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Abstract 11 

Context 12 

The open and free access to Landsat and MODIS products have greatly promoted scientific 13 

investigations on spatiotemporal change in land mosaics and ecosystem functions at landscape to 14 

regional scales. Unfortunately, there is a major mismatch in spatial resolution between MODIS 15 

products at coarser resolution (≥250 m) and landscape structure based on classified Landsat scenes at 16 

finer resolution (30 m). 17 

Objectives 18 

Based on practical needs for downscaling popular MODIS products at 500 m resolution to match 19 

classified land cover at Landsat 30 m resolution, we proposed an innovative modelling approach so 20 

that landscape structure and ecosystem functions can be directly studied for their interconnections. 21 

As a proof-of-concept of our downscaling approach, we selected the watershed of the Kalamazoo 22 

River in southwestern Michigan, USA as the testbed. 23 

Methods 24 

MODIS products for three fundamental variables of ecosystem function are downscaled to ensure the 25 

approach can be extrapolated to multiple functional measurements. They are blue-sky albedo (0-1), 26 

evapotranspiration (ET, mm), and gross primary production (GPP, Mg C ha-1 yr-1). An object-27 

oriented classification of Landsat images in 2011 was processed to generate a land cover map 28 

indicating landscape structure. The downscaling model was tested for the five Level IV ecoregions 29 

within the watershed. 30 

Results 31 

We achieved satisfactory downscaling models for albedo, ET, and GPP for all five ecoregions.  The 32 

adjusted R2 was >0.995 for albedo, 0.915-0.997 for ET, and 0.902-0.962 for GPP. The estimated 33 
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albedo, ET, and GPP values appear different in the region.  The estimated albedo was the lowest for 34 

water (0.076-0.107) and the highest for cropland (0.166-0.172). Estimated ET was the highest for the 35 

built-up cover type (525.6-687.1 mm) and the lowest for forest (209.7-459.7 mm). The estimated 36 

GPP was the highest for the build-up cover type (8.65-9.85 MgC ha-1 yr-1) and the lowest for forest.  37 

Conclusions 38 

Estimated values for albedo, ET, and GPP appear reasonable for their ranges in the Kalamazoo River 39 

region and are consistent with values reported in the literature. Despite these promising results, the 40 

downscaling approach relies on strong assumptions and can carry substantial uncertainty. It is only 41 

valid at a spatial scale where similar climate, soil, and landforms exist (i.e., values in isolated patches 42 

of the same cover type are similar). Plausibly, the uncertainties associated with each estimation, as 43 

well as the model residuals, can be explored  for other pattern-process relationships within the 44 

landscape.  45 

Keywords: Downscaling, MODIS, Landsat, GPP, ET, Albedo, Kalamazoo River watershed  46 
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1. Introduction 47 

The last two decades have witnessed a rapid increase in the application of remote sensing imagery in 48 

various fields of natural science and resource management, especially using data from the Landsat 49 

satellite series and from the MODIS (Moderate Resolution Imaging Spectroradiometer) sensors on 50 

board NASA’s Terra and Aqua satellites. These images and derived value-added products provide 51 

the scientific community, practitioners, and natural resource managers with powerful tools for 52 

quantifying spatial and temporal changes in land surface properties. Landsat data, for example, have 53 

been widely used to create regional to global land cover maps and to describe the landscape structure, 54 

ecosystem dynamics, land use change, and their connections with landscape processes (e.g., 55 

fragmentation, succession) (Bresee et al. 2004; Hansen and Loveland 2012; Kennedy et al. 2014; 56 

Wulder et al. 2018). Systematically derived, quality assessed, validated, and reprocessed NASA 57 

MODIS products (Justice et al. 2002) meanwhile have been widely used to create global products of 58 

gross ecosystem production (GPP) (Zhao et al. 2005), land cover (Friedl et al. 2010), 59 

evapotranspiration (ET; Mu et al. 2007), land surface temperature (Wan 2013), albedo (Schaaf et al. 60 

2002), disturbance (e.g., fire; Giglio et al. 2018), and land surface phenology (Zhang et al. 2003; 61 

Moon et al. 2019). The open and free access to both Landsat and MODIS products further promoted 62 

their use and influence in scientific investigations. Explorations of landscape structure and dynamics 63 

based on the Landsat archive, as another example, have seen a substantial increase in applications 64 

(Bresee et al. 2004; Roy et al. 2014; Krehbiel et al. 2017; Wulder et al. 2019). 65 

Connecting ecosystem functions (e.g., ecosystem production, biological diversity) with 66 

landscape structure (e.g., patch type, characteristics and spatial configuration) and processes (e.g., 67 

fragmentation, movement of species and materials across the landscape) has long been an interest of 68 

landscape ecologists (Franklin and Forman 1987; Forman 1995; Wu and Hobbs 2007; Turner and 69 

Gardner 2015). As an example, John et al. (2016) examined the long-term changes of vegetation 70 
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indices from MODIS and AVHRR (Advanced Very High Resolution Radiometer), ecosystem 71 

production, livestock, and land cover and land use changes on the Mongolian Plateau to tease apart 72 

the contributions of climatic change and human influences, which is a scientific frontier in global 73 

change science (Alberti et al. 2011; Chen et al. 2013; Mills et al. 2017). Their studies, along with 74 

many other similar ones, were often conducted at coarser spatial resolutions of 500-1000 m (i.e., the 75 

pixel size of sensor data such as MODIS and AVHRR). Meanwhile, Landsat images have been 76 

widely used to produce multiple versions of accurate land cover maps at 30 m resolution that better 77 

represents cover types (patches) and their spatial configurations at landscape to regional scales 78 

(Wulder et al. 2018). Higher spatial resolution is desirable because many patches in a landscape may 79 

be substantially smaller than the finest resolution of a MODIS pixel (250 m). Recently, the Landsat 80 

data has been complemented by twin satellites from the European Space Agency (Sentinel-2A and 81 

2B) that provide Landsat-like imagery but at finer (10-20 m) spatial resolution (Drusch et al. 2012).  82 

Clearly, there exists a major mismatch in the spatial resolution between MODIS products at coarser 83 

resolution and landscape structure from Landsat scenes at finer resolution.  84 

Downscaling to finer spatiotemporal resolution has been a research focus in remote sensing 85 

(see Atkinson 2013 for an overview). Both mechanistically and empirically based approaches have 86 

been attempted in landscape studies. One approach is to quantify ecosystem functions directly at 87 

Landsat resolution by integrating ecosystem models with patches (e.g., Zheng et al. 2004; Gitelson et 88 

al. 2012; Semmens et al. 2016; Yao et al. 2017). Another approach is to downscale coarse resolution 89 

data through spatial interpolation, such as block cokriging where the landscape is categorized into 90 

multiple classes (i.e.,  blocks). However, the first approach requires extensive and detailed 91 

measurements at near surface and ground levels for model parameterization and validation; whereas, 92 

the products from the second approach are often not matched with the patch boundaries and require 93 

an assumption of statistical stationarity rarely met in landscapes (Saunders et al. 2005). An 94 

alternative is to take the advantage of the available, coarser spatial resolution MODIS products and 95 
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downscale them to the finer spatial resolution of Landsat imagery through dasymetric modeling, 96 

an approach to thematic mapping that uses land cover information as ancillary information and 97 

spatially disaggregates coarser resolution information (Fisher and Langford 1996; Petrov 2012). 98 

Dasymetric modeling has been widely applied in human geography (Nagle et al. 2014; Jia and 99 

Gaughan 2016), but not in landscape studies. Here we applied the principles of dasymetric modeling 100 

to estimate higher resolution (30 m) ecosystem functions from MODIS products by treating finer 101 

spatial resolution land cover data (i.e., the ancillary layer) that are accurately classified from Landsat 102 

imagery.  103 

The idea is simple. Consider the value of gross primary productivity (GPP) defined by a 104 

MODIS pixel to be the linear sum of GPPi of land cover type (i), expressed as (Fig. 1):  105 

GPP = ∑ (κi × GPPi) + ε   [1] 106 

where κi is the compositional portion (0-1) of land cover type i within a MODIS pixel where ∑ (κi) = 107 

1, and ε is the model residual errors to include uncertainties from both the land cover classification 108 

and the MODIS estimates of GPP. Through multiple linear regression constrained to a zero intercept, 109 

GPPi can be estimated empirically for a landscape composed of multiple MODIS pixels and land 110 

cover types. The zero intercept constraint is necessary to ensure that the mathematical weight of each 111 

land cover type is allocated properly. A key assumption of this downscaling approach is that 112 

ecosystem functions of the same land cover type remain the same in different MODIS pixels. With 113 

this downscaling model, the uncertainty of GPPi estimates from Eq. 1 (i.e., the standard error 114 

associated with GPPi estimate in Eq. 1), as well as the residuals (ε) can be examined for their 115 

relationships with other landscape characteristics (e.g., interactions between patches, landscape 116 

composition, etc.) for further investigation of pattern-process relationships.  117 

 As a proof-of-concept of our downscaling approach, we selected the watershed of the 118 

Kalamazoo River in the southwestern Michigan as a testbed. MODIS products for three fundamental 119 
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variables of ecosystem function—albedo, ET, and GPP—were downscaled to ensure the approach 120 

can be extrapolated to multiple functional measurements. To simplify our demonstration, we focused 121 

on the year of 2011 when we developed an accurate, Landsat-derived land cover map for the 122 

watershed. To meet the model assumptions, we based our model at the scale of a single Level IV 123 

ecoregion, within which climate, soils, and potential vegetation are similar (Omernik and Griffith 124 

2014). Our modeling effort was then independently repeated for each of the five Level IV ecoregions 125 

within the watershed to demonstrate the validity of the approach.   126 

2. Methods 127 

2.1. Study area 128 

The Kalamazoo River watershed (5261 km2) includes portions of 10 counties (Allegan, Ottawa, Van 129 

Buren, Kent, Barry, Kalamazoo, Calhoun, Eaton, Jackson, and Hillsdale) in southwestern Michigan, 130 

USA. The watershed is dominated by cultivated crops, deciduous forest, mixed prairies, lakes and 131 

ponds, wooded wetlands, and urban areas. Prior to European settlement and land conversion to 132 

agriculture, this region had a mosaic of tallgrass prairies, savannas, and oak openings, including both 133 

C3 and C4 grasses as well as forbs (Chapman and Brewer 2008). Kalamazoo and Battle Creek are the 134 

two major urban centers within the watershed, and the Kalamazoo–Battle Creek–Portage Combined 135 

Statistical Area had a population of more than 524,000 in 2010.  136 

The Kalamazoo River has a moderate stream gradient and drops 165 m in elevation from its 137 

headwaters, which are >300 m a.s.l. The River drains a landscape consisting of thick glacial deposits. 138 

Alfisols are the most common soil formation and reflect the dominance of deciduous forests in the 139 

past. The watershed is covered with prime agricultural soils, including 70% coarse soils that are 140 

permeable to rainwater and help in the recharge of groundwater (Schaetzl et al. 2009). The annual 141 

average precipitation is 890 mm, with ~65% returned as evapotranspiration (Fongers 2008). The 142 

recent growth in urban area can cause the local hydrology to become more “flashy”, owing to the 143 
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sharp increase in impervious surface areas and could contribute to higher phosphorus loading from 144 

urban land uses (Bass 2009).  145 

While 96% of the land is privately owned, there are major inclusions of public lands (e.g., 146 

Allegan State Game area, Fort Custer Recreation Area, Yankee Springs Recreation Area). The land 147 

use history in the watershed shows that row crop agriculture takes place in the more productive soils; 148 

whereas, croplands have been abandoned in marginal areas including land with steep slopes, lands 149 

that were excessively drained, or that had poor drainage (Schaetzl et al. 2009). Five Level IV 150 

ecoregions of the United States Environmental Protection Agency fall within the watershed 151 

(Omernik and Griffith 2014) (Fig. 2): Battle Creek Outwash Plain (56b); Michigan Lake Plain (56d); 152 

Lake Michigan Moraines (56f); Lansing Loamy Plain (56g); and Interlobate Dead Ice Moraines 153 

(56h). Detailed descriptions of these ecoregions can be found online at EPA: 154 

https://www.epa.gov/eco-research/ecoregion-download-files-state-region-5#pane-20. 155 

2.2 Data sources and pre-processing 156 

We used MODIS products with Landsat images to demonstrate the broader applications of the 157 

downscaling model (Eq. 1). Three MODIS products were used:  blue-sky albedo (0-1), 158 

evapotranspiration (ET, mm), and gross primary production (GPP, Mg C ha-1 yr-1).  Ecosystem water 159 

use efficiency (WUE, g kg-1), defined as the ratio between GPP and ET, was further calculated with 160 

estimated GPP and ET values by land cover type to expand from the downscaled predictions to other 161 

potential ecological applications. It is worth noting that ET in units of mm is converted to kg ha-1 yr-1 162 

based on water density of 1.0 Mg m-3. 163 

We used Google Earth Engine (GEE) to process the most recent Collection 6 MODIS ET and 164 

GPP products. ET and GPP were provided by the MODIS 500m 8 day Evapotranspiration/Latent 165 

Heat Flux (MOD16A2-V6) (https://doi.org/10.5067/MODIS/MOD16A2.006) and Gross Primary 166 

Productivity (MOD17A2H-V6) (https://doi.org/10.5067/MODIS/MOD17A2H.006) products. We 167 

https://doi.org/10.5067/MODIS/MOD16A2.006
https://doi.org/10.5067/MODIS/MOD17A2H.006


9 
 

filtered the ET and GPP data using the MODIS product quality bands “NPP_QC” for ET, and 168 

“PSN_QC” for GPP, to ensure only the high quality (QC=0) data were retained.  169 

For albedo, we used the blue-sky albedo product available as a global annual mean for 2000-2015 170 

(http://rslab.gr/downloads_blue_sky.html). The blue-sky albedo was estimated using the MCD43A1 171 

product (https://doi.org/10.5067/MODIS/MCD43A1.006). This MODIS product was generated daily 172 

at 500 m by inversion of a Bidirectional Reflectance Distribution Function (BRDF) model against 173 

16-day moving window of MODIS 500m observations and then the BRDF model is used to derive 174 

the black-sky and white-sky albedos (Wang et al. 2018). The blue-sky albedo was estimated every 8 175 

days as a weighted average of both black- and white-sky albedos and using the MODIS aerosol 176 

Optical Thickness product (Chrysoulakis et al. 2018).  177 

The three MODIS products defined from January 1st to Dec 31st 2011 were used to calculate 178 

annual mean blue-sky albedo (ranging 0 to 1), total GPP (Mg ha-1 yr-1) and total annual ET (mm) at 179 

each 500 m MODIS pixel. The results were clipped spatially to the extent of the Kalamazoo River 180 

watershed and Level IV ecoregion boundaries. Zonal statistical analyses were performed in ArcMap 181 

10.6 to extract values of albedo, ET, and GPP data by ecoregion and by each MODIS pixel into data 182 

tables. The extracted data tables were then analyzed in RStudio (RStudio 1.1.453, 183 

https://www.rstudio.com/) to compute mean, standard deviation, and probability densities.  184 

A land cover map of the watershed was created using an object-oriented classification of 185 

Landsat Thematic Mapper (TM) images that were acquired on 6th and 31st July of 2011 over the three 186 

Landsat scenes (WRS-2 Path/Rows (21/30, 21/31, and 22/30) that completely cover the watershed. 187 

The most recent cloud-free Collection 1 Landsat TM images processed to surface reflectance were 188 

obtained from Earth Explorer (https://earthexplorer.usgs.gov/).  The Collection 1 Landsat images are 189 

defined with per-pixel cloud and quality information (Dwyer et al. 2018) and for this study cloudy 190 

pixels were removed.  Following the Level 1 classification scheme of Anderson et al. (1976), seven 191 

http://rslab.gr/downloads_blue_sky.html
https://doi.org/10.5067/MODIS/MCD43A1.006
https://www.rstudio.com/)
https://earthexplorer.usgs.gov/
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land cover types were identified at 30 m resolution: barren, built-up (mainly as urban and roads), 192 

cropland, forest, grassland, open water, and wetland (Table 1). The image classification was 193 

conducted using the eCognition software (eCognition, 2019, version 9.2). Our first step of the 194 

classification was to generate homogeneous image objects through segmentation. We applied a 195 

multi-resolution segmentation algorithm based on both the spectral and shape information that 196 

quantify homogeneity using a set of parameters including scale, band weights, shape smoothness and 197 

compactness. First, rule sets were used to identify the water and urban object/classes using the 198 

Modified Normalized Difference Water Index (MNDWI) (McFeeters 1996) and Normalized 199 

Difference built-up Index (NDBI) (Zha et al. 2003) (viz., MNDWI>0.0 and NDBI>0.2, respectively).  200 

The remaining object/classes were classified using the nearest neighborhood classifier with training 201 

samples carefully selected by expert visual interpretation of the Landsat images and with the training 202 

samples selected across the watershed.  203 

Land cover classification accuracy assessment was conducted by stratified random sampling 204 

of 700 Landsat TM pixels, with ~100 samples per class. The land cover of the 700 references pixels 205 

was determined by examination of high resolution commercial and airborne true color imagery in 206 

Google Earth supplemented by field visits.  Standard confusion matrices were derived as cross-207 

tabulations of the classified versus the reference class and used to estimate the overall, user’s, and 208 

producer’s accuracies (Foody 2002). The overall classification accuracy was 86.4%, with user and 209 

producer’s accuracy of individual classes from 64.8-93.3% and 82.4-91.4%, respectively (Table 1). 210 

2.3 Linear downscaling of albedo, ET and GPP 211 

We calculated the proportions of the seven land cover types (κi, i = 1, 2 … 7) in each 500 m MODIS 212 

pixel for each Level IV ecoregion (Fig. 3). The annual mean blue-sky albedo, total annual ET, and 213 

annual mean GPP  (hereafter referred to as albedo, ET, and GPP) of each MODIS 500 m pixel were 214 
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used as the dependent variables in Eq. 1 to empirically estimate for each land cover type albedoi, ETi, 215 

and GPPi: 216 

Albedo = ∑ (κi × albedoi) + ε   [2] 217 

ET = ∑ (κi × ETi) + ε    [3] 218 

GPP = ∑ (κi × GPPi) + ε   [4] 219 

where  is the residuals of the ordinary least squares linear regression. RStudio (RStudio 1.1.453, 220 

https://www.rstudio.com/) was used to perform the downscaling with zero intercept and κi is the 221 

compositional portion (0-1) of land cover type i within the MODIS pixel, and the sum of κi must 222 

equal 1.  The estimated albedo, ET, GPP and WUE for each cover type were quantified by cover type 223 

and ecoregion with their means and standard errors (SE) reported through boxplots.  224 

3. Results 225 

3.1 Landscape Characterization 226 

Over 41.2% of the Kalamazoo River watershed falls in the ecoregion “Battle Creek Outwash Plain – 227 

56b”, which is characterized as broad and flat post-glacial plain. The “Lake Michigan Moraines -56f” 228 

and “Michigan Lake Plain – 5fd” ecoregions cover 22.5% and 9.6% of the watershed, respectively, 229 

and the remaining two ecoregions occupy 13.4%. The four dominant classified land cover types are 230 

cropland (57.1%), forest (28.1%), built-up (16.8%), and wetland (13.7%). Water, barren and 231 

grasslands each account for 0.5% to 3.0% of the watershed. There are large differences in landscape 232 

composition among the five ecoregions. The portion of cropland (40.9%) and forest (21.5%) in 233 

ecoregion 56b are substantially lower than the watershed mean, due to large portion of built-up land 234 

(21.8%) that includes the two largest cities: Kalamazoo and Battle Creek. In contrast, 45.6% of 235 

ecoregion 56d is classified as forest, resulting in a much lower cropland coverage (21.0%). The 236 

https://www.rstudio.com/
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portion of wetland is higher than the watershed mean in 56d (14.4%) and 56g (14.6%). Build-up land 237 

in four of the ecoregions accounts for 7.5%-11.0% of the watershed (Fig. 2).  238 

3.2 Land Surface Properties 239 

The mean (SE) albedo of the five ecoregions is 0.154 (±0.016), with the highest value found in 240 

ecoregion 56g (0.163 ±0.010) and the lowest value in 56h (0.141 ± 0.016) (Table 2). Interestingly, 241 

frequency distributions of albedo in the five ecoregions are all left skewed (γ <0), with the most 242 

skewed distribution found in 56g (γ =-2.18) and the least skewed distribution in 56f (γ = -0.72) (Fig. 243 

3a2). For ET, the mean (SE) is 450.7 (±135.1) mm, but with a minimum of 365.9 (±179.4) in 244 

ecoregion 56d and a maximum of 477.5 (±94.5) mm in 56g. For GPP, the watershed mean (SE) of 245 

7.27 (±2.36) MgC ha-1 yr-1 shows a deviation from a maximum of 7.71 (±1.71) MgC ha-1 yr-1 in 246 

ecoregion 56g and a minimum of 5.92 (±2.97) MgC ha-1 yr-1 in 56d (Table 2). As a result, WUE 247 

varies from 1.52 g kg-1 in ecoregion 56d to 1.63 g kg-1 in 56g (Table 2). Unlike the frequency 248 

distribution of albedo, both ET and GPP have bimodal density functions, except in ecoregion 56g 249 

(Fig. 3b2, c2). The first ET peak appears at ~210 mm and the second at ~515 mm. For GPP, similar 250 

peaks are at ~3 MgC ha-1 yr-1 and ~8 MgC ha-1 yr-1. By comparing the spatial changes of ET, GPP, 251 

and land cover, the forest-dominated ecoregions exhibit lower ET and GPP than the cropland 252 

dominated ecoregions (Figs. 3, 4). For example, forest cover in 56d has the highest ET and GPP, 253 

which corresponds well with the lowest albedo. Whereas, in 56g, cropland accounts 61.6% of the 254 

landscape, and the corresponding albedo, ET, GPP, and WUE are the highest among the five Level 255 

IV ecoregions (Table 2, Fig. 4). 256 

3.3 Downscaling 257 

We achieved satisfactory downscaled results for albedo, ET, and GPP in all five ecoregions (Table 258 

3).  The adjusted R2 is >0.995 for albedo, 0.915-0.971 for ET, and 0.902-0.962 for GPP. Values 259 
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appear generally higher in ecoregions dominated by croplands (56g, 56h) than those dominated by 260 

forests (56d). Among the five ecoregions, 56f and 56d have higher variations (i.e., standard errors) in 261 

estimated albedo (Fig. 5a). The overall means for ET and GPP are the lowest in 56d compared with 262 

the four other ecoregions. Higher estimated variation is found in 56d and 56f, while lower variation 263 

in 56g appear in cropland dominant (Fig. 5b, c). Surprisingly, the WUE, based on estimated values of 264 

ET and GPP, appears very similar among the ecoregions, except in 56d where it is remarkably lower 265 

than other ecoregions and with high variation (Fig. 5d). 266 

The downscaled estimates of albedo, ET, and GPP based on Eqs. 2-3 are reasonable (Table 3) 267 

and fall within the range of MODIS products (Fig. 3). The estimated albedo is the lowest for water 268 

(0.076-0.107) and the highest for cropland cover type (0.166-0.172). The albedo of the forest (0.136-269 

0.153), wetland (0.141-0.155), and urban (0.136-0.152) cover types are similar, while grassland 270 

albedo (0.136-0.172) is slightly lower than that of cropland. Additionally, estimated albedo exhibits 271 

higher variation in barren, grasslands, and water than that of the four major cover types (Fig. 4a), 272 

likely because of their small sampling size (i.e., small portion of the landscape, Fig. 2) and large 273 

interannual variation. The high variation of albedo in the water cover type among the five ecoregions 274 

likely arises from seasonal variations in lake vegetation, sediment loading and waves. 275 

Estimated ET (mm) is the highest for built-up cover type (525.6-687.1) and the lowest at 276 

forest (209.7-459.7), with a mean (SE) of 588.3 (47.7) and 318.3(69.9), respectively, among the five 277 

ecoregions (Table 3, Fig. 4b). Interestingly, the estimated ET for cropland land cover and water is not 278 

high as expected, especially from the water cover where ET source is sufficient (Fig. 4b). The 279 

variation associated with ET estimates for barren and grasslands are high, but not for water, possibly 280 

because of high similarity of evaporation among the open water bodies.  281 

Estimated GPP (MgC ha-1 yr-1) is the highest for the build-up cover type (8.65-9.85) and the 282 

lowest for the forest (4.81-7.42), with a mean (SE) of 9.71 (±0.76) and 5.13 (±1.09), respectively 283 

(Table 3, Fig. 4c). While a low GPP (6.42 ± 0.99) is reasonable for the wetland cover type, the high 284 
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estimated GPP for barren cover (7.61 ± 3.67) and water (7.49 ± 0.86) need to be explored further to 285 

discover the source of the discrepancies in underlying mechanisms (e.g., small sampling size). 286 

Finally, WUE (g kg-1) among the seven cover types are similar at an overall mean of 1.57, with the 287 

highest and the lowest WUE found in the built-up cover type (1.66) and barren (1.49) (Fig. 4d). 288 

Again, high variation in estimated WUE appears in grassland cover type, but not in the built-up and 289 

water cover type. 290 

4. Discussion 291 

Development of this downscaling approach was stimulated by the practical need to estimate 292 

ecosystem functioning at the Landsat spatial resolution of 30 m from coarser spatial resolution 293 

MODIS products at 500 m (Robinson et al. 2018). Alternative efforts had been made to derive or 294 

model functional measures directly from Landsat data (Zheng et al. 2004; Dieye et al. 2012; Gitelson 295 

et al. 2012; Semmens et al. 2016; Yao et al. 2017), or resample of Landsat within the MODIS frame 296 

(Wang et al. 2017; Trlica et al. 2017). Our approach offers a direct downscaling option by avoiding 297 

time-consuming processing or modeling efforts through integrating land cover maps with available 298 

MODIS products.  299 

To demonstrate the concept, we applied the approach for blue-sky albedo, ET, and GPP in a 300 

watershed consisting of five Level IV ecoregions in southwestern Michigan. The estimated albedo, 301 

ET, and GPP values appear reasonable for the ecosystems in the region. Among the ecosystems, 302 

croplands and grasslands have higher albedos than the other cover types, with the water cover type 303 

showing the lowest values, as expected (Table 3). This pattern is consistent with snow-free albedo 304 

variations among ecosystems (Campbell and Norman 1998) and across the conterminous United 305 

States (Barnes and Roy 2010) and to widely reported values in similar ecosystems (e.g., Bonan 1997; 306 

Wang et al. 2017; Zhou et al. 2019). For example, Trlica et al. (2017) applied Landsat images and 307 

estimated albedo across the urban landscape of Boston. They reported a mean and range of 0.152 308 
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(0.112–0.187), which are comparable to our estimate of 0.136-0.152 (Table 3). Similarly, the ET and 309 

GPP estimates of our initial modeling appear in good agreements with those of in situ measurements 310 

(e.g., Papale et al. 2015), remote sensing modeling (Xiao et al. 2004; Yuan et al. 2010), or those from 311 

ecosystem models (Sun et al. 2011). For example, Abraha et al. (2015) reported the annual ET of 312 

measurements from eddy-covariance flux towers in seven bioenergy crops (2009-2012) that are 313 

within the 56b ecoregion of our watershed. Their annual ET ranged between 480 mm and 639 mm, 314 

which is similar to our estimate of the cropland in 2011 (512.2 mm).  315 

4.1. Prerequisites of the downscaling approach 316 

Our approach for downscaling available MODIS data to higher resolution products requires at least 317 

three strong assumptions. First, the dependent variable (e.g., functional measures albedo, ET, or 318 

GPP) is considered to be the linear sum of the independent values from each cover type. To estimate 319 

the contribution of each cover type empirically, its portion within a MODIS pixel is used in a 320 

multiple linear regression model with zero intercept (Eq. 1). A fundamental prerequisite is that the 321 

functional measure (e.g., albedo, ET, or GPP) is assumed to have the same value within each land 322 

cover type for every finer resolution pixel within among coarser resolution MODIS pixels. This 323 

constraint suggests that our approach can be only applied a spatial extent where the climate, soils, 324 

and landforms across the landscape are the same (or similar). The proper scale for model application 325 

will depend on the heterogeneity of the region studied (e.g., complexity of land forms, distribution of 326 

soils, climatic variation, etc.). For instance, strong terrain effects (elevation, aspect, slope) may 327 

require further subdivision beyond land cover type to portray spatial distributions effectively.  328 

To satisfy this assumption, one would need to explore the changes of the functional measure 329 

with scale and spatial extent to determine an appropriate regionalization for the model application. In 330 

modeling of landscape that is stationary in the statistical sense (Saunders et al. 2005), geostatistical 331 

tools such as semivariance analysis (Atkinson 2013) can be applied to quantify the geostatistical 332 
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range as the proper scale (Cressie and Wikle 2015).  Lacunarity and wavelet analysis are alternative 333 

choices for non-stationary landscapes (Saunders et al. 2005). These preliminary analyses for 334 

identifying the minimal extent can be performed for MODIS products, and/or climate/soils data, if 335 

they are available prior to downscaling. Violations of this assumption will significantly reduce the 336 

model reliability and increase the uncertainty of downscaled estimates (see next section for 337 

discussion on uncertainty). An alternative approach to determine the minimal landscape extent for 338 

satisfying the model assumptions is to use ecoregions that have been delineated by “similar land 339 

forms, soils, and climate” criteria. We based our demonstrative modeling on the Level IV ecoregions 340 

for the State of Michigan (Omernik and Griffith 2014). Other similar products, such as maps of 341 

potential vegetation (Tucker et al. 2005; Fensholt and Proud 2012), climatic zones (Kottek et al. 342 

2006), soils (Stoorvogel et al. 2017), or landforms (O’Loughlin et al. 2016) could be also considered 343 

in absence of quantitative identification of the landscape scale.   344 

The second assumption of this downscaling approach is that every land cover type (i.e., the 345 

ancillary data used for the modeling) remains unchanged during the study period (e.g., within a year 346 

in this study), which is untrue if there  are rapid changes of land use or land cover or strong 347 

seasonality in land cover characteristics. For example, many cropland-dominated landscapes are 348 

managed with rotation crops (i.e., corn – soybeans – wheat), different irrigation scheduling, 349 

conservation tillage and other land management practices (Plourde et al. 2013). Treating these 350 

croplands as a single cover type to estimate their ecosystem function may be misleading. An 351 

alternative is to apply the model during a shorter period so that this model assumption is not violated. 352 

For example, one could model albedo, ET, and GPP for each 16-day composite period of the MODIS 353 

product. The seasonal and annual values could then be summed from the series of values. One 354 

caveat: the spatial scale of the variable of interest may vary through time (cf., Henebry 1993; Goodin 355 

and Henebry 1998). 356 
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The third assumption is the availability of many finer resolution pixels as well as an adequate 357 

number of coarser resolution pixels. The modeled landscape needs to include finer spatial resolution 358 

pixels (e.g., Landsat) that are many times the number of cover types in order to estimate the 359 

empirical coefficients, with more pixels providing higher estimation confidence. In the limit, 360 

mathematically, the coefficients in Eq. 1 can be calculated with the number of coarser spatial 361 

resolution pixels (e.g., MODIS) the same as the number of land cover types.  For this study, a 362 

minimum of seven pixels were needed, which implies a minimal landscape size of 1.75 km2 when 363 

using 500-m resolution MODIS products. It is worth noting that most MODIS pixels do not include 364 

all seven cover types (see Fig. 1), which will complicate estimation of the minimum extent. 365 

However, the model confidence can be significantly improved with larger sample sizes. For example, 366 

if the study landscape is 10-15 km2, one would have 400-600 MODIS pixels at 500 m. An alternative 367 

to assure large sampling size could be done with the “sliding box” approach (Rodriguez-Iturbe et al. 368 

1998; Saunders et al. 2005), where the study landscape with minimal size can be slid across a large 369 

region by allowing overlaps. However, each additional sample is a pseudo-replicate, likely with 370 

positive spatial autocorrelation, suggesting that substantially more effort is needed to conduct 371 

posterior analyses for model uncertainty (Hargrove and Pickering 1992). Nevertheless, the balance 372 

between sample size and assuring similar values by cover type needs also be analyzed prior to model 373 

application. 374 

4.2 Uncertainties of the downscaling predictions 375 

The conceptual downscaling model (Eq. 1) would be flawless if: (1) all model assumptions were met, 376 

and (2) both dependent and independent variables were truly representative measures of the 377 

ecosystem properties. The soundness of this modeling approach is demonstrated with high model R2 378 

values in each Level 4 ecoregion in the Kalamazoo River watershed (Table 3) with reasonable 379 

predictions of albedo, ET and GPP (Figs. 4). Unfortunately, this situation may not always be the case 380 



18 
 

in practice, since uncertainties can arise from multiple sources. First, both the dependent and 381 

independent variables in Eqs. 2-3 are produced from satellite observations and carry uncertainties 382 

associated with the algorithm used for the retrieval, including calibration, geometric, and atmospheric 383 

corrections (Vermote et al. 2002; Wolfe et al. 2002; Helder et al. 2018). From a systems modeling 384 

perspective, uncertainty generally increases as more steps or more variables or more algorithms are 385 

involved. Here MODIS blue-sky albedo is retrieved from surface reflectance products corrected for 386 

BRDF and using retrieved atmospheric aerosols, and ET and GPP are modeled with algorithms with 387 

multiple inputs (e.g., climate scalars, coefficients of light use efficiency, surface roughness, etc.) 388 

(Schaaf et al. 2002; Zhao et al. 2005, 2006; Chrysoulakis et al. 2018). These processing chains may 389 

be a potential reason for the higher confidence level in predicting albedo than ET or GPP, which 390 

carry greater uncertainty. However, we note that albedo is a bounded value, unlike ET or GPP, which 391 

also constrains variation. The accuracy of MODIS products are also often influenced by atmospheric 392 

conditions, in particular undetected sub-pixel clouds, resulting in different predictions among pixels 393 

even though their landscape composition may be the same (Schaaf et al. 2002; Yang et al. 2006). 394 

These differences may also vary among the images of different times, which can further propagate 395 

uncertainty, regardless of quality control and data screening process, when multiple products are 396 

applied for calculating a value at longer temporal scale (e.g., annual values in this study).   397 

The Landsat classified land cover type and distributions across the landscape are also not 398 

without uncertainty, since classification accuracy varies by cover type (Table 1). In this pilot study, 399 

the user’s accuracies were lower for barren, water, and build-up cover types than for other cover 400 

types. It is well established that urban areas are difficult to classify reliably because they encompass 401 

such a variety of building types and land uses, so even at the Landsat scale of 30 m, the results are 402 

often mixed spatially (Zhang and Roy 2017). Similarly, water and barren are quite broad thematic 403 

definitions that can be highly variable in space and in time. Thus, the number of cover types as well 404 

as the variation within a single cover type can generate additional uncertainty. For example, forests 405 
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within the watershed are treated as one cover type, although their species composition, stand 406 

structure, age, disturbance history (including management), etc. may vary substantially across the 407 

landscape. Similar variation in composition and structure exist among patches of the same cover type 408 

within a MODIS pixel. 409 

Low classification accuracy may be partially responsible for the high standard errors in 410 

predicting albedo, ET, and GPP within an ecoregion (Table 2) and among the ecoregions (Fig. 5). 411 

The standard errors also vary by cover type (Fig. 4), with the barren cover type having the highest 412 

value and croplands having the lowest. While it is likely that the prevalence of nearly homogeneous 413 

surfaces is higher in cropland than in barren and grassland covers, providing a partial explanation for 414 

the differences in SE, we speculate that classification accuracy is also partially responsible for the 415 

uncertainty in downscaling albedo, ET, and GPP.  416 

The scale at which the modeling is applied provides another source of uncertainty (Levin 417 

1992; LeMoine and Chen 2003; Saunders et al. 2005). We based our modeling example here using 418 

the Level IV ecoregions without a quantitative exploration of the “right scale” (sensu Levin 1992). 419 

Future efforts are strongly recommended to include scale identification prior to the modeling. More 420 

importantly, neither MODIS nor Landsat pixels represents a homogeneous ecosystem (i.e., a cover 421 

type). Across the Kalamazoo River watershed, there exist smaller patches and edges (<30 m), 422 

suggesting that the composition of land cover within a Landsat pixel is an approximation or 423 

generalization. The uncertainty will likely be higher in landscapes with more cover types, finer patch 424 

sizes, and more edges.  425 

4.3 Transformative applications of the downscaling approach 426 

Our proposed downscaling approach decomposes the property of a spatially nested hierarchical 427 

system when the structure of the lower hierarchical level is known. This linear downscaling approach 428 

can be applied to nested spatial, temporal, or organizational hierarchies. A key advantage of this 429 
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approach is that it enables the use of coarser spatial resolution MODIS products for predicting finer 430 

spatial resolution values that are directly connected with landscape composition. Although this paper 431 

focuses on downscaling MODIS products by using classified Landsat data, other finer resolution land 432 

cover data (e.g., derived from Sentinel-2) could be used. Similarly, products from the NOAA’s 433 

operational MODIS follow-on sensor VIIRS (VIsible Infrared Radiometer Suite) could be used in 434 

place of MODIS products (Zhang et al. 2018). The downscaled estimates provide us the opportunity 435 

to explore ecosystem functioning at the level of spatial detail afforded by Landsat and comparable 436 

sensors.  437 

Connecting patterns and processes, for example, has been a major interest within the 438 

landscape ecology community (Turner and Gardner 2015). While substantial knowledge has been 439 

gained over the past 30 years to improve the understanding of the empirical and theoretical 440 

relationships between ecosystem functioning and landscape structure, there remains a major 441 

disconnect between the disciplines of ecosystem ecology and landscape ecology. For example, many 442 

landscape studies have been published on landscape structure and dynamics, often based on Landsat 443 

images. While modeling ecosystem production and other functions at 30 m have been reported (e.g., 444 

Zheng et al. 2004), such efforts require much ground level data for model parametrization, 445 

calibration, and validation and intensive computations, despite often limited availability of cloud-free 446 

data. With availability of MODIS products, one can more readily relate ecosystem functions with 447 

landscape composition and structure.   448 

Another promising direction is to examine the underlying landscape processes from using the 449 

residuals (ε in Eqs. 1-4), which may point to potential driving mechanisms. For example, the 450 

residuals from Eqs. 2-4 could be examined for their latent relationships using quantitative metrics 451 

describing landscape structure to address the question: What landscape structure and processes are 452 

responsible for this unexplained variation in ecosystem functioning? Here we hypothesize that the 453 
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patch patterns, variation in soils, climate and management practices within a landscape may all 454 

contribute to the variation in residuals, especially for the high uncertainties found in ET and GPP. 455 

The downscaling model could be further expanded to explore other landscape processes. For 456 

example, the GPP model (Eq. 4) could be refined to include interactive terms among the cover types: 457 

GPP = ∑ (κi × GPPi) + (κi*j × GPPi*j) + ε   [5] 458 

where the estimated GPPi*j reflects the interactive contribution of two cover types (i and j) that could 459 

be related to edge effects between them. Once the model predictions are validated, it may provide a 460 

great opportunity for understanding the ecosystem consequences of spatial fragmentation and 461 

disturbances across the landscape (Franklin and Forman 1987; Chen 1991; Di Giulio et al. 2009). 462 

5. Conclusions 463 

Based on practical needs for downscaling popular MODIS products at 500 m resolution to match 464 

classified land cover from Landsat data at 30 m resolution, we have proposed an innovative 465 

modelling approach so that landscape structure and ecosystem functioning could be directly studied 466 

for their interconnections. As a proof-of-concept, we tested this model in the five landscapes of Level 467 

IV ecoregions found within the Kalamazoo River watershed using three key ecosystem functional 468 

attributes: albedo, ET, and GPP. An object-oriented classification of Landsat imagery in 2011 was 469 

processed to generate a land cover map indicating landscape stucture. Each downscaling model 470 

exhibited high fit (R2 >90%), with higher confidence levels for albedo than for GPP or ET. The 471 

estimated values for albedo, ET, and GPP appear reasonable and within  their ranges reported for the 472 

region and consistent with values reported in the literature. Despite these promising results, this 473 

approach relies on strong assumptions that can be difficult to characterize. It is only valid at a scale 474 

where similar climate, soils, and landforms exist (i.e., value of the same cover type in isolated 475 

patches are the similar). Plausibly, the uncertainties associated with each estimation, as well as the 476 
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model residuals, can be explored further to detect other pattern-process relationships within the 477 

landscapes.  478 
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Table 1. Brief description of seven land cover types in the Kalamazoo River watershed, the number of validation samples by cover type, 
and classification accuracies from user’s and producer's perspective. 
 

Barren: Areas where not covered by vegetation or construction 

Built-up: built-up land with a mixture of constructed materials and vegetation 

Cropland: annual crops and/or pastoral land 

Forest: land dominated by high tree cover 

Grassland: herbaceous vegetation, including lawns 

Water: open water (e.g., lakes, reservoir, and large rivers) 

Wetland: mostly forested wetlands 

 Built-
up Cropland Grassland Forest Water Wetland Barren User's accuracy 

Built-up 46 9 3 11 0 0 2 64.8% 
Cropland 2 191 2 11 0 0 2 91.8% 
Grassland 1 2 57 1 0 1 2 89.1% 
Forest 2 10 3 154 0 1 0 90.6% 
Water 0 0 0 6 53 9 0 77.9% 
Wetland 0 1 0 1 3 70 0 93.3% 
Barren 0 3 1 3 2 1 34 77.3% 
Producer’s Accuracy 90.2% 88.4% 86.4% 82.4% 91.4% 85.4 85.0% 86.4% 
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Table 2. Statistics for blue-sky albedo, evapotranspiration (ET, mm), gross primary production (GPP, MgC ha-1 yr-1) and water use 
efficiency (g kg-1) in the five Level IV ecoregions of the Kalamazoo Watershed in Southwest Michigan, USA. MED is Median; γ is 
skewness; SE is standard error. 

  

Ecoregion 
Blue-sky albedo ET GPP WUE 

Mean (SE) MED γ Mean (SE) MED γ   Mean (SE) MED γ Mean (SE) 
Battle -56b 0.150 (±0.017) 0.151 -1.85 455.41 (±131.79) 498.80 -0.91 7.35 (±2.30) 8.09 -0.83 1.60 (±0.01) 

Michigan - 56d 0.141 (±0.016) 0.140 -1.19 365.86 (±179.41) 270.50 0.41 5.92 (±2.97) 4.44 0.43 1.52 (±0.13) 

Lake - 56f 0.161 (±0.014) 0.161 -0.72 470.30 (±130.23) 508.60 -1.02 7.63 (±2.33) 8.28 -0.96 1.58 (±0.01) 

Lansing - 56g 0.163 (±0.010) 0.165 -2.18 477.47 (±94.49) 492.00 -1.41 7.71 (±1.71) 7.98 -1.23 1.63 (±0.03) 

Interlobate - 56h 0.155 (±0.012) 0.156 -0.99 444.89 (±132.44) 486.60 -0.87 7.13 (±2.34) 7.80 -0.78 1.59 (±0.03) 

Overall 0.154 (±0.016) 0.156 -1.49 450.65 (±135.13) 492.70 -0.84 7.27 (±2.36) 7.98 -0.76 1.57 (±0.11) 
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Table 3.  Estimated mean (standard error, SE) of blue-sky albedo, evapotranspiration (ET, mm) and gross primary production (GPP, MgC 
ha-1 yr-1) by cover type and Level IV ecoregions in the Kalamazoo River watershed in southwestern Michigan, USA. 

Cover 

Type 

Battle (56b) Michigan (56d) Lake (56f) Lansing (56g) Interlobate (56h) 

Albedo ET GPP Albedo ET GPP Albedo ET GPP Albedo ET GPP Albedo ET GPP 

Built-up 0.1419 
(0.0004) 

555.6 
(5.9) 

9.25 
(0.10) 

0.1362 
(0.0018) 

687.1 
(23.9) 

9.75 
(0.16) 

0.1490 
(0.0011 

597.0 
(15.4) 

9.85 
(0.28) 

0.1518 
(0.0014) 

525.6 
(17.7) 

8.65 
(0.33) 

0.1436 
(0.0006) 

576.0 
(9.3) 

9.47 
(0.17) 

Cropland 0.1664 
(0.0003) 

515.7 
(2.7) 

8.27 
(0.05) 

0.1685 
(0.0007) 

600.6 
(9.1) 

9.72 
(1.01) 

0.1728 
(0.0003 

512.2 
(3.3) 

8.35 
(0.06) 

0.1699 
(0.0003) 

479.7 
(3.3) 

7.71 
(0.06) 

0.1673 
(0.0002) 

511.0 
(3.0) 

8.21 
(0.05) 

Grassland 0.1606 
(0.0035) 

489.4 
(39.1) 

7.49 
(0.70) 

0.1356 
(0.0046) 

766.6 
(58.4) 

3.60 
(0.12) 

0.1723 
(0.0066 

713.3 
(84.2) 

11.63 
(1.53) 

0.1706 
(0.0085) 

442.7 
(92.6) 

7.15 
(1.73) 

0.1654 
(0.0033) 

510.6 
(43.9) 

8.08 
(0.79) 

Forest 0.1380 
(0.0005) 

300.5 
(5.2) 

4.81 
(0.09) 

0.1359 
(0.0005) 

209.7 
(6.9) 

5.64 
(0.58) 

0.1425 
(0.0007 

334.3 
(8.8) 

5.33 
(0.16) 

0.1530 
(0.0010) 

459.7 
(11.0) 

7.42 
(0.21) 

0.1429 
(0.0004) 

287.2 
(5.5) 

4.49 
(0.10) 

Water 0.0764 
(0.001) 

514.1 
(17.1) 

8.28 
(0.30) 

0.0807 
(0.0018) 

408.6 
(33.4) 

4.64 
(0.20) 

0.1072 
(0.0017 

472.9 
(26.5) 

7.49 
(0.48) 

0.1024 
(0.0020) 

541.4 
(33.7) 

8.06 
(0.63) 

0.1000 
(0.0015) 

489.2 
(22.8) 

7.37 
(0.41) 

Wetland 0.1482 
(0.0007) 

391.7 
(7.7) 

6.23 
(0.14) 

0.1408 
(0.0009) 

307.3 
(11.6) 

5.51 
(0.68) 

0.1456 
(0.0011 

399.9 
(14.1) 

6.31 
(0.26) 

0.1553 
(0.0008) 

496.2 
(9.0) 

8.10 
(0.17) 

0.1490 
(0.0005) 

425.5 
(6.9) 

6.81 
(0.12) 

Barren 0.1535 
(0.0023) 

524.3 
(25.1) 

8.50 
(0.45) 

0.1362 
(0.0018) 

376.2 
(39.2) 

9.85 
(0.28) 

0.1107 
(0.0055 

201.4 
(69.3) 

2.37 
(1.26) 

0.1471 
(0.0101) 

795.7 
(114.9) 

12.51 
(2.15) 

0.1546 
(0.0043) 

571.8 
(56.0) 

9.18 
(1.01) 

Adj. R2 0.995 0.944 0.933 0.996 0.915 0.902 0.997 0.947 0.935 0.998 0.971 0.962 0.997 0.943 0.929 
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Figure Captions 
 

Figure 1. A snapshot of land cover overlaid with the 500 m MODIS grids within the Kalamazoo 

River Watershed. The portion of each cover type in each MODIS grid is calculated as κi that 

ranges from 0 to 1 for downscaling grid-level GPP to cover type GPPi (Eq. 1). 

Figure 2. Landscape cover of the Kalamazoo River Watershed in 2011 in southwestern Michigan, 

USA. The table includes the total land area (km2) of each cover type and its portion (%) within 

the Level IV Ecoregion. 

Figure 3. Spatial distributions of blue-sky albedo (%), evapotranspiration (ET, mm) and gross 

primary production (GPP, MgC ha-1 yr-1) in 2011, as well as their frequency distributions 

described with probability density function (PDF). The PDF distributions were generated with 

the density function in RStudio with the bandwidth (bw) of standard deviation. 

Figure 4. Boxplots of: (a) blue-sky albedo, (b) evapotranspiration (ET, mm), (c) gross primary 

production (GPP, MgC ha-1 yr-1), and (d) ecosystem water use efficiency WUE (g kg-1) within the 

Kalamazoo River Watershed in southwestern Michigan, USA. The statistics were calculated 

among the five Level IV Ecoregions in 2011 (see Fig. 5). The horizontal line and the number 

inside the circle are the grand mean of the watershed. 

Figure 5. Boxplots of: (a) albedo, (b) evapotranspiration (ET, mm), (c) gross primary ecosystem 

production (GPP, MgC ha-1 yr-1), and (d) ecosystem water use efficiency (WUE, g kg-1) at five 

Level IV Ecoregions within the Kalamazoo River Watershed in southwestern Michigan, USA. 

The statistics were calculated among the seven land cover types in 2011 (see Fig. 4). The 

horizontal line and the number inside the circle are the grand mean of the watershed. 
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Fig. 1. 
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Fig. 2  
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Fig. 3 
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Fig. 4. 
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Fig. 5 

 




