1	Title: Drought minimized nitrogen fertilization effects on bioenergy feedstock quality
2	Authors:
3	Sarah M. Emery ¹ *
4	Karen A. Stahlheber ^{2,3}
5	Katherine L. Gross ^{2,4}
6	Institutions:
7	¹ Department of Biology, University of Louisville, Louisville KY
8	² W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI
9	³ Department of Natural and Applied Sciences; University of Wisconsin-Green Bay WI
10	⁴ Department of Plant Biology and Graduate Program in Ecology, Evolution, and Behavioral
11	Biology, Michigan State University, East Lansing, MI
12	
13	*Contact information for corresponding author:
14	Department of Biology, University of Louisville
15	139 Life Sciences Bldg., Louisville, KY 40292
16	e-mail: sarah.emery@louisville.edu; Office phone: 502.852.5940

Abstract:

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Switchgrass (*Panicum virgatum*) is one of the leading candidates for sustainable lignocellulosic biofuel production in North America. Most current management recommendations for switchgrass include applications of synthetic nitrogen (N) fertilizers to increase production, particularly when grown on marginal lands. However, this management can be costly to growers and have negative impacts on ecosystem functioning. Also, N-fertilization does not always result in higher yield in switchgrass and may have unintended effects on plant biomass quality, including cell wall composition, that can affect the efficiency of fermentation processes for biofuel production. Drought stress may reduce biomass responses to Nfertilization, further reducing the value of fertilizer application. To examine whether Nfertilization and reduced precipitation affected switchgrass productivity and cell wall composition, we conducted a two-year field experiment in mature stands of two switchgrass cultivars grown for bioenergy at the W.K. Kellogg Biological Station Long Term Ecological Research Site in Michigan, USA. Nitrogen was added at a rate of 56 kg N ha⁻¹ (urea and ammonium nitrate), and precipitation was reduced using rainout shelters. Overall, we did not observe any effect of N-fertilization on biomass production. However, under ambient rainfall conditions, N-fertilization altered switchgrass biomass quality by reducing hemicellulose. Reduced precipitation minimized the effects of N-fertilization on switchgrass cell wall composition. Switchgrass is a relatively drought-tolerant species, and our results indicate that this crop will be a viable bioenergy feedstock even in a changing climate. However, in this study, N-fertilization had no effect on biomass quality or quantity under drought conditions.

Key Words: switchgrass, drought, lignin, nitrogen, bioenergy crops

1. Introduction

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

The growing interest in using perennial grasses such as switchgrass (*Panicum virgatum*) as bioenergy feedstocks [1] has motivated research into their sustainability. Perennial energy crops are predicted to be more efficient in terms of energy return, because their cultivation produces half of the greenhouse gas emissions compared to grain feedstock [2]. Also, many perennial species can be grown on marginal land conditions where food crops cannot be grown [3]. Switchgrass, a warm-season grass native to much of North America, is one of the leading candidates for sustainable lignocellulosic biofuel production due to its efficient nutrient and water use, and longevity of planted stands [10+ years of production; 4]. Switchgrass stands also can provide other ecosystem services that are increasingly seen as important for sustainability, including increased soil carbon sequestration, enhanced methane consumption, and providing habitat for populations of desirable organisms such as biocontrol agents and pollinators [5]. However, knowing how to manage these crops on marginal lands will be a challenge for producers, especially given the initial financial commitments that are needed to establish a productive stand. Growers need to consider which switchgrass cultivar to plant based on yield goals and environmental conditions [6], and whether or not to use synthetic fertilizers to increase yields [7]. While current management recommendations of switchgrass generally call for application of synthetic fertilizer, in particular nitrogen, these come with economic costs to growers (an estimated \$37/ha) [8], and do not always deliver higher yields, especially on moderately-fertile lands or lands limited in other nutrients. For example, Kering et al. [9] found no effect of nitrogen addition (135 kg N ha⁻¹) on switchgrass yields in Oklahoma. Similarly,

Tennessee, and Roley et al. [11] found no effect of fertilizer (up to 196 kg N ha⁻¹) on switchgrass

Garten et al. [10] found no effect of fertilizer (up to 202 kg N ha⁻¹) on switchgrass yields in

yields in Michigan. Also, even if fertilizer increases crop biomass, there may be negative impacts on other ecosystem services such as nitrate leaching and N₂O emissions [12, 13].

The use of N fertilizers to increase crop yield may also have unintended effects on plant biomass quality, including cell wall composition, that can affect the efficiency of fermentation processes for biofuel production [14]. A meta-analysis of 52 studies covering a wide range of plant species found that N-fertilization generally increased lignin in cell walls while decreasing hemicellulose due to tradeoffs in energetic costs of each component [15]. In general, increases in structural carbohydrates (cellulose and hemicellulose) in cell walls are favored for biochemical conversion [16], while lignin increases recalcitrance which can increase the cost of processing plant material [17]. These results suggest that N-fertilization could decrease the biomass quality of bioenergy crops.

Expected change in climate in the Midwestern USA, particularly precipitation patterns, may also alter recommendations for agricultural practices for bioenergy and other crops [18]. Regional climate models predict anywhere from 35% increased (PCM model) to 45% reduced (GFDL model) growing-season precipitation [19], along with increases in summer temperatures by 3.1-4.7°C over the next 100 years [20]. The changes in climate likely will results in crops experiencing increased water stress in the future [21]. Drought stress can reduce biomass responses to N-fertilization in switchgrass and other crops [22, 23], further reducing the value of fertilizer application.

We conducted a two-year field experiment to determine how N-fertilization affected crop productivity and biomass quality (i.e., cell wall composition) in mature stands of two switchgrass cultivars grown for bioenergy in Michigan, USA. We also evaluated whether drought diminished these N-fertilization effects. Although yield responses to N-fertilization in switchgrass can vary,

we predicted that N-fertilization would increase switchgrass yield, as shown in a wide variety of studies [24] and would alter switchgrass cell wall composition, generally making it more unfavorable for biofuel production by increasing lignin and decreasing hemicellulose. We also predicted that drier soil conditions would minimize effects of N-fertilization on switchgrass biomass quantity and quality, as increased abiotic stress can interfere with N-uptake, as shown in other crops [25-27].

2. Methods

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

2.1 LTER Cellulosic Biofuel Diversity Experiment Design

This research was conducted at the W.K. Kellogg Biological Station Long Term Ecological Research (KBS LTER) site in southwest Michigan USA (42°23047"N, 85°22026"W). This site averages 810 mm yr⁻¹ of precipitation and soils are Kalamazoo series fine loamy, mixed, mesic Typic Hapludalfs [28]. The Cellulosic Biofuels Diversity Experiment was established as part of the KBS LTER in 2008 and designed to compare production of 12 different biofuel cropping systems varying in species composition and nitrogen input. The experiment included two cultivars of switchgrass ("Cave-in-Rock" and "Southlow"; each planted at a rate of 3.9 kg ha⁻¹) grown at two levels of fertilization (56 kg N ha⁻¹ and unfertilized) which we used for this study. The four switchgrass treatment combinations were planted in 9 m x 27 m plots, replicated four times in a randomized block design interspersed with the other 8 treatments. Fertilizer (28% N; Urea + Ammonium nitrate) was applied to relevant treatment plots every year in the spring. All switchgrass plots were treated with Drive (quinclorac; BASF Corp, NC) at 0.56 kg ha⁻¹ for broadleaf weed control during the first two years following planting (2009-10). Switchgrass plots were harvested annually at the end of each growing season (Oct/Nov) using a John Deere 7330 tractor with 7.5 ft wide Kemper head. Additional experiment details on the management of this experiment can be found at:

https://lter.kbs.msu.edu/datasets/109.

2.2. Precipitation Manipulation

In May 2015, we established a precipitation reduction ("drought") treatment using rainout shelters placed in either the northwest or southwest corner of each of the switchgrass treatment plots (n=16). The rainout shelters were based upon the design of Yahdjian and Sala [29] and were 3 m \times 2.5 m \times 1.8 m, constructed using 3.8 cm PVC. Roofing material was made of 3 mm thick clear polycarbonate (no UV filter) that was cut into strips 246 cm x 12.7 cm and bent lengthwise down the center to a final angle of 105° . Twenty-four bent pieces of polycarbonate were evenly spaced across each roof for a target rainfall reduction of approximately 80%. Gutters with downspouts were attached to one edge of each shelter to remove intercepted rainfall from subplots. In the alternate west corner of each switchgrass plot, a 3 m \times 2.5 m "ambient" subplot was established to compare plant growth in non-shelter conditions. Shelters were installed May-October 2015 and 2016 and removed at the end of each growing season.

To monitor the effects of the rainout shelters on soil moisture, we buried soil moisture sensors (Watermark Model 200SS; Irrometer Company, Inc., Riverside, California) to a depth of 15 cm in the center of each drought and ambient subplot in May 2015. Soil moisture readings were taken every 3-5 days during the growing seasons (May-October) 2015 and 2016 (80 readings total). We also recorded light levels (AccuPAR LP-80 light wand; Decagon Devices; Pullman, WA, USA) above the vegetation under the shelters and in ambient subplots 8 times over the two growing seasons to evaluate any effects of the shelter structures on light availability. Soil water tension was, on average, 40% lower (more negative) under shelters compared to ambient plots (-39.5 vs. -28.2 centibars; paired t-test t₁₀₂₃=11.68, p<0.001). Shelters

also reduced light availability by 19% on average (1005.5 vs. 1239.5 μ mol m⁻²s⁻¹; t_{143} = 12.12, p<0.001).

To verify that our rainout shelters reduced water availability to plants, we measured predawn and midday xylem pressure potential (Ψ_P) using a pressure chamber (Model 600; PMS Instrument Company, Albany, OR, USA). These measurements were taken on two tillers per subplot in July 2015, August 2015, Sept. 2015, June 2016, and August 2016. All subplots were measured on a single night (2:00-4:00) and the following day (13:00-15:00) per sampling period. Overall, pre-dawn Ψ_P was 29% lower (more negative) under the rainout shelters compared to ambient subplots (-2.48 vs. -1.93 MPa; t_{79} = 2.20, p = 0.03), while midday Ψ_P was 15% lower under the rainout shelters compared to ambient subplots (-11.88 vs. -0.29 MPa; t_{79} = 3.19, p = 0.002).

2.3 Plant biomass responses

In October 2015 and 2016, we measured aboveground biomass production in each treatment by clipping at 5 cm above ground level all standing biomass from a 50 cm x 50 cm quadrat in the center of each subplot [30]. Switchgrass tillers were senesced and seeds were ripe at harvesting. Switchgrass stems were separated from weeds (that comprised, on average, 11% of total biomass in both drought and ambient rainfall treatments), and samples were dried (48 h at 60°C) and weighed. We determined cell wall composition of the switchgrass using dried subsamples collected from biomass harvests in both years. Samples were sent to the Michigan State University Cell Wall Facility (East Lansing, MI) and processed according to methods described in [31, 32]. For each sample, total lignin (consisting of individual lignin monomers syringyl (S), guaicyl (G) and p-hydroxyphenyl (H)), total hemicellulose (consisting of individual

monomers arabinose, mannose, galactactose, xylose, and hemicellulosic glucose), and crystalline cellulose were quantified using GC-MS.

2.4. Data analyses

To determine N-fertilization effects on switchgrass productivity, cell wall composition, and physiology, we analyzed data from the ambient subplots first, using two-factor ANOVA (productivity) and MANOVAs (cell wall monomers and major cell wall components) with cultivar and fertilizer as main effects and experimental block and year as blocking terms. When MANOVAs showed significance based on Pillai's trace statistics, we followed-up with univariate analyses to determine which of the individual response variables was responsible for the differences [33]. We also examined differences in cell wall composition across cultivar and fertilizer treatments by conducting a linear discriminant analysis (LDA) [33], which determined how useful cell wall components were in separating treatments.

To evaluate whether drought minimized fertilizer effects on plant responses, we repeated the above analyses on the shelter subplot data. We did not have sufficient statistical power to examine fertilization × drought interactions explicitly due to low replication (8 main plots) in the long-term treatments. Sampling year had a significant effect on most measured responses, but with only two years in this experiment, we could not definitely attribute causes for this variation, and so do not discuss this effect further. All analyses were conducted in Systat v.12 [34].

3. Results

3.1. N-fertilization effects under ambient conditions

In the ambient precipitation subplots, fertilization did not have a significant effect on aboveground biomass (Fig. 1). However, cell wall monomer composition differed in response to

fertilization (MANOVA F_{11,14} = 4.21, p = 0.007, Table A.1). Specifically, there was a 4% decrease in the major hemicellulose monomer xylose, while mannose, a minor hemicellulose monomer, increased by 42%. Syringyl (S), a lignin monomer, also increased by 12% (Table 1, A.1). Two linear discriminant functions explained 94% of the variation in cell wall monomer composition among cultivar and fertilization treatments, and placed plots in the correct treatment 81% of the time (Fig. 2a), further indicating that cell wall monomer composition differed among treatments. Discriminant function 1 was most strongly associated with galactose and mannose, and negatively associated with fucose, while discriminant function 2 was most strongly associated with xylose, fucose, and p-hydroxyphenyl, and negatively associated with arabinose (Table A.2).

The individual monomer responses to fertilization resulted in a 3% reduction in hemicellulose (MANOVA $F_{3,22} = 3.11$, p = 0.047, Table A.3). However, the minor changes in syringyl did not correspond to a change in total lignin (Fig. 3, Table A.3).

Independent of fertilization, Southlow had 25% more p-hydroxyphenyl, 15% more rhamnose, and 19% less mannose than Cave-in-Rock (Table 1, Table A.1), despite a lack of overall differences in major cell wall components.

3.2. N-fertilization effects under drought conditions

Above ground biomass also did not respond to fertilization in the drought subplots (Fig. 1). Fertilizer still impacted cell wall monomer composition in drought conditions (MANOVA $F_{11,14} = 4.02$, p = 0.008), but this was entirely due to a 6% reduction in glucose (Table 1, Table A.1). No other monomers varied in response to fertilizer in the drought subplots. Further, two linear discriminant functions explained 82% of the variation in cell wall monomer composition

among cultivar and fertilizer treatments in drought conditions, respectively, but only placed plots in the correct treatment 31% of the time (Fig. 2b), indicating that treatments did not strongly differ in cell wall monomer composition. Discriminant function 1 was most strongly associated with mannose, and negatively associated with rhamnose and xylose, while discriminant function 2 was most strongly associated with galacose and xylose, and negatively associated with fucose (Table A.2).

The reduction in glucose corresponded to a 2% overall reduction in hemicellulose in drought subplots (MANOVA $F_{3,22} = 7.54$, p = 0.01, Table A.3). There were no differences in lignin or cellulose, the other two major cell wall components.

Under drought conditions, Southlow had 12% more p-hydroxyphenyl than Cave-in-Rock, independent of fertilization effects (Table 1, Table A.1).

4. Discussion

4.1 Does N-fertilization affect switchgrass biomass quantity or quality?

Under ambient precipitation conditions at our site, fertilization did not increase biomass, but did alter cell wall composition of two switchgrass cultivars in ways that are likely to affect quality as a bioenergy crop. Changes in the proportion of the three major cell wall components: cellulose, hemicellulose, and lignin, as well as changes in the monomers contributing to hemicellulose and lignin, can influence biomass fermentation and ethanol yield. Generally, hemicellulose, especially the monomer xylose, is easily converted to ethanol [35], while lignin interferes with biochemical conversion processes by binding with cellulose and hemicellulose [16]. In this study, fertilization reduced total hemicellulose by decreasing xylose, the major component of hemicellulose, but also increasing mannose, a minor component of hemicellulose.

Hemicellulose monomers differ in their fermentation efficiency, with xylose more easily digested than mannose [36]. This indicates that while the effect size was not large, N-fertilization decreased switchgrass biomass quality in terms of hemicellulose. Other studies have also reported that fertilizer decreases hemicellulose in switchgrass [e.g., 37], though this is not always the case [35, 38]. A meta-analysis by Liu et al. [15] found that, on average, N-fertilization decreased hemicellulose by 4.39% in a wide variety of plant species, which is similar to the response (4% decrease) in our study.

For lignin, N-fertilization effects were slightly positive. While this study did not find any change in total lignin levels in response to fertilization, it did detect an increase in syringyl (S) compared to other lignin monomers. A high S:G ratio is desirable for bioenergy production as it is associated with decreased recalcitrance during pre-treatment [39, 40], so from this perspective our results indicate that fertilizer slightly improved biomass quality. There is considerable variability in prior research on the effects of fertilizer on switchgrass cell lignin. Studies have shown N-fertilization to have no effect on lignin [38, 41, 42], but also that N-fertilization can increase switchgrass lignin [37, 43, 44] due to stimulation of phenylalanine biosynthesis [45]. The meta-analysis by Liu et al. [15] found that N-fertilization increased lignin (~7%), but the magnitude of the response was contingent on study duration. Short-term fertilizer treatments (less than three years) showed stronger positive effects than long term (3-10+ years) application [15]. Our study was conducted in plots that had consistent fertilizer application for 9+ years, thus our results are consistent with the meta-analysis findings.

The lack of N-fertilization effects on switchgrass biomass we observed in this study is not uncommon, especially for switchgrass grown in more northern regions [46] and on more fertile soils [47]. The level of N we applied has been shown to consistently increase aboveground

biomass production in successional fields at this site [48], suggesting that biomass production is N-limited on these soils. However, other experiments at this site have shown no effect of fertilizer (up to 196 kg N ha⁻¹) on switchgrass biomass production [11]. The soils at this experimental site are moderately fertile [total mineral N 3–30 µg/g; 49], and had previously been used for corn production. Our results indicate that switchgrass may not be very responsive to N-fertilization compared to other perennial herbaceous plants. Given that biomass yield is overall more important than plant cell wall composition in predicting ethanol production [43, 50], it is unlikely that the minor changes in plant cell wall composition due to fertilization will outweigh the financial costs of nitrogen fertilizer application in our study. However, fertilization may change other aspects of plant biomass quality such as soluble sugars, which we did not measure here [51].

While it was not a primary focus of our study to compare cultivar responses, we did find that the two switchgrass cultivars in our experiment differed slightly in their cell wall monomer composition. Switchgrass cultivars have been shown to vary in cell wall composition in other studies, though differences are usually stronger between ecotypes than between cultivars within a given ecotype [16, 52]. The two cultivars used in this study were both upland ecotypes, and this may be why differences in cell wall monomer composition did not translate to differences in the three major cell wall components.

4.2 Does drought affect switchgrass responses to fertilization?

Our drought treatment reduced soil moisture by 40% overall, which did not affect switchgrass biomass but did minimize the effects of N-fertilization on switchgrass cell wall composition. Fertilization caused changes in three cell wall monomers, including the important monomer xylose, under ambient conditions. However, glucose, a relatively minor hemicelluosic

monomer, was the only component to show any response to fertilization under drought conditions. Additionally, the LDA showed clear separation in cell wall monomer composition due to fertilization and cultivar treatments in ambient conditions, but not under drought conditions. Drought also minimized differences in cell wall composition between the two cultivars in our study. Our study was done on mature switchgrass stands and the finding that drought stress can override benefits of N-fertilization is consistent with other switchgrass studies [22, 23]. However, one study [53] has shown N-fertilization to be more important in dry vs. wet conditions during the switchgrass establishment phase. Interactions between fertilizer and drought may be more important to consider during crop establishment years [54].

We recognize that additional variables may have also affected plant cell wall composition in our study. For example, we harvested plants in October following protocols for the region, but some studies have shown that cell wall composition can change over the winter if harvest is delayed until spring [e.g., 53]. It is also possible that the minor reduction in light availability (~19%) caused by the rainout shelters may have influenced plant responses [55], though light levels tends to be less important than variability in precipitation or temperature in terms of influences on plant cell wall composition [56].

In conclusion, our results show that drought negates any benefits of N-fertilization on switchgrass biomass quality. Our results also support prior findings that switchgrass is a relatively drought-tolerant species that will be a viable bioenergy feedstock even in a changing climate [57, 58]. Although our experimental drought treatments were relatively moderate, they were applied continuously over two growing seasons. Future work should evaluate whether thresholds exist for switchgrass responses to extreme droughts which are predicted to increase in the future [59, 60]. Also, although our experiment was not conducted on marginal lands per se,

the lack of N-fertilization effects suggests that there are no obvious benefits in terms of biomass quality or quantity under drought conditions, and so may not warrant the economic costs associated with large-scale applications.

Acknowledgements

This work was supported by the US DOE Office of Science (DE-FCO2-07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-ACO5-76RL01830) to the DOE Great Lakes Bioenergy Research Center, the NSF Long-term Ecological Research Program (DEB 1637653) at the W.K. Kellogg Biological Station, and Michigan State University AgBioResearch, along with a grant to SME and KLG from USDA NIFA (award # 2015-67020-23184) and NIFA Hatch project MICL02252 to KLG. We thank Joe Simmons and the KBS-based GLBRC field crew for managing and maintaining this experiment. We also thank Mark Hammond, Cliff Foster, Brad Gottshall, Matthew Reid, Erin Kinnetz, Andrea Howes, Binod Basyal, Katherine Grantham, Jacob Lindquist, Matthew Carey, Bibiana Rodriguez, Peter Drogosh, and Austin Whitted for field and lab assistance. This is KBS contribution #2140.

307 References

- 308 [1] S.B. McLaughlin, L.A. Kszos, Development of switchgrass (*Panicum virgatum*) as a
- bioenergy feedstock in the United States, Biomass Bioenergy 28(6) (2005) 515-535.
- 310 [2] G.P. Robertson, S.K. Hamilton, S.J. Del Grosso, W.J. Parton, The biogeochemistry of
- bioenergy landscapes: carbon, nitrogen, and water considerations, Ecol. Appl. 21(4) (2011)
- 312 1055-1067.
- 313 [3] I. Gelfand, R. Sahajpal, X.S. Zhang, R.C. Izaurralde, K.L. Gross, G.P. Robertson, Sustainable
- bioenergy production from marginal lands in the US Midwest, Nature 493(7433) (2013) 514-
- 315 517.
- 316 [4] D.J. Parrish, J.H. Fike, The biology and agronomy of switchgrass for biofuels, Crit. Rev.
- 317 Plant Sci. 24(5-6) (2005) 423-459.
- 318 [5] B.P. Werling, T.L. Dickson, R. Isaacs, H. Gaines, C. Gratton, K.L. Gross, H. Liere, C.M.
- Malmstrom, T.D. Meehan, L. Ruan, B.A. Robertson, G.P. Robertson, T.M. Schmidt, A.C.
- 320 Schrotenboer, T.K. Teal, J.K. Wilson, D.A. Landis, Perennial grasslands enhance biodiversity
- and multiple ecosystem services in bioenergy landscapes, PNAS USA 111(4) (2014) 1652-1657.
- 322 [6] M.D. Casler, K.P. Vogel, C.M. Taliaferro, R.L. Wynia, Latitudinal adaptation of switchgrass
- 323 populations, Crop Sci. 44(1) (2004) 293-303.
- 324 [7] M.G. Tulbure, M.C. Wimberly, A. Boe, V.N. Owens, Climatic and genetic controls of yields
- of switchgrass, a model bioenergy species, Agric. Ecosyst. Environ. 146(1) (2012) 121-129.
- 326 [8] A. Hallam, I.C. Anderson, D.R. Buxton, Comparative economic analysis of perennial,
- annual, and intercrops for biomass production, Biomass Bioenergy 21(6) (2001) 407-424.

- 328 [9] M.K. Kering, T.J. Butler, J.T. Biermacher, J. Mosali, J.A. Guretzky, Effect of potassium and
- nitrogen fertilizer on switchgrass productivity and nutrient removal rates under two harvest
- systems on a low potassium soil, Bioenergy Res. 6(1) (2013) 329-335.
- [10] C.T. Garten, D.J. Brice, H.F. Castro, R.L. Graham, M.A. Mayes, J.R. Phillips, W.M. Post,
- 332 C.W. Schadt, S.D. Wullschleger, D.D. Tyler, P.M. Jardine, J.D. Jastrow, R. Matamala, R.M.
- Miller, K.K. Moran, T.W. Vugteveen, R.C. Izaurralde, A.M. Thomson, T.O. West, J.E.
- Amonette, V.L. Bailey, F.B. Metting, J.L. Smith, Response of "Alamo" switchgrass tissue
- chemistry and biomass to nitrogen fertilization in West Tennessee, USA, Agric. Ecosyst.
- 336 Environ. 140(1-2) (2011) 289-297.
- [11] S.S. Roley, D.S. Duncan, D. Liang, A. Garoutte, R.D. Jackson, J.M. Tiedje, G.P. Robertson,
- Associative nitrogen fixation (ANF) in switchgrass (*Panicum virgatum*) across a nitrogen input
- 339 gradient, PLOS ONE 13(6) (2018) e0197320.
- 340 [12] L.L. Ruan, A.K. Bhardwaj, S.K. Hamilton, G.P. Robertson, Nitrogen fertilization challenges
- the climate benefit of cellulosic biofuels, Environ. Res. Let. 11(6) (2016).
- 342 [13] M.D. Montross, S. De Bolt, W.C. Adams, Interplay between yield, nitrogen application, and
- logistics on the potential energetic and greenhouse gas emissions from biomass crops, GCB
- 344 Bioenergy 5(6) (2013) 664-673.
- 345 [14] M.R. Schmer, K.P. Vogel, R.B. Mitchell, B.S. Dien, H.G. Jung, M.D. Casler, Temporal and
- spatial variation in switchgrass biomass composition and theoretical ethanol yield, Agron. J.
- 347 104(1) (2012) 54-64.
- 348 [15] J. Liu, N.N. Wu, H. Wang, J.F. Sun, B. Peng, P. Jiang, E. Bai, Nitrogen addition affects
- chemical compositions of plant tissues, litter and soil organic matter, Ecology 97(7) (2016)
- 350 1796-1806.

- 351 [16] M. Aurangzaib, K.J. Moore, S.V. Archontoulis, E.A. Heaton, A.W. Lenssen, S. Fei,
- Compositional differences among upland and lowland switchgrass ecotypes grown as a
- bioenergy feedstock crop, Biomass Bioenergy 87 (2016) 169-177.
- 354 [17] U.S. DOE, Lignocellulosic Biomass for Advanced Biofuels and Bioproducts: Workshop
- Report, DOE/SC-0170, U.S. Department of Energy Office of Science, 2015.
- 356 [18] S.C. Pryor, D. Scavia, C. Downer, M. Gaden, L. Iverson, R. Nordstrom, J. Patz, G.P.
- Robertson, Ch. 18: Midwest, in: J.M. Melillo, T.T.C. Richmond, G.W. Yohe (Eds.), Climate
- 358 Change Impacts in the United States: The Third National Climate Assessment, U.S. Global
- 359 Change Research Program 2014, pp. 418-440.
- 360 [19] S. Vavrus, J.V. Dorn, Projected future temperature and precipitation extremes in Chicago, J.
- 361 Great Lakes Res. 36 (2010) 22-32.
- 362 [20] S.C. Pryor, R.J. Barthelmie, J.T. Schoof, High resolution projections of climate impacts for
- 363 the midwestern USA., Climate Res. 56 (2013) 61-79.
- 364 [21] J. Hatfield, G. Takle, R. Grotjahn, P. Holden, R.C. Izaurralde, T. Mader, E. Marshall, D.
- Liverman, Ch. 6: Agriculture, in: J.M. Melillo, T.T.C. Richmond, G.W. Yohe (Eds.), Climate
- 366 Change Impacts in the United States: The Third National Climate Assessment, U.S. Global
- 367 Change Research Program 2014, pp. 150-174.
- 368 [22] J.J. Almaraz, F. Mabood, X. Zhou, I. Strachan, B. Ma, D.L. Smith, Performance of
- agricultural systems under contrasting growing season conditions in south-western Quebec, J.
- 370 Agron. Crop Sci. 195(5) (2009) 319-327.
- 371 [23] J.A. Stroup, M.A. Sanderson, J.P. Muir, M.J. McFarland, R.L. Reed, Comparison of growth
- and performance in upland and lowland switchgrass types to water and nitrogen stress,
- 373 Bioresource Technol. 86(1) (2003) 65-72.

- 374 [24] E. Heaton, T. Voigt, S.P. Long, A quantitative review comparing the yields of two candidate
- 375 C-4 perennial biomass crops in relation to nitrogen, temperature and water, Biomass Bioenergy
- 376 27(1) (2004) 21-30.
- 377 [25] J.P. de Koff, A. Allison, Changes in nutrient characteristics of switchgrass for bioenergy,
- 378 Agron. J. 107(6) (2015) 2401-2409.
- 379 [26] M.J. Sheshbahreh, M.M. Dehnavi, A. Salehi, B. Bahreininejad, Physiological and yield
- responses of purple coneflower (Echinacea purpurea (L.) Moench) to nitrogen sources at
- different levels of irrigation, Physiol. Molec. Biol. Plants 25(1) (2019) 177-187.
- 382 [27] C.F. Yamoah, D.T. Walters, C.A. Shapiro, C.A. Francis, M.J. Hayes, Standardized
- precipitation index and nitrogen rate effects on crop yields and risk distribution in maize, Agric.
- 384 Ecosyst. Environ 80(1-2) (2000) 113-120.
- 385 [28] J.D. Muñoz, A. Kravchenko, Soil carbon mapping using on-the-go near infrared
- spectroscopy, topography and aerial photographs, Geoderma 166(1) (2011) 102-110.
- 387 [29] L. Yahdjian, O.E. Sala, A rainout shelter design for intercepting different amounts of
- 388 rainfall, Oecologia 133(2) (2002) 95-101.
- [30] P.D. Moore, S.B. Chapman, Methods in Plant Ecology, Blackwell Scientific Publications,
- 390 Oxford, 1986.
- 391 [31] C.E. Foster, T.M. Martin, M. Pauly, Comprehensive compositional analysis of plant Cell
- walls (lignocellulosic biomass) Part I: Lignin, JoVE (37) (2010) 1745.
- 393 [32] C.E. Foster, T.M. Martin, M. Pauly, Comprehensive compositional analysis of plant cell
- walls (lignocellulosic biomass) Part II: Carbohydrates, JoVE (37) (2010) e1837.
- 395 [33] B.F.J. Manly, J.A.N. Alberto, Multivariate Statistical Methods: A Primer, 4th Edition ed.,
- 396 CRC Press, Boca Raton, FL, 2016.

- 397 [34] SYSTAT Software Inc, SYSTAT v. 12, Chicago, IL, 2007.
- 398 [35] R.A. Arundale, S. Bauer, F.B. Haffner, V.D. Mitchell, T.B. Voigt, S.P. Long, Environment
- has little effect on biomass biochemical composition of *Miscanthus x giganteus* across soil types,
- 400 nitrogen fertilization, and times of harvest, Bioenergy Res. 8(4) (2015) 1636-1646.
- 401 [36] M. Ehsanipour, A.V. Suko, R. Bura, Fermentation of lignocellulosic sugars to acetic acid by
- 402 Moorella thermoacetica, J. Ind. Microbiol. Biotechnol. 43(6) (2016) 807-816.
- 403 [37] E.K. Anderson, A.S. Parrish, T.B. Voigt, V.N. Owens, C.H. Hong, D.K. Lee, Nitrogen
- 404 fertility and harvest management of switchgrass for sustainable bioenergy feedstock production
- 405 in Illinois, Ind. Crop. Prod. 48 (2013) 19-27.
- 406 [38] R. Seepaul, B. Macoon, K.R. Reddy, W.B. Evans, Harvest frequency and nitrogen effects
- on yield, chemical characteristics, and nutrient removal of switchgrass, Agron. J. 106(5) (2014)
- 408 1805-1816.
- 409 [39] A.L. Ziebell, J.G. Barb, S. Sandhu, B.T. Moyers, R.W. Sykes, C. Doeppke, K.L. Gracom,
- M. Carlile, L.F. Marek, M.F. Davis, S.J. Knapp, J.M. Burke, Sunflower as a biofuels crop: An
- analysis of lignocellulosic chemical properties, Biomass Bioenergy 59 (2013) 208-217.
- 412 [40] P. Sannigrahi, A.J. Ragauskas, G.A. Tuskan, Poplar as a feedstock for biofuels: A review of
- compositional characteristics, Biofuels Bioproducts Biorefining 4(2) (2010) 209-226.
- 414 [41] B. Godin, S. Lamaudiere, R. Agneessens, T. Schmit, J.P. Goffart, D. Stilmant, P.A. Gerin, J.
- Delcarte, Chemical characteristics and biofuel potential of several vegetal biomasses grown
- under a wide range of environmental conditions, Ind. Crop. Prod. 48 (2013) 1-12.
- 417 [42] M.E. Jarchow, M. Liebman, V. Rawat, R.P. Anex, Functional group and fertilization affect
- 418 the composition and bioenergy yields of prairie plants, GCB Bioenergy 4(6) (2012) 671-679.

- 419 [43] G.G. Allison, C. Morris, S.J. Lister, T. Barraclough, N. Yates, I. Shield, I.S. Donnison,
- 420 Effect of nitrogen fertiliser application on cell wall composition in switchgrass and reed canary
- 421 grass, Biomass Bioenergy 40 (2012) 19–26.
- 422 [44] N. Waramit, K.J. Moore, A.H. Heggenstaller, Composition of native warm-season grasses
- for bioenergy production in response to nitrogen fertilization rate and harvest date, Agron. J.
- 424 103(3) (2011) 655-662.
- 425 [45] F.E. Pitre, B. Pollet, F. Lafarguette, J.E.K. Cooke, J.J. MacKay, C. Lapierre, Effects of
- increased nitrogen supply on the lignification of poplar wood, J. Agric. Food Chem. 55(25)
- 427 (2007) 10306-10314.
- 428 [46] J.A. Guretzky, J.T. Biermacher, B.J. Cook, M.K. Kering, J. Mosali, Switchgrass for forage
- and bioenergy: harvest and nitrogen rate effects on biomass yields and nutrient composition,
- 430 Plant Soil 339(1-2) (2011) 69-81.
- 431 [47] V.N. Owens, D.R. Viands, H.S. Mayton, J.H. Fike, R. Farris, E. Heaton, D.I. Bransby, C.O.
- Hong, Nitrogen use in switchgrass grown for bioenergy across the USA, Biomass Bioenergy 58
- 433 (2013) 286-293.
- 434 [48] T.L. Dickson, K.L. Gross, Plant community responses to long-term fertilization: Changes in
- functional group abundance drive changes in species richness, Oecologia 173 (2013) 1513-1520.
- 436 [49] G.P. Robertson, K.M. Klingensmith, M.J. Klug, E.A. Paul, J.C. Crum, B.G. Ellis, Soil
- 437 resources, microbial activity, and primary production across an agricultural ecosystem, Ecol.
- 438 Appl. 7 (1997) 158-170.
- 439 [50] G.R. Sanford, L.G. Oates, S.S. Roley, D.S. Duncan, R.D. Jackson, G.P. Robertson, K.D.
- Thelen, Biomass production a stronger driver of cellulosic ethanol yield than biomass quality,
- 441 Agron. J. 109(5) (2017) 1911-1922.

- 442 [51] F. Salvato, R. Wilson, J.P.P. Llerena, E. Kiyota, K.L. Reis, L.F. Boaretto, T.S. Balbuena,
- R.A. Azevedo, J.J. Thelen, P. Mazzafera, Luxurious nitrogen fertilization of two sugar cane
- genotypes contrasting for lignin composition causes changes in the stem proteome related to
- carbon, nitrogen, and oxidant metabolism but does not alter lignin content, J. Proteome Res.
- 446 16(10) (2017) 3688-3703.
- 447 [52] H.S. Bhandari, D.W. Walker, J.H. Bouton, M.C. Saha, Effects of ecotypes and morphotypes
- in feedstock composition of switchgrass (Panicum virgatum L.), GCB Bioenergy 6(1) (2014) 26-
- 449 34.
- 450 [53] M. Ibrahim, C.O. Hong, S. Singh, S. Kumar, S. Osborne, V. Owens, Switchgrass biomass
- quality as affected by nitrogen rate, harvest time, and storage, Agron. J. 109(1) (2017) 86-96.
- 452 [54] N. Raz-Yaseef, D.P. Billesbach, M.L. Fischer, S.C. Biraud, S.A. Gunter, J.A. Bradford,
- 453 M.S. Torn, Vulnerability of crops and native grasses to summer drying in the US Southern Great
- 454 Plains, Agric. Ecosyst. Environ. 213 (2015) 209-218.
- 455 [55] K.J. Moore, H.J.G. Jung, Lignin and fiber digestion, J. Range Manage. 54(4) (2001) 420-
- 456 430.
- 457 [56] M. Lorenzo, S.G. Assuero, J.A. Tognetti, Temperature impact on the forage quality of two
- wheat cutivars with contrasting capacity to accumulate sugars, Agriculture-Basel 5(3) (2015)
- 459 649-667.
- 460 [57] A.J. Ashworth, S.A. Weiss, P.D. Keyser, F.L. Allen, D.D. Tyler, A. Taylor, K.P. Beamer,
- 461 C.P. West, D.H. Pote, Switchgrass composition and yield response to alternative soil
- amendments under intensified heat and drought conditions, Agric. Ecosyst. Environ. 233 (2016)
- 463 415-424.

464 [58] Q. Deng, S. Aras, C.L. Yu, E.K. Dzantor, P.A. Fay, Y.Q. Luo, W.J. Shen, D.F. Hui, Effects of precipitation changes on aboveground net primary production and soil respiration in a 465 switchgrass field, Agric. Ecosyst. Environ. 248 (2017) 29-37. 466 [59] A. Hoover, R. Emerson, A. Ray, D. Stevens, S. Morgan, M. Cortez, R. Kallenbach, M. 467 Sousek, R. Farris, D. Daubaras, Impact of drought on chemical composition and sugar yields 468 469 from dilute-acid pretreatment and enzymatic hydrolysis of miscanthus, a tall fescue mixture, and switchgrass, Frontiers Energy Res. 6 (2018). 470 [60] C.E. Stewart, D. Roosendaal, K. Denef, E. Pruessner, L.H. Comas, G. Sarath, V.L. Jin, M.R. 471 Schmer, M. Soundararajan, Seasonal switchgrass ecotype contributions to soil organic carbon, 472 deep soil microbial community composition and rhizodeposit uptake during an extreme drought, 473 Soil Biol. Biochem. 112 (2017) 191-203. 474 475 476

Figure Legends

Figure 1. Effects of N-fertilization on above-ground biomass of two mature switchgrass cultivars in a) ambient precipitation and b) drought subplots in the two years of the rainout shelter experiment. There were no significant effects of fertilization in either precipitation treatment. ANOVA results: Control: Cultivar $F_{1,24} = 3.12$, p = 0.09; Fertilizer $F_{1,24} = 1.04$, p = 0.32; Fertilizer x Cultivar $F_{1,24} = 0.20$, p = 0.66; Block $F_{3,24} = 0.40$, p = 0.75; Year $F_{1,24} = 3.68$, p = 0.07. Shelter: Cultivar $F_{1,24} = 0.99$, p = 0.33; Fertilizer $F_{1,24} = 0.003$, p = 0.96; Fertilizer x Cultivar $F_{1,24} = 0.18$, p = 0.75; Block $F_{3,24} = 3.02$, p = 0.05; Year $F_{1,24} = 10.53$, p = 0.003. Error bars indicate ± 1 SE.

Figure 2. Linear discriminant analysis (LDA) of cell wall monomers in two switchgrass cultivars grown in long-term fertilized and unfertilized plots in a) ambient precipitation and b) drought subplots. Ovals represent 95% confidence interval ellipses for each group (variety and fertilizer treatment). For ambient subplots, the misclassification rate was 19%. For drought subplots, misclassification rate was 69%. See Table A.2 for discriminant function loadings.

Figure 3. Effects of fertilization on major cell wall components of two cultivars of switchgrass

Asterisks indicate differences due to fertilization (p<0.05). There were no significant differences

grown in (a-c) ambient precipitation and (d-f) drought subplots. Error bars indicate \pm 1 SE.

between cultivars. See Table A.3 for MANOVA statistics.