from Earth Explorer (<https://earthexplorer.usgs.gov/>). The Collection 1 Landsat images are
190 defined with per-pixel cloud and quality information (Dwyer et al. 2018) and for this study cloudy
191 pixels were removed. Following the Level 1 classification scheme of Anderson et al. (1976), seven

192 land cover types were identified at 30 m resolution: barren, built-up (mainly as urban and roads),
193 cropland, forest, grassland, open water, and wetland (Table 1). The image classification was
194 conducted using the eCognition software (eCognition, 2019, version 9.2). Our first step of the
195 classification was to generate homogeneous image objects through segmentation. We applied a
196 multi-resolution segmentation algorithm based on both the spectral and shape information that
197 quantify homogeneity using a set of parameters including scale, band weights, shape smoothness and
198 compactness. First, rule sets were used to identify the water and urban object/classes using the
199 Modified Normalized Difference Water Index (MNDWI) (McFeeters 1996) and Normalized
200 Difference built-up Index (NDBI) (Zha et al. 2003) (viz., MNDWI>0.0 and NDBI>0.2, respectively).
201 The remaining object/classes were classified using the nearest neighborhood classifier with training
202 samples carefully selected by expert visual interpretation of the Landsat images and with the training
203 samples selected across the watershed.

204 Land cover classification accuracy assessment was conducted by stratified random sampling
205 of 700 Landsat TM pixels, with ~100 samples per class. The land cover of the 700 references pixels
206 was determined by examination of high resolution commercial and airborne true color imagery in
207 Google Earth supplemented by field visits. Standard confusion matrices were derived as cross-
208 tabulations of the classified versus the reference class and used to estimate the overall, user's, and
209 producer's accuracies (Foody 2002). The overall classification accuracy was 86.4%, with user and
210 producer's accuracy of individual classes from 64.8-93.3% and 82.4-91.4%, respectively (Table 1).

211 *2.3 Linear downscaling of albedo, ET and GPP*

212 We calculated the proportions of the seven land cover types (κ_i , $i = 1, 2 \dots 7$) in each 500 m MODIS
213 pixel for each Level IV ecoregion (Fig. 3). The annual mean blue-sky albedo, total annual ET, and
214 annual mean GPP (hereafter referred to as albedo, ET, and GPP) of each MODIS 500 m pixel were

215 used as the dependent variables in Eq. 1 to empirically estimate for each land cover type albedo_i , ET_i ,
216 and GPP_i :

217 $\text{Albedo} = \sum (\kappa_i \times \text{albedo}_i) + \varepsilon$ [2]

218 $\text{ET} = \sum (\kappa_i \times \text{ET}_i) + \varepsilon$ [3]

219 $\text{GPP} = \sum (\kappa_i \times \text{GPP}_i) + \varepsilon$ [4]

220 where ε is the residuals of the ordinary least squares linear regression. RStudio (RStudio 1.1.453,
221 <https://www.rstudio.com/>) was used to perform the downscaling with zero intercept and κ_i is the
222 compositional portion (0-1) of land cover type i within the MODIS pixel, and the sum of κ_i must
223 equal 1. The estimated albedo, ET, GPP and WUE for each cover type were quantified by cover type
224 and ecoregion with their means and standard errors (SE) reported through boxplots.

225 **3. Results**

226 *3.1 Landscape Characterization*

227 Over 41.2% of the Kalamazoo River watershed falls in the ecoregion “Battle Creek Outwash Plain –
228 56b”, which is characterized as broad and flat post-glacial plain. The “Lake Michigan Moraines -56f”
229 and “Michigan Lake Plain – 5fd” ecoregions cover 22.5% and 9.6% of the watershed, respectively,
230 and the remaining two ecoregions occupy 13.4%. The four dominant classified land cover types are
231 cropland (57.1%), forest (28.1%), built-up (16.8%), and wetland (13.7%). Water, barren and
232 grasslands each account for 0.5% to 3.0% of the watershed. There are large differences in landscape
233 composition among the five ecoregions. The portion of cropland (40.9%) and forest (21.5%) in
234 ecoregion 56b are substantially lower than the watershed mean, due to large portion of built-up land
235 (21.8%) that includes the two largest cities: Kalamazoo and Battle Creek. In contrast, 45.6% of
236 ecoregion 56d is classified as forest, resulting in a much lower cropland coverage (21.0%). The

237 portion of wetland is higher than the watershed mean in 56d (14.4%) and 56g (14.6%). Build-up land
238 in four of the ecoregions accounts for 7.5%-11.0% of the watershed (Fig. 2).

239 *3.2 Land Surface Properties*

240 The mean (SE) albedo of the five ecoregions is 0.154 (± 0.016), with the highest value found in
241 ecoregion 56g (0.163 ± 0.010) and the lowest value in 56h (0.141 ± 0.016) (Table 2). Interestingly,
242 frequency distributions of albedo in the five ecoregions are all left skewed ($\gamma < 0$), with the most
243 skewed distribution found in 56g ($\gamma = -2.18$) and the least skewed distribution in 56f ($\gamma = -0.72$) (Fig.
244 3a2). For ET, the mean (SE) is 450.7 (± 135.1) mm, but with a minimum of 365.9 (± 179.4) in
245 ecoregion 56d and a maximum of 477.5 (± 94.5) mm in 56g. For GPP, the watershed mean (SE) of
246 $7.27 (\pm 2.36) \text{ MgC ha}^{-1} \text{ yr}^{-1}$ shows a deviation from a maximum of $7.71 (\pm 1.71) \text{ MgC ha}^{-1} \text{ yr}^{-1}$ in
247 ecoregion 56g and a minimum of $5.92 (\pm 2.97) \text{ MgC ha}^{-1} \text{ yr}^{-1}$ in 56d (Table 2). As a result, WUE
248 varies from 1.52 g kg^{-1} in ecoregion 56d to 1.63 g kg^{-1} in 56g (Table 2). Unlike the frequency
249 distribution of albedo, both ET and GPP have bimodal density functions, except in ecoregion 56g
250 (Fig. 3b2, c2). The first ET peak appears at ~ 210 mm and the second at ~ 515 mm. For GPP, similar
251 peaks are at $\sim 3 \text{ MgC ha}^{-1} \text{ yr}^{-1}$ and $\sim 8 \text{ MgC ha}^{-1} \text{ yr}^{-1}$. By comparing the spatial changes of ET, GPP,
252 and land cover, the forest-dominated ecoregions exhibit lower ET and GPP than the cropland
253 dominated ecoregions (Figs. 3, 4). For example, forest cover in 56d has the highest ET and GPP,
254 which corresponds well with the lowest albedo. Whereas, in 56g, cropland accounts 61.6% of the
255 landscape, and the corresponding albedo, ET, GPP, and WUE are the highest among the five Level
256 IV ecoregions (Table 2, Fig. 4).

257 *3.3 Downscaling*

258 We achieved satisfactory downscaled results for albedo, ET, and GPP in all five ecoregions (Table
259 3). The adjusted R^2 is >0.995 for albedo, 0.915-0.971 for ET, and 0.902-0.962 for GPP. Values

260 appear generally higher in ecoregions dominated by croplands (56g, 56h) than those dominated by
261 forests (56d). Among the five ecoregions, 56f and 56d have higher variations (i.e., standard errors) in
262 estimated albedo (Fig. 5a). The overall means for ET and GPP are the lowest in 56d compared with
263 the four other ecoregions. Higher estimated variation is found in 56d and 56f, while lower variation
264 in 56g appear in cropland dominant (Fig. 5b, c). Surprisingly, the WUE, based on estimated values of
265 ET and GPP, appears very similar among the ecoregions, except in 56d where it is remarkably lower
266 than other ecoregions and with high variation (Fig. 5d).

267 The downscaled estimates of albedo, ET, and GPP based on Eqs. 2-3 are reasonable (Table 3)
268 and fall within the range of MODIS products (Fig. 3). The estimated albedo is the lowest for water
269 (0.076-0.107) and the highest for cropland cover type (0.166-0.172). The albedo of the forest (0.136-
270 0.153), wetland (0.141-0.155), and urban (0.136-0.152) cover types are similar, while grassland
271 albedo (0.136-0.172) is slightly lower than that of cropland. Additionally, estimated albedo exhibits
272 higher variation in barren, grasslands, and water than that of the four major cover types (Fig. 4a),
273 likely because of their small sampling size (i.e., small portion of the landscape, Fig. 2) and large
274 interannual variation. The high variation of albedo in the water cover type among the five ecoregions
275 likely arises from seasonal variations in lake vegetation, sediment loading and waves.

276 Estimated ET (mm) is the highest for built-up cover type (525.6-687.1) and the lowest at
277 forest (209.7-459.7), with a mean (SE) of 588.3 (47.7) and 318.3(69.9), respectively, among the five
278 ecoregions (Table 3, Fig. 4b). Interestingly, the estimated ET for cropland land cover and water is not
279 high as expected, especially from the water cover where ET source is sufficient (Fig. 4b). The
280 variation associated with ET estimates for barren and grasslands are high, but not for water, possibly
281 because of high similarity of evaporation among the open water bodies.

282 Estimated GPP ($MgC\ ha^{-1}\ yr^{-1}$) is the highest for the build-up cover type (8.65-9.85) and the
283 lowest for the forest (4.81-7.42), with a mean (SE) of 9.71 (± 0.76) and 5.13 (± 1.09), respectively
284 (Table 3, Fig. 4c). While a low GPP (6.42 ± 0.99) is reasonable for the wetland cover type, the high

285 estimated GPP for barren cover (7.61 ± 3.67) and water (7.49 ± 0.86) need to be explored further to
286 discover the source of the discrepancies in underlying mechanisms (e.g., small sampling size).
287 Finally, WUE (g kg^{-1}) among the seven cover types are similar at an overall mean of 1.57, with the
288 highest and the lowest WUE found in the built-up cover type (1.66) and barren (1.49) (Fig. 4d).
289 Again, high variation in estimated WUE appears in grassland cover type, but not in the built-up and
290 water cover type.

291 **4. Discussion**

292 Development of this downscaling approach was stimulated by the practical need to estimate
293 ecosystem functioning at the Landsat spatial resolution of 30 m from coarser spatial resolution
294 MODIS products at 500 m (Robinson et al. 2018). Alternative efforts had been made to derive or
295 model functional measures directly from Landsat data (Zheng et al. 2004; Dieye et al. 2012; Gitelson
296 et al. 2012; Semmens et al. 2016; Yao et al. 2017), or resample of Landsat within the MODIS frame
297 (Wang et al. 2017; Trlica et al. 2017). Our approach offers a direct downscaling option by avoiding
298 time-consuming processing or modeling efforts through integrating land cover maps with available
299 MODIS products.

300 To demonstrate the concept, we applied the approach for blue-sky albedo, ET, and GPP in a
301 watershed consisting of five Level IV ecoregions in southwestern Michigan. The estimated albedo,
302 ET, and GPP values appear reasonable for the ecosystems in the region. Among the ecosystems,
303 croplands and grasslands have higher albedos than the other cover types, with the water cover type
304 showing the lowest values, as expected (Table 3). This pattern is consistent with snow-free albedo
305 variations among ecosystems (Campbell and Norman 1998) and across the conterminous United
306 States (Barnes and Roy 2010) and to widely reported values in similar ecosystems (e.g., Bonan 1997;
307 Wang et al. 2017; Zhou et al. 2019). For example, Trlica et al. (2017) applied Landsat images and
308 estimated albedo across the urban landscape of Boston. They reported a mean and range of 0.152

309 (0.112–0.187), which are comparable to our estimate of 0.136-0.152 (Table 3). Similarly, the ET and
310 GPP estimates of our initial modeling appear in good agreements with those of *in situ* measurements
311 (e.g., Papale et al. 2015), remote sensing modeling (Xiao et al. 2004; Yuan et al. 2010), or those from
312 ecosystem models (Sun et al. 2011). For example, Abraha et al. (2015) reported the annual ET of
313 measurements from eddy-covariance flux towers in seven bioenergy crops (2009-2012) that are
314 within the 56b ecoregion of our watershed. Their annual ET ranged between 480 mm and 639 mm,
315 which is similar to our estimate of the cropland in 2011 (512.2 mm).

316 *4.1. Prerequisites of the downscaling approach*

317 Our approach for downscaling available MODIS data to higher resolution products requires at least
318 three strong assumptions. First, the dependent variable (e.g., functional measures albedo, ET, or
319 GPP) is considered to be the linear sum of the independent values from each cover type. To estimate
320 the contribution of each cover type empirically, its portion within a MODIS pixel is used in a
321 multiple linear regression model with zero intercept (Eq. 1). A fundamental prerequisite is that the
322 functional measure (e.g., albedo, ET, or GPP) is assumed to have the same value within each land
323 cover type for every finer resolution pixel within among coarser resolution MODIS pixels. This
324 constraint suggests that our approach can be only applied a spatial extent where the climate, soils,
325 and landforms across the landscape are the same (or similar). The proper scale for model application
326 will depend on the heterogeneity of the region studied (e.g., complexity of land forms, distribution of
327 soils, climatic variation, etc.). For instance, strong terrain effects (elevation, aspect, slope) may
328 require further subdivision beyond land cover type to portray spatial distributions effectively.

329 To satisfy this assumption, one would need to explore the changes of the functional measure
330 with scale and spatial extent to determine an appropriate regionalization for the model application. In
331 modeling of landscape that is stationary in the statistical sense (Saunders et al. 2005), geostatistical
332 tools such as semivariance analysis (Atkinson 2013) can be applied to quantify the geostatistical

333 range as the proper scale (Cressie and Wikle 2015). Lacunarity and wavelet analysis are alternative
334 choices for non-stationary landscapes (Saunders et al. 2005). These preliminary analyses for
335 identifying the minimal extent can be performed for MODIS products, and/or climate/soils data, if
336 they are available prior to downscaling. Violations of this assumption will significantly reduce the
337 model reliability and increase the uncertainty of downscaled estimates (see next section for
338 discussion on uncertainty). An alternative approach to determine the minimal landscape extent for
339 satisfying the model assumptions is to use ecoregions that have been delineated by “similar land
340 forms, soils, and climate” criteria. We based our demonstrative modeling on the Level IV ecoregions
341 for the State of Michigan (Omernik and Griffith 2014). Other similar products, such as maps of
342 potential vegetation (Tucker et al. 2005; Fensholt and Proud 2012), climatic zones (Kottek et al.
343 2006), soils (Stoorvogel et al. 2017), or landforms (O’Loughlin et al. 2016) could be also considered
344 in absence of quantitative identification of the landscape scale.

345 The second assumption of this downscaling approach is that every land cover type (i.e., the
346 ancillary data used for the modeling) remains unchanged during the study period (e.g., within a year
347 in this study), which is untrue if there are rapid changes of land use or land cover or strong
348 seasonality in land cover characteristics. For example, many cropland-dominated landscapes are
349 managed with rotation crops (i.e., corn – soybeans – wheat), different irrigation scheduling,
350 conservation tillage and other land management practices (Plourde et al. 2013). Treating these
351 croplands as a single cover type to estimate their ecosystem function may be misleading. An
352 alternative is to apply the model during a shorter period so that this model assumption is not violated.
353 For example, one could model albedo, ET, and GPP for each 16-day composite period of the MODIS
354 product. The seasonal and annual values could then be summed from the series of values. One
355 caveat: the spatial scale of the variable of interest may vary through time (cf., Henebry 1993; Goodin
356 and Henebry 1998).

357 The third assumption is the availability of many finer resolution pixels as well as an adequate
358 number of coarser resolution pixels. The modeled landscape needs to include finer spatial resolution
359 pixels (e.g., Landsat) that are many times the number of cover types in order to estimate the
360 empirical coefficients, with more pixels providing higher estimation confidence. In the limit,
361 mathematically, the coefficients in Eq. 1 can be calculated with the number of coarser spatial
362 resolution pixels (e.g., MODIS) the same as the number of land cover types. For this study, a
363 minimum of seven pixels were needed, which implies a minimal landscape size of 1.75 km² when
364 using 500-m resolution MODIS products. It is worth noting that most MODIS pixels do not include
365 all seven cover types (see Fig. 1), which will complicate estimation of the minimum extent.
366 However, the model confidence can be significantly improved with larger sample sizes. For example,
367 if the study landscape is 10-15 km², one would have 400-600 MODIS pixels at 500 m. An alternative
368 to assure large sampling size could be done with the “sliding box” approach (Rodriguez-Iturbe et al.
369 1998; Saunders et al. 2005), where the study landscape with minimal size can be slid across a large
370 region by allowing overlaps. However, each additional sample is a pseudo-replicate, likely with
371 positive spatial autocorrelation, suggesting that substantially more effort is needed to conduct
372 posterior analyses for model uncertainty (Hargrove and Pickering 1992). Nevertheless, the balance
373 between sample size and assuring similar values by cover type needs also be analyzed prior to model
374 application.

375 *4.2 Uncertainties of the downscaling predictions*

376 The conceptual downscaling model (Eq. 1) would be flawless if: (1) all model assumptions were met,
377 and (2) both dependent and independent variables were truly representative measures of the
378 ecosystem properties. The soundness of this modeling approach is demonstrated with high model R²
379 values in each Level 4 ecoregion in the Kalamazoo River watershed (Table 3) with reasonable
380 predictions of albedo, ET and GPP (Figs. 4). Unfortunately, this situation may not always be the case

381 in practice, since uncertainties can arise from multiple sources. First, both the dependent and
382 independent variables in Eqs. 2-3 are produced from satellite observations and carry uncertainties
383 associated with the algorithm used for the retrieval, including calibration, geometric, and atmospheric
384 corrections (Vermote et al. 2002; Wolfe et al. 2002; Helder et al. 2018). From a systems modeling
385 perspective, uncertainty generally increases as more steps or more variables or more algorithms are
386 involved. Here MODIS blue-sky albedo is retrieved from surface reflectance products corrected for
387 BRDF and using retrieved atmospheric aerosols, and ET and GPP are modeled with algorithms with
388 multiple inputs (e.g., climate scalars, coefficients of light use efficiency, surface roughness, etc.)
389 (Schaaf et al. 2002; Zhao et al. 2005, 2006; Chrysoulakis et al. 2018). These processing chains may
390 be a potential reason for the higher confidence level in predicting albedo than ET or GPP, which
391 carry greater uncertainty. However, we note that albedo is a bounded value, unlike ET or GPP, which
392 also constrains variation. The accuracy of MODIS products are also often influenced by atmospheric
393 conditions, in particular undetected sub-pixel clouds, resulting in different predictions among pixels
394 even though their landscape composition may be the same (Schaaf et al. 2002; Yang et al. 2006).
395 These differences may also vary among the images of different times, which can further propagate
396 uncertainty, regardless of quality control and data screening process, when multiple products are
397 applied for calculating a value at longer temporal scale (e.g., annual values in this study).

398 The Landsat classified land cover type and distributions across the landscape are also not
399 without uncertainty, since classification accuracy varies by cover type (Table 1). In this pilot study,
400 the user's accuracies were lower for barren, water, and build-up cover types than for other cover
401 types. It is well established that urban areas are difficult to classify reliably because they encompass
402 such a variety of building types and land uses, so even at the Landsat scale of 30 m, the results are
403 often mixed spatially (Zhang and Roy 2017). Similarly, water and barren are quite broad thematic
404 definitions that can be highly variable in space and in time. Thus, the number of cover types as well
405 as the variation within a single cover type can generate additional uncertainty. For example, forests

406 within the watershed are treated as one cover type, although their species composition, stand
407 structure, age, disturbance history (including management), etc. may vary substantially across the
408 landscape. Similar variation in composition and structure exist among patches of the same cover type
409 within a MODIS pixel.

410 Low classification accuracy may be partially responsible for the high standard errors in
411 predicting albedo, ET, and GPP within an ecoregion (Table 2) and among the ecoregions (Fig. 5).
412 The standard errors also vary by cover type (Fig. 4), with the barren cover type having the highest
413 value and croplands having the lowest. While it is likely that the prevalence of nearly homogeneous
414 surfaces is higher in cropland than in barren and grassland covers, providing a partial explanation for
415 the differences in SE, we speculate that classification accuracy is also partially responsible for the
416 uncertainty in downscaling albedo, ET, and GPP.

417 The scale at which the modeling is applied provides another source of uncertainty (Levin
418 1992; LeMoine and Chen 2003; Saunders et al. 2005). We based our modeling example here using
419 the Level IV ecoregions without a quantitative exploration of the “right scale” (sensu Levin 1992).
420 Future efforts are strongly recommended to include scale identification prior to the modeling. More
421 importantly, neither MODIS nor Landsat pixels represents a homogeneous ecosystem (i.e., a cover
422 type). Across the Kalamazoo River watershed, there exist smaller patches and edges (<30 m),
423 suggesting that the composition of land cover within a Landsat pixel is an approximation or
424 generalization. The uncertainty will likely be higher in landscapes with more cover types, finer patch
425 sizes, and more edges.

426 *4.3 Transformative applications of the downscaling approach*

427 Our proposed downscaling approach decomposes the property of a spatially nested hierarchical
428 system when the structure of the lower hierarchical level is known. This linear downscaling approach
429 can be applied to nested spatial, temporal, or organizational hierarchies. A key advantage of this

430 approach is that it enables the use of coarser spatial resolution MODIS products for predicting finer
431 spatial resolution values that are directly connected with landscape composition. Although this paper
432 focuses on downscaling MODIS products by using classified Landsat data, other finer resolution land
433 cover data (e.g., derived from Sentinel-2) could be used. Similarly, products from the NOAA's
434 operational MODIS follow-on sensor VIIRS (VIIsible Infrared Radiometer Suite) could be used in
435 place of MODIS products (Zhang et al. 2018). The downscaled estimates provide us the opportunity
436 to explore ecosystem functioning at the level of spatial detail afforded by Landsat and comparable
437 sensors.

438 Connecting patterns and processes, for example, has been a major interest within the
439 landscape ecology community (Turner and Gardner 2015). While substantial knowledge has been
440 gained over the past 30 years to improve the understanding of the empirical and theoretical
441 relationships between ecosystem functioning and landscape structure, there remains a major
442 disconnect between the disciplines of ecosystem ecology and landscape ecology. For example, many
443 landscape studies have been published on landscape structure and dynamics, often based on Landsat
444 images. While modeling ecosystem production and other functions at 30 m have been reported (e.g.,
445 Zheng et al. 2004), such efforts require much ground level data for model parametrization,
446 calibration, and validation and intensive computations, despite often limited availability of cloud-free
447 data. With availability of MODIS products, one can more readily relate ecosystem functions with
448 landscape composition and structure.

449 Another promising direction is to examine the underlying landscape processes from using the
450 residuals (ε in Eqs. 1-4), which may point to potential driving mechanisms. For example, the
451 residuals from Eqs. 2-4 could be examined for their latent relationships using quantitative metrics
452 describing landscape structure to address the question: What landscape structure and processes are
453 responsible for this unexplained variation in ecosystem functioning? Here we hypothesize that the

454 patch patterns, variation in soils, climate and management practices within a landscape may all
455 contribute to the variation in residuals, especially for the high uncertainties found in ET and GPP.

456 The downscaling model could be further expanded to explore other landscape processes. For
457 example, the GPP model (Eq. 4) could be refined to include interactive terms among the cover types:

458
$$GPP = \sum (\kappa_i \times GPP_i) + (\kappa_{i*j} \times GPP_{i*j}) + \varepsilon \quad [5]$$

459 where the estimated GPP_{i*j} reflects the interactive contribution of two cover types (*i* and *j*) that could
460 be related to edge effects between them. Once the model predictions are validated, it may provide a
461 great opportunity for understanding the ecosystem consequences of spatial fragmentation and
462 disturbances across the landscape (Franklin and Forman 1987; Chen 1991; Di Giulio et al. 2009).

463 **5. Conclusions**

464 Based on practical needs for downscaling popular MODIS products at 500 m resolution to match
465 classified land cover from Landsat data at 30 m resolution, we have proposed an innovative
466 modelling approach so that landscape structure and ecosystem functioning could be directly studied
467 for their interconnections. As a proof-of-concept, we tested this model in the five landscapes of Level
468 IV ecoregions found within the Kalamazoo River watershed using three key ecosystem functional
469 attributes: albedo, ET, and GPP. An object-oriented classification of Landsat imagery in 2011 was
470 processed to generate a land cover map indicating landscape structure. Each downscaling model
471 exhibited high fit ($R^2 > 90\%$), with higher confidence levels for albedo than for GPP or ET. The
472 estimated values for albedo, ET, and GPP appear reasonable and within their ranges reported for the
473 region and consistent with values reported in the literature. Despite these promising results, this
474 approach relies on strong assumptions that can be difficult to characterize. It is only valid at a scale
475 where similar climate, soils, and landforms exist (i.e., value of the same cover type in isolated
476 patches are the similar). Plausibly, the uncertainties associated with each estimation, as well as the

477 model residuals, can be explored further to detect other pattern-process relationships within the
478 landscapes.

479 **Acknowledgements:** This study was supported, in part, by the NASA Carbon Cycle & Ecosystems
480 program (NNX17AE16G), the Great Lakes Bioenergy Research Center funded by the U.S.
481 Department of Energy, Office of Science, Office of Biological and Environmental Research under
482 Award Numbers DE-SC0018409 and DE-FC02-07ER64494; and the Long-term Ecological Research
483 Program (DEB 1637653) at the Kellogg Biological Station, and the NASA Science of Terra and
484 Aqua program (NNX14AJ32G). We thank the fruitful discussion at LEES Lab meetings where
485 several members made fruitful suggestions for model development. Isabel Arroca assisted in
486 formatting the references. The reviews from two anonymous reviewers helped improving the quality
487 of this manuscript.

488 **References**

489 Abraha M, Chen J, Chu H, et al (2015) Evapotranspiration of annual and perennial biofuel crops in a
490 variable climate. *Glob Chang Biol Bioenergy* 7(6): 1344-1356.

491 Alberti M, Asbjornsen H, Baker LA, et al (2011) Research on coupled human and natural systems
492 (CHANS): Approach, challenges, and strategies. *Bull Ecol Soc Am* 92: 218–228.

493 Anderson JR, Hardy EE, Roach JT, et al (1976) A land use and land cover classification system for use
494 with remote sensor data. *Professional Paper* 964: doi: 10.3133/pp964. 28p.

495 Atkinson PM (2013) Downscaling in remote sensing. *Int J Appl Earth Obs Geoinf* 22: 106-114.

496 Barnes CA, Roy DP (2010) Radiative forcing over the conterminous United States due to contemporary
497 land cover land use change and sensitivity to snow and interannual albedo variability, *J Geophys Res*
498 115: G04033, doi:10.1029/2010JG001428.

499 Bass DG (2009) *Inferring Dissolved Phosphorus Cycling in a TMDL Watershed Using Biogeochemistry
500 and Mixed Linear Models*. PhD Dissertation, Michigan State University, East Lansing, Michigan.

501 234p.

502 Bonan GB (1997) Effects of land use on the climate of the United States. *Clim Change* 37(3): 449–486.

503 Bresee MK, Le Moine J, Mather S, et al. (2004) Disturbance and landscape dynamics in the

504 Chequamegon National Forest Wisconsin, USA, from 1972 to 2001. *Landsc Ecol* 19(3): 291-309.

505 Campbell GS, Norman JM (1998) *Introduction to Environmental Biophysics*. Springer-Verlag, New

506 York, USA. 286p.

507 Chapman KA, Brewer R (2008) Prairie and Savanna in southern lower Michigan: History, Classification,

508 Ecology. *Michigan Bot* 47(1). doi: hdl.handle.net/2027/spo.0497763.0047.101. 40p.

509 Chen J (1991) *Edge Effects: Microclimatic Pattern and Biological Responses in Old-Growth Douglas-fir*

510 *Forests*. PhD Dissertation, University of Washington, Seattle, WA, USA.

511 Chen J, Wan S, Henebry G, et al (eds) (2013) *Dryland East Asia: Land Dynamics amid Social and*

512 *Climate Change*. DE GRUYTER, Berlin, Boston, 470p.

513 Chrysoulakis N, Mitraka Z, Gorelick N (2018) Exploiting satellite observations for global surface albedo

514 trends monitoring. *Theor Appl Climatol* 1–9. doi: 10.1007/s00704-018-2663-6

515 Cressie N, Wikle CK (2015) *Statistics for Spatio-Temporal Data*. John Wiley & Sons. New Jersey, USA.

516 624p.

517 Di Giulio M, Holderegger R, Tobias S (2009) Effects of habitat and landscape fragmentation on humans

518 and biodiversity in densely populated landscapes. *J Environ Manage* 90: 2959-2968.

519 Dieye AM, Roy DP, Hanan NP, et al (2012), Sensitivity analysis of the GEMS soil organic carbon model

520 to land cover land use classification uncertainties under different climate scenarios in Senegal.

521 *Biogeosciences* 9: 631-648.

522 Drusch M, Del Bello U, Carlier S, et al (2012). Sentinel-2: ESA's optical high-resolution mission for

523 GMES operational services. *Remote Sens Environ* 120: 25-36.

524 Dwyer JL, Roy DP, Saue B, et al (2018) Analysis ready data enabling analysis of the Landsat archive.

525 *Remote Sensing* 10 (1363): 19. doi.org/10.3390/rs10091363

526 Fensholt R, Proud SR (2012) Evaluation of earth observation based global long term vegetation trends—

527 Comparing GIMMS and MODIS global NDVI time series. *Remote Sens Environ* 119: 131-147.

528 Fongers D (2008) *Kalamazoo River Watershed Hydrologic Study*, Michigan Department of
529 Environmental Quality, Lansing, Michigan. 67p.

530 Foody GM (2002). Status of land cover classification accuracy assessment. *Remote Sens Environ* 80(1):
531 185-201.

532 Forman RTT (1995) *Land mosaics : The Ecology of Landscapes and Regions*. Cambridge University
533 Press, Cambridge, UK, 217p.

534 Fisher, F. Peter and Mitchel Langford. 1996. Modeling sensitivity to accuracy in classified imagery: A
535 study of areal interpolation by dasymetric mapping. *Prof Geog* 48(3):299-309.

536 Franklin JF, Forman RTT (1987) Creating landscape patterns by forest cutting: Ecological consequences
537 and principles. *Landsc Ecol* 1: 5-18.

538 Friedl MA, Sulla-Menashe D, Tan B, et al (2010) MODIS Collection 5 global land cover: Algorithm
539 refinements and characterization of new datasets. *Remote Sens Environ* 114: 168–182.

540 Giglio L, Boschetti L, Roy DP, et al (2018) The collection 6 MODIS burned area mapping algorithm and
541 product, *Remote Sens Environ* 217: 72-85.

542 Gitelson AA, Peng Y, Masek JG, et al (2012) Remote estimation of crop gross primary production with
543 Landsat data. *Remote Sens Environ* 121: 404–414.

544 Goodin DG, Henebry GM (1998). Seasonality of finely-resolved spatial structure of NDVI and its
545 component reflectances in tallgrass prairie. *Int J Remote Sens* 19(16): 3213-3220.

546 Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat
547 data. *Remote Sens Environ* 122: 66–74.

548 Helder D, Markham B, Morfitt R, et al (2018) Observations and recommendations for the calibration of
549 Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability. *Remote Sens* 10(9): 1340.
550 doi.org/10.3390/rs10091340.

551 Hargrove WW, Pickering J (1992). Pseudoreplication: A sine qua non for regional ecology. *Landsc Ecol*
552 6(4): 251-258.

553 Henebry GM (1993) Detecting change in grasslands using measures of spatial dependence with Landsat
554 TM data. *Remote Sen Environ* 46(2): 223-234.

555 Jia P, Gaughan AE (2016) Dasymetric modeling: A hybrid approach using land cover and tax parcel data
556 for mapping population in Alachua County, Florida. *Appl Geogr* 66: 100-108.

557 John R, Chen J, Kim Y, et al (2016) Differentiating anthropogenic modification and precipitation-driven
558 change on vegetation productivity on the Mongolian Plateau. *Landsc Ecol* 31: 547-566.

559 Justice CO, Giglio L, Korontzi S, et al (2002) An overview of MODIS Land data processing and product
560 status. *Remote Sens Environ* 83: 3-15.

561 Kennedy RE, Andréfouët S, Cohen WB, et al (2014) Bringing an ecological view of change to Landsat-
562 based remote sensing. *Front Ecol Environ* 12: 339–346.

563 Kottek M, Grieser J, Beck C, et al (2006) World Maps of Köppen-Geiger climate classification updated.
564 *Meteorol Zeitschrift* 15(3): 259-263

565 Krehbiel CP, X Zhang, GM Henebry (2017) Impacts of thermal time on land surface phenology in urban
566 areas. *Remote Sensing* 9(5): 499. doi.org/10.3390/rs9050499

567 LeMoine JM, Chen J (2003) Placing our research objectives and results in time and space. *Acta Phytoccol
568 Sinica* 27: 1–10.

569 Levin SA (1992) The problem of pattern and scale in ecology: The Robert H. MacArthur Award Lecture.
570 *Ecology* 73(6): 1943-1967.

571 McFeeters S (1996) The use of Normalized Difference Water Index (NDWI) in the delineation of open
572 water features. *Int J Remote Sens* 17: 1425-1432.

573 Mills K, Schillereff D, Saulnier-Talbot É, et al (2017) Deciphering long-term records of natural
574 variability and human impact as recorded in lake sediments: A palaeolimnological puzzle. *Wiley
575 Interdiscip Rev Water* 4: e1195. doi: 10.1002/wat2.1195.

576 Moon M, Zhang X, Henebry GM, et al. (2019) Long-term continuity in land surface phenology
577 measurements: A comparative assessment of the MODIS land cover dynamics and VIIRS land
578 surface phenology products. *Remote Sens Environ* 226: 74-92.

579 Mu Q, Heinsch FA, Zhao M, et al (2007) Development of a global evapotranspiration algorithm based on
580 MODIS and global meteorology data. *Remote Sens Environ* 111: 519–536.

581 Nagle NN, Buttenfield BP, Leyk S, Spielman S (2014) Dasymetric modeling and uncertainty. *Ann Am
582 Assoc Geogr* 104(1): 80-95.

583 O'Loughlin FE, Paiva RCD, Durand M, et al (2016) A multi-sensor approach towards a global vegetation
584 corrected SRTM DEM product. *Remote Sens Environ* 182: 49-59.

585 Omernik JM, Griffith GE (2014) Ecoregions of the conterminous United States: Evolution of a
586 hierarchical spatial framework. *Environ Manage* 54(6): 1249-1266.

587 Papale D, Black TA, Carvalhais N, et al (2015) Effect of spatial sampling from European flux towers for
588 estimating carbon and water fluxes with artificial neural networks. *J Geophys Res Biogeosciences*
589 120(10): 1941-1957.

590 Petrov A (2012) One hundred years of dasymetric mapping: Back to the origin. *Cartogr J* 49 (3): 256–
591 264.

592 Plourde, J. D., Pijanowski, B. C., Pekin, B. K., 2013. Evidence for increased monoculture cropping in the
593 Central United States. *Agric Ecosyst Environ* 165: 50-59.

594 Robinson NP, Allred BW, Smith WK, et al. (2018) Terrestrial primary production for the conterminous
595 United States derived from Landsat 30 m and MODIS 250 m. *Remote Sens Ecol Conserv* 4(3): 264-
596 280.

597 Rodriguez-Iturbe I, D'Odorico P, Rinaldo A (1998) Configuration entropy of fractal landscapes. *Geophys
598 Res Lett* 25(7): 1015-1018.

599 Roy DP, Wulder MA, Loveland TR, et al (2014) Landsat-8: Science and product vision for terrestrial
600 global change research. *Remote Sens Environ* 145: 154–172.

601 Saunders SC, Chen J, Drummer TD, et al (2005) Identifying scales of pattern in ecological data: A
602 comparison of lacunarity, spectral and wavelet analyses. *Ecol Complex* 2(1): 87-105.

603 Schaaf CB, Gao F, Strahler AH, et al (2002) First operational BRDF, albedo nadir reflectance products
604 from MODIS. *Remote Sens Environ* 83(1-2): 135-148

605 Schaetzl RJ, Darden JT, Brandt DS (2009) *Michigan Geography and Geology*. Pearson Learning
606 Solutions. 672p.

607 Semmens KA, Anderson MC, Kustas WP, et al (2016) Monitoring daily evapotranspiration over two
608 California vineyards using Landsat 8 in a multi-sensor data fusion approach. *Remote Sens Environ*
609 185: 155–170.

610 Stoorvogel JJ, Bakkenes M, Temme AJAM, et al (2017) S-World: A global soil map for environmental
611 modelling. *L Degrad Dev* 28: 22–33.

612 Sun G, Alstad K, Chen J, et al (2011) A general predictive model for estimating monthly ecosystem
613 evapotranspiration. *Ecohydrology* 4(2): 245-255.

614 Trlica A, Hutyra LR, Schaaf CL, et al (2017) Albedo, land cover, and daytime surface temperature
615 variation across an urbanized landscape. *Earth's Futur* 5: 1084–1101.

616 Tucker CJ, Pinzon JE, Brown ME, et al (2005) An extended AVHRR 8-km NDVI dataset compatible
617 with MODIS and SPOT vegetation NDVI data. *Int J Remote Sens* 26(20): 4485-4498.

618 Turner MG, Gardner RH (2015) *Landscape Ecology in Theory and Practice: Pattern and Process*,
619 second edition, Springer, New York, USA. 482p.

620 Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to
621 middle infrared: First results. *Remote Sens Environ* 83: 97-111.

622 Wan Z (2013) *MODIS Land Surface Temperature Products Users' Guide*. Institute for Computational
623 Earth System Science, University of California, Santa Barbara, CA. 77p.

624 Wang Z, Schaaf CB, Sun Q, et al (2017) Monitoring land surface albedo and vegetation dynamics using
625 high spatial and temporal resolution synthetic time series from Landsat and the MODIS
626 BRDF/NBAR/albedo product. *Int J Appl Earth Obs Geoinf* 59: 104-117.

627 Wang Z, Schaaf CB, Sun Q, et al (2018). Capturing rapid land surface dynamics with Collection V006
628 MODIS BRDF/NBAR/Albedo (MCD43) products. *Remote Sens Environ* 207: 50-64.

629 Wolfe R, Nishihama M, Fleig A, et al (2002) Achieving sub-pixel geolocation accuracy in support of
630 MODIS land science. *Remote Sens Environ* 83: 31-49.

631 Wu J, Hobbs RJ (eds) (2007) *Key Topics in Landscape Ecology*. Cambridge University Press, Cambridge,
632 UK. 297p.

633 Wulder MA, Coops NC, Roy DP, et al (2018) Land Cover 2.0. *Int J Remote Sens* 39(12): 4254-4284.

634 Wulder MA, Loveland TR, Roy DP, et al (2019) Current status of Landsat program, science, and
635 applications, *Remote Sens Environ* 224: 127-147.

636 Xiao X, Hollinger D, Aber J, et al (2004) Satellite-based modeling of gross primary production in an
637 evergreen needleleaf forest. *Remote Sens Environ* 89: 519-534.

638 Yang W, Shabanov N V., Huang D, et al (2006) Analysis of leaf area index products from combination of
639 MODIS Terra and Aqua data. *Remote Sens Environ* 104(3): 297-312.

640 Yao Y, Liang S, Li X, et al (2017) Estimation of high-resolution terrestrial evapotranspiration from
641 Landsat data using a simple Taylor skill fusion method. *J Hydrol* 553: 508-526.

642 Yuan W, Liu S, Yu G, et al (2010) Global estimates of evapotranspiration and gross primary production
643 based on MODIS and global meteorology data. *Remote Sens Environ* 114(7): 1416-1431.

644 Zha Y, J Gao, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban
645 areas from TM imagery. *Inl J Remote Sens* 24(3): 583-594.

646 Zhang, HK, Roy DP (2017) Using the 500 m MODIS land cover product to derive a consistent
647 continental scale 30 m Landsat land cover classification. *Remote Sens Environ* 197: 15-34.

648 Zhang X, Friedl MA, Schaaf CB, et al (2003). Monitoring vegetation phenology using MODIS. *Remote*
649 *Sens Environ* 84(3): 471-475.

650 Zhang XY, Liu L, Liu Y et al (2018) Generation and evaluation of the VIIRS land surface phenology
651 product. *Remote Sens Environ* 216: 212-229.

652 Zhao M, Heinsch FA, Nemani RR, et al (2005) Improvements of the MODIS terrestrial gross and net
653 primary production global data set. *Remote Sens Environ* 95(2): 164-176.

654 Zhao M, Running SW, Nemani RR (2006) Sensitivity of Moderate Resolution Imaging
655 Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological
656 reanalyses. *J Geophys Res Biogeosciences* 111(G1). doi: 10.1029/2004JG000004

657 Zheng D, Rademacher J, Chen J, et al (2004) Estimating aboveground biomass using Landsat 7 ETM+
658 data across a managed landscape in northern Wisconsin, USA. *Remote Sens Environ* 93(3): 402-411.
659 Zhou H, Liang S, He T, et al (2019) Evaluating the spatial representativeness of the MODerate Resolution
660 Image Spectroradiometer albedo product (MCD43) at AmeriFlux sites. *Remote Sens* 11(5), 547,
661 doi.org/10.3390/rs11050547.

Table 1. Brief description of seven land cover types in the Kalamazoo River watershed, the number of validation samples by cover type, and classification accuracies from user's and producer's perspective.

Barren: Areas where not covered by vegetation or construction
 Built-up: built-up land with a mixture of constructed materials and vegetation
 Cropland: annual crops and/or pastoral land
 Forest: land dominated by high tree cover
 Grassland: herbaceous vegetation, including lawns
 Water: open water (e.g., lakes, reservoir, and large rivers)
 Wetland: mostly forested wetlands

	Built-up	Cropland	Grassland	Forest	Water	Wetland	Barren	User's accuracy
Built-up	46	9	3	11	0	0	2	64.8%
Cropland	2	191	2	11	0	0	2	91.8%
Grassland	1	2	57	1	0	1	2	89.1%
Forest	2	10	3	154	0	1	0	90.6%
Water	0	0	0	6	53	9	0	77.9%
Wetland	0	1	0	1	3	70	0	93.3%
Barren	0	3	1	3	2	1	34	77.3%
Producer's Accuracy	90.2%	88.4%	86.4%	82.4%	91.4%	85.4	85.0%	86.4%

Table 2. Statistics for blue-sky albedo, evapotranspiration (ET, mm), gross primary production (GPP, MgC ha⁻¹ yr⁻¹) and water use efficiency (g kg⁻¹) in the five Level IV ecoregions of the Kalamazoo Watershed in Southwest Michigan, USA. MED is Median; γ is skewness; SE is standard error.

Ecoregion	Blue-sky albedo			ET			GPP			WUE
	Mean (SE)	MED	γ	Mean (SE)	MED	γ	Mean (SE)	MED	γ	Mean (SE)
Battle -56b	0.150 (± 0.017)	0.151	-1.85	455.41 (± 131.79)	498.80	-0.91	7.35 (± 2.30)	8.09	-0.83	1.60 (± 0.01)
Michigan - 56d	0.141 (± 0.016)	0.140	-1.19	365.86 (± 179.41)	270.50	0.41	5.92 (± 2.97)	4.44	0.43	1.52 (± 0.13)
Lake - 56f	0.161 (± 0.014)	0.161	-0.72	470.30 (± 130.23)	508.60	-1.02	7.63 (± 2.33)	8.28	-0.96	1.58 (± 0.01)
Lansing - 56g	0.163 (± 0.010)	0.165	-2.18	477.47 (± 94.49)	492.00	-1.41	7.71 (± 1.71)	7.98	-1.23	1.63 (± 0.03)
Interlobate - 56h	0.155 (± 0.012)	0.156	-0.99	444.89 (± 132.44)	486.60	-0.87	7.13 (± 2.34)	7.80	-0.78	1.59 (± 0.03)
Overall	0.154 (± 0.016)	0.156	-1.49	450.65 (± 135.13)	492.70	-0.84	7.27 (± 2.36)	7.98	-0.76	1.57 (± 0.11)

Table 3. Estimated mean (standard error, SE) of blue-sky albedo, evapotranspiration (ET, mm) and gross primary production (GPP, MgC ha⁻¹ yr⁻¹) by cover type and Level IV ecoregions in the Kalamazoo River watershed in southwestern Michigan, USA.

Cover Type	Battle (56b)			Michigan (56d)			Lake (56f)			Lansing (56g)			Interlobate (56h)		
	Albedo	ET	GPP	Albedo	ET	GPP	Albedo	ET	GPP	Albedo	ET	GPP	Albedo	ET	GPP
Built-up	0.1419 (0.0004)	555.6 (5.9)	9.25 (0.10)	0.1362 (0.0018)	687.1 (23.9)	9.75 (0.16)	0.1490 (0.0011)	597.0 (15.4)	9.85 (0.28)	0.1518 (0.0014)	525.6 (17.7)	8.65 (0.33)	0.1436 (0.0006)	576.0 (9.3)	9.47 (0.17)
Cropland	0.1664 (0.0003)	515.7 (2.7)	8.27 (0.05)	0.1685 (0.0007)	600.6 (9.1)	9.72 (1.01)	0.1728 (0.0003)	512.2 (3.3)	8.35 (0.06)	0.1699 (0.0003)	479.7 (3.3)	7.71 (0.06)	0.1673 (0.0002)	511.0 (3.0)	8.21 (0.05)
Grassland	0.1606 (0.0035)	489.4 (39.1)	7.49 (0.70)	0.1356 (0.0046)	766.6 (58.4)	3.60 (0.12)	0.1723 (0.0066)	713.3 (84.2)	11.63 (1.53)	0.1706 (0.0085)	442.7 (92.6)	7.15 (1.73)	0.1654 (0.0033)	510.6 (43.9)	8.08 (0.79)
Forest	0.1380 (0.0005)	300.5 (5.2)	4.81 (0.09)	0.1359 (0.0005)	209.7 (6.9)	5.64 (0.58)	0.1425 (0.0007)	334.3 (8.8)	5.33 (0.16)	0.1530 (0.0010)	459.7 (11.0)	7.42 (0.21)	0.1429 (0.0004)	287.2 (5.5)	4.49 (0.10)
Water	0.0764 (0.001)	514.1 (17.1)	8.28 (0.30)	0.0807 (0.0018)	408.6 (33.4)	4.64 (0.20)	0.1072 (0.0017)	472.9 (26.5)	7.49 (0.48)	0.1024 (0.0020)	541.4 (33.7)	8.06 (0.63)	0.1000 (0.0015)	489.2 (22.8)	7.37 (0.41)
Wetland	0.1482 (0.0007)	391.7 (7.7)	6.23 (0.14)	0.1408 (0.0009)	307.3 (11.6)	5.51 (0.68)	0.1456 (0.0011)	399.9 (14.1)	6.31 (0.26)	0.1553 (0.0008)	496.2 (9.0)	8.10 (0.17)	0.1490 (0.0005)	425.5 (6.9)	6.81 (0.12)
Barren	0.1535 (0.0023)	524.3 (25.1)	8.50 (0.45)	0.1362 (0.0018)	376.2 (39.2)	9.85 (0.28)	0.1107 (0.0055)	201.4 (69.3)	2.37 (1.26)	0.1471 (0.0101)	795.7 (114.9)	12.51 (2.15)	0.1546 (0.0043)	571.8 (56.0)	9.18 (1.01)
Adj. R ²	0.995	0.944	0.933	0.996	0.915	0.902	0.997	0.947	0.935	0.998	0.971	0.962	0.997	0.943	0.929

Figure Captions

Figure 1. A snapshot of land cover overlaid with the 500 m MODIS grids within the Kalamazoo River Watershed. The portion of each cover type in each MODIS grid is calculated as κ_i that ranges from 0 to 1 for downscaling grid-level GPP to cover type GPP_i (Eq. 1).

Figure 2. Landscape cover of the Kalamazoo River Watershed in 2011 in southwestern Michigan, USA. The table includes the total land area (km²) of each cover type and its portion (%) within the Level IV Ecoregion.

Figure 3. Spatial distributions of blue-sky albedo (%), evapotranspiration (ET, mm) and gross primary production (GPP, MgC ha⁻¹ yr⁻¹) in 2011, as well as their frequency distributions described with probability density function (PDF). The PDF distributions were generated with the density function in RStudio with the bandwidth (*bw*) of standard deviation.

Figure 4. Boxplots of: (a) blue-sky albedo, (b) evapotranspiration (ET, mm), (c) gross primary production (GPP, MgC ha⁻¹ yr⁻¹), and (d) ecosystem water use efficiency WUE (g kg⁻¹) within the Kalamazoo River Watershed in southwestern Michigan, USA. The statistics were calculated among the five Level IV Ecoregions in 2011 (see Fig. 5). The horizontal line and the number inside the circle are the grand mean of the watershed.

Figure 5. Boxplots of: (a) albedo, (b) evapotranspiration (ET, mm), (c) gross primary ecosystem production (GPP, MgC ha⁻¹ yr⁻¹), and (d) ecosystem water use efficiency (WUE, g kg⁻¹) at five Level IV Ecoregions within the Kalamazoo River Watershed in southwestern Michigan, USA. The statistics were calculated among the seven land cover types in 2011 (see Fig. 4). The horizontal line and the number inside the circle are the grand mean of the watershed.

Fig. 1.

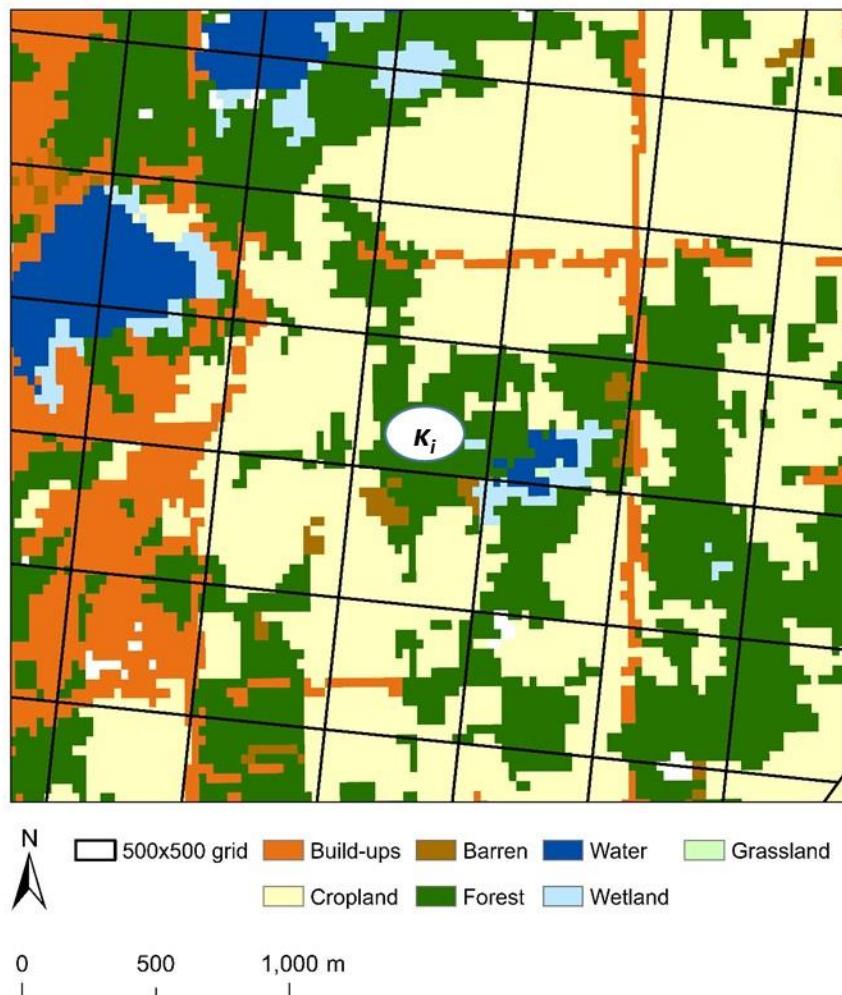
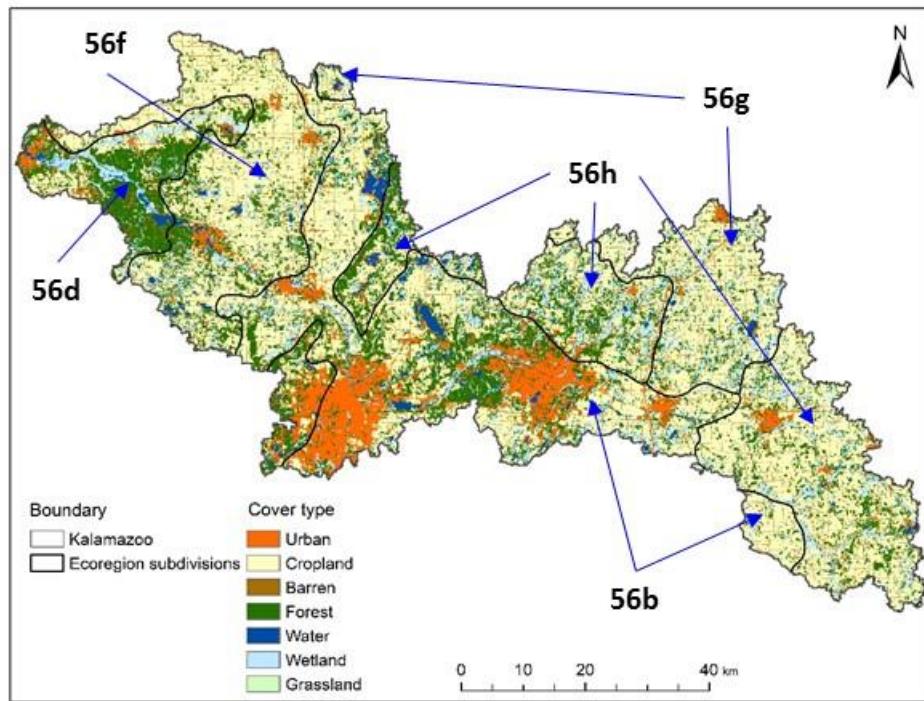


Fig. 2



Cover Type	Level IV Ecoregion				
	56b	56d	56f	56g	56h
Built-up	389.3 (21.8)	38.0 (9.1)	91.8 (9.4)	43.6 (7.5)	164.7 (11.0)
Cropland	729.1 (40.9)	87.2 (21.0)	583.9 (59.8)	356.8 (61.6)	719.3 (47.8)
Grassland	24.6 (1.4)	18.9 (4.5)	10.1 (1.0)	3.0 (0.5)	13.8 (0.9)
Forest	383.0 (21.5)	189.5 (45.6)	189.1 (19.4)	81.9 (14.2)	376.0 (25.0)
Water	61.1 (3.4)	15.4 (3.7)	18.5 (1.9)	9.0 (1.6)	24.7 (1.7)
Wetland	184.7 (10.4)	59.7 (14.4)	76.5 (7.8)	80.8 (14.0)	194.1 (12.9)
Barren	8.7 (0.5)	3.4 (0.8)	4.0 (0.4)	1.3 (0.2)	6.2 (0.4)
Total	1785	416	977	579	579

Fig. 3

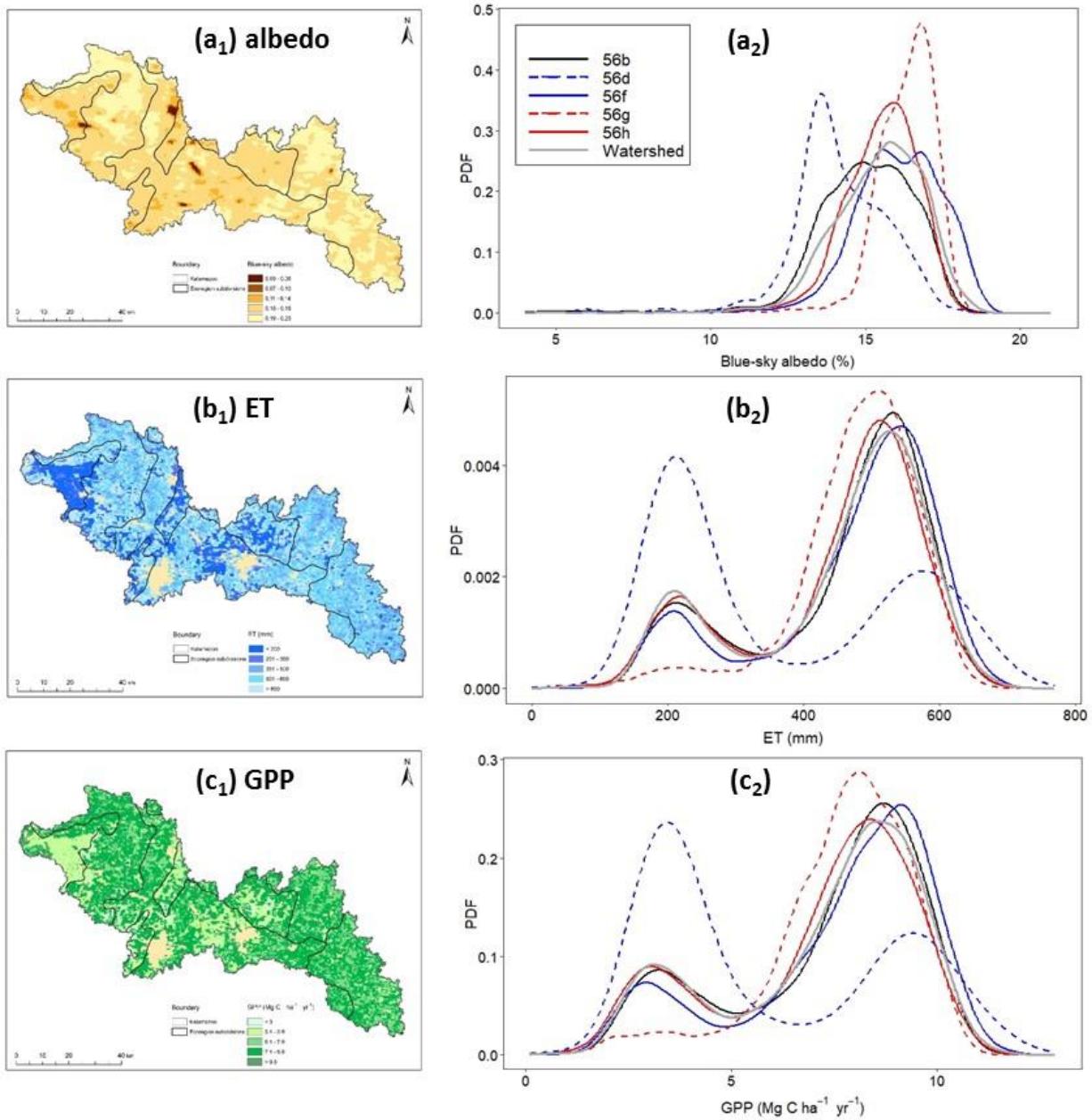


Fig. 4.

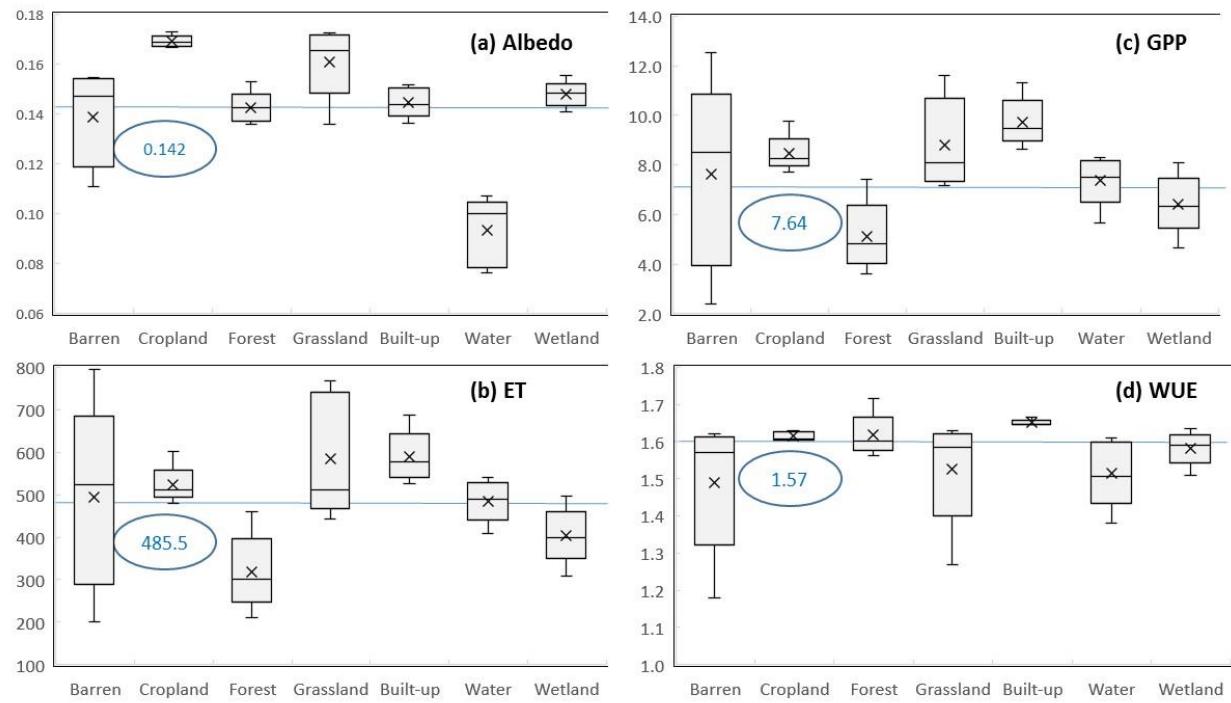


Fig. 5

