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NORMAL SUBGROUPS OF MAPPING CLASS GROUPS

AND THE METACONJECTURE OF IVANOV

TARA E. BRENDLE AND DAN MARGALIT

1. Introduction

The mapping class group Mod(Sg) of a closed, orientable surface Sg of genus g
is the group of homotopy classes of orientation-preserving homeomorphisms of Sg.
The extended mapping class group Mod±(Sg) is the group of homotopy classes of
all homeomorphisms of Sg.

Normal subgroups. The main result of this paper, Theorem 1.1, gives a general
condition for a normal subgroup of Mod(Sg) or Mod±(Sg) to have automorphism
group and abstract commensurator group isomorphic to Mod±(Sg). Previously this
result was only known for very specific subgroups, namely, the Torelli group and
its variants. Our general condition, which is that the normal subgroup contains an
element of “small” support, is easy to verify and applies to most natural normal
subgroups, including the Torelli groups and their variants, as well as many others.

Farb has posed the problem of computing the abstract commensurators for var-
ious subgroups of Mod(Sg) [17, Problem 2.2]. Our theorem solves this problem in
many cases. It also addresses the so-called metaconjecture of Ivanov; see below.

An observation of L. Chen further implies that each normal subgroup with an
element of small support is unique in that no other normal subgroup of Mod±(Sg)
is isomorphic to it; see Corollary 1.2. So, for example, the terms of the Johnson
filtration, the terms of the Magnus filtration, and the level m congruence subgroups
together form a collection of pairwise non-isomorphic subgroups of the mapping
class group.

Two further applications of our theorem are restrictions on the isomorphism
types of subgroups of mapping class groups. For example, if g �= g′ a normal
subgroup of Mod(Sg) with an element of small support cannot be isomorphic to a
normal subgroup of Mod(Sg′) with an element of small support; see Corollary 1.3.
Also, a normal subgroup of Mod(Sg) with an element of small support cannot be
isomorphic to a surface group or a right-angled Artin group; see Corollary 1.4. The
key idea for both of these applications is to use the automorphism group as an
invariant of the isomorphism class of a group.

Our results suggest a dichotomy for the normal subgroups of mapping class
groups, namely, into those that have automorphism group isomorphic to the ex-
tended mapping class group and those that do not contain elements of small sup-
port; see Conjecture 1.6 below. As discussed by Farb [17], a traditional classification
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theorem for normal subgroups of mapping class groups, in the form of a complete
list of isomorphism types, is almost certainly out of reach. However, our conjec-
ture provides a new framework for a coarser classification of normal subgroups of
mapping class groups.

Simplicial complexes. We prove our main result about normal subgroups of map-
ping class groups by reducing it to a problem about automorphisms of simplicial
complexes. To this end, we consider simplicial complexes whose vertices corre-
spond to connected subsurfaces of the ambient surface and whose edges correspond
to disjointness. Our main theorem about automorphisms of simplicial complexes,
Theorem 1.7, gives general conditions for such a simplicial complex to have auto-
morphism group isomorphic to the extended mapping class group.

Our result applies to many natural simplicial complexes associated to a surface,
including some that were already known to have automorphism group the extended
mapping class group. Our theorem is the first to address infinitely many complexes
with a single argument, and indeed it applies to a wide class.

Ivanov’s metaconjecture. Our work in this paper has its origins in the seminal
work of N. V. Ivanov [34]. He proved that for g at least 3, the automorphism group
of the complex of curves C(Sg) is isomorphic to Mod±(Sg) (see also [39, 41]). As
one application, he proved that the automorphism group of Mod(Sg)—and also
the abstract commensurator group of Mod(Sg)—is isomorphic to Mod±(Sg) (cf.
[47, 59]). Ivanov’s work inspired a number of theorems of the following form:

(1) the automorphism group of some particular simplicial complex associated
to a surface S is isomorphic to Mod±(S), and

(2) the automorphism group of some particular normal subgroup of Mod(S) is
isomorphic to Mod±(S).

Many are found among the 108 (and counting) citations on MathSciNet for the
aforementioned paper of Ivanov. In response, Ivanov posed the following [35].

Metaconjecture. Every object naturally associated to a surface S and having a
sufficiently rich structure has Mod±(S) as its group of automorphisms. Moreover,
this can be proved by a reduction to the theorem about the automorphisms of C(S).

There are many results supporting Ivanov’s metaconjecture, some quite classical,
going back to the work of Dehn [15, Paper 8] and Nielsen [53] in the 1920s. Also,
in the 1930s Teichmüller showed that the group of automorphisms of the univer-
sal curve over Teichmüller space is the extended mapping class group [1, 60]; this
theorem was put into a more general framework by Grothendieck [24, Theorem
3.1]. For an overview of other related results, see the survey paper by McCarthy–
Papadopoulos [48].

Our results may be viewed as a resolution of Ivanov’s metaconjecture for a wide
class of normal subgroups of Mod(Sg) and a wide class of simplicial complexes
associated to Sg. Ivanov’s metaconjecture is deliberately vague: the terms “object”,
“naturally”, and “sufficiently rich” are left open to interpretation. In this paper we
formulate his metaconjecture into two precise statements about normal subgroups
and simplicial complexes (the objects at hand) by finding appropriate notions of
sufficient richness in each case.
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Our work follows Ivanov in the sense that we reduce our problem about normal
subgroups of the mapping class group to a problem about automorphisms of sim-
plicial complexes. In his work, as well as in the other subsequent works, there is
a single group being considered, and a single simplicial complex. A central chal-
lenge in this paper, and one of the main departures from Ivanov’s work, is that
we consider many groups all at the same time, each requiring its own simplicial
complex. As such, we need to prove that all of these simplicial complexes have
automorphism group isomorphic to the extended mapping class group. Also, when
it comes to the normal subgroups we consider we do not have full information about
which elements are in, and are not in, our given subgroups; we are only given the
information that there is a single element whose support is small (in the precise
sense defined below).

1.1. Results on normal subgroups. In order to state our main theorem about
normal subgroups of the mapping class group, Theorem 1.1, we require several
definitions.

Small components. Let f ∈ Mod(Sg) be a pure mapping class. Briefly, this
means that f is a product of partial pseudo-Anosov mapping classes and Dehn
twists, all with disjoint supports; see Section 6 for details. We will define a certain
measure of complexity ĝ(f) for f . First, a region in Sg is a compact, connected
subsurface with no boundary component homotopic to a point in Sg. Next, a fitting
region for f is a region Q in Sg so that some Nielsen–Thurston component of (some
representative of) f has support that is non-peripheral in Q and so that the other
Nielsen–Thurston components of f have support disjoint from Q. Finally we define
ĝ(f) to be the smallest number k so that there is a region of Sg that has genus k
and connected (possibly empty) boundary and that contains a fitting region for f .

We will say that a pure element f of Mod(Sg) has a small component if ĝ(f) <
g/3. The main hypothesis of Theorem 1.1 is that the normal subgroup under
consideration has a non-trivial element with a small component.

For example, if f has a partial pseudo-Anosov Nielsen–Thurston component
whose support is contained in a region of genus k with connected boundary, then
ĝ(f) is at most k. Also, if the entire support of f is contained in a region of genus
k with connected boundary, then ĝ(f) is at most k + 1 (for instance if f is a Dehn
twist about a separating curve of genus k, then ĝ(f) = k + 1).

For a subgroup N of Mod±(Sg), we define ĝ(N) to be the minimum of ĝ(f) for
non-trivial pure f in N (by default pure elements lie in Mod(Sg)). See Section 6
for the definitions of pure elements and Nielsen–Thurston components.

Abstract commensurators. The abstract commensurator group of a group G is
the group of equivalence classes of isomorphisms between finite-index subgroups
of G, where two isomorphisms are equivalent if they agree on some finite-index
subgroup of G.

Natural maps. Let N be a normal subgroup of Mod(Sg). There is a natural
homomorphism Mod(Sg) → AutN where f ∈ Mod(Sg) maps to the element of
AutN given by conjugation by f ; there is a similar map if N is normal in Mod±(Sg).
Also, there is a natural homomorphism AutN → CommN where an automorphism
maps to its equivalence class.

Licensed to Georgia Inst of Tech. Prepared on Mon May 18 14:08:49 EDT 2020 for download from IP 143.215.38.40.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1012 TARA E. BRENDLE AND DAN MARGALIT

There is one more natural homomorphism in the statement of Theorem 1.1. If
N is a subgroup of Mod±(Sg), there is a map Mod±(Sg) → Hom(N,Mod±(Sg))
where f ∈ Mod±(Sg) maps to the homomorphism taking n to fnf−1. If for each
f ∈ Mod±(Sg) there is a finite-index subgroup H of N so that fHf−1 has finite
index in N , then we may regard the map Mod±(Sg) → Hom(N,Mod±(Sg)) as a
map Mod±(Sg) → CommN . When this map exists, we call it the natural map
Mod±(Sg) → CommN .

Statement of our main theorem about normal subgroups. Our first main
theorem describes the automorphism groups and the abstract commensurator
groups of all normal subgroups of Mod(Sg) and Mod±(Sg) with elements of small
support. It says that each of these subgroups remembers the structure of the full
mapping class group.

Theorem 1.1. Let N be a normal subgroup of either Mod±(Sg) or Mod(Sg) with
g ≥ 3ĝ(N) + 1.

(1) If N is normal in Mod±(Sg), then the natural maps

Mod±(Sg) → AutN → CommN

are isomorphisms.
(2) If N is normal in Mod(Sg) but not in Mod±(Sg), then there is a natural

map CommN → Mod±(Sg), the natural maps

Mod(Sg) → AutN → CommN → Mod±(Sg)

are injective, the first map is an isomorphism, and the composition is the
inclusion. In particular, CommN is isomorphic to either Mod(Sg) or to
Mod±(Sg). In the first case the second map is an isomorphism. In the
second case the inverse of the isomorphism CommN → Mod±(Sg) is the
natural map Mod±(Sg) → CommN (which is well defined in this case).

Most of the well-studied normal subgroups of the mapping class group—for in-
stance the Torelli group and the terms of the Johnson filtration—are normal in
the extended mapping class group, and so the first statement of Theorem 1.1 ap-
plies. We expect that there are subgroups N that are normal in Mod(Sg) but not
Mod±(Sg) and that satisfy CommN ∼= Mod±(Sg). Examples of subgroups N that

are normal in Mod(S1) but not Mod±(S1) were explained to us by Jones [38].
By Lemma 6.3 below, any normal subgroup of Mod(Sg) or Mod±(Sg) that has a

pure element with a small component also has a pure element whose entire support
is small, meaning that the support is contained as a non-peripheral subsurface in
a subsurface of Sg with connected boundary and genus k < g/3. Therefore, the
hypothesis on N in Theorem 1.1 is equivalent to the hypothesis that N has a
non-trivial element with small support.

The hypothesis of small supports in Theorem 1.1 is certainly not optimal. In-
deed, if we take N = Mod(Sg), then Theorem 1.1(1) implies that AutMod(Sg) is
isomorphic to Mod±(Sg) when g ≥ 4. On the other hand, Ivanov already proved
this result for g ≥ 3.

Exotic normal subgroups. One might hope that all normal subgroups of
Mod(Sg) have automorphism group Mod±(Sg), in other words that the hypoth-
esis on ĝ(N) in Theorem 1.1 is not necessary. However, this is certainly not the
case: Dahmani, Guirardel, and Osin [14] proved that there are normal subgroups

Licensed to Georgia Inst of Tech. Prepared on Mon May 18 14:08:49 EDT 2020 for download from IP 143.215.38.40.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NORMAL SUBGROUPS OF MAPPING CLASS GROUPS 1013

of Mod(Sg) isomorphic to infinitely generated free groups; see also the recent work
of Clay, Mangahas, and the second author [13]. Each non-trivial element in the
Dahmani–Guirardel–Osin subgroups is pseudo-Anosov. The hypotheses of Theo-
rem 1.1 exactly rule out this type of example, as ĝ(f) = g for any pseudo-Anosov
f .

Prior results. Our Theorem 1.1 recovers many previously known results. After
Ivanov’s original work, Farb and Ivanov [18, 19] proved that the automorphism
group and the abstract commensurator group of the Torelli subgroup of Mod(Sg)
is isomorphic to Mod±(Sg), and the authors of this paper proved [8] that the auto-
morphism group and the abstract commensurator group of the Johnson kernel, an
infinite-index subgroup of the Torelli group, is isomorphic to Mod±(Sg). Bridson,
Pettet, and Souto [10] then announced the following result: every normal subgroup
of the extended mapping class group that is contained in the Torelli group and
has the property that each subsurface of Euler characteristic −2 supports a non-
abelian free subgroup has automorphism group and abstract commensurator group
isomorphic to Mod±(Sg). In particular, for g ≥ 4 this applies to every term of
the Johnson filtration of Mod(Sg). The Johnson filtration is an infinite sequence
of nested normal subgroups of Mod(Sg) whose intersection is the trivial subgroup;
the first two groups in the sequence are the Torelli group and the Johnson kernel.
As we shall explain presently, Theorem 1.1 implies each of the above results.

Applications and examples. Many natural subgroups of Mod(Sg) and
Mod±(Sg) come in families, meaning that there is one normal subgroup Ng for
each g. Also, it is often the case that ĝ(Ng) does not depend on g, and so Theo-
rem 1.1 applies to all members of the family once g is large enough.

As one example the Torelli group I(Sg) is the normal subgroup of Mod±(Sg)
defined as the kernel of the action of Mod(Sg) on H1(Sg;Z). The Johnson kernel
K(Sg) is the infinite-index subgroup of I(Sg) generated by Dehn twists about sep-
arating curves. For all g we have ĝ(I(Sg)) = ĝ(K(Sg)) = 2. Theorem 1.1(1) applies
to both, thus recovering our earlier result and the result of Farb and Ivanov for
g ≥ 7.

Similarly, Theorem 1.1(1) applies to the kth term Nk
g of the Johnson filtration,

which is the kernel of the action (by outer automorphisms) of Mod(Sg) on π/πk

where π = π1(Sg) and πk is the kth term of its lower central series. We have
ĝ(Nk

g ) = 2 [17, Proof of Theorem 5.10]. In particular, for g ≥ 7 our theorem
recovers the results announced by Bridson–Pettet–Souto.

Beyond this, the terms of the derived series for the Torelli group, the terms of
the lower central series of the Torelli group, the kernel of the Chillingworth ho-
momorphism, and the kernel of the Birman–Craggs–Johnson homomorphism each
have ĝ = 2 and so Theorem 1.1 applies for g ≥ 7.

A further application of our theorem is to the Magnus filtration of the Torelli
group, defined by McNeill [51]. The kth term Mk

g is the subgroup of Mod(Sg) acting
trivially on π/π′

k where π′
k is the kth term of the lower central series of [π, π]. The

first term M1
g is the kernel of the Magnus representation of Mod(Sg), defined in

the 1930s by Magnus [42]. McNeill proves that ĝ(Mk
g ) ≤ 3 for all g ≥ 3 and k ≥ 1

[51, Lemma 5.2], and so Theorem 1.1(1) applies for g ≥ 10. (McNeill discusses
surfaces with boundary, but the capping homomorphism to Mod(Sg) respects the
Magnus filtration.)
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One may readily construct many other examples of normal subgroups satisfying
the hypotheses of Theorem 1.1, for instance the group generated by kth powers
of Dehn twists (ĝ = 1), the group generated by kth powers of Dehn twists about
separating curves (ĝ = 2), the terms of the lower central series of the Torelli group
(ĝ = 2), the normal closure of any partial pseudo-Anosov element supported on
a torus with one boundary component (ĝ = 1), and the normal closure of any
multitwist about a pants decomposition (ĝ ≤ 2). In the last case, to make an
example with ĝ = 2 we should choose the support to be a pants decomposition
where each curve is non-separating.

Any normal subgroup of Mod(Sg) or Mod±(Sg) containing one of the above
groups automatically satisfies the hypothesis of Theorem 1.1. For instance, if N is
the kernel of the SU(2)-TQFT representations of the mapping class group (see, e.g.,
Funar [22]), then N contains the group generated by kth powers of Dehn twists,
and hence Theorem 1.1 applies for g ≥ 4. The same applies to the subgroup of
Mod(Sg) generated by the kth powers of all elements.

Finally, any normal subgroup of Mod(Sg) or Mod±(Sg) that has finite index
in a group satisfying the hypothesis of Theorem 1.1 also satisfies the hypothesis.
This includes, for example, the level m congruence subgroups of Mod(Sg) and also
the congruence subgroups defined by Ivanov via characteristic covers of surfaces
[35, Problem 1].

Chen’s corollary. Ivanov–McCarthy proved that any injective map Mod±(Sg) →
Mod±(Sg) is an inner automorphism [36, Theorem 1]. As observed by Chen [11],
this theorem has the following corollary: if N is a normal subgroup of Mod±(Sg)
where the natural map Mod±(Sg) → AutN is an isomorphism, then N is unique in
the sense that every normal subgroup of Mod±(Sg) isomorphic to N is equal to N .
This applies, for example, to the Torelli group, as well as all of the other subgroups
discussed above.

Indeed, suppose that M is a normal subgroup of Mod±(Sg) isomorphic to N .
Consider the composition

Ξ : Mod±(Sg) → AutM → AutN → Mod±(Sg),

where the first map is the natural map given by conjugation, the second map is the
isomorphism induced by any isomorphism M → N , and the third map is the inverse
of the natural map Mod±(Sg) → AutN , which is an isomorphism by assumption.
All of the maps are injective (cf. Lemma 3.6) and hence the composition Ξ is
an injective map from Mod±(Sg) to itself. By the Ivanov–McCarthy result, Ξ is
an inner automorphism of Mod±(Sg). From the definitions of the three maps we
observe that

M �→ InnM �→ InnN �→ N

and so Ξ(M) = N . Since Ξ is inner and M is normal it follows that M = N , as
desired.

Combining Chen’s corollary with our main theorem we obtain the following
corollary of Theorem 1.1.

Corollary 1.2. Suppose N is a normal subgroup of Mod(Sg) with g ≥ 3ĝ(N) + 1.
Any normal subgroup of Mod(Sg) isomorphic to N is equal to N .

Here is a sample application of Corollary 1.2. Fix some g ≥ 4. For each natural
number k let Tk denote the subgroup of Mod(Sg) generated by all kth powers of
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Dehn twists. For k < � the subgroups Tk and T� are not equal, since T� lies in the
level � congruence subgroup of Mod(Sg) and Tk does not. Thus by Corollary 1.2
the subgroup Tk is not isomorphic to T�. So T1, T2, . . . is an infinite sequence of
pairwise non-isomorphic subgroups of Mod(Sg). Similarly, the terms Nk(Sg) of the
Johnson filtration are all non-isomorphic and each such term is not isomorphic to
any T�, etc.

The reader should compare Corollary 1.2 with the theorem of Akin, which states
that the point-pushing subgroup π1(Sg) is unique among normal subgroups of
Mod(Sg,1) in the same sense. Akin’s theorem is not implied by our corollary since
our Theorem 1.1 does not apply to punctured surfaces. McLeay [49,50] has proved
an analogue of Theorem 1.1 for punctured surfaces; however Akin’s group does not
satisfy the hypotheses there. On the other hand, Akin’s theorem does follow from
the Dehn–Nielsen–Baer theorem that the natural map Mod±(Sg,1) → Autπ1(Sg)
is an isomorphism, plus the argument of Chen’s corollary applied to the theorem
of Ivanov–McCarthy that any injective map Mod±(Sg,1) → Mod±(Sg,1) is an inner
automorphism [36, Theorem 1].

Application: Non-commensurability of normal subgroups in different
mapping class groups. One kind of application of Theorem 1.1 is to show that
certain normal subgroups of Mod(Sg) cannot be isomorphic to, or even commensu-
rable to, certain normal subgroups of Mod(Sg′) with g �= g′. Specifically we have
the following corollary of Theorem 1.1.

Corollary 1.3. Suppose N and N ′ are normal subgroups of Mod(Sg) and
Mod(Sg′), respectively, with 3ĝ(N) + 1 < g and 3ĝ(N ′) + 1 < g′. If g �= g′,
then N is not abstractly commensurable to N ′. In particular, N and N ′ are not
isomorphic.

Indeed, consider N and N ′ as in the corollary. By Theorem 1.1 we have that
AutN ∼= Mod±(Sg) and AutN ′ ∼= Mod±(Sg′). Since Mod±(Sg) is not isomorphic
to Mod±(Sg′) when g �= g′ (consider, for instance, the rank of a maximal abelian
subgroup), it follows that N and N ′ are not isomorphic. Moreover, since CommN
is isomorphic to Mod(Sg) or Mod±(Sg) and CommN ′ is isomorphic to Mod(Sg′)
or Mod±(Sg′) then, since the abstract commensurator group is an invariant of the
abstract commensurability class, it similarly follows that N is not commensurable
to N ′ (again use the ranks of maximal abelian subgroups).

To illustrate Corollary 1.3, consider the following normal subgroups of Mod(Sg)
and Mod(S2g). Let N be the normal closure in Mod(Sg) of a partial pseudo-
Anosov element supported on a torus with one boundary component and let N ′

be the normal closure in Mod(S2g) of a partial pseudo-Anosov element supported
on a subsurface of genus two with one boundary component. If g ≥ 4, then by
Corollary 1.3 the groups N and N ′ are not abstractly commensurable.

We do not know a proof of the non-commensurability of such subgroups that is
independent of Theorem 1.1. For example, the groups N and N ′ above cannot be
distinguished by their virtual cohomological dimensions or the maximal ranks of
their abelian subgroups in any obvious way (both invariants are at least g for both
N and N ′, but their exact values seem hard to compute).

Application: An obstruction theorem for normal subgroups. Another kind
of application of Theorem 1.1 is to rule out isomorphism types for certain normal
subgroups of the mapping class group. For example, if N � Mod(Sg) contains a
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1016 TARA E. BRENDLE AND DAN MARGALIT

non-trivial pure element with a small component, then N cannot be isomorphic
to—or even abstractly commensurable to—any group whose automorphism group
or abstract commensurator group is not isomorphic to Mod(Sg) or to Mod±(Sg).

There are many classes of groups where no member of the class has both its au-
tomorphism group and its abstract commensurator group isomorphic to a mapping
class group of a closed surface. For example, if G = π1(Sh) with h ≥ 2, then AutG
is isomorphic to Mod±(Sh,1), the extended mapping class group of a punctured
surface. The group Mod±(Sh,1) is not isomorphic to any Mod(Sg) or Mod±(Sg)
(the rank of a maximal abelian subgroup is divisible by 3 in the closed case and
not in the punctured case), and so AutG is not isomorphic to any Mod±(Sg) (even
more, CommG is quite large).

The same holds for all right-angled Artin groups. The abstract commensurator
group of an abelian right-angled Artin group is isomorphic to GLn(Q) for some n
(and anyway there are no infinite abelian normal subgroups of Mod(Sg)). Also,
the abstract commensurator group of any non-abelian right-angled Artin group
contains arbitrarily large finite groups, and Mod±(Sg) does not have this property;
see [12].

We summarize the above discussion with the following corollary.

Corollary 1.4. If G is a group with Aut(G) or Comm(G) not isomorphic to
Mod(Sg) or to Mod±(Sg), and N is a normal subgroup of Mod(Sg) with g ≥
3ĝ(N)+1, then N is not isomorphic to G and further N is not abstractly commen-
surable to G. In particular, this applies when G is any surface group or right-angled
Artin group.

It was, for instance, a folk conjecture that the normal subgroup Tk of Mod(Sg)
generated by all kth powers of Dehn twists is a right-angled Artin group [23], but
this is false for g ≥ 4 since ĝ(Tk) = 1.

As a consequence of Corollary 1.4, we see that all normal right-angled Artin sub-
groups of Mod(Sg) and all surface subgroups of Mod(Sg) must be like the Dahmani–
Guirardel–Osin examples in that the support of every non-trivial Nielsen–Thurston
component of every element must be large. In this direction, Clay, Mangahas, and
the second author of this paper have produced normal right-angled Artin groups of
Mod(Sg) where the support of each element is large (but not all pseudo-Anosov as
in the Dahmani–Guirardel–Osin examples) [13].

A conjectural sharpening of our theorem. As mentioned, the hypothesis
ĝ(N) < g/3 in Theorem 1.1 is not optimal. We conjecture that the g/3 can be
improved to g/2.

Conjecture 1.5. If N is a normal subgroup of Mod±(Sg) with g ≥ 2ĝ(N) + 1,
then the natural maps

Mod±(Sg) → AutN → CommN

are isomorphisms.

Even better, we expect that one can replace the hypothesis ĝ(N) < g/2 with
the hypothesis that N contains a non-trivial pure element with a component whose
support takes up less than half of Sg in the sense that it is homeomorphic to a
proper subsurface of its complement.
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NORMAL SUBGROUPS OF MAPPING CLASS GROUPS 1017

A conjectural dichotomy. Combining our Theorem 1.1 with the exotic sub-
groups produced by Dahmani–Guirardel–Osin and those constructed by Clay, Man-
gahas, and the second author, we are led to a conjectural dichotomy for normal
subgroups of the mapping class group.

Conjecture 1.6. Let N be a normal subgroup of either Mod(Sg) or Mod±(Sg).
Then either AutN ∼= Mod±(Sg) or N contains an infinitely generated right-angled
Artin group with finite index.

A further conjecture of Clay, Mangahas, and the second author [13] is that if N
is a normal, right-angled Artin subgroup of Mod(Sg), then N is isomorphic to a
free product of groups from the following list:

F∞ , ∗
∞

(F∞ × F∞) , ∗
∞

(F∞ × Z) , and ∗
∞

(F∞ × F∞ × Z) .

Mapping class groups versus lattices. Ivanov’s original motivation for the
study of the automorphism group of the complex of curves stems from the analogous
work about lattices and arithmetic groups. For example, the fundamental theorem
of projective geometry states that for k a field and n ≥ 3 the automorphism group
of the Tits building for kn (the poset of non-trivial proper subspaces) is the group
of projective semilinear automorphisms of kn (see [54]).

Ivanov’s work on abstract commensurators also is inspired by the theory of lat-
tices. By the work of Margulis, an irreducible lattice in a connected semisimple
non-compact Lie group with finite center is arithmetic if and only if it has infinite
index in its abstract commensurator [45]. As observed by Ivanov [34], this implies
that mapping class groups are not arithmetic as (for most surfaces) mapping class
groups have finite index in their abstract commensurator. Since arithmetic groups
are not normal subgroups of their abstract commensurators, our Theorem 1.1 gives
a new point of contrast between arithmetic groups and normal subgroups of map-
ping class groups.

1.2. Results on complexes of regions. Our next goal is to state our results
about automorphisms of simplicial complexes associated to a surface. We begin
by describing a class of simplicial complexes first defined by McCarthy and Pa-
padopoulos [48].

Complexes of regions. By a subsurface of a compact surface S we will always
mean a compact subsurface R where no component of ∂R is homotopic to a point
in S. And (as above) a region is a connected, non-peripheral subsurface. A complex
of regions for S is any non-empty simplicial flag complex that has vertices corre-
sponding to homotopy classes of regions in S and edges corresponding to vertices
with disjoint representatives and that admits an action of Mod±(S).

For the purposes of this paper, the difference between a graph and a flag complex
is purely cosmetic, since the automorphism group of a flag complex is completely
determined by the 1-skeleton. In other words, we could replace complexes of regions
with graphs of regions without affecting the theory. The only difference is that we
will use the term “simplex” instead of “clique”, etc. On the other hand, it might be
an interesting problem to understand the topological properties of the complexes
of regions as defined.

Let R(S) be the set of Mod±(S)-orbits of homotopy classes of regions in S.
For any subset A of R(S) we denote the associated complex of regions by CA(S).
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One can recover traditional complexes of curves in this context by using an annulus
as a proxy for a curve: if A consists of all orbits of annuli, then CA(S) is isomorphic
to the usual complex of curves.

Prior results. There are several examples of complexes of regions that have been
shown to have automorphism group isomorphic to the extended mapping class
group: the complex of non-separating curves by Irmak [29], the complex of sepa-
rating curves by the authors of this paper [8], the truncated complex of domains by
McCarthy and Papadopoulos [48], the arc complex by Irmak and McCarthy and
by Disarlo [16,31], the arc and curve complex by Korkmaz and Papadopoulos [40],
and the complex of strongly separating curves by Bowditch [7].

There are also more general theorems characterizing isomorphisms—and injec-
tive maps—between different complexes; see for instance the work of Aramayona [2],
Aramayona–Leininger [3], Bavard–Dowdall–Rafi [4], Birman–Broaddus–Menasco
[5], Hernández [26, 27], Irmak [28, 30], and Shackleton [58].

Pathologies. In spite of all of the aforementioned positive results, there are many
natural complexes of regions on which Mod±(S) acts but where the full group of
automorphisms is much larger than Mod±(Sg). There are two immediate problems:

(1) CA(Sg) might be disconnected, and
(2) CA(Sg) might admit an exchange automorphism, that is, an automorphism

that interchanges two vertices and fixes all others.

Typically, a disconnected complex of regions has automorphism group larger than
Mod±(Sg). For instance, if CA(Sg) has infinitely many isomorphic components
(like the complex of curves for the torus or the complex of non-separating curves
for the multipunctured torus), then the automorphism group contains an infinite
permutation group.

Also, an element of Mod±(Sg) cannot act on CA(Sg) by an exchange automor-
phism. Indeed, if a mapping class fixes all but finitely many vertices of CA(Sg),
then it must be the identity (cf. Lemma 3.6 below). McCarthy and Papadopoulos
were the first to address the issue of exchange automorphisms; they showed that the
complex of domains CR(S)(S) admits exchange automorphisms when S has more
than one boundary component.

We would like to rule out these two types of pathologies. First, we will list two
situations that give rise to exchange automorphisms—holes and corks—and later
in Section 2 we will prove that all exchange automorphisms arise in this way.

Holes and corks. Let CA(Sg) be a complex of regions. First, we say that a vertex
v of CA(Sg) has a hole if a representative region R has a complementary region Q
with the property that no vertex of CA(Sg) is represented by a subsurface of Q;
we refer to Q as the hole. Note that annular vertices cannot have holes. Indeed,
if R represents an annular vertex, then there is an annulus parallel to R in every
complementary region.

Given a vertex v with a hole as above, the filling of v is the homotopy class of
regions given by the union of R with all of its holes (cf. Section 2.1). A set of
vertices that have equal fillings is called an equal filling set. Every equal filling set
is infinite.

Next, we say a vertex v of CA(Sg) is a cork if (1) v is represented by an annulus
A, (2) one complementary region R of A represents a vertex w of CA(Sg), and (3)
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Figure 1. Left: Vertices with holes; Right: A cork pair

no proper, non-peripheral subsurface of R represents a vertex of CA(Sg). Any such
pair {v, w} will be referred to as a cork pair.

An example of a complex of regions that has a vertex with a hole is the complex
whose vertices correspond to “bow-legged pairs of pants”, that is, pairs of pants
that are embedded in such a way that two of the boundary components are parallel
in the surface (the hole is the annulus between these two boundary components).
Any two vertices with representatives contained in the same handle (torus with one
boundary component) can be exchanged by an automorphism of this complex; see
the left-hand side of Figure 1.

An example of a complex of regions with a cork is the complex of regions that
includes all regions except the non-separating annuli and the bow-legged pairs of
pants; in this case the corks are the separating annuli that cut off a handle. These
vertices can be exchanged with the vertices corresponding to the handles they cut
off.

In Section 2 below we will show that a connected complex of regions admits an
exchange automorphism if and only if it has a hole or a cork (meaning that it has
a vertex with a hole or a vertex that is a cork).

Statement of the main theorem about complexes. For a subsurface R of Sg

we define ḡ(R) to be the smallest number k so that R is contained in a subsurface of
Sg of genus k with connected boundary (we allow for the possibility that ḡ(R) = g).
We define ḡ(A) to be the minimum of ḡ(R) where R represents an element of A. The
definitions of ĝ(f) above and ḡ(R) here are similar in spirit, although an important
difference is that in the present case R is not required to be non-peripheral in the
subsurface of genus k. As such, we use different notation to avoid confusion.

Theorem 1.7. Let CA(Sg) be a complex of regions that is connected and has no
holes or corks and assume that g ≥ 3ḡ(A) + 1. Then the natural map

Mod±(Sg) → Aut CA(Sg)

is an isomorphism.

Again the hypothesis on g is not sharp. In the case where CA(Sg) is the complex
of curves, Theorem 1.7 says that Aut CA(Sg) ∼= Mod±(Sg) when g ≥ 4, while on
the other hand this isomorphism is known to hold for g ≥ 3.

Applications. Theorem 1.7 is the first result to address infinitely many distinct
complexes with a unified argument. It covers many of the previously studied ex-
amples of simplicial complexes with automorphism group Mod±(Sg), such as the
complex of curves, the complex of separating curves, the complex of non-separating
curves, and the Bridson–Pettet–Souto complex of four-holed spheres and two-holed
tori. It is also easy to construct new examples, such as the complex of handles,
the complex of separating curves of odd genus, and the complex of non-separating
seven-holed tori, etc.
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Automorphisms in the presence of holes and corks. In the case where CA(Sg)
has a hole or a cork, we can still describe its automorphism group. The existence
of an exchange automorphism interchanging two vertices induces an equivalence
relation on the set of vertices (indeed, if φ and ψ are the exchange automorphisms
interchanging x with y and y with z, then φψφ is the exchange automorphism
interchanging x with z). By Theorem 2.1 below, the equivalence class of each
vertex with a hole is the corresponding equal filling set, the equivalence class of a
cork is the corresponding cork pair, and all other equivalence classes are trivial.

If we choose an arbitrary permutation of the vertices in each equivalence class,
there is a corresponding automorphism of CA(Sg) inducing each of these permu-
tations; we refer to such an automorphism as a multiexchange automorphism. We
denote by Ex CA(Sg) the normal subgroup of Aut CA(Sg) consisting of all multi-
exchange automorphisms.

Theorem 1.8. Let g ≥ 3. Let CA(Sg) be a complex of regions that is connected
and satisfies g ≥ 3ḡ(A) + 1. Then

Aut CA(Sg) ∼= Ex CA(Sg)�Mod±(Sg).

We will prove Theorem 1.8 in Section 2 (assuming Theorem 1.7). McCarthy
and Papadopoulos proved Theorem 1.8 in the case where CA(Sg) is the complex of
domains [48, Theorem 8.9].

A conjectural sharpening of the theorem. We conjecture that the condition
on ĝ(A) in Theorem 1.7 is not necessary.

Conjecture 1.9. Let CA(Sg) be a complex of regions that is connected and has no
holes or corks. Then the natural map

Mod±(Sg) → Aut CA(Sg)

is an isomorphism.

Further possible generalizations. There are other ways that one might extend
our Theorem 1.7, for instance by generalizing the definition of a complex of re-
gions. There are several examples of simplicial complexes that do not satisfy our
definition of a complex of regions but still have automorphism group isomorphic
to the extended mapping class group. For example, the systolic complex of curves,
studied by Schmutz–Schaller [56] has edges that do not correspond to disjointness.
The Torelli complex, studied by Farb and Ivanov [19] (see also [8]), has vertices
corresponding to disconnected subsurfaces. And the pants complex, studied by the
second author [44], has both deficiencies: its vertices correspond to disconnected
subsurfaces and its edges do not correspond to disjointness. On the other hand, all
of these complexes have automorphism group the extended mapping class group.

Other natural directions are to study the analogs for punctured surfaces, sur-
faces of infinite type, and other manifolds. Work in these directions has already
been done by McLeay [49, 50] and Scott [57]. In a paper about open problems on
mapping class groups by the second author, we suggest a generalization of Ivanov’s
metaconjecture, from surfaces to other spaces [43, Generalized Metaconjecture 7.6].

1.3. Plan of the paper. We now give a summary of the remaining five sections
of the paper. Along the way, we explain how the various sections fit together to
prove our main results.
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Exchange automorphisms. As mentioned, Section 2 is devoted to the classifi-
cation of exchange automorphisms and to the determination of the automorphism
group of a connected complex with exchange automorphisms. More precisely, we
prove Theorem 2.1 below, which states that all exchange automorphisms arise from
holes and corks, and we prove Theorem 1.8 above, which gives a semidirect prod-
uct decomposition of the group of automorphisms into the extended mapping class
group and the group of multiexchange automorphisms. For the proof of the latter
theorem, we assume Theorem 1.7, proved later in the paper.

Complexes of separating curves. In Section 3 we extend previous work of the
authors on the complex of separating curves. This section is the only part of the
paper that closely parallels earlier work in the subject.

Recall that the complex of curves C(Sg) is the simplicial flag complex with ver-
tices corresponding to homotopy classes of simple closed curves in Sg and edges
connecting vertices with disjoint representatives. Vertices of C(Sg) can be separat-
ing or non-separating, meaning that they have a representative that is such.

The genus of a separating curve is the minimum of the genera of the two com-
plementary regions of Sg. Let Ck(Sg) be the subcomplex of C(Sg) spanned by all
vertices represented by separating curves of genus at least k. The first ingredient
in our proof of Theorem 1.7 is the following.

Theorem 1.10. Let k ≥ 1 and let g ≥ 3k + 1. The natural map

Mod±(Sg) → Aut(Ck(Sg))

is an isomorphism.

We prove Theorem 1.10 in Section 3. The proof proceeds by induction on k.
The base case is k = 1, in which case Ck(Sg) is the complex of separating curves.
This case was proved in our earlier work [8, 9].

The bounds on genus in Theorems 1.1 and 1.7 are derived from the bound on g
in Theorem 1.10. If the bound here can be improved, one would obtain improved
versions of those theorems.

Complex of dividing sets. In Section 4 we apply Theorem 1.10 in order to
determine the automorphism group of a different complex, which is of a different
nature and requires a specialized set of tools and techniques. To state the theorem,
we require some definitions.

A dividing set in Sg is a disjoint union of essential simple closed curves that
divides Sg into exactly two regions in such a way that each curve lies in the boundary
of both regions. We allow for the possibility that either of the two regions associated
to a dividing set is an annulus. We say that two dividing sets are nested if one is
contained entirely in a single region defined by the other.

Let D(Sg) denote the set of Mod±(Sg)-orbits of isotopy classes of dividing sets in
Sg. For any D ⊆ D(Sg) we define CD(Sg) to be the abstract simplicial flag complex
whose vertices correspond to isotopy classes of dividing sets in Sg representing
elements of D and whose vertices are connected by an edge when they have nested
representatives.

We define a partial order on D(Sg) as follows: we say that a � b if a and b have
nested representatives A and B and, of the two regions of Sg complementary to B,
the dividing set A lies in one with minimal genus.
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For any set X with a partial order, an upper set is a subset Y ⊆ X with the
property that y ∈ Y and y � z implies z ∈ Y .

Finally, we define ǧ(D) to be the minimum of the genera of the separating curves
corresponding to elements of D.

Theorem 1.11. Fix a non-empty upper set D ⊆ D(Sg) so that CD(Sg) is connected
and assume that g ≥ 3ǧ(D) + 1. Then the natural map

Mod±(Sg) → Aut CD(Sg)

is an isomorphism.

We prove Theorem 1.11 in Section 4. The first observation is that since D
is an upper set the complex CD(Sg) has a subcomplex isomorphic to Cǧ(D)(Sg).
The proof then proceeds by showing that an automorphism of CD(Sg) induces an
automorphism of Cǧ(D)(Sg) and then applying Theorem 1.10.

The proof of Theorem 1.11 is more subtle than the previous theorems about
automorphisms of curve complexes. The first major distinction is that edges in
CD(Sg) do not correspond to disjointness, and so the usual arguments do not apply.
On top of this, the hypotheses of the theorem do not specify which dividing sets do,
and do not, correspond to vertices of CD(Sg); they only specify that D is an upper
set (compare this with the hypotheses of our Theorem 1.1 about normal subgroups
of Mod(Sg)).

Complexes of regions. In Section 5 we derive Theorem 1.7 from Theorem 1.11.
The starting point is a correspondence

{maximal joins in CA(Sg)} ←→ {vertices of CD(Sg)} .

We use this correspondence to show that an automorphism of CA(Sg) induces an
automorphism of some CD(Sg), and then apply Theorem 1.11. The main work is
in showing that the induced map Aut CA(Sg) → Aut CD(Sg) is injective. Again a
difficulty is that we do not have an explicit list of vertices of the complex.

Normal subgroups. In Section 6 we prove Theorem 1.1 using Theorem 1.7. The
core idea is that to a normal subgroup N of Mod(Sg) or Mod±(Sg) we associate a
complex of regions whose vertices correspond to the supports of certain subgroups
of N . To this end, we introduce the notion of a basic subgroup of N , which is a
non-abelian subgroup of N whose centralizer in N is maximal among non-abelian
subgroups of N .

We consider the complex of regions whose vertices are the supports of the basic
subgroups of N . Since N has a pure element with a small component, the complex
of regions has a small vertex. This construction enables us to extract the necessary
topological data from N without knowing specific information about its elements.
After possibly modifying the complex of regions so that it satisfies the other hy-
potheses of Theorem 1.7, we then show that an automorphism of N gives rise to
an automorphism of the complex of regions and we then apply Theorem 1.7.

The proof then proceeds by analyzing separately the case where N is normal in
Mod±(Sg) and the (harder) case where N is normal in Mod(Sg).
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Bird’s-eye view of the proof. One interpretation of our proofs of Theorems 1.1
and 1.7 is that there is a sequence of maps

AutN → Aut CA(Sg) → Aut CD(Sg) → Aut Ck(Sg) → Aut Ck−1(Sg) →
· · · → Aut C1(Sg) → Aut C(Sg) → Mod±(Sg)

and that the appropriate compositions are inverse to the natural maps Mod±(Sg) →
AutN and Mod±(Sg) → Aut CA(Sg). Therefore, not only does our main theorem
validate Ivanov’s metaconjecture, but in reducing to Ivanov’s original theorem (the
last arrow in the diagram) the proof does as well.

2. Exchange automorphisms

Before we proceed to the proofs of our main theorems, we prove two theorems
that clarify the role that exchange automorphisms play in the theory of automor-
phisms of complexes of regions. Theorem 2.1 gives a complete characterization
of exchange automorphisms in complexes of regions. Theorem 1.8 then describes
the automorphism group of a connected complex of regions that has exchange au-
tomorphisms. In this section we assume Theorem 1.7 (proved in Section 5), and
Theorem 1.8 is proved as a corollary.

2.1. Characterization of exchange automorphisms. To state the first theo-
rem about exchange automorphisms, we require some background. Let CA(Sg) be a
complex of regions, and let v be a non-annular vertex. Let R be a representative of
v and let Q1, . . . , Qn be the set of complementary regions of R that do not contain
representatives of vertices of CA(Sg) (the Qi are the holes of v). As discussed in
the introduction, the filling of v is the homotopy class of regions represented by
R′ = R ∪ Q1 ∪ · · · ∪ Qn. When v has a hole (so n > 0), there are infinitely many
vertices of CA(Sg) with the same filling; these are the translates of v under the
elements of Mod±(Sg) that preserve R′. For convenience, we define the filling of an
annular vertex v to be v itself. As in the introduction we refer to the set of vertices
of CA(Sg) with a given filling as an equal filling set.

Theorem 2.1. Let g ≥ 3. Let CA(Sg) be a complex of regions with no isolated
vertices or edges. Then CA(Sg) admits an exchange automorphism if and only if it
has a hole or a cork. Moreover, two vertices can be interchanged by an exchange
automorphism if and only if they are non-annular vertices with equal fillings (that
is, they lie in an equal filling set) or they form a cork pair.

Proof. The first statement follows from the second statement and the fact that if
a vertex has a hole, then there is another vertex (in fact infinitely many) with the
same filling. Thus, it suffices to prove the latter statement.

Suppose first that v and w form a cork pair in CA(Sg), and say that v is the
annular vertex in the pair. Clearly any vertex connected by an edge to w must also
be connected to v. If there were a vertex of CA(Sg) that was connected to v but not
w, then it would be represented by a subsurface of a representative of w. By the
definition of a cork, no such vertex exists. Thus, the stars of v and w in CA(Sg) are
equal and so the two vertices can be interchanged by an exchange automorphism.

Now suppose that v is a vertex with a hole and that v and w have equal fillings.
Say that R is a representative of the filling. By the definition of a filling, any vertex
of CA(Sg) that is connected to v by an edge must be represented in the complement
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of R. But then this vertex is also connected to w by an edge. It then follows that
v and w have equal links and can be interchanged by an exchange automorphism.

For the other direction of the theorem, we will show that two vertices of CA(Sg)
either have equal fillings, form a cork pair, or cannot be interchanged by an exchange
automorphism. Let v and w be two vertices of CA(Sg) and say they are represented
by regions P and Q. First we treat the case where v and w are connected by an
edge, so P and Q are disjoint. There are three subcases.

The first subcase is where there is a component of the boundary of P that is not
parallel to the boundary of Q. In this case there is a region R of Sg that contains P
as a proper, non-peripheral subsurface and is disjoint from Q. From this it follows
that there are Mod±(Sg)-translates of v that are connected by an edge to w but
not to v. Therefore v and w cannot be exchanged.

The second subcase is where P and Q are complementary regions in Sg. If there
is a vertex of CA(Sg) corresponding to a proper, non-peripheral subsurface of either
P or Q, then this vertex would be connected by an edge to one of v or w but not
the other, and we would have that v and w were not exchangeable. So we may
assume there is no such vertex. It follows that P and Q are homeomorphic. We
may also assume that there is a vertex u of CA(Sg) corresponding to a component
of the boundary of P , for otherwise v and w would span an isolated edge in CA(Sg).
If u is a non-separating annular vertex, then since there are no vertices of CA(Sg)
represented by proper, non-peripheral subsurfaces of P or Q, it follows that P and
Q are pairs of pants and so g = 2, a contradiction. If u is a separating annular
vertex, then u and v form a cork pair.

The third and final subcase is where P has connected boundary and Q is an
annulus parallel to the boundary of P . If there is a vertex u of CA(Sg) represented
by a proper, essential subsurface of P , then v and w cannot be exchanged (u is
connected by an edge to w but not v). If there is no such vertex u, then v and w
form a cork pair.

We now proceed to the case where v and w are not connected by an edge. Here
there are two subcases, according to whether or not one of the two vertices is
annular. Again let P and Q be representatives of v and w; in this case, P and Q
have essential intersection.

The first subcase is where P is annular. The complement of P in Sg consists
of either one or two regions; the region Q has essential intersection with each such
region. Since v is not an isolated vertex of CA(Sg), there is a vertex u of CA(Sg)
represented in a region of Sg complementary to P . Some Mod±(Sg)-translate of u
is connected by an edge to v but not w, and so v and w are not exchangeable.

The second and final subcase is where neither P or Q is annular. Let P ′ be
a representative of the filling of v. The first step is to show that Q is contained
in P ′. If Q is contained in P there is nothing to do, since P ⊆ P ′. If Q is not
contained in P , then there is at least one complementary region of P that has
essential intersection with Q. Let R be any such region. If we assume that v and
w are exchangeable, then R must represent a hole for P (otherwise we would find a
vertex connected by an edge to v but not w). Thus R is contained in P ′. It follows
that Q is contained in P ′, as desired.

Let Q′ be a representative of the filling of w. The next step is to show that Q′

is contained in P ′. Suppose to the contrary that Q′ is not contained in P ′, which
is to say that Q′ has essential intersection with a region R complementary to P ′.
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Since P ′ is obtained from P by adjoining some of the complementary components
of P , we have that R is a complementary component of P . Since Q is contained
in P ′ it follows that R is contained in some complementary region T of Q. By the
definition of a filling, T represents a hole for Q. In particular, no vertex of CA(Sg)
is represented by a subsurface of T . Since R is contained in T , and since R is a
complementary region to P , it must be that R is a hole for P , contradicting the
fact that R is not contained in P ′. This completes the proof that Q′ is contained
in P ′. By symmetry, P ′ is contained in Q′ and the proof is complete. �

2.2. Automorphism groups in the presence of exchange automorphisms.
In this section we prove Theorem 1.8 which describes the group of automorphisms
of a general complex of regions, possibly with holes and corks.

We will require a series of lemmas about fillings (the first two will also be used
in Section 6). In what follows, the filling of a complex of regions CA(Sg) is the
complex of regions CĀ(Sg) obtained by replacing each vertex of CA(Sg) that has
a hole with its filling (infinitely many vertices may become the same vertex after
filling).

Lemma 2.2. Let CA(Sg) be a complex of regions. Then its filling CĀ(Sg) has no
holes.

Proof. Let R be a non-annular region of Sg representing a vertex of CĀ(Sg). Since
the vertices of CĀ(Sg) are fillings of vertices of CA(Sg), it follows that there is a
non-annular region Q in R that represents a vertex of CA(Sg) and so that the
R-vertex of CĀ(Sg) (that is, the vertex represented by R) is the filling of the Q-
vertex of CA(Sg). Denote the complementary regions of Q in Sg by P1, . . . , Pn and
say that Pm+1, . . . , Pn are the complementary regions corresponding to holes (i.e.,
the regions that do not support any vertex of CA(Sg)). Then R is represented by
the union of Q with Pm+1 ∪ · · · ∪ Pn and so the complementary regions to R are
P1, . . . , Pn. By assumption each of these regions supports a vertex of CA(Sg).

We must show that each of P1, . . . , Pn supports a vertex of CĀ(Sg). Let Q1 be a
region in P1 representing a vertex of CA(Sg). If Q1 is annular, then the filling of the
Q1-vertex is itself and there is nothing to do. So we may assume Q1 is not annular.
Since the complement of P1 is connected, there is a single complementary region
of Q1 containing the complement of P1. Since this complementary region contains
Q it cannot represent a hole for Q1. Thus the filling of the Q1-vertex is contained
in P1 as desired. The same argument applies to P2, . . . , Pm, and we have finished
showing that CĀ(Sg) has no holes. �

Lemma 2.3. Let CA(Sg) be a complex of regions with a small vertex. Then its
filling CĀ(Sg) has a small vertex.

Proof. Let v be a small vertex of CA(Sg). Let R be a subsurface of genus less than
g/3 and with connected boundary that contains a representative of v. Let Q denote
the region complementary to R. Note that Q lies in a single complementary region
for (a representative of) v. Also note that Q does not lie in a hole for v since there
are Mod±(Sg)-translates of v that are represented in Q. Therefore the filling of v
is represented in R. The lemma follows. �

The following lemma is used in the proof of Lemma 2.5, as well as the proof of
Theorem 1.8. In the statement we consider a complex of regions CA(Sg), its filling
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CĀ(Sg), and the complex of regions CĀ′(Sg) obtained from CĀ(Sg) by removing all
corks. There are natural maps

C(0)
A (Sg) → C(0)

Ā
(Sg) → C(0)

Ā′ (Sg)

defined as follows. Under the first map each vertex of CA(Sg) is sent to its filling.
Under the second map, each vertex that is not a cork is sent to itself and each cork
is assigned to have the same image as the vertex for which it is a cork.

Lemma 2.4. Let CA(Sg) be a complex of regions, let CĀ(Sg) be its filling, and let
CĀ′(Sg) be the complex of regions obtained from CĀ(Sg) by removing all corks. Then
the natural maps

C(0)
A (Sg) → C(0)

Ā
(Sg) → C(0)

Ā′ (Sg)

extend to simplicial maps

CA(Sg) → CĀ(Sg) → CĀ′(Sg).

Proof. We treat the two maps in turn. For the first, assume that v and w are
vertices of CA(Sg) that are connected by an edge. By the definition of a hole,
neither v nor w can lie in a hole for the other, and it follows that each is disjoint
from the other’s filling. Thus, the images of v and w are connected by an edge, and
so the map indeed extends.

For the second map, let us assume that v and w are vertices of CĀ(Sg) that are
connected by an edge. The only non-trivial case is where v is a cork. In this case
w, being disjoint from v, either is equal to or is connected by an edge to the vertex
that forms a cork pair with v, as desired. �

The next lemma is essentially the first half of the proof of Theorem 1.8.

Lemma 2.5. Let g ≥ 3. Let CA(Sg) be a complex of regions that is connected and
satisfies g ≥ 3ḡ(A) + 1. Let CĀ(Sg) be the filling of CA(Sg) and let CĀ′(Sg) be the
complex of regions obtained from CĀ(Sg) by removing all corks. Then the natural
map

Mod±(Sg) → Aut CĀ′(Sg)

is an isomorphism.

Proof. To prove the lemma, it is enough to show that CĀ′(Sg) satisfies the hy-
potheses of Theorem 1.7. There are four steps, namely, to show that CĀ′(Sg) is
connected, that is has a small vertex, that it has no corks, and that it has no holes.
We treat these four steps in order.

The first step is to show that CĀ′(Sg) is connected. This follows immediately
from Lemma 2.4 and the assumption that CA(Sg) is connected.

The second step is to show that CĀ′(Sg) has a small vertex. By assumption
CA(Sg) has a small vertex, and hence by Lemma 2.3 the filling CĀ(Sg) has a small
vertex; call it v. If v does not represent a cork in CĀ(Sg), then it survives in CĀ′(Sg)
and is the desired small vertex. If v does represent a cork in CĀ(Sg), then there is
a vertex w of CĀ(Sg) that it forms a cork pair with. This w is represented in R and
is the desired small vertex of CĀ′(Sg).

The third step is to show that CĀ′(Sg) has no corks. Suppose for contradiction
that CĀ′(Sg) had a cork pair corresponding to the non-annular region R and the
annular region Q. All regions representing vertices of CĀ′(Sg) also represent vertices
of the intermediate complex CĀ(Sg); in particular, R and Q do. By the definition
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of a cork pair, there is no vertex of CĀ′(Sg) represented by a non-peripheral, proper
subsurface of R. But since R and Q do not represent a cork pair for CĀ(Sg)
(otherwise the Q-vertex would have been removed), there must be a vertex of
CĀ(Sg) represented by a non-peripheral, proper subsurface P of R. Since P does
not represent a vertex of CĀ′(Sg), it must represent a cork in CĀ(Sg). But then
there is a region P ′ so that the P - and P ′-vertices form a cork pair in CĀ(Sg).
The region P ′ must be contained in R, for otherwise the annular region Q would
prevent P from being a cork. The region P ′ is further proper and non-peripheral in
R, contradicting our assumption about R. This completes the proof that CĀ′(Sg)
has no corks.

The fourth step is to show that CĀ′(Sg) has no holes. Suppose that R is a non-
annular region of Sg representing a vertex of CĀ′(Sg). Then R also represents a
vertex of CĀ(Sg). Let Q be a region of Sg complementary to R. We would like to
show that Q does not represent a hole for the R-vertex of CĀ′(Sg). By Lemma 2.2
the complex CĀ(Sg) has no holes. Thus there is a region P in Q representing a
vertex of CĀ(Sg). If P does not represent a cork for CĀ(Sg), then P also represents
a vertex of CĀ′(Sg) and we are done. Now suppose that P does represent a cork
for CĀ(Sg). If the R-vertex of CĀ(Sg) forms a cork pair with the P -vertex, then
since CĀ′(Sg) has a small vertex the genus of R is less than g/3. As such, the
complementary region Q contains a Mod±(Sg)-translate of the R-vertex of CĀ′(Sg)
and again we are done. Finally, we are in the situation where P represents a cork
for CĀ(Sg) but R does not represent the other vertex in the cork pair; say that P ′

represents the other vertex of the cork pair. By the definition of a cork, R is not
contained in P ′. The annulus P only has two complementary regions, one of which
is P ′. So it must be that P ′ is the complementary region to P not containing R.
It follows that P ′ is contained in Q. Hence Q does not represent a hole for the
R-vertex of CĀ′(Sg) and so CĀ′(Sg) has no holes. This completes the proof. �

We are ready now to complete the proof of Theorem 1.8.

Proof of Theorem 1.8. Let CĀ(Sg) be the filling of CA(Sg) and let CĀ′(Sg) be the
complex of regions obtained from CĀ(Sg) by removing all corks. By Lemma 2.5, it
is enough to show that there is a split short exact sequence

1 → Ex CA(Sg) → Aut CA(Sg) → Aut CĀ′(Sg) → 1.

We treat three steps in turn, namely, to show that there is a well-defined map
Aut CA(Sg) → Aut CĀ′(Sg), to show that this map has a right inverse, and then to
show that the kernel is Ex CA(Sg), the group of multiexchange automorphisms.

We begin with the first step, which is to show that there is a well-defined map
Aut CA(Sg) → Aut CĀ′(Sg). We consider the natural simplicial maps

CA(Sg) → CĀ(Sg) → CĀ′(Sg)

from the statement of Lemma 2.4. We would like to show that these simplicial
maps induce well-defined maps

Aut CA(Sg) → Aut CĀ(Sg) → Aut CĀ′(Sg).

For the first map we need to show that the image of an equal filling set under an
automorphism of CA(Sg) is another equal filling set. But this is true by Theorem 2.1,
which implies that a collection of vertices of CA(Sg) is an equal filling set if and
only if it is an infinite set on which Ex CA(Sg) acts transitively.
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For the second map we need to show that Aut CĀ(Sg) preserves the set of cork
pairs. But again by Theorem 2.1 a collection of vertices of CĀ(Sg) is a cork pair if
and only if it is a set with two elements upon which Ex CĀ(Sg) acts transitively.

We will now show that the map Aut CA(Sg) → Aut CĀ′(Sg) has a right inverse.
We already know from Lemma 2.5 that the map Mod±(Sg) → Aut CĀ′(Sg) is an
isomorphism and so the natural homomoprhism Mod±(Sg) → Aut CA(Sg) is a
candidate for a right inverse. Because the processes of filling vertices and removing
corks both commute with the action of Mod±(Sg), this indeed gives the desired
right inverse.

To complete the proof it remains to show that the kernel of the composition
Aut CA(Sg) → Aut CĀ′(Sg) is indeed the group Ex CA(Sg). The kernel of the first
map Aut CA(Sg) → Aut CĀ(Sg) is clearly the subgroup of Ex CA(Sg) consisting of
the permutations of equal filling sets. Since CĀ(Sg) has no holes the kernel of
the second map Aut CĀ(Sg) → Aut CĀ′(Sg) is equal to the subgroup of Ex CĀ(Sg)
consisting of all elements where the support (the set of vertices not mapped to
themselves) is contained in the union of cork pairs. By Theorem 2.1 this is all of
Ex CĀ(Sg).

The statement that the kernel of Aut CA(Sg) → Aut CĀ′(Sg) is Ex CA(Sg) now
amounts to the following statement: if v and w are vertices of CA(Sg) whose images
v̄ and w̄ in CĀ(Sg) form a cork pair—say that v̄ is the cork—then either v and w
form a cork pair or they are not exchangeable. Since v̄ is annular, it follows that
v is represented by the same annulus. Also, the filling of w corresponds to w̄. If w
and w̄ are represented by the same region, then v and w form a cork. If not, then
w has a non-trivial filling, and there are infinitely many other vertices of CA(Sg)
with the same filling. Each of these vertices is connected to v by an edge but not
to w. It follows that v and w are not exchangeable. This completes the proof. �

3. Complexes of separating curves

In this section we prove Theorem 1.10. The ideas in this section build on our
earlier work. Indeed, the main tool in this section is a certain configuration of
curves called a sharing pair, which was introduced in our previous paper [8]. Our
approach here puts our earlier work into a more conceptual framework, allowing
for the more general argument.

Recall from the introduction that Ck(Sg) is the subcomplex of C(Sg) spanned by
all vertices represented by separating curves of genus at least k. As discussed in
the introduction, Theorem 1.10 is proven by induction with the base case k = 1
(again the base case was proved in our earlier work [8, 9]). The main point of the
inductive step is to show that there is a map

Aut Ck(Sg) → Aut Ck−1(Sg)

φ �→ φ̂

so that each element φ of Aut Ck(Sg) is the restriction to Ck(Sg) of its image φ̂ (we
regard Ck(Sg) as a subcomplex of Ck−1(Sg)). Given an automorphism φ of Ck(Sg),

we thus need to specify the action of φ̂ on the vertices of Ck−1(Sg) of genus k − 1.
To this end, we define a sharing pair of genus k as a pair of vertices of Ck(Sg)

that both have genus k and are configured as in Figure 2. Specifically, if we choose
representative curves in minimal position, then the two curves intersect in two
points and cut the surface into four regions, each with one boundary component,
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k – 1

Figure 2. Left: A sharing pair of genus k. Right: Another view
of a sharing pair of genus three

and the genera of the regions are g − k − 1, k − 1, 1, and 1. The key point is that
(as long as g > 2k) a sharing pair specifies a unique separating curve of genus k−1,
namely, the boundary of the region of genus k − 1 defined by the sharing pair.

The main steps are to show for any automorphism φ of Ck(Sg) that

(1) if two vertices of Ck(Sg) form a sharing pair their φ-images do, and
(2) if two sharing pairs in Ck(Sg) specify the same vertex of Ck−1(Sg), then

their φ-images do.

Given these properties, we can define an automorphism φ̂ of Ck−1(Sg), whereby the

action of φ̂ on a vertex of genus k−1 is dictated by the action of φ on sharing pairs.
Here is the outline for the section. First, we begin with two preliminaries, deal-

ing with basic separation properties (Lemma 3.1) and with subsurface projections
(Lemma 3.2). Then we prove the two properties above (Lemmas 3.3 and 3.5) before
finally finishing the proof.

Separation properties. We begin with some basic characterizations. If z is a
vertex of Ck(Sg) of genus h, then any representative of z divides Sg into two regions,
one of genus h and one of genus g − h. Both regions are well defined up to isotopy
and we refer to them as the sides of z. If a is any other vertex connected to z by
an edge, then a lies on one side of z; this side is well-defined.

The join of two simplicial complexes X and Y is the simplicial complex X ∗ Y
whose simplices are the disjoint unions of the simplices in X and Y .

Lemma 3.1. Let k ≥ 1. Let φ ∈ Aut Ck(Sg), let z be a vertex of Ck(Sg), and let a
and b be a vertices connected by edges to z. Then

(1) z and φ(z) have the same genus,
(2) the sides of z and φ(z) corresponding to a and φ(a) have the same genus,

and
(3) a and b lie on the same side of z if and only if φ(a) and φ(b) lie on the

same side of φ(z).

Proof. The link of z in Ck(Sg) is the join of two subcomplexes, namely, the sub-
complexes corresponding to the two sides of z. Moreover, if we write the link of
z as the join of two subcomplexes, then those two subcomplexes must be the ones
corresponding to the two sides. This is a consequence of the fact that if v and w
are two vertices of Ck(Sg) lying on the same side of z, then there is another vertex
x in the link of z that is not connected by an edge to either v or w in Ck(Sg).
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Say that the genus of z is h. The three statements of the lemma follow from the
previous paragraph and the fact that the subcomplexes corresponding to the two
sides of z have dimensions h − k − 1 and g − h + k + 1. �

Projections. Before showing that automorphisms preserve sharing pairs, we need
to introduce one further tool: subsurface projection maps. This idea was introduced
by Ivanov in his work on the analogy between mapping class groups and arithmetic
groups [32] and was also used by Masur and Minsky in their work on the geometry
of the complex of curves [46].

Let z be a vertex of Ck(Sg) whose genus is strictly less than g/2. Let R be a
region of Sg whose boundary represents z and whose genus is equal to that of z.
Let v be a vertex of Ck(Sg) that is not in the star of z (that is, v intersects z). The
projection πz(v) is a collection of homotopy classes of disjoint arcs in R defined as
follows: we choose a representative of v that lies in minimal position with ∂R, take
the intersection of this representative with R, and identify parallel arcs to a single
arc.

The projection πz(v) is a well-defined collection of homotopy classes of arcs in R.
We say that πz(v) is a non-separating arc if a representative has a single component
and is non-separating. Next, we say that πz(v) and πz(w) are unlinked if they have
representatives that are disjoint and whose endpoints on ∂R alternate. Finally
we say that πz(v) and πz(w) form a handle pair if they have representatives that
are distinct non-separating arcs and so that the subsurface of R filled by these
projections is a surface of genus one with two boundary components.

Lemma 3.2. Let k ≥ 2 and let φ ∈ Aut Ck(Sg). Let z be a vertex of Ck(Sg) of
genus h where k < h < g/2. Let u, v, and w be vertices of Ck(Sg) that are not in
the star of z, and suppose that u is connected to v by an edge.

(1) If πz(v) is a non-separating arc, then πφ(z)(φ(v)) is as well.
(2) If πz(v) and πz(w) are distinct non-separating arcs, then πφ(z)(φ(v)) and

πφ(z)(φ(w)) are distinct non-separating arcs.
(3) If πz(v) and πz(w) form a handle pair, then πφ(z)(φ(v)) and πφ(z)(φ(w))

form a handle pair.
(4) If πz(u) and πz(v) are unlinked non-separating arcs, then πφ(z)(φ(u)) and

πφ(z)(φ(v)) are unlinked non-separating arcs.

Proof. We fix a region R of genus h whose boundary represents z. For the first
statement, we claim that πz(v) is a non-separating arc if and only if Ck(Sg) has
more than one vertex of genus h − 1 that lies on the genus h side of z and is
connected by an edge to v. The first statement will follow from the claim and
Lemma 3.1.

For the forward direction, assume that πz(v) is a single non-separating arc. If
we cut R along a representative of the arc πz(v) the resulting surface has genus
h − 1 and two boundary components. There are infinitely many isotopy classes of
simple closed curves in the cut surface that separate the cut surface into a pair of
pants and a surface of genus h − 1 with one boundary component. Each of these
corresponds to a vertex of genus h− 1 in Ck(Sg) that is connected by an edge to v.

For the other direction, there are two cases: either πz(v) contains the homotopy
class of a separating arc or πz(v) contains more than one homotopy class of non-
separating arcs. In the first case, if we divide a representative of R along such
a separating arc, we obtain two surfaces of genus h1 and h2 with h2 > h1 > 0
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Figure 3. Curves and arcs used to characterize a sharing pair

and h1 + h2 = h. In particular, hi ≤ h − 1. Any vertex of Ck(Sg) that has a
representative in R and is connected to v by an edge must lie in one of these
subsurfaces. If h1 = 1, then there is a unique such vertex; otherwise, there is no
such vertex. For the second case, we note that if we cut R along two disjoint non-
separating arcs we either obtain a surface of genus h − 1 with a single boundary
component, we obtain a surface of genus less than h− 1, or we obtain two surfaces,
each with two boundary components and genus less than h − 1. So either there is
a single vertex of genus h − 1 as in the claim or there are none.

The second statement follows from Lemma 3.1 and the first statement, since
πz(v) and πz(w) are determined by the vertices of genus h− 1 that lie on the genus
h side of z and are disjoint from v1 and v2, respectively.

We now proceed to the third statement. Two distinct, non-separating projections
πz(v) and πz(w) form a handle pair if and only if there exists a vertex of genus
h− 1 in Ck(Sg) that lies on the genus h side of z and is connected by edges to both
v and w in Ck(Sg). The third statement then follows from Lemma 3.1.

Finally, we prove the fourth statement. Since u and v are connected by an
edge, their projections are disjoint. Also, by the first statement we know that the
projections are non-separating if and only if their images are. It remains to char-
acterize linking and unlinking for disjoint non-separating projections. But disjoint
non-separating projections πz(u) and πz(v) are linked if and only if they form a
handle pair, and so an application of the third statement completes the proof. �

Sharing pairs. We now show that automorphisms of Ck(Sg) preserve sharing pairs.
As discussed at the start of this section, this is the main tool used to extend an

automorphism φ of Ck(Sg) to an automorphism φ̂ of Ck−1(Sg).

Lemma 3.3. Let k ≥ 2, let g ≥ 3k + 1, and let a and b be two vertices of Ck(Sg)
that form a sharing pair of genus k. If φ is an automorphism of Ck(Sg), then φ(a)
and φ(b) form a sharing pair of genus k.

Proof. We will show that two vertices a and b of Ck(Sg) form a sharing pair of genus
k if and only if there are vertices x1, x2, y1, y2, and z of Ck(Sg) with the following
properties:

(1) the genus of z is k + 1;
(2) a and b are vertices of genus k lying on the genus k + 1 side of z;
(3) each xi is connected by edges to a, y1, and y2 but not to b;
(4) each yi is connected by edges to b, x1, and x2 but not to a;
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(5) πz(x1) and πz(x2) form a handle pair and πz(y1) and πz(y2) form a handle
pair; and

(6) each πz(xi) is unlinked with each πz(yj).

(We have implicitly used the fact that z has only one side of genus k + 1, but this
is implied by the conditions on g and k.) Lemmas 3.1 and 3.2 together imply that
a, b, the xi, the yi, and z satisfy the given conditions if and only if their φ-images
do. Therefore, it remains to prove that the existence of such a, b, the xi, the yi,
and z is equivalent to the condition that a and b form a sharing pair.

The forward direction is given by explicit construction; refer to Figure 3. There
is a unique configuration for a and b as in the figure. The curve z is shown. For
each i the curve xi is obtained by taking the boundary of a regular neighborhood
of the union of the region P with one of the arcs in the picture with endpoints
on P (the order of the arcs does not matter). Similarly each yi is obtained as the
boundary of a regular neighborhood of the union of the region Q with one of the
arcs with endpoints on Q.

We now proceed to the other implication. Assume that a, b, x1, x2, y1, y2, and
z satisfy the conditions in the claim. Let R be a region of Sg representing the
genus k + 1 side of z, as per property (1). By property (2), the vertices a and b
have representatives in R. Let R̄ denote the closed surface obtained by collapsing
the boundary of R to a marked point. Each of a and b separates R̄ into a surface
of genus k with one boundary component and a surface of genus one with one
boundary component and one marked point.

By property (5), the vertices x1 and x2 give rise to a pair of non-separating
arcs in R̄ based at the marked point, and these arcs fill a subsurface Qx of R̄
homeomorphic to a surface of genus one with one boundary component and one
marked point. Similarly, the yi give a pair of non-separating arcs in R̄ that fill a
subsurface Qy with the same properties.

Since there is only one separating curve of genus k disjoint from Qx, namely the
boundary of Qx, property (3) implies that a is represented by the boundary of Qx.
Similarly, property (4) implies that b is represented by the boundary of Qy. Our
main goal at this point is to show that the geometric intersection number i(a, b) is
2, and so we have reduced this to a problem about the xi and yi.

If we consider a small closed disk around the marked point of R̄, the xi-arcs
and yi-arcs give a collection of eight disjoint arcs connecting the marked point to
the boundary of the disk, and since no triple among the xi and yi have pairwise
non-trivial intersection, the eight arcs in the disk come in a well-defined cyclic
order (depending only on the xi, the yi, and z). Any homotopically distinct based
simple loops in Qx must cross transversely at the base point (this follows from
the identification of the set of oriented non-separating simple closed curves in the
punctured torus with the primitive elements of Z2). It follows that the two x1-arcs
and the two x2-arcs alternate in the cyclic order. Then, since the xi-arcs fill Qx, it
follows from property (6) that in the cyclic order the four xi-arcs in the disk appear
in order, followed by the four yi-arcs.

Since the xi-arcs fill Qx and since the xi are disjoint from the yi it follows from
the previous paragraph that if we take the yi-arcs in R̄ and intersect them all
with Qx we obtain a set of four parallel arcs connecting the marked point to the
boundary. As Qy is obtained from a regular neighborhood of the yi-arcs, it follows
that the intersection of Qx with Qy is a disk. Since a and b are identified with the
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Figure 4. A sharing triple of genus three

boundary components of Qx and Qy, it follows that i(a, b) = 2. There is only one
possible configuration for two separating curves of genus k in R with intersection
number two, and so a and b form a sharing pair, as desired. �

Sharing triples. As discussed at the beginning of the section, Lemma 3.3 sug-
gests a method for extending an automorphism of Ck(Sg) to an automorphism of
Ck−1(Sg): the image of a vertex of genus k − 1 is determined by the image of a
corresponding sharing pair. We need to show that this rule is well defined. We will
use sharing triples to address this issue.

We say that three vertices of Ck(Sg) form a sharing triple of genus k if they are
configured as in Figure 4. Specifically, each pair of vertices in a sharing triple forms
a sharing pair for the same vertex of Ck−1(Sg). It is also true that if three vertices
of Ck(Sg) pairwise form sharing pairs for the same vertex of Ck−1(Sg), then they
form a sharing triple but we will not use this.

The next lemma tells us that if two sharing pairs belong to the same sharing
triple, then their images under any automorphism of Ck(Sg) represent the same
vertex of genus k − 1. Lemma 3.5 below then tells us that if two arbitrary shar-
ing pairs represent the same vertex of genus k − 1, then their images under any
automorphism of Ck(Sg) also represent the same vertex.

Lemma 3.4. Let k ≥ 2, let g ≥ 3k + 1, and let φ be an automorphism of Ck(Sg).
If a, b, and c are three vertices of Ck(Sg) that form a sharing triple of genus k, then
φ(a), φ(b), and φ(c) form a sharing triple of genus k.

Proof. We claim that three vertices a, b, and c form a sharing triple of genus k if
and only if there are vertices z and d of Ck(Sg) so that the following conditions
hold:

(1) the genus of z is k + 2,
(2) a, b, and c all lie on a genus k + 2 side of z,
(3) any two of a, b, and c form a sharing pair of genus k,
(4) any vertex of Ck(Sg) that is connected by an edge to each of a, b, and c

must also be connected by an edge to z, and
(5) d forms a sharing pair with c and is connected by edges to a and b.
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z
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Figure 5. The vertices z and d in the characterization of sharing triples

(In the special case where k = 2 and g = 7 the first condition should be interpreted
as saying that the genus of z is 3.) The lemma follows from the claim plus Lem-
mas 3.1 and 3.3. The last condition in the claim is included only to rule out one
configuration in the case k = 2. On the other hand for any k ≥ 2 there are fake
sharing triples that satisfy the first three conditions but not the fourth.

The forward direction of the claim is straightforward. The construction of the
vertices z and d is indicated in Figure 5. Note that the vertex d exists because
g ≥ 2k + 1.

For the other direction, assume that a, b, and c are three vertices of Ck(Sg) that
satisfy the conditions of the claim. We must show that a, b, and c form a sharing
triple of genus k.

Choose a vertex z as in the claim, and choose a representative curve in Sg. Let
R be the region of Sg that is determined by this curve and contains representatives
of a, b, and c. Choose representative curves for a and b in R. Since a and b form a
sharing pair, we can assume that these curves are configured as in Figure 2.

There is a region Q of R that lies between the boundary of R and the union of
the a-curve and the b-curve. This region Q is homeomorphic to a surface of genus
one with two boundary components; one boundary component is the z-curve and
the other boundary component is made up of one arc of the a-curve and one arc of
the b-curve.

Choose a curve in R representing c, and take this curve to be in minimal position
with the a-curve and the b-curve, and so that there are no triple intersections. Since
c lies on the same side of z as a and b and is not connected by an edge to a or b,
the intersection of the c-curve with Q is a collection of disjoint arcs, each starting
and ending on the boundary component coming from a and b. Since two curves in
a sharing pair intersect in two points, there are at most two arcs. We may further
assume that no c-arc in Q is peripheral, for in this case we can push this arc out
of Q without increasing the number of intersections of the c-curve with either the
a-curve or the b-curve.

By the fourth condition of the claim, the c-arcs in Q must have the following
property: if we cut Q along the c-arcs the component containing the z-curve must
be an annulus. We thus have the following possibilities:

(1) there are two c-arcs in Q that are not homotopic and non-separating,
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Figure 6. Three possibilities for the intersection of c with Q in
the proof of Lemma 3.4

(2) there are two c-arcs in Q that are parallel and separating, or
(3) there is a single c-arc in Q that is separating;

see Figure 6.
The first case can be ruled out because in this case the c-curve is non-separating

in Sg (we can find a curve in Q—hence Sg—that intersects it in one point).
The second case can be ruled out as follows. First, any vertex v of Ck(Sg) that

is connected by edges to a and b but not c is necessarily not connected by an edge
to z. This is simply because v has genus k and the genus of Q, the region between
z and a ∪ b, is only one. It follows that the vertex d from the fifth condition of the
claim must intersect z. But in the second case any curve that is disjoint from a and
b but not z must intersect c in at least four points. This contradicts the assertion
that c and d form a sharing pair.

We now consider the third case, where there is a single separating c-arc in Q.
In this case the c-arc in Q is configured like the c-arc on the outside of a and b in
Figure 5. It remains to determine the configuration of c in the union of the interiors
of a and b in Figure 5. The c-arcs in the genus k sides of the a- and b-curves are
separating and must cut off a subsurface of genus k − 1 in each region. The only
possibility then is that c is configured exactly as in Figure 5 and hence forms a
sharing triple with a and b. �

The sharing pair graph. Assume g ≥ 2k and let y be a vertex of Ck−1(Sg).
We define the sharing pair graph for y as the graph whose vertices correspond to
sharing pairs of genus k that specify y and whose edges correspond to sharing pairs
{a, b} and {b, c} with the property that {a, b, c} is a sharing triple.

Let Mod(Sg, y) denote the subgroup of Mod(Sg) consisting of elements repre-
sented by homeomorphisms that act by the identity on the region of Sg correspond-
ing to the genus k − 1 side of y. Note that Mod(Sg, y) acts on the sharing pair
graph for y and acts transitively on the vertices.

Putman’s trick. If G is a group with a generating set {gi} and G acts on a
graph X with base point v and G acts transitively on the vertices of X, then X is
connected if for each i the vertices gi · v and g−1

i · v lie in the same component of
X as v. As Putman explains [55], this method is useful in the theory of mapping
class groups because one can often choose the v and the gi so that most of the gi ·v
are equal to v and the other gi · v are very close to v. We refer to this method
as Putman’s trick. We will presently apply it to the action of Mod(Sg, y) on the
sharing pair graph for y.

Lemma 3.5. Let k ≥ 2 and let g ≥ 2k. Let y be a vertex of Ck−1(Sg). The sharing
pair graph for y is connected.
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Figure 7. Curves di whose Dehn twists generate Mod(Sg, y)

a
b

c

d3

Figure 8. The curves a, b, c, and d3

Proof. Let y be the vertex of Ck−1(Sg) shown in Figure 7. We enlist the sharing
pair {a, b} shown in Figure 7 to act as a base point v for the sharing pair graph
for y. As mentioned, the group Mod(Sg, y) acts transitively on the vertices of this
graph.

Denote g−k+1 by g′. The group Mod(Sg, y) is isomorphic to the mapping class
group of the region of Sg that lies on the genus g′ side of the y-curve. As such it is
generated by the Dehn twists about the curves {d0, . . . , d2g′} indicated in Figure 7
for the case where g = k + 4; see [37, Theorem 1].

By Putman’s trick, it is enough to show that each Tdi
(v) lies in the same con-

nected component of the sharing pair graph as v. We have arranged things so that
when di /∈ {d3, d2g′−1} we have Tvi ·v = v and there is nothing to check. It remains
to check that Td3

·v and Td2g′−1
·v lie in the same component as v. The configuration

{a, b, d3} is equivalent to the configuration {a, b, d2g′−1} and so it suffices to treat
the case of d3.

There exists a vertex c of Ck(Sg) so that {a, b, c} forms a sharing triple of genus k
for y and so that i(c, d3) = 0; this is clear from the point of view of Figure 8. We also
see from Figure 7 that i(b, d3) = 0. Since {a, b, c} is a sharing triple, its Td3

-image
{Td3

(a), b, c} is a sharing triple as well. Thus, Td3
·v = {Td3

(a), Td3
(b)} = {Td3

(a), b}
is connected by an edge to w = {b, c}. Since v = {a, b} is also connected to w, we
are done. �
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Finishing the proof. We are almost ready to finish the proof of Theorem 1.10,
which states that for k ≥ 2 and g ≥ 3k+1 the natural map Mod±(Sg) → Aut Ck(Sg)
is an isomorphism.

Lemma 3.6. Let g ≥ 3 and let X be one of the complexes Ck(Sg), CD(Sg), or
CA(Sg), where k ≥ 1, D ⊆ D(Sg) is non-empty, or A ⊆ R(Sg) is non-empty.
Then the natural map Mod±(Sg) → AutX is injective and the image contains no
exchange automorphisms.

Proof. A vertex of X represents a point in PMF(Sg), the space of projective mea-
sured foliations on Sg. Indeed, for Ck(Sg) and CD(Sg) we take the usual inclusion
of the set of multicurves in Sg into PMF(Sg) [21, Section 5.4], and for CA(Sg) we
first take the boundary of the corresponding subsurface and then take the usual
inclusion of the set of multicurves into PMF(Sg). The action of Mod±(Sg) on X
clearly agrees with the action on PMF(Sg).

The action of Mod±(Sg) on PMF(Sg) is continuous and minimal, meaning the
orbit of every point is dense; see [21, Theorem 6.19]. It follows that if an element of
Mod±(Sg) acts trivially on X, then it acts trivially on PMF(Sg). But the kernel of
the action of Mod±(Sg) on PMF(Sg) is trivial for g ≥ 3 (see [20, Proof of Theorem
3.10]) and so the first statement follows. The second statement also follows, since
the complement of two points in a dense subset of PMF(Sg) is still dense. �
Proof of Theorem 1.10. Fix g ≥ 4. We would like to show that for each k with 1 ≤
k < g/3 the automorphism group of Ck(Sg) is isomorphic to Mod±(Sg). We proceed
by induction on k. The case k = 1 was proven in our earlier paper [8]. So suppose
1 < k < g/3, and assume that the natural map Mod±(Sg) → Aut Ck−1(Sg) is an
isomorphism. By Lemma 3.6 it suffices to show that the natural map Mod±(Sg) →
Aut Ck(Sg) is surjective. Let φ ∈ Aut Ck(Sg). By Lemmas 3.3 and 3.5 there is a

well-defined automorphism φ̂ of the 0-skeleton of Ck−1(Sg) that agrees with φ on
the 0-skeleton of Ck(Sg). Specifically, if v is a vertex of Ck−1(Sg) that does not lie

in Ck(Sg), then φ̂(v) is the vertex of Ck−1(Sg) determined by the φ-image of any
sharing pair for v.

We claim that φ̂ extends to the 1-skeleton of Ck−1(Sg). To this end, let v and w
be vertices of Ck−1(Sg). If v and w both lie in the subcomplex Ck(Sg) of Ck−1(Sg),

there is nothing to show since the restriction of φ̂ to Ck(Sg) is equal to φ. Next
suppose that neither v nor w lies in Ck(Sg); in other words v and w both have genus
k − 1. In this case since g ≥ 3k + 1 ≥ 2k + 2 we can find sharing pairs for v and w
that are disjoint, and from this—and the fact that two disjoint separating curves
of genus k cut off disjoint regions of genus k—the result follows. The final case is
where v lies in Ck(Sg) but w does not. If v has genus k and w lies on the genus
k side of v, then v lies in a sharing pair for w, and the claim follows. In all other
cases, we can choose a sharing pair for w that is disjoint from v and again the claim
follows.

By induction there exists some f ∈ Mod±(Sg) whose image in Aut Ck−1(Sg) is

precisely φ̂. Since the restriction of φ̂ to Ck(Sg) is equal to φ, it follows that the
image of f in Aut Ck(Sg) is φ, as desired. �

4. Complexes of dividing sets

Recall from the introduction that a dividing set is a disjoint union of curves that
divides Sg into exactly two regions (possibly annuli) in such a way that each curve
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lies in the boundary of both regions. Recall also that D(Sg) is the set of Mod±(Sg)-
orbits of isotopy classes of dividing sets, and that for any D ⊆ D(Sg) the complex
CD(Sg) has vertices corresponding to dividing sets representing elements of D and
edges for dividing sets with nested representatives.

The goal of this section is to prove Theorem 1.11, which states that whenever
D is an upper set in D(Sg) with g ≥ 3ǧ(D) + 1, the group of automorphisms of
CD(Sg) is isomorphic to Mod±(Sg).

We will say that a vertex of CD(Sg) has type (k, n) if one of the regions of
Sg determined by a representative of v is a surface of genus k with n boundary
components. Because a dividing set determines two complementary regions of Sg,
a vertex of type (k, n) is also a vertex of type (g − k − n + 1, n).

Next, we say that a dividing set has

(1) type N if it is of type (0, 2),
(2) type S if it is of type (k, 1) for some k, and
(3) type M otherwise

(N, S, and M are for non-separating curve, separating curve, and multicurve). Ver-
tices of type N and S correspond to vertices of the complex of curves. Also, a
dividing set is nested with a vertex of type N or S if and only if it is disjoint.
Therefore, the subgraph of CD(Sg) spanned by vertices of type N and S is isomor-
phic to a subgraph of C(Sg). The main idea of the proof is to show that the type
of a vertex is invariant under automorphisms of D(Sg), and so an automorphism
of D(Sg) induces an automorphism of either the complex of curves or—in the ab-
sence of vertices of type N—an automorphism of the complex of separating curves
Cǧ(D)(Sg).

The only upper set in D(Sg) containing vertices of type N is the entire set D(Sg)
itself. We deal with this case first since it is especially easy, and also because in the
absence of vertices of type N a simplex in CD(Sg) has a normal form representative
that is unique (Lemma 4.3 below).

4.1. Complexes with vertices of type N. Before dispensing with the case where
D = D(Sg) (equivalently, where D contains an element of type N), we require one
new idea.

Subordinacy. We say that a vertex v of CD(Sg)(Sg) is subordinate to a vertex w
if v has a representative that is homotopic to a subset of a representative of w (the
homotopy might take distinct components to a single component). We make the
following observations:

(1) If v and w are distinct vertices of CD(Sg)(Sg) with v subordinate to w, then
v has type N and w has type M.

(2) If v is a vertex of CD(Sg)(Sg) that has type N, then there exists another
vertex w so that v is subordinate to w.

(3) If w is a vertex of CD(Sg)(Sg) that has type M, then there is another vertex
v subordinate to w.

In other words, in CD(Sg)(Sg) the type of a given vertex is completely determined
by the subordinacy relation. (In the second item we use the fact that an upper set
in D(Sg) with a vertex of type N is equal to D(Sg), and so w can be any vertex of
type M.)
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Lemma 4.1. Suppose that g ≥ 1 and let φ be an automorphism of CD(Sg). If v and
w are vertices of CD(Sg) with v subordinate to w, then φ(v) is subordinate to φ(w).

Proof. We make the following claim: a vertex v is subordinate to a vertex w if and
only if the star of w is contained in the star of v. Since automorphisms preserve
stars, the lemma will follow from this.

For the forward direction of the claim, suppose that v is subordinate to w. As
above, v has type N. Thus a vertex u is connected to v by an edge if and only if u
and v have disjoint representatives. Therefore, if a vertex u is not connected to v
by an edge, then u is not connected to w by an edge (it intersects the component
of w corresponding to v); thus the star of w is contained in the star of v.

Now suppose that v is not subordinate to w. If v and w are not joined by an
edge, then w is not contained in the star of v and we are done. If v and w are
joined by an edge, then they have disjoint, nested representatives. Since v is not
subordinate to w, the representative of v has a component that is not homotopic
to any component of w, that is, v is represented by a non-peripheral dividing set in
one of the two regions of Sg determined by the representative of w. It follows that
there is a Mod±(Sg)-translate v′ of v that is connected by an edge to w and has
essential intersection with v, so v′ is not connected by an edge to v. This completes
the proof. �

Finishing the proof in the easy case. The next proposition constitutes the
special case of Theorem 1.11 in the case where D = D(Sg).

Proposition 4.2. Suppose that g ≥ 3. The natural map

Mod±(Sg) → Aut CD(Sg)(Sg)

is an isomorphism.

Proof. We already explained that the type of a vertex in
CD(Sg)(Sg) is completely determined by the subordinacy relation. It follows from
this and from Lemma 4.1 that the vertices of type N, S, and M form three charac-
teristic subsets of CD(Sg)(Sg) (meaning each subset is preserved by automorphisms).
Identifying C(Sg) with the subcomplex of CD(Sg)(Sg) spanned by vertices of type N
and S, we thus obtain a homomorphism

Aut CD(Sg)(Sg) → Aut C(Sg)

given by restriction. This map is injective because each vertex of type M is deter-
mined by the vertices of type N that are subordinate to it. Thus the composition

Aut CD(Sg)(Sg) → Aut C(Sg)
∼=→ Mod±(Sg)

is injective. It remains to check that the map Mod±(Sg) → Aut CD(Sg)(Sg) is a right

inverse. But this is true because the composition Mod±(Sg) → Aut CD(Sg)(Sg) →
Aut C(Sg) is equal to the natural map Mod±(Sg) → Aut C(Sg). �

4.2. Complexes without vertices of type N. To prove Theorem 1.11, it re-
mains to deal with the case where CD(Sg) has no vertices of type N. For this case,
there are three technical ingredients. The first ingredient, which takes advantage
of the assumption that there are no vertices of type N, is that every simplex of
CD(Sg) has a normal form representative that is unique up to isotopy in Sg (the
main point is the uniquness). The second ingredient is the notion of a linear simplex
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in CD(Sg), a special type of simplex in CD(Sg). The third ingredient is the idea of
a exceptional edge, a certain type of configuration that only can involve vertices of
type M. Along the way we also give a topological characterization of upper sets in
D(Sg). Then we determine Aut CD(Sg) by showing that automorphisms of CD(Sg)
preserve the set of vertices of type S.

Normal form representatives. Let σ be a simplex of CD(Sg) with vertices
v0, . . . , vn. A normal form representative for σ in Sg is a collection of pairwise
nested multicurves m0, . . . , mn where mi represents vi.

In the case where CD(Sg) has vertices of type N, we do not have uniqueness of
normal forms. Indeed, if v is a vertex of type N and w is any vertex of type M to
which v is subordinate, then there are two normal form representatives for the edge
{v, w}, since we may push a representative of v to either side of a representative of
w.

Lemma 4.3. Let D ⊆ D(Sg) and let σ be a simplex of CD(Sg) with no vertices of
type N. Then σ has a normal form representative, unique up to isotopy of Sg.

Proof. Say that the vertices of σ are v0, . . . , vn. Choose representatives mi for the vi
that are pairwise disjoint. Such a collection ∪mi exists and is unique up to isotopy
of Sg and reordering the curves in each parallel family; see, e.g., [20, Section 1.2.4].
It remains to show there is a unique choice of ordering of each parallel family so
that the resulting representatives of the vi are pairwise nested, hence are in normal
form.

We first deal with the case where σ = {v0, v1} is an edge and then use this to
prove the general case. By the definition of CD(Sg), the vertices v0 and v1 have
nested representatives m0 and m1. Such representatives are unique up to ambient
isotopy in Sg and reordering the connected components that come in parallel fam-
ilies. Finally, there is a unique way to order a given pair of parallel curves: since
m0 has at least one component c that is not parallel to any component of m1, we
must order the curves so that the m0-curves lie on the side of m1 containing c.

Now let σ be a simplex of arbitrary dimension greater than one and again choose
disjoint representatives mi. Consider one particular parallel family of curves in
∪mi, and let A be a (non-separating) annulus in Sg containing this family. Ar-
bitrarily name the two boundary components of A as the left and right boundary
components.

For any mi and mj with components in A, we choose a normal form represen-
tative of the edge spanned by vi and vj (possibly modifying mi and mj in the
process). We can then declare vi to be to the left of vj in A if the mi-curve is closer
to the left boundary of A than the mj-curve in A. We need to show that this gives
a total ordering on the set of vertices of σ incident to A, that is, we need to show
that the given relation is transitive.

Suppose that vi is to the left of vj in A and vj is to the left of vk in A. This
means that there are nested representatives mi and mj of vi and vj so that mi is
to the left of mj in A, and nested representatives m′

j and mk of vj and vk so that

m′
j is to the left of mk in A. By the uniqueness mentioned earlier, we can apply an

ambient isotopy to m′
j and mk so that m′

j is equal to mj . In particular, mj—hence
mi—is to the left of mk in A, as desired.
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After rearranging each parallel family of curves according to the above ordering,
the resulting representative of σ is a normal form representative, since a represen-
tative of a simplex is in normal form if and only if it restricts to a normal form
representative for each edge. This completes the proof. �

A characterization of upper sets. Let σ = {v0, . . . , vn} be a simplex of
CD(Sg)(Sg) that has no vertices of type N. As a consequence of Lemma 4.3 it makes
sense to say that a vertex vj lies between vi and vk in Sg; specifically, this means
that for any normal form representative {m0, . . . , mn}, the dividing sets mi and
mk lie on opposite sides of mj . Equivalently, we can say that vi and vj lie on the
same side of vk.

We say that a subset D of D(Sg) is closed under separations if whenever u and
w are vertices of CD(Sg) ⊆ CD(Sg)(Sg) and v is a vertex of CD(Sg)(Sg) (not of type
N) that lies between u and w (in particular, u, v, and w span a 2-simplex), then v
lies in CD(Sg).

Lemma 4.4. Let g ≥ 0. Let D ⊆ D(Sg) be a subset with no element of type N.
Then D is an upper set if and only if it is closed under separations.

Proof. Let D ⊆ D(Sg). Suppose first that D is an upper set. Let u and w be
homotopy classes of dividing sets representing elements of D and so that v lies
between u and w; for concreteness we imagine that u lies to the left of v and w
lies to the right. We will show that v is either larger than u or larger than w in
the partial order on D(Sg). Suppose that v is not larger than w. Then the regions
of Sg to the left and right of v have genus g1 and g2, respectively, with g1 < g2.
It follows that the regions of Sg to the left and right of u have genus h1 and h2,
respectively, with h1 ≤ g1 and h2 ≥ g2. It follows that u � v. Thus v represents an
element of D and we have shown that D is closed under separations.

For the other direction suppose that D is closed under separations. Let u and v
be homotopy classes of dividing sets with u ∈ D and with u � v. We would like to
show that v represents an element of D. Say that u lies to the left of v. Since u � v,
there is a Mod±(Sg)-translate w of u that lies to the right of v. This w represents
the same element of D as u. Since D is closed under separations, v represents an
element of D, as desired. �

Linear simplices. We say that a simplex σ of CD(Sg) is linear if we can label the
vertices of σ by v0, . . . , vn in such a way that vj lies between vi and vk whenever
i < j < k. We can think of a linear simplex as a sequence of cobordisms between
1-manifolds, starting and ending with the empty manifold. We will refer to the
vertices v0 and vn as extreme vertices.

Lemma 4.5. Let g ≥ 0. Suppose that D ⊆ D(Sg) contains no elements of type N.
Let D ⊆ D(Sg), let σ be a linear simplex of CD(Sg) with ordered vertices v0, . . . , vn,
and let φ be an automorphism of CD(Sg). Then φ(σ) is a linear simplex of CD(Sg)
with ordered vertices φ(v0), . . . , φ(vn).

Proof. Let u, v, and w be three vertices of an arbitrary simplex of CD(Sg). We will
show that v lies between u and w if and only if the link of v in CD(Sg) is contained
in the union of the links of u and w; in other words, if a vertex z is not connected
by an edge to either u or w, then it is not connected by an edge to v either. This
will imply the lemma.
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Figure 9. A specific type of linear simplex

First suppose that v lies between u and w in Sg. If z is any vertex of CD(Sg)
connected by an edge to v, then z is also connected by an edge to one of u and
w, specifically, the one lying on the opposite side of v from z. This completes the
forward direction of the claim.

Now suppose that v does not lie between u and w. Let {mu, mv, mw} be a
normal form representative for the simplex {u, v, w}. Both mu and mw must lie
on the same side of mv and each must have a component that is not homotopic
into mv. We can thus find a vertex u′ of CD(Sg) in the Mod±(Sg)-orbit of u that
is connected to v but not to u or w (because u′ intersects u and w non-trivially).
This completes the proof. �

Lemma 4.6. Suppose that D ⊆ D(Sg) is an upper set that contains no elements of
type N and suppose that g ≥ max{3ǧ(D) + 1, 5}. If v is a vertex of CD(Sg) of type
S, then v is an extreme vertex of the linear simplex of CD(Sg) with five vertices.

Proof. Let τ = {v0, . . . , vn} be the linear simplex in CD(Sg) indicated in Figure 9,
where the separating curves on the left- and right-hand sides of the figure both
have genus ǧ(D). The leftmost and rightmost curves do indeed represent vertices
of CD(Sg), by the definition of ǧ(D). The other dividing sets in the figure (each
contained in a vertical plane) also represent vertices of CD(Sg), since D is an upper
set (cf. Lemma 4.4).

We claim that n ≥ 6. Indeed, the region between v0 and vn has genus g−2ǧ(D).
Thus τ has g− 2ǧ(D)+ 1 vertices of type S and g− 2ǧ(D) vertices of type M (each
with two components), for a total of 2g − 4ǧ(D) + 1 vertices, so n = 2g − 4ǧ(D).
Since g ≥ 3ǧ(D) + 1 we have n ≥ 2ǧ(D) + 2. It immediately follows that n ≥ 6
when ǧ(D) ≥ 2. When ǧ(D) = 1 it follows from the assumption that g ≥ 5 and the
equality n = 2g − 4ǧ(D) that n ≥ 6.

Every vertex of type S lies in the orbit of one of the vertices vi of σ with i even
and 0 ≤ i ≤ n/2. And so it suffices to show that each such vi satisfies the statement
of the lemma. But since n ≥ 6 it is the case that for all i even with 0 ≤ i ≤ n/2 we
have i + 4 ≤ n and so {vi, . . . , vi+4} is the desired linear simplex. �

Exceptional edges. We now explain the third tool required for the proof of The-
orem 1.11. We say that vertices v1 and v2 of CD(Sg) form an exceptional edge if
they are connected by an edge in CD(Sg) and—after taking a normal form repre-
sentative for the edge—the subsurface between v1 and v2 is the disjoint union of
some number of annuli and at least two pairs of pants. Note that in an exceptional
edge both vertices must have type M. An example of an exceptional edge is shown
in Figure 10.
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v     w

Figure 10. A typical exceptional edge

Lemma 4.7. Suppose D ⊆ D(Sg) is an upper set that contains no elements of
type N. The image of an exceptional edge under an automorphism of CD(Sg) is an
exceptional edge.

Proof. We will show that an edge in CD(Sg) is exceptional if and only if its link is
the join of a non-empty finite graph with some other (possibly empty) graph (see
Section 3 for the definition of a join). Since the latter property is clearly preserved
by automorphisms, the lemma will follow.

Let {v1, v2} be an edge in CD(Sg). Normal form representatives for v1 and v2
divide Sg into three regions, L, C, and R (for left, center, and right). Say that C
is the region lying between v1 and v2. The regions L and R are connected but C
may not be. We think of v1 as lying to the left of v2 so that L is bounded by v1.

Suppose first that {v1, v2} is an exceptional edge, so the subsurface C is the
disjoint union of n ≥ 2 pairs of pants P1, . . . , Pn and some number of annuli. There
are 2n vertices of the star of {v1, v2} supported in C: for each i we make a choice
between the left side of Pi or the right and for each annulus we include the core
curve. If we choose the left side of each pair of pants, we obtain v1 and if we choose
the right side in each case we obtain v2. Thus, there are 2n − 2 > 0 vertices of the
link of {v1, v2} supported in C; call this set of vertices F . Since all other vertices
of the link of {v1, v2} are supported in L or R, the link of {v1, v2} is the join of F
with the graph spanned by those vertices.

Now suppose that {v1, v2} is an edge of CD(Sg) whose link is the join of a finite
graph F with some other (possibly empty) graph. Assume that {v1, v2} is not an
exceptional edge. We must show that F is empty. We will repeatedly use the
following fact: to show that a vertex w is not contained in F it is enough to show
that there are infinitely many vertices of the link of the edge {v1, v2} to which w is
not connected by an edge.

Suppose that w is a vertex of the link of {v1, v2} represented in L (or R). Then
w must have at least one component that is not peripheral in L (or R), since the
only vertex that has each component peripheral in L (or R) is v1 (or v2) and neither
of these is contained in the link of {v1, v2} (any proper subset of the components
of v1 or v2 fails to be separating). But then there are infinitely many Mod±(Sg)-
translates of w that lie in the link of {v1, v2} and have non-zero intersection with
w. As above, this implies w does not lie in F . Applying the same argument to the
region C, we see that all elements of F must be represented by dividing sets that
are peripheral in C.
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1044 TARA E. BRENDLE AND DAN MARGALIT

If C has fewer than two components that are not annuli, then the only vertices
of the star of {v1, v2} realized as peripheral dividing sets in C are v1 and v2 and
we have succeeded in showing that F is empty. So assume that C has at least two
components that are not annuli.

Let w be a vertex of F . Again, we may assume that w is peripheral in C. Since
{v1, v2} is not exceptional, there is some component C0 of C that is not an annulus
or a pair of pants. Since C0 is not an annulus or a pair of pants there is a vertex
u of the link of {v1, v2} so that u is supported in C and some component of a
representative of u is non-peripheral in C0. In C0 it makes sense to say that u lies
to the left or right of w. Say it is to the left. This means that in C0 the vertex w
is parallel to the v2-side (the right-hand side) of C0.

Since w is not equal to v1 or v2, it must have some component that lies on the
v1-side (the left-hand side) of some non-annular component C1 of C. After possibly
changing u we may assume that the intersection of u with C1 is the collection of
curves parallel to the v2-side (the right-hand side) of C1. By construction this u is
not connected to w by an edge. Also, since u has a component in the interior of C0

there are infinitely many Mod±(Sg)-translates of u that are not connected to w by
an edge. We have thus shown that w cannot lie in F , and so F is empty. �

We already said that the two vertices in an exceptional edge must be of type M.
The next lemma is a partial converse to this statement.

Lemma 4.8. Suppose that D ⊆ D(Sg) contains no elements of type N. Let D ⊆
D(Sg) be an upper set with g ≥ 3ǧ(D) + 1. Let v be a vertex of CD(Sg) that is of
type M and is an extreme vertex of a linear simplex σ with five vertices. Then v
lies in an exceptional edge.

Proof. Denote the ordered vertices of σ by v0, . . . , v4, where v = v0. Choose a
normal form representative for σ and let Q denote the region of Sg lying between
the dividing sets representing v0 and v4. We will think of Q as lying to the right of
v.

We must find a vertex w so that v and w form an exceptional edge. To do this,
we will find two disjoint pairs of pants P1 and P2 that lie in Q and are adjacent to v
(meaning that one or two of the boundary components of each Pi are components
of v); the vertex w is then obtained from v by replacing the left-hand side of each Pi

with the right-hand side (in other words we delete from v the components that lie
in some Pi and add to the resulting multicurve the components of the boundaries
of P1 and P2 that are not components of v). It follows from Lemma 4.4 that w will
indeed represent a vertex of CD(Sg).

We can think of Q as the union of four cobordisms connecting the vertices of
σ. As such we have χ(Q) ≤ −4. We can assume without loss of generality that
χ(Q) = −4: since D is an upper set, we can by Lemma 4.4 replace σ (if necessary) by
a linear simplex with five vertices where each of the four corresponding cobordisms
is the disjoint union of one pair of pants with some number of annuli.

Let Q0 denote the union of the non-annular components of Q. If Q0 is not
connected, then we can find the desired w by choosing pairs of pants in two different
components of Q0.

Now suppose that Q0 is connected. There are three cases for Q0: a surface
of genus zero with six boundary components, a surface of genus one with four
boundary components, or a surface of genus two with two boundary components.
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Figure 11. Top: Finding w when Q is a sphere with six bound-
ary components; Bottom: Finding w when Q is a torus with four
boundary components

If Q0 has more than one boundary component parallel to v, then we can easily find
the desired pairs of pants P1 and P2, hence the desired vertex w; see Figure 11.
(Note that we do not need to consider here the case where Q0 has genus two since
Q0 does not have all of its boundary components parallel to v.)

So it remains to consider the case where Q0 is one of the three surfaces described
in the previous paragraph and Q0 has a single component of its boundary parallel
to v. We treat this case by reducing to the previous cases.

Say that v has type (k, n) and that the region R of Sg that is determined by v and
does not contain Q0 has genus k. If Q0 is a sphere with six boundary components,
then v4 has type (k, n + 4). Since n ≥ 2, we can form another vertex of type
(k, n + 4) by gluing a sphere with five boundary components to one component of
the boundary of R and a pair of pants to another component of the boundary of
R (the new dividing set is the boundary of the union of R and the two additional
spheres). This new dividing set represents a vertex v′4 of CD(Sg) since it has the
same type as v4. Also, since the region between v and v′4 has more than one
component with negative Euler characteristic, we have reduced to a previous case.

Similarly, if Q0 is a surface of genus one with four boundary components, then
v4 has type (k+1, n+2). In this case we can obtain a vertex v′4 of the same type by
gluing a sphere with six boundary components to R along two of the six boundary
components. Again, this is a case we have already dealt with.

Finally if Q0 is a surface of genus two with two boundary components, then v4
has type (k + 2, n), and in this case v′4 is obtained by gluing a sphere with six
boundary components to R along three of its boundary components, another case
we have previously treated. �

Finishing the proof. To prove Theorem 1.11 we first show that an automorphism
of CD(Sg) preserves the vertices of type S. Then we give an inductive proof of the
theorem.
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1046 TARA E. BRENDLE AND DAN MARGALIT

Lemma 4.9. Let D ⊆ D(Sg) be an upper set with no elements of type N and
assume g ≥ 3ǧ(D) + 1. If φ ∈ Aut CD(Sg), then φ preserves the set of vertices of
type S.

Proof. First assume that g ≥ 5. Let V denote the set of vertices v of CD(Sg) where
v is an extreme vertex of a linear simplex with five vertices. By Lemma 4.6, every
vertex of type S lies in V . The set V is preserved by automorphisms (Lemma 4.5).
Therefore, it suffices to distinguish between vertices of types S and M within the
set V . Since φ is an automorphism, it further suffices to show that if a vertex of
type M lies in V , then its image under φ is a vertex of type M. Let v be such a
vertex. By Lemma 4.8, v is a vertex of an exceptional edge. So by Lemma 4.7 the
vertex φ(v) is a vertex of an exceptional edge. Thus φ(v) is of type M, giving the
lemma in the case g ≥ 5.

It remains to prove the lemma in the case where g = 4 and ǧ(D) = 1. The first
step is to show that automorphisms of CD(S4) preserve the set of vertices of type S
that have genus one, that is, the ones of type (1, 1). The only vertices that can be
extreme vertices of linear simplices with five vertices are those of type (0, 3) and of
type (1, 1). Vertices of type (0, 3) are of type M and vertices of type (1, 1) are of
type S. Thus, by the argument of the previous paragraph these two types are each
preserved (although type (0, 3) may not be present in the complex).

The second step for the proof in the g = 4 case is to show that automorphisms of
CD(S4) preserve the set of vertices of type S that have genus two. These vertices are
distinguished by the following property: if we have a simplex with five vertices, four
of which are vertices of type S that have genus one, then the fifth vertex must be
a vertex of type S that has genus two. This completes the proof of the lemma. �

For the proof of Theorem 1.11, we say that a vertex v of CD(Sg) is 1-sided if all
vertices in the link of v lie to one side of v. Similarly, we say that v is 2-sided if
there are vertices of the link of v lying on different sides of v.

Proof of Theorem 1.11. By Proposition 4.2 we may assume that CD(Sg) does not
contain vertices of type N. And by Lemma 3.6, it suffices to show that the natural
map Mod±(Sg) → Aut CD(Sg) is surjective. Let φ ∈ Aut CD(Sg).

By Lemma 4.9, the automorphism φ restricts to an automorphism φ̄ of Cǧ(D)(Sg),
regarded as a subcomplex of CD(Sg). By Theorem 1.10, there exists some f ∈
Mod±(Sg) so that the automorphism of Cǧ(D)(Sg) induced by f is φ̄. We would
like to show that the automorphism of CD(Sg) induced by f is φ.

To do this, it suffices to show that an automorphism of CD(Sg) that restricts to
the identity on the subcomplex Cǧ(D)(Sg) must itself be the identity. We proceed
by induction on distance in CD(Sg) from Cǧ(D)(Sg); since CD(Sg) is connected by
assumption, this will prove the theorem.

We assume for induction that φ restricts to the identity on all vertices of CD(Sg)
that have distance at most k from Cǧ(D)(Sg). The base case k = 0 is true by
assumption.

We perform the inductive step in two stages, first for 1-sided vertices and then
for 2-sided vertices. Let v be a 1-sided vertex of CD(Sg) that has distance k+1 from
Cǧ(D)(Sg). Let w be any vertex of CD(Sg) that is connected by an edge to v and

has distance k from Cǧ(D)(Sg). There are Mod±(Sg)-translates of w that fill the
region of Sg that lies to one side of v and contains w. Since Cǧ(D)(Sg) is invariant

under the action of Mod±(Sg), all of these vertices have distance k from Cǧ(D)(Sg)
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and so by the inductive hypothesis they are fixed by φ. As v is 1-sided, it is the
unique vertex of CD(Sg) connected by edges to all of these translates of w and so
φ must fix v as well.

Now let v be a 2-sided vertex of CD(Sg) that has distance k + 1 from Cǧ(D)(Sg).
Let w be any vertex of CD(Sg) that is connected by an edge to v and has distance
k from Cǧ(D)(Sg). The vertex w lies to one side of v, and the w-side of v is filled

by Mod±(Sg)-translates of w. As above, all of these vertices have distance k from
Cǧ(D)(Sg) and so are fixed by φ. Let u be any 1-sided vertex of CD(Sg) that lies
on the other side of v (such a vertex exists because the vertices lying to one side of
a 2-sided vertex determine subsurfaces of strictly smaller complexity). Note that
the distance from u to Cǧ(D)(Sg) is at most k + 1 since u is connected by an edge

to w. By the previous paragraph, u is fixed by φ. Moreover, there are Mod±(Sg)-
translates of u that fill the u-side of v, and all of these vertices are also fixed by φ.
The vertex v is the unique vertex connected by edges to all of these vertices, and
so v is also fixed by φ, and we are done. �

5. Complexes of regions

Recall from the introduction that the complex of regions associated to a set A
of Mod±(Sg)-orbits of homotopy classes of regions (that is, connected subsurfaces)
is the simplicial complex CA(Sg) with vertices corresponding to representatives of
the elements of A and simplices corresponding to sets of vertices with disjoint
representatives.

In this section we apply our theorem about dividing sets (Theorem 1.11) in order
to prove Theorem 1.7, which states that if CA(Sg) is a connected complex of regions
with no holes or corks and with a small vertex, then the automorphism group of
CA(Sg) is isomorphic to Mod±(Sg) (see Section 1.2 for the definitions).

The basic idea of the proof of Theorem 1.7 is to relate maximal joins in CA(Sg)
to dividing sets in Sg (Lemma 5.3). This relationship is somewhat strained in the
case where CA(Sg) has non-separating annular vertices. So similar to Section 4 we
will break this off as a special case.

We say that a vertex of CA(Sg) has

(1) type N if it is represented by a non-separating annulus,
(2) type S if it is represented by a separating annulus, and
(3) type P if it is represented by a non-separating pair of pants.

There is a partial order on the set of vertices of CA(Sg) whereby a � b if the link
of b is contained in the link of a. We say that a vertex is �-minimal if it is minimal
with respect to this ordering.

5.1. Complexes with vertices of type N. In this section, we prove Theorem 1.7
in the special case where CA(Sg) has vertices corresponding to non-separating an-
nuli.

Lemma 5.1. Let CA(Sg) be a complex of regions with vertices of type N.

(1) Any automorphism of CA(Sg) preserves the set of vertices of type N.
(2) Any automorphism of CA(Sg) preserves the set of vertices of type P.

Proof. We claim that a vertex of CA(Sg) is of type N if and only if

(1) it is a �-minimal vertex of CA(Sg) and
(2) its link in CA(Sg) is not a join.
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The first statement of the lemma follows from the claim since an automorphism of
CA(Sg) preserves these two properties.

For the forward direction, assume v is of type N. The vertex v is �-minimal
because a representative of v contains no proper subsurfaces. Also, the link of v is
not a join because for any two vertices of the link of v we can find a Mod±(Sg)-
translate of v that is not connected by an edge to either.

For the other direction of the claim, assume that v is not of type N. Let R
be a representative of v. If R is separating, then each complementary region to
R supports at least one vertex of type N, and so the link of v is a join. So we
may assume that R is non-separating. If the boundary of R is connected, then v
is not �-minimal, as there are vertices of type N that are smaller in the partial
order. So we may further assume that R has disconnected boundary. If R is the
complementary region to a non-separating annulus, then clearly v is not �-minimal.
The remaining case is that R is non-separating with disconnected boundary and no
two components of the boundary are parallel. In this case, the link of v is a join.
Indeed, any vertex of type N corresponding to a component of the boundary of R
is a cone point. This completes the proof of the claim and hence the first statement
of the lemma.

For the second statement, we claim that a vertex v of CA(Sg) is of type P if and
only if there is a triangle σ = {w1, w2, w3} so that each wi is of type N and so
that v and σ have equal stars. The second statement follows from this and the first
statement.

For the forward direction, let v be a vertex of type P. We take σ to be the
triangle corresponding to the boundary of a representative of v. Since the only
proper regions in this pair of pants are those corresponding to the vertices of σ, it
follows that σ and v have equal stars.

For the other direction, assume we have a vertex v and a triangle σ as in the
claim. Let Q and R be representatives of σ and v. Since v and σ have equal stars,
we can take Q and R to be disjoint. Also, each component of Q must be parallel
to the boundary of R, for otherwise we could find a vertex in the star of v but
not σ. Conversely, each component of the boundary of R must be parallel to some
component of Q, for otherwise we could find a vertex in the star of σ but not v.
Thus, R has exactly three boundary components, each of which is a non-separating
curve in Sg. It follows that R is non-separating. If R is not a pair of pants, then
we could find a vertex of type N that is in the star of σ but not v. This completes
the proof of the claim, hence the lemma. �

Finishing the proof in the easier case. We are now ready to prove Theorem 1.7
in the case where CA(Sg) contains vertices of type N. In the proof we say that a
region of Sg is of type P if it is a non-separating pair of pants (we make the
distinction between a region and a vertex here because CA(Sg) may or may not
have vertices of type P).

Let N (Sg) denote the complex of non-separating curves for Sg, that is, the
subcomplex of the complex of curves C(Sg) spanned by vertices of type N.

Proposition 5.2. Let g ≥ 3 and suppose that CA(Sg) contains vertices of type N.
Then the natural map

Mod±(Sg) → Aut CA(Sg)

is an isomorphism.
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Proof. By Lemma 3.6 the map Ψ : Mod±(Sg) → Aut CA(Sg) is injective. So it
suffices to show that Ψ is surjective. We will construct a right inverse.

The subcomplex of CA(Sg) spanned by the vertices of type N is naturally isomor-
phic to the complex of non-separating curves N (Sg) and so we may regard N (Sg)
as a subcomplex of CA(Sg). By Lemma 5.1, there is a map

Aut CA(Sg) → AutN (Sg)

given by restriction. Also Irmak proved that the natural map

Mod±(Sg) → AutN (Sg)

is an isomorphism [29]. Consider the composition

Ω : Aut CA(Sg) → AutN (Sg)
∼=→ Mod±(Sg).

We would like to show that Ψ ◦ Ω is the identity. Let φ ∈ Aut CA(Sg). Then Ω(φ)
is a mapping class f whose action on N (Sg) agrees with the restriction of φ. To
show that Ψ ◦ Ω(φ) = φ we must show that φ is determined by its restriction, or,
that any element of Aut CA(Sg) restricting to the identity in AutN (Sg) must itself
be the identity.

So suppose φ ∈ Aut CA(Sg) restricts to the identity in AutN (Sg). Let v be a
vertex of CA(Sg) that is not of type N. We must show that φ(v) = v.

First suppose that v is of type P. By the second statement of Lemma 5.1, φ(v)
is also of type P. But since g ≥ 3 such a vertex is clearly determined by the vertices
of type N in its link, and so we are done in this case.

Now suppose that v is not of type P. Again by Lemma 5.1 the same is true
for φ(v). Let R be a representative of v. Each complementary region to R is non-
separating. If a complementary region is not of type P, then it is filled by vertices of
type N. If a complementary region is of type P, then its three boundary components
all correspond to vertices of type N. Thus, if we take the subsurface of Sg filled by
vertices of type N in the link of v, then R is the unique complementary region that
is not of type P. Thus φ(v) is represented in R. In other words, the support of v
cannot become larger under φ. Since φ is invertible, we conclude that the support
of v cannot become smaller under φ either. This means that φ(v) is represented by
R, that is, φ(v) = v, as desired. �

5.2. Complexes without vertices of type N. To complete the proof of The-
orem 1.7 it remains to treat the case where CA(Sg) does not have any vertices of
type N.

From regions to dividing sets. Let A ⊆ R(Sg) and let D ⊆ D(Sg). We say that
vertices of CA(Sg) and CD(Sg) are compatible if they have disjoint representatives.
Also, we say that an element d of D(Sg) is compatible with A if both regions of Sg

determined by a representative of d contain representatives of elements of A (the
representatives are allowed to be peripheral). We emphasize that there are two
notions of compatibility defined here; they are both used in the definition of the
map Φ below.

We define

δA = {d ∈ D(Sg) | d is compatible with A}.
For any A, the set δA is clearly closed under separations and so by Lemma 4.4
it is an upper set. Most of our work here is devoted to showing that there is a
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well-defined map

Aut CA(Sg) → Aut CδA(Sg),

so that we may apply Theorem 1.11.
We now define a function

Φ : {vertices of CδA(Sg)} → {subcomplexes of CA(Sg)}.

For a vertex v of CδA(Sg), the image Φ(v) is defined to be the full subcomplex of
CA(Sg) spanned by all vertices that are compatible with v (in the first sense of the
term, defined for a vertex of CA(Sg) and a vertex of CD(Sg)).

Two join decompositions. For a vertex v of CδA(Sg), we will now define two
different join decompositions of Φ(v), one topological and one combinatorial. In
the next lemma we will show that the two decompositions are the same.

First, we define the left/right decomposition VL ∗ VM ∗ VR of Φ(v) as follows.
A representative of v divides Sg into two complementary regions, which we arbi-
trarily label as L and R (for left and right). The complexes VL and VR are the
subcomplexes of CA(Sg) spanned by the vertices corresponding to non-peripheral
subsurfaces of L and R. The complex VM is the subcomplex spanned by the ver-
tices corresponding to annuli parallel to a representative of v; since CA(Sg) does
not have vertices of type N, the complex VM is either empty or is a single vertex
of type S. It is clear that VL ∗ VM ∗ VR is a join decomposition of Φ(v).

Next, the complete join decomposition of Φ(v) is a decomposition V1 ∗ · · · ∗ Vn

with the property that no Vi can be decomposed as a join. We have n ≤ 3g − 3
since there is an upper bound of 3g − 4 to the dimension of a simplex in CA(Sg).

We say that a subcomplex of a simplicial complex is a maximal join if it is a join
that is not contained in any other join.

Lemma 5.3. Let CA(Sg) be a complex of regions without vertices of type N and
without isolated vertices.

(1) The map Φ gives a bijection

Φ : {vertices of CδA(Sg)} → {maximal joins in CA(Sg)}.

(2) For each vertex v of CδA(Sg) the left/right decomposition of Φ(v) is the
same as the complete join decomposition.

Proof. We start with the first statement. First we will show that each Φ(v) is a
maximal join and then we will show that each maximal join is in the image of Φ
(it is clear that Φ is injective).

Let v be a vertex of CδA(Sg). We will begin by showing that the left/right
decomposition of Φ(v) is a non-trivial join decomposition. Assume for contradiction
that the left/right decomposition of Φ(v) is a trivial join. By the definition of δA
there are vertices of CA(Sg) corresponding to (possibly peripheral) subsurfaces of
both sides of v, and so the assumption implies that Φ(v) consists only of vertices
corresponding to components of v. Since CA(Sg) has no non-separating annular
vertices, it follows that v is represented by a separating curve (it is of type S). It
follows that Φ(v) consists of a single vertex, and this vertex is isolated in CA(Sg),
the desired contradiction.

Now that we know Φ(v) is a join, we would like to show that it is maximal. Let
V1 ∗ V2 be a join in CA(Sg) that properly contains Φ(v). We would like to show
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that one of the Vi is trivial. First note that VL must be contained in one of V1

or V2; this is because for any two vertices of VL there is a third vertex of VL that
is not connected by an edge to either. Similar for VR. Since VM has at most one
vertex (as mentioned above), it also must be contained in V1 or V2. Suppose now
for contradiction that w is a vertex of V1 ∗V2 that does not lie in Φ(v). If VL is non-
empty, then w has non-empty intersection with some vertex of VL, and similarly for
VM and VR. Thus w must be contained in the same Vi as each non-empty element
of the set {VL, VM , VR}. Since w was arbitrary, it follows that one of the Vi is
empty, as desired.

We now must show that each maximal join in CA(Sg) lies in the image of Φ. Let
X be a maximal join in CA(Sg). Let V1∗· · ·∗Vn be the complete join decomposition
of X. For each i let Ri be the subsurface of Sg determined by Vi, that is, Ri is the
smallest subsurface containing a representative of each vertex of Vi.

We claim that:

(1) the Ri are connected,
(2) the Ri are disjoint, and
(3) at least one Ri is not an annulus.

The Ri are connected because otherwise the corresponding Vi could be written as
the join of the complexes corresponding to the components. If the Ri were not
disjoint, then since each Ri is filled by the vertices of the corresponding Vi we could
find vertices of Vi and Vj that had essential intersection. For the last statement,
suppose for contradiction that each Ri were an annulus. Consider the subgraph
of CA(Sg) spanned by the vertex corresponding to R1 and the vertices represented
in the complement of R1. This graph is a join (it is a cone on the R1-vertex) and
it clearly contains X. It is strictly larger than X because it contains Mod±(Sg)-
translates of R2 that do not lie in X. This is a contradiction and the claim is
proven.

Suppose then that R1 is non-annular. We claim that R1 is non-separating.
Suppose to the contrary that R1 has complementary regions P1, . . . , Pk with k ≥ 2.
Since n ≥ 2, there is an Ri contained in some Pj , say P1. The complement of P1

is a region Q containing R1 as a proper subsurface. Consider the subcomplex of
CA(Sg) spanned by the vertices represented in either Q or P1. This is the join of
the subcomplexes corresponding to Q and to P1, and it is a non-trivial join since
both are non-empty by assumption. Moreover this subcomplex properly contains
X since there are Mod±(Sg)-translates of vertices of X that are not contained in
any Ri. This is a contradiction, and we conclude that R1 is indeed non-separating.

Since R1 is non-separating, its boundary is a dividing set. Also, since X is a
non-trivial join, this dividing set represents a vertex v of CδA(Sg). Since R1 is
compatible with v, we must have that Φ(v) contains X. Since X is maximal, it
follows that Φ(v) is equal to X, and so X is in the image of Φ. This completes the
proof of the first statement of the lemma.

Since we chose R1 to be an arbitrary non-annular Ri, it follows that v corresponds
to the boundary of each non-annular Ri. In particular, there are at most two non-
annular Ri and if there are two, then they are complementary in Sg. In other
words, it makes sense to think of the non-annular Ri as the left and right sides of
v. The second statement of the lemma follows. �
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Compatible subcomplexes. For us, the main consequence of Lemma 5.3 is that
an automorphism of CA(Sg) induces an automorphism of the 0-skeleton of CδA(Sg):
the image of a vertex of CδA(Sg) is determined by the image of the corresponding
maximal join in CA(Sg). The next lemma tells us that this automorphism extends
to the 1-skeleton of CδA(Sg). We say that a subcomplex V of a complex is compatible
with a subcomplex W if V can be written as V1∗V2 with V1 non-empty and V1 ⊆ W .

Lemma 5.4. Suppose CA(Sg) has no isolated vertices. Let v and w be vertices of
CδA(Sg). Then v and w are connected by an edge in CδA(Sg) if and only if Φ(v) is
compatible with Φ(w). In particular, compatibility of maximal joins in CA(Sg) is a
symmetric relation.

Proof. Denote the left/right decompositions of Φ(v) and Φ(w) by VL ∗VM ∗VR and
WL ∗ WM ∗ WR. By Lemma 5.3 these are both non-trivial join decompositions.

Suppose first that v and w are connected by an edge in CδA(Sg). This means that
there are representatives of v and w in Sg that are nested dividing sets. We can
choose the left and right subsurfaces of Sg associated to v and w in a compatible
way and so that v lies to the left of w. It then follows from the definition of the
left/right decomposition that VL ∗ VM is contained in WL. Since the left/right
decomposition is the same as the complete join decomposition (Lemma 5.3) it must
be that VL ∗ VM is non-empty. So Φ(v) is compatible with Φ(w), as desired.

For the other direction, suppose that v and w are not connected by an edge in
CδA(Sg). Any pair of representatives for v and w are dividing sets that are not
nested. Thus each complementary subsurface for the v-dividing set has essential
intersection with each complementary subsurface for w. It follows that no com-
ponent of the left/right decomposition of Φ(v) can be contained in Φ(w). But by
Lemma 5.3 the left/right decomposition is the same as the complete join decompo-
sition and so Φ(v) is not compatible with Φ(w), as desired. �

Finishing the proof. We are almost ready to prove Theorem 1.7.

Lemma 5.5. Let A be a subset of R(Sg) so that CA(Sg) is connected and has no
holes.

(1) Let R be a representative of a vertex of CA(Sg); then ∂R represents a simplex
in CδA(Sg).

(2) The complex CδA(Sg) is connected.

Proof. We begin with the first statement. Clearly ∂R is a disjoint union of dividing
sets; the individual dividing sets are in bijection with the regions of Sg comple-
mentary to R. If R is not an annulus, then the statement follows from the no
holes condition. If R is an annulus, then the statement is automatic since there
are representatives of the R-vertex on both sides of ∂R. (In the case where R is
a separating annulus, ∂R is two parallel separating curves that both represent the
same vertex of CδA(Sg).) This completes the proof of the first statement.

We now proceed to the second statement. Let v and w be vertices of CδA(Sg).
We would like to find a path between v and w in CδA(Sg). By the definition of
δA we can choose vertices a and b of CA(Sg) so that v is compatible with a and
w is compatible with b. Let a = a0, . . . , an = b be a path in CA(Sg). By the first
statement of the lemma the boundary of each ai represents a simplex δai of CδA(Sg).
The vertices v and w are connected by edges to δa0 and δan, respectively. Moreover,
since each ai corresponds to a connected subsurface of Sg, each component of δai+1
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lies in a single region of Sg determined by any given component of δai; this is
to say that each δai ∪ δai+1 is also a simplex of CδA(Sg). The second statement
now follows, as the desired path between v and w lies in the sequence of simplices
v, δa0, . . . , δan, w. �

In the proof of Theorem 1.7 we will use the partial order on vertices of CA(Sg)
defined at the start of this section. Also, we say that a vertex v of CA(Sg) is 1-sided
if for any representative of v in Sg there is exactly one complementary region that
contains a representative of a vertex of the link of v in CA(Sg).

Proof of Theorem 1.7. As in the statement of the theorem, we have a connected
complex of regions CA(Sg) with a small vertex and no holes or corks. By Proposi-
tion 5.2 we may further assume that CA(Sg) has no vertices of type N. Let η denote
the natural map Mod±(Sg) → Aut CA(Sg). We would like to show that η is an
isomorphism. By Lemma 3.6, η is injective. It remains to show that η is surjective.

By Lemmas 5.3 and 5.4 there is a well-defined map

δ : Aut CA(Sg) → Aut CδA(Sg);

for any φ ∈ Aut CA(Sg) the image under δφ of a dividing set is determined by the
image under φ of the corresponding maximal join. The main step in the proof is to
show that δ is injective.

Let φ be an automorphism of CA(Sg) and suppose that δφ is the identity. We
would like to show that φ is the identity. To this end, let v be a vertex of CA(Sg).
We would like to show that φ(v) = v. We proceed in three cases as follows:

(1) the case where v is a 1-sided annular vertex,
(2) the case where v is a non-annular, �-minimal, 1-sided vertex, and
(3) the general case.

Case 1. First assume that v is a 1-sided annular vertex. A representative of v
divides Sg into two regions; let R be a region of smallest genus, and let Q be the
other region. We would like to show that there is a vertex of CδA(Sg) represented
by a multicurve in Q that is not peripheral in Q (in other words, this vertex should
not be the dividing set that is parallel to v). Since CA(Sg) is connected there must
be some vertex w of CA(Sg) represented by a subsurface of Q. If w is annular, then
it is not parallel to v and so the vertex of CδA(Sg) parallel to w is the desired vertex.
If w is not annular and is not represented by the entire region Q, then we can apply
Lemma 5.5(1) in order to find the desired vertex of CδA(Sg). So the only remaining
possibility is that w corresponds to Q and no other subsurface of Q represents a
vertex of CA(Sg). But this pair would be a cork pair, a contradiction.

Since there is one vertex of CδA(Sg) corresponding to a non-peripheral dividing
set in Q, it follows that Q is filled by representatives of vertices of CδA(Sg). By
assumption, all of these vertices are fixed by δφ. By the definition of δφ, the vertex
φ(v) must be disjoint from all of these vertices of CδA(Sg), and hence φ(v) must be
represented by a subsurface of R. Since v is 1-sided it must be that φ(v) = v, as
desired.

Case 2. Next assume that v is non-annular, �-minimal, and 1-sided. The argument
is very similar to the previous case. Let R be a representative of v. Since CA(Sg)
has no holes and v is 1-sided, the complement of R in Sg is connected; denote
this region by Q. We again would like to show that there is a vertex of CδA(Sg)
represented by a dividing set in Q that is not peripheral in Q. Let w be a vertex of
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CA(Sg) in the link of v, so w is represented by a subsurface of Q. If w corresponds
to a separating annulus that is not peripheral in Q, then the vertex of CδA(Sg)
parallel to w is the desired vertex. If w corresponds to an annulus parallel to the
boundary of Q, then since CA(Sg) has no corks there must be a vertex of CA(Sg)
represented by a subsurface of R. And since CA(Sg) has no holes there must be
a further vertex of CA(Sg) that is represented by a subsurface of R and that is
smaller than v in the partial order, a contradiction. If w is a non-annular vertex
corresponding to a proper subsurface of Q, then again we apply Lemma 5.5(1) to
find the desired vertex of CδA(Sg). So the only remaining case to consider is where
w corresponds to Q and no other vertex of CA(Sg) corresponds to a subsurface of
Q. By the minimality of v it follows that Q and R are homeomorphic and hence
that v and w span an isolated edge in CA(Sg), a contradiction.

Again, we must have that Q is filled by vertices of CδA(Sg) and so again φ(v)
must correspond to a subsurface of R. By the minimality of v and the assumption
that CA(Sg) has no holes or corks, it must be that φ(v) = v.

Case 3. We now attack the case of an arbitrary vertex v of CA(Sg). Let Q be a
region of Sg that is complementary to some representative of v. We would like to
analyze the set of vertices of the link of v represented in Q. Since we already dealt
with the case of 1-sided annular vertices and since CA(Sg) has no holes we may
assume that this set of vertices is non-empty.

We put a partial order on this set of vertices of the link of v represented in Q.
For any such vertex u, we write û for the smallest non-separating region of Q that
contains a representative of u. Then we say u ≤ w if û ⊆ ŵ. Since there are finitely
many vertices of CA(Sg) represented in Q up to homeomorphism of Q the set of
≤-minimal elements is non-empty. We would like to show that each ≤-minimal
element is either a 1-sided annular vertex or a non-annular, �-minimal, 1-sided
vertex.

Let u be a vertex of the link of v that is represented in Q. Assume that u is
neither a 1-sided annular vertex nor a non-annular, �-minimal, 1-sided vertex. We
must show that u is not ≤-minimal.

Suppose first that u is non-annular and 2-sided. Let P be a complementary
region to u that does not contain the boundary of Q (there is such a region since
the complement of Q is connected). Since CA(Sg) has no holes, there exists a vertex
w of CA(Sg) supported in P . We have w < u, as desired.

Next suppose that u is a non-annular, 1-sided vertex that is not �-minimal.
Since u is non-annular and CA(Sg) has no holes, u is represented by a non-separating
subsurface P of Sg. Since u is not �-minimal and is 1-sided and since CA(Sg) has
no holes, it again follows that there is a vertex w with w < u.

Finally suppose that u is annular and 2-sided. Let P denote the region of Q that
is determined by u and does not contain the boundary of Q. Since CA(Sg) has no
corks, there is a vertex w of CA(Sg) represented by a proper subsurface of P . If
we do not have w < u, then w is non-annular and has one boundary component
parallel to u. Since CA(Sg) has no holes, there is a vertex x of CA(Sg) with x < u
and u is again not ≤-minimal. We have succeeded in characterizing the ≤-minimal
elements.

We will now show that one of the following conditions holds:

(1) Q is filled by the 1-sided annular vertices and non-annular, �-minimal,
1-sided vertices of CA(Sg) represented in Q, or
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(2) the boundary of Q is parallel to a 1-sided annular vertex of CA(Sg) and no
non-peripheral subsurfaces of Q represent vertices of CA(Sg).

If there is a vertex of CA(Sg) that is ≤-minimal and is non-peripheral in Q, then by
our classification of ≤-minimal elements, we are in the first case. If all ≤-minimal
elements are peripheral in Q, then since there are no vertices of type N it must be
that the boundary of Q is connected. Then since there are no holes or corks we
must be in the second case.

We are finally ready to complete the proof that φ(v) = v, and hence that δ is
injective. From our analysis of the vertices of CA(Sg) represented in the comple-
mentary regions for v, we conclude that v is completely determined as follows: it
is the unique vertex of CA(Sg) represented by a region that is complementary to
the supports of the 1-sided annular vertices and non-annular, �-minimal, 1-sided
vertices of CA(Sg) that lie in the link of v. Indeed, no other complementary region
contains a representative of a vertex of CA(Sg) and—since φ is invertible—φ(v) can-
not correspond to a proper subregion of v. Since we already showed that 1-sided
annular vertices and non-annular, �-minimal, 1-sided vertices are fixed by φ, it
follows that φ(v) = v. We have thus proven δ is injective.

Having shown that δ is injective, we now proceed to complete the proof of the
theorem. Since ḡ(A) < g/3, it follows that ǧ(δA) < g/3. Also it follows from
Lemma 5.5 and the assumption that CA(Sg) is connected that CδA(Sg) is connected.
As we already mentioned, Lemma 4.4 implies that δA is an upper set. Thus by
Theorem 1.11 the natural map Mod±(Sg) → Aut CδA(Sg) is an isomorphism. We
thus have the following diagram:

Aut CA(Sg)
� � δ �� Aut CδA(Sg)

Mod±(Sg)

∼=

�������������� �
η

�������������

It follows from the definition of δ that the diagram is commutative. It follows then
from the injectivity of δ and η that both are isomorphisms. This completes the
proof of the theorem. �

6. Normal subgroups

In this section we prove Theorem 1.1, which describes the automorphism group
and the abstract commensurator group of a normal subgroup of Mod(Sg) or
Mod±(Sg) that has a pure element with a small component. We will define a com-
plex of regions where the vertices correspond to the supports of certain subgroups
of G, called basic subgroups. Theorem 1.1 will then be derived from Theorem 1.7,
our theorem about automorphisms of complexes of regions.

It might seem more intuitive to relate regions of Sg to elements as opposed
to subgroups. One immediate advantage of using subgroups is that typically the
centralizer of a subgroup has its support disjoint from that of the subgroup; this is
not true for individual elements. We were inspired to take the subgroup approach
after reading a paper by Hensel [25], although this idea already appears in the work
of Ivanov; cf. [33, Section 7.20].
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6.1. Nielsen–Thurston normal forms and pure elements. Before getting to
the proof of Theorem 1.1, we must recall some ideas related to the Nielsen–Thurston
classification for elements of Mod(Sg). For basics on this theory, including the
definition of a pseudo-Anosov mapping class, see the book by Farb and the second
author of this paper [20, Chapter 13].

For a compact surface R with marked points, let PMod(R) denote the subgroup
of Mod(R) consisting of elements that induce the trivial permutation of the marked
points (for us the mapping class group of a surface with boundary is the group of
homotopy classes of orientation-preserving homeomorphisms that restrict to the
identity on the boundary, so the components of the boundary are automatically
not permuted).

A partial pseudo-Anosov element of Mod(Sg) is the image of a pseudo-Anosov
element of PMod(R) under the map PMod(R) → Mod(Sg) induced by the inclusion
of a region R of Sg; here R has no marked points and we allow R = Sg. By the
work of Thurston and Birman–Lubotzky–McCarthy [6] the region R—the support—
is canonically defined up to isotopy. Similarly, the support of a power of a Dehn
twist is well defined.

Following Ivanov [33], a mapping class f ∈ Mod±(Sg) is pure if it is equal to a
product f1 · · · fk where

(1) each fi is a partial pseudo-Anosov element or a power of a Dehn twist,
(2) for i �= j the supports of fi and fj have disjoint representatives, and
(3) for i �= j the support of fi is not homotopic into the support of fj .

The fi are called the Nielsen–Thurston components, or simply components, of f .
Each component can be characterized as a pseudo-Anosov component or a Dehn
twist component. Note that the third condition is vacuous if fi is a pseudo-Anosov
component. Also note that pure elements of Mod±(Sg) lie in Mod(Sg).

Under these definitions, the Nielsen–Thurston components of a pure mapping
class are not canonical when the supports of pseudo-Anosov components fi and fj
have a pair of parallel boundary components. Indeed, if the homotopy class of these
boundary components is c, then we may replace fi and fj with fiTc and fjT

−1
c .

Still, the support of a pure element is a well-defined subsurface, invariant under
taking non-trivial powers.

A subgroup of Mod(Sg) is pure if each element is pure. Ivanov proved that
there is a subgroup of finite index in Mod(Sg) that is pure [33, Corollary 1.8]. The
support of a pure subgroup of Mod(Sg) is again a well-defined subsurface of Sg

(sometimes called the active subsurface; cf. [52]). The support of a pure subgroup
is invariant under passage to finite-index subgroups.

If R is a component of the support of the pure subgroup H, then there is a
well-defined reduction homomorphism

H → PMod(R◦),

where R◦ is the surface obtained from R by collapsing each component of the
boundary to a marked point. By definition, the image is an irreducible subgroup
of PMod(R◦). (The ‘P’ in PMod also stands for pure, but in general PMod(R) is
not pure in the sense of Ivanov.)

If we have two partial pseudo-Anosov elements with equal support R, we say that
the elements are independent if their corresponding pseudo-Anosov foliations are
distinct from each other. If a partial pseudo-Anosov mapping class f has support
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R, then its image under the reduction homomorphism 〈f〉 → Mod(R◦) is pseudo-
Anosov, and so we can say that two partial pseudo-Anosov elements with support
R are independent if their reductions are independent pseudo-Anosov elements.

We will repeatedly use the following fact, usually without mention.

Fact 6.1. Two elements of a pure subgroup of Mod(Sg) commute if and only if

(1) the supports of their components are pairwise disjoint or equal and
(2) in the case where two pseudo-Anosov components have equal support R

the components are dependent.

In particular if two pure elements commute, then all of their non-trivial powers
commute and if two pure elements do not commute, then all of their non-trivial
powers fail to commute.

Fact 6.1 follows from the fact that commuting elements have compatible canon-
ical reduction systems [6, Lemma 3.1(1)] and the fact that in a pure subgroup the
centralizer of a pseudo-Anosov element is cyclic [33, Lemma 5.10].

Lemma 6.2. Let H be a non-abelian pure subgroup of Mod(Sg). Then there is
a component R of the support of H so that the reduction homomorphism H →
PMod(R◦) has non-abelian image. For any such R, the centralizer of H is supported
in the complement of R.

Proof. For the first statement, let f and h be two elements of H that do not
commute. By Fact 6.1 they have components whose supports R1 and R2 have
essential intersection and if R1 = R2, then these components are independent
partial pseudo-Anosov elements. The regions R1 and R2 must lie in the same
component R of the support of H. The images of R1 and R2 in R◦ still have
essential intersection and if R1 = R2, then the images of the chosen components of
f and h are still independent. By Fact 6.1 the images of f and h in PMod(R◦) do
not commute.

We now prove the second statement. Let R be as in the statement. By the
definition of a component of the support of H, the image of H under the reduc-
tion homomorphism is irreducible; since the image is also non-abelian it contains a
pseudo-Anosov element [33, Theorem 5.9]. Since (the image of) H is not abelian,
it follows that its image in Mod(R◦) contains two independent pseudo-Anosov ele-
ments (conjugate the first one by any element that does not commute with it). The
preimages in H of these pseudo-Anosov elements of Mod(R◦) are two elements of
H that have independent partial pseudo-Anosov components with support R. The
second statement now follows from Fact 6.1. �
6.2. The commutator trick. Fix g and let N be some fixed pure, normal sub-
group of Mod(Sg) that contains a pure element with a small component. Also let
G be a subgroup of N of finite index.

We would like to define a complex of regions where the vertices correspond to
the supports of certain subgroups of N . One of the basic difficulties we need to
overcome is that a typical element (or subgroup) of N has disconnected support,
but in a complex of regions the vertices must correspond to connected subsurfaces.
Further, if an element with multiple Nielsen–Thurston components lies in N , then
the individual components may or may not lie in N . The next lemma deals with this
problem. The key point is that if N contains an element f so that one component
of the support of f is a non-annular region R, then there is a different element
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f ′ of N—not equal to a component of f—whose support is R. The element f ′ is
obtained as a commutator of f with an appropriately chosen element of Mod(Sg).

Lemma 6.3. Let g ≥ 0, let N be a pure, normal subgroup of Mod(Sg), and let G
be a finite-index subgroup of N .

Let f be an element of G and let R be a region of Sg so that some component of f
has support contained as a non-peripheral subsurface of R and all other components
of f have support that is either contained in or is disjoint from R. Let J be the
subgroup of G consisting of all elements supported in R. Then

(1) J is not abelian,
(2) J contains an element with support R, and
(3) the centralizer CG(J) is supported in the complement of R.

Proof. The first step is to show that J contains a non-trivial element j whose
support is a non-peripheral subsurface of R. To this end, consider the reduction
homomorphism G → PMod(R◦). Since the support of f is not peripheral in R,
the image of f is non-trivial. Also, since f is pure it follows that the image of f is
not central in PMod(R◦) (cf. [20, page 77]). Thus there is an h̄ ∈ PMod(R◦) that
does not commute with the image of f . Let h be any element of the preimage of h̄
in PMod(R) (the reduction homomorphism PMod(R) → PMod(R◦) is surjective).
As above we may identify h as an element of Mod(Sg). Since N is normal in
Mod±(Sg), the commutator [f, h] lies in N . By construction [f, h] is supported in
R. Let j be a non-trivial power of [f, h] that lies in G. The kernel of the map
PMod(R) → PMod(R◦) is precisely the set of elements with peripheral support, so
j is the desired element.

The second step is to show that J contains two independent partial pseudo-
Anosov elements with support R. All three statements of the lemma follow from
this and Fact 6.1. Let j be the element found in the first step. Any conjugate of j by
an element of Mod(Sg) has a power in G. It follows that the image of J under the
reduction homomorphism PMod(R) → PMod(R◦) is irreducible and not abelian
(apply Fact 6.1). Any such subgroup contains two independent pseudo-Anosov
elements (irreducible subgroups contain pseudo-Anosov elements [33, Theorem 5.9]
and any non-trivial conjugate of a pseudo-Anosov element is an independent pseudo-
Anosov element and has a power in the image of J). Any preimages of these
elements in J are the desired elements and the proof is complete. �

6.3. Basic subgroups. As in the previous section let N be a pure, normal sub-
group of Mod(Sg) that contains a pure element with a small component, and let
G be a finite-index subgroup of N . We now define basic subgroups of N . We will
show that these subgroups have connected supports, and so they can be used to
build a complex of regions for N .

We define a strict partial order on subgroups of G by the following rule:

H ≺ H ′ if CG(H
′) � CG(H)

(by a strict partial order we mean a binary relation that is irreflexive—meaning that
no element is related to itself—and transitive). A subgroup of G is basic if among
non-abelian subgroups of G it is minimal with respect to this strict partial order;
specifically B is basic if there is no non-abelian subgroup B′ of G with B′ � B.

Consider for example the case where N is the Torelli group I(Sg). Let R be a
sphere with four separating boundary components in Sg. Then the subgroup B of
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N consisting of elements that are supported in R is a basic subgroup. Indeed, it
is not abelian since it contains Dehn twists about curves that intersect and it is
minimal because all proper subsurfaces of R have abelian mapping class group.

Lemma 6.4. Let g ≥ 0, let N be a pure, normal subgroup of Mod(Sg) that contains
a pure element with a small component, and let G be a finite-index subgroup of N .

(1) The support of a basic subgroup of G is a non-annular region of Sg.
(2) If B is a basic subgroup of N , then B∩G is a basic subgroup of G; similarly,

any basic subgroup of G is also a basic subgroup of N .
(3) N contains a basic subgroup with small support.
(4) Mod±(Sg) acts on the set of supports of basic subgroups of G.

Proof. We begin with the first statement. Let H be a basic subgroup of G. Since
H is not abelian, the support of H is clearly not empty and not an annulus. It is
also easy to see that the support of H is proper. Indeed if the support of H were
Sg, then by Lemma 6.2 the centralizer CG(H) would be trivial. On the other hand,
since N—hence G—contains an element f with a small component, we can apply
Lemma 6.3 to f and a small region Q in order to produce a non-abelian subgroup
J with non-trivial centralizer CG(J) (since Q is small there is an h ∈ Mod(Sg) so
that hJh−1 ∩ G lies in CG(J)). Any such J would be strictly smaller than H in
the strict partial order.

Suppose for contradiction that the support of H is not connected. By Lemma 6.2
there is a component R of the support of H so that the reduction homomorphism
H → PMod(R◦) has non-abelian image. In particular, there must be an element
h of H with a Nielsen-Thurston component whose support is non-peripheral in R.
By Lemma 6.3(1), the subgroup

J = {h ∈ G | Supp(h) ⊆ R}.

of G is not abelian.
We will show that J ≺ H. By Lemma 6.2 the centralizer CG(H) of H is sup-

ported in the complement of R. It follows that CG(H) ⊆ CG(J). We must now
produce an element of CG(J) \CG(H). Let h be an element of H whose support is
not contained in R. Let Q be a non-annular region of Sg that is disjoint from R,
that contains a component of the support of h as a non-peripheral subsurface, and is
disjoint from all other components of the support of h. Applying Lemma 6.3(1) to h
and Q we find the desired element of CG(J)\CG(H). Thus J ≺ H, a contradiction.
This completes the proof of the first statement.

The second statement has two parts. For the first part, let B be a basic subgroup
of N . We would like to show that B ∩ G is a basic subgroup of G. It follows from
Fact 6.1 that B ∩ G is non-abelian, and it follows from the first statement and
Lemma 6.2 that CG(B ∩ G) consists of all elements whose support lies outside the
support of B ∩G. Thus, if B ∩G were not basic in G there would be a non-abelian
subgroup H of G whose centralizer contains the centralizer of B ∩ G and also
contains at least one extra element. The support of this extra element would have
to intersect the support of B ∩G and hence by the first statement and Lemma 6.2
the support of H would be a proper subsurface of the support of B ∩ G. Since
B ∩ G has finite index in B the latter is equal to the support of B and we can
conclude that H is smaller than B in the strict partial order on subgroups of N ,
contradicting the assumption that B was basic in N .
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For the second part of the second statement, let B be a basic subgroup of G. We
would like to show that B is basic in N . Suppose B′ is a non-abelian subgroup of N
that is smaller than B in the strict partial order on subgroups of N . Consider the
subgroup B′ ∩G of G. Again by Fact 6.1 the subgroup B′∩G is not abelian. Since
B′ ≺ B (in N) we have that CN (B) � CN (B′). Thus CG(B) ⊆ CG(B

′). Since the
first containment is strict there is an element f of N that lies in the centralizer in
N of B′ but not of B. Some power of f lies in G. It then follows from Fact 6.1
that this power of f lies in CG(B

′) but not CG(B), contradicting the assumption
that B is basic in G.

We now treat the third statement. By assumption, N—hence G—contains a
non-trivial pure element f with a small component f1. Let R1 be a fitting region
for f corresponding to f1, as per the definition of ĝ(f) in Section 1.2; the component
f1 and the region R1 satisfy the hypotheses of Lemma 6.3. There is a region Q of
Sg that has genus less than g/3, has connected boundary, and contains R1. We
define

JR1
= {h ∈ G | Supp h ⊆ R1}.

It follows from parts (1) and (3) of Lemma 6.3 that JR1
is not abelian and that

CG(JR1
) is the set of elements of G with support in the complement of R1. We would

like to show that JR1
contains a basic subgroup. If JR1

itself is not minimal, then
it contains a non-abelian subgroup J ′

R1
with J ′

R1
≺ JR1

. It follows that CG(J
′
R1

)
contains an element whose support intersects R1. By Lemma 6.2 the support of
J ′
R1

has a component that is a proper subsurface R2 of R1. If JR2
is the subgroup

of G consisting of all elements with support in R2 we still have JR2
≺ JR1

. If JR2

is not minimal we can repeat the process. Since the Euler characteristics of the
Ri are strictly increasing and negative, the process must eventually terminate at a
basic subgroup H with support contained in Q.

For the fourth statement, suppose that R is the support of a basic subgroup B
in G and let f ∈ Mod±(Sg). We would like to show that f(R) is the support of a
basic subgroup of G. Since Mod(Sg) acts transitively on each Mod±(Sg)-orbit of
regions in Sg, we may assume without loss of generality that f lies in Mod(Sg).

Let JR denote the subgroup of G consisting of all elements with support in R.
Let B′ = (fJRf−1) ∩ G. As N is normal in Mod(Sg) and G has finite index
in N the subgroup B′ has finite index in fJRf−1. Since the support of a pure
subgroup of Mod(Sg) is invariant under taking finite-index subgroups, the support
of B′ is f(R). We would like to show that B′ is basic. It follows from Fact 6.1
that B′ is not abelian. Finally we must show that B′ is minimal. By part (3)
of Lemma 6.3 the support of JR is R (not a proper subsurface of R) and so the
support of fJRf−1, hence B′, is f(R). Since B′ is not abelian it then follows from
Fact 6.1 that CG(B

′) consists of exactly the elements of G with support outside
f(R). If there were a subgroup B′′ of G with B′′ ≺ B′, then there would be an
element of CG(B

′′) whose support has essential intersection with f(R) and so the
support of B′′ would be contained in f(R). But then—again using Fact 6.1—the
subgroup (f−1B′′f)∩G would be strictly smaller than B in the strict partial order,
contradicting the minimality of B. �
6.4. The complex. Again, let N be some fixed pure, normal subgroup of Mod(Sg)
that contains a pure element with a small component. We are now ready to con-
struct the desired complex of regions CN (Sg) for N . By statements (1) and (4) of

Lemma 6.4 there is a complex of regions C�
N (Sg) whose set of vertices is in bijection
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with the set of supports of basic subgroups of N . One point to note here is that

there are many basic subgroups of N corresponding to a given vertex of C�
N (Sg).

By Lemma 6.4(1) the complex of regions C�
N (Sg) has no annular vertices and so

it has no corks. Also by Lemma 6.4(3) it has a small vertex. On the other hand,

C�
N (Sg) does not necessarily satisfy the other hypotheses of Theorem 1.7: it may

have holes and it may be disconnected.
To illustrate the first point, we again consider the above example where N =

I(Sg). Again, let R be a four-holed sphere where each component of the boundary
is separating in Sg. Also assume that one of the complementary regions Q is a
handle. We already explained why there is a basic subgroup with support R, and

so R represents a vertex of C�
N (Sg). But in this particular case R represents a

vertex of C�
N (Sg) with a hole. Indeed, the subgroup of I(Sg) consisting of elements

supported in Q is cyclic (it is generated by the Dehn twist about the boundary of
Q) and so there are no basic subgroups of N supported in Q. Thus Q represents a
hole for the R-vertex.

We can also imagine an example where C�
N (Sg) is not connected. Let N be

the normal closure in Mod±(Sg) of two elements f and h of Mod(Sg), where f
is a partial pseudo-Anosov element supported on a handle Q and h is a partial
pseudo-Anosov element supported on a subsurface R of genus zero with g + 1
boundary components. Using Lemma 6.3 we can find non-abelian subgroups of N
with supports Q and R. For the typical choices of f and h we would expect these

subgroups to be basic, and so Q and R will represent vertices v and w of C�
N (Sg).

It is also possible that all vertices of C�
N (Sg) lie in the orbit of v and w. Since no

vertex in the orbit of v is connected to w the complex C�
N (Sg) is disconnected in

this case.
In light of these issues, we now set about modifying C�

N (Sg) so that it satisfies

all of the hypotheses of Theorem 1.7. First, let C�
N (Sg) be the filling of C�

N (Sg) (cf.

Section 2.1). By Lemma 2.2, the complex C�
N (Sg) has no holes and by Lemma 2.3

it has a small vertex. Since the filling of a non-annular vertex is non-annular, and

since C�
N (Sg) has no annular vertices, C�

N (Sg) has no corks.

In summary, the complex C�
N (Sg) has no holes or corks and it has a small vertex,

but it might be disconnected. We have the following fact, which is a straightforward
application of the Putman trick from the proof of Lemma 3.5.

Lemma 6.5. Let CA(Sg) be a complex of regions. The small vertices of CA(Sg) all
lie in the same connected component of CA(Sg).

Finally, we may define CN (Sg) as the connected component of C�
N (Sg) containing

the small vertices. Clearly CN (Sg) is connected and has a small vertex. Also, since

C�
N (Sg) has no annular vertices, CN (Sg) has no corks. To check that CN (Sg) satisfies

the hypotheses of Theorem 1.7, it remains to check that CN (Sg) has no holes.
Suppose that R is a region of Sg that represents a vertex of CN (Sg). Then R

also represents a vertex of C�
N (Sg). Since the latter has no holes, each complemen-

tary region of R supports a vertex of C�
N (Sg). Each of these vertices clearly lies in

the connected component of C�
N (Sg) containing the R-vertex and so they all corre-

spond to vertices of CN (Sg). So CN (Sg) has no holes. We thus have the following
consequence of Theorem 1.7.
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Proposition 6.6. Let N be a pure, normal subgroup of Mod(Sg) that contains a
pure element with a small component. Then the natural map

Mod±(Sg) → Aut CN (Sg)

is an isomorphism.

6.5. Action of the commensurator groups on the complex. For the complex
of regions CN (Sg) to be useful, we would like to know that an automorphism—or
an abstract commensuration—of N gives rise to an automorphism of CN (Sg). In
order to obtain a well-defined action, we must deal with the issue that there are
many basic subgroups of N giving rise to the same vertex of CN (Sg).

In what follows, we will denote by vB the vertex of CN (Sg) arising from the basic
subgroup B of N . As mentioned, we may have two basic subgroups B and B′ with
vB = vB′ . Also, for G a finite-index subgroup of N and B a basic subgroup of G
we define the basic centralizer of B in G to be the subgroup of G generated by the
basic subgroups of G in the centralizer of B; we denote this group by BCG(H).

Lemma 6.7. Let N be a pure, normal subgroup of Mod(Sg) that contains an
element with a small component. Let G be a subgroup of N of finite index. Let
h ∈ Mod±(Sg) and let h� denote its image under the natural map Mod±(Sg) →
Aut CN (Sg). Let B and B′ be two basic subgroups of G. Then

(1) vB = vB′ if and only if BCG(B) = BCG(B
′),

(2) vB = vB′ if B′ is a finite-index subgroup of B,
(3) vB is connected by an edge to vB′ if and only if B′ � BCG(B), and
(4) h�(vB) = vhBh−1 .

Proof. Let R denote the support of B. By Lemma 6.4(1), the subsurface R is a
non-annular region of Sg. Denote by P1, . . . , Pm the complementary regions that
do contain the supports of other basic subgroups of G and denote by Q1, . . . , Qn

the complementary regions that do not. By the definition of CN (Sg), the vertex vB
is represented by the union of R with the Qi; call this region R′. By Lemma 6.2,
we have that BCG(B) is the subgroup of G generated by the basic subgroups of G
with support in the complement of R′. All statements of the lemma follow (for the
second statement apply Fact 6.1). �

Proposition 6.8. Let N be a pure, normal subgroup of Mod(Sg) that contains an
element with a small component. There is a map

CommN → Aut CN (Sg)

defined as follows: if α : G1 → G2 is an isomorphism between finite-index subgroups
of N and [α]� is the image in Aut CN (Sg) of the equivalence class of α, then for
any basic subgroup B of N we have

[α]�(vB) = vα(B∩G1).

Proof. Our first objective is to show that the formula given in the statement of the
proposition makes sense. Let α : G1 → G2 be an isomorphism between finite-index
subgroups of N and let B be a basic subgroup of N . By Lemma 6.4(2), the group
B ∩ G1 is a basic subgroup of G1. Since α is an isomorphism from G1 to G2 it
follows that α(B∩G1) is a basic subgroup of G2. Again by Lemma 6.4(2) the group
α(B ∩ G1) is a basic subgroup of N . Thus vα(B∩G1) is indeed a vertex of CN (Sg).
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Next we must show that the formula in the statement gives a well-defined action
of CommN on the set of vertices of CN (Sg). There are two issues, namely, that an
element of CommN has many representatives and also that there are many basic
subgroups of N giving rise to the same vertex of CN (Sg).

Let α : G1 → G2 be an isomorphism between finite-index subgroups of N and
let B be a basic subgroup of N . Let α′ : G′

1 → G′
2 be another isomorphism of

finite-index subgroups of N that represents the same element of CommN as α. We
must show that

vα(B∩G1) = vα′(B∩G′
1)

.

Since α and α′ agree on a finite-index subgroup of N it suffices to treat the case
where G′

1 is a finite-index subgroup of G1 and α|(B ∩ G′
1) = α′|(B ∩ G′

1). In this
case B ∩ G′

1 has finite index in B ∩ G1 and so α′(B ∩ G′
1) = α(B ∩ G′

1) has finite
index in α(B ∩ G1). It follows that the supports of α′(B ∩ G′

1) and α(B ∩ G1) are
equal, which is to say that vα(B∩G1) = vα′(B∩G′

1)
, as desired.

To deal with the second ambiguity, suppose that B′ is another basic subgroup
of N with vB = vB′ . With α as above, we must show that

vα(B∩G1) = vα(B′∩G1).

By Lemma 6.2 the centralizer of a basic subgroup is invariant under passage to
finite-index subgroups. It follows from this and Lemma 6.4(2) that vB∩G1

= vB′∩G1
.

It further follows from Lemma 6.7(1) that BCG1
(B∩G1) is equal to BCG1

(B′∩G1).
As basic centralizers are preserved by isomorphisms, we have that BCG2

(α(B∩G1))
is equal to BCG2

(α(B′∩G1)). Again by Lemma 6.7(1) we have the desired equality
vα(B∩G1) = vα(B′∩G1).

Having now shown that [α] induces a well-defined permutation of the set of
vertices of CN (Sg), it remains to check that this permutation preserves the set of
edges. To this end, we claim that if B and B′ are basic subgroups of N , then vB
and vB′ are connected by an edge if and only if B and B′ commute. The subgroups
B and B′ commute if and only if the subgroups B ∩ G1 and B′ ∩ G1 commute,
and the latter holds if and only if α(B ∩ G1) and α(B′ ∩ G1) commute. It then
follows from Lemma 6.7(3) that the given permutation of vertices extends to an
automorphism of CN (Sg). �

6.6. Proof of the theorem. We are almost ready to prove Theorem 1.1. Let us
first introduce some notation. For f ∈ Mod±(Sg) denote by αf the automorphism of
Mod±(Sg) given by conjugation by f , that is, αf (h) = fhf−1 for all h ∈ Mod±(Sg).
If f lies in the normalizer of N , then we may consider αf as an element of AutN
(technically, the restriction of αf to N gives an element of AutN). Similarly, if
there is a restriction of αf that is an isomorphism between finite-index subgroups of
N , then we may regard [αf ] as an element of CommN (this is an abuse of notation:
we should more properly write [ᾱf ] where ᾱf is the restriction).

Proof of Theorem 1.1. For simplicity we first deal with the case where N is normal
in Mod±(Sg) (this is the first statement of Theorem 1.1). Let P be a pure normal
subgroup of finite-index in Mod±(Sg). We will begin by describing a sequence of
five maps Φ1, . . . ,Φ5 as follows:

Mod±(Sg)
Φ1→AutN

Φ2→ CommN
Φ3→ CommN ∩ P

Φ4→ Aut CN∩P (Sg)
Φ5→ Mod±(Sg).
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Here are the definitions of the maps:

• Φ1 is the conjugation map, that is, Φ1(f) = αf ,
• Φ2 maps an element of AutN to its equivalence class in CommN ,
• Φ3 maps the equivalence class of an isomorphism between finite-index sub-
groups of N to the equivalence class of any restriction that is an isomor-
phism between finite-index subgroups of N ∩ P ,

• Φ4 is the map from Proposition 6.8, and
• Φ5 is the isomorphism from Proposition 6.6.

To prove the theorem in the case where N is normal in Mod±(Sg) we will show
that Φ1, Φ2, Φ3, Φ4, and Φ5 are all injective and that the composition

Φ5 ◦ Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1

is the identity. The injectivity of the Φi and the surjectivity of the composition
together imply that the Φi are surjective, and hence are isomorphisms. That Φ1

and Φ2 are isomorphisms is the content of the first statement of Theorem 1.1. The
map Φ5 ◦Φ4 ◦Φ3 is the natural map CommN → Mod±(Sg) from the statement of
the theorem.

We begin by showing that the Φi are injective. The map Φ1 is injective by an
argument similar to the one given in Lemma 3.6; indeed, if f ∈ Mod±(Sg) commutes
with h ∈ N , then f fixes the canonical reduction system of h. Any element of N
with a small component has a non-empty canonical reduction system, and as in the
proof of Lemma 3.6 the orbit under Mod±(Sg) of this canonical reduction system is
dense in PMF(Sg). Since N is normal in Mod±(Sg) the canonical reduction system
for khk−1 is the k-image of the canonical reduction system for h, the injectivity
follows.

We now show that Φ2 is injective. Let α ∈ AutN be an element of the kernel.
Let f be an element of N . We would like to show that α(f) = f . Let h be a
pseudo-Anosov element of N (all infinite normal subgroups of Mod(Sg) contain
such elements). Since Φ2(α) is the identity, there is a finite-index subgroup G of N
so that α|G is the identity. There is an m > 0 so that hm and (fhf−1)m lie in G
and so we have α(hm) = hm and α((fhf−1)m) = (fhf−1)m. We have

fhmf−1 = (fhf−1)m = α((fhf−1)m) = α(f)α(hm)α(f)−1 = α(f)hmα(f)−1.

In other words f−1α(f) commutes with hm and so f−1α(f) fixes the point in
PMF(Sg) corresponding to the unstable foliation of h. Since h was arbitrary,
f−1α(f) fixes all the points in PMF(Sg) corresponding to the unstable foliations
of pseudo-Anosov elements of N . But since N is normal in Mod(Sg), these points
are dense in PMF(Sg). As in the proof of Lemma 3.6 we conclude that f−1α(f) is
the identity, which is to say that α(f) = f . Thus, α is the identity, as desired.

The map Φ3 is an isomorphism since a finite-index subgroup of N ∩ P also has
finite index in N .

Next, we will show that Φ4 is injective. To this end, fix some isomorphism α :
G1 → G2 representing an element [α] of CommN ∩P . As in Proposition 6.8 denote
the image of [α] in Aut CN∩P (Sg) by α�. Assume that α� is the identity. We must
show that [α] is the identity. We will show that in fact α is the identity (in particular
G1 = G2). So let h ∈ G1. We would like to show that α(h) = h. Let h� and α(h)�
denote the images of h and α(h) under natural map Mod±(Sg) → Aut CN∩P (Sg).
Since the latter is injective (Lemma 3.6) it suffices to show that h� = α(h)�.
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So let B be an arbitrary basic subgroup of N . By Lemmas 6.4(2) and 6.7(2) we
may assume without loss of generality that B is contained in G1. We have

h�(vB) = vhBh−1 = α�vhBh−1 = vα(hBh−1) = vα(h)α(B)α(h)−1

= α(h)�vα(B) = α(h)�α�vB = α(h)�vB .

In order, the equalities use Lemma 6.7(4), the assumption that α� is the identity,
Proposition 6.8, the assumptions that B and h both lie in G1, again Lemma 6.7(4),
again Proposition 6.8, and again the assumption that α� is the identity. It follows
that h� = α(h)� and so α(h) = h, as desired.

The fifth and final map Φ5 : Aut CN∩P (Sg) → Mod±(Sg) is an isomorphism by
Proposition 6.6; in particular it is injective.

As in Theorem 1.7 the isomorphism Φ5 is the inverse of the natural map
Mod±(Sg) → Aut CN∩P (Sg). It follows that the composition Φ5 ◦Φ4 ◦Φ3 ◦Φ2 ◦Φ1

is the identity. Indeed, given f ∈ Mod(Sg) the image in CommN ∩P is the element
given by conjugation by f . Thus the image in Aut CN∩P (Sg) is f� and so the image
in Mod±(Sg) must again be f . This completes the proof of the first statement of
the theorem.

We now prove the second statement of the theorem. Assume that N is normal
in Mod(Sg) but not in Mod±(Sg). Again let P be a pure normal subgroup of finite
index in Mod±(Sg). We will consider a collection of homomorphisms Φi analogous
to the ones from the proof of the first statement:

Mod±(Sg)

Φ6

���
�
�
�
�
�
�
�
�
�
�

Aut CN∩P (Sg)

Φ5

∼=

��������������
Mod(Sg)
� �

������������

Φ1

��
CommN ∩ P

Φ4

��

AutN

Φ2�����
���

���
��

CommN

Φ3

∼=
		������������

The maps Φ1, . . . ,Φ5 are all defined in the same way as in the first case, except
that the domain of Φ1 has changed. The map Φ6 is the natural map Mod±(Sg) →
CommN from the statement of the theorem. It maps f ∈ Mod±(Sg) to the element
of CommN given by conjugation by f . For f not in Mod(Sg) there may be no
subgroup of finite index H in N so that fHf−1 has finite index in N ; if such f
exists the map Φ6 is not well defined.1

By the same arguments as in the proof of the first statement of the theorem, the
maps Φ1, Φ2, Φ3, Φ4, and Φ5 are all injective and the composition

Φ5 ◦ Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1

is the inclusion map.

1One is tempted to think that since N is normal in Mod(Sg) and since Mod(Sg) has index two
in Mod±(Sg), there is a subgroup of finite index in N that is normal in Mod±(Sg). If this were
true it would imply that Φ6 is always well defined. However, it is not true. Consider for example
the group A = Z2 � Z/2 where Z/2 acts on Z2 by interchanging the two factors; the subgroup N
of A corresponding to the first factor of Z2 is normal in Z2 but there is a conjugate of N in A
with which N has trivial intersection.
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We consider two cases, according to whether the image of Φ5◦Φ4◦Φ3 is Mod(Sg)
or Mod±(Sg). Let us first assume that the image is Mod(Sg). In this case CommN
is isomorphic to Mod(Sg) under the natural map Φ5 ◦Φ4 ◦Φ3. Further Φ1 and Φ2

are isomorphisms since Φ1, Φ2, and Φ5 ◦Φ4 ◦Φ3 are injective and their composition
is the inclusion, as desired.

We now proceed to the case where the image of Φ5 ◦ Φ4 ◦ Φ3 is Mod±(Sg).
Since we already know that Φ1, Φ2, and Φ5 ◦ Φ4 ◦ Φ3 are injective, and that their
composition is the inclusion, the only remaining statements to prove are that Φ6 is
the inverse to Φ5 ◦ Φ4 ◦ Φ3 and that Φ1 is surjective, hence an isomorphism. We
treat each of these statements in turn.

We first show that Φ6 is a left inverse to Φ5 ◦Φ4 ◦Φ3 (hence is the inverse). The
proof of this statement follows along similar lines as in the proof of the injectivity
of Φ4. We fix some isomorphism α : G1 → G2 representing an element [α] of
CommN ∩ P (which under Φ3 is canonically isomorphic to CommN). As above
we denote the Φ4-image of [α] in Aut CN∩P (Sg) by α�. Assume that α� maps to f ∈
Mod±(Sg) under Φ5. We would like to show that [α] is given by the restriction of
the conjugation map αf . This is the same as saying that [α] = Φ6◦Φ5◦Φ4◦Φ3([α]),
as desired.

Let h ∈ G1. We would like to show that α(h) = fhf−1. For a mapping class
j ∈ Mod±(Sg) denote by j� the image of j under natural map Φ−1

5 : Mod±(Sg) →
Aut CN∩P (Sg) (so by definition α� = f�). Since Φ−1

5 is injective (Lemma 3.6) it
suffices to show that (fhf−1)� = α(h)�, or (fh)� = (α(h)f)�. Let B be an arbitrary
basic subgroup of N . Again we may assume without loss of generality that B is
contained in G1. We have

(fh)�vB = f�(h�vB) = α�(h�vB) = α�vhBh−1 = vα(hBh−1)

= vα(h)α(B)α(h−1) = α(h)�vα(B) = α(h)�α�(vB)

= α(h)�f�vB = (α(h)f)�vB .

In order, the equalities use the fact that Φ−1
5 is a homomorphism, the assumption

that f� = α�, Lemma 6.7(4), Proposition 6.8, the assumptions that B and h both
lie in G1, again Lemma 6.7(4), again Proposition 6.8, again the assumption that
f� = α�, and again the fact that Φ−1

5 is a homomorphism. It follows that (fh)� =
(α(h)f)� and so α(h) = fhf−1, as desired.

We have proven that the left inverse of the natural map Φ5◦Φ4◦Φ3 : CommN →
Mod±(Sg) is the natural map Φ6 : Mod±(Sg) → CommN , as in the statement of
the theorem.

To complete the proof of the theorem, it remains to show that Φ1 is an isomor-
phism, in other words that Φ1 is surjective. Let α ∈ AutN . As usual, denote Φ2(α)
by [α]. Let f denote Φ5 ◦ Φ4 ◦ Φ3([α]). Since Φ6 is the inverse of Φ5 ◦ Φ4 ◦ Φ3, we
have Φ6(f) = [α]. In other words [α] = [αf ]. To show that α lies in the image of Φ1

we will show that α = αf . The proof will be similar to the proof of the injectivity
of Φ2.

Let n ∈ N . We would like to show that α(n) = fnf−1. Let h be a pseudo-
Anosov element of N . Since [α] = [αf ], there is a finite-index subgroup G of N
so that α|G = αf |G. There is an m > 0 so that hm and nhmn−1 lie in G. So
α(hm) = fhmf−1 and α(nhmn−1) = fnhmn−1f−1. We have

fnhmn−1f−1 = α(nhmn−1) = α(n)α(hm)α(n)−1 = α(n)fhmf−1α(n)−1.
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From the equality of the first and last expressions we deduce that

f−1α(n)−1fnhm = hmf−1α(n)−1fn,

in other words that f−1α(n)−1fn commutes with hm. Since h was arbitrary, it
follows as in the proof of the injectivity of Φ2 that f−1α(n)−1fn is the identity,
which is to say that α(n) = fnf−1, as desired. This completes the proof of the
theorem. �
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13, Séminaire Henri Cartan, no. 1, 1960-1961. MR1611822

[25] Sebastian Hensel, Rigidity and flexibility for handlebody groups, Comment. Math. Helv. 93
(2018), no. 2, 335–358, DOI 10.4171/CMH/436. MR3811754
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Math. Soc., Zürich, 2012, pp. 297–423, DOI 10.4171/103-1/6. MR2952767

[49] Alan McLeay, Normal subgroups of mapping class groups of punctured surfaces,
arxiv:1801.05209 (2018).

[50] Alan McLeay, Normal subgroups of the braid group and the metaconjecture of Ivanov,
arxiv:1801.05209 (2018).

[51] R. Taylor McNeill, A New Filtration of the Magnus Kernel, ProQuest LLC, Ann Arbor, MI,
2013. Thesis (Ph.D.)–Rice University. MR3211445

[52] Lee Mosher, MSRI course on mapping class groups, Lecture notes (Fall 2007).
[53] Jakob Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen
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