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We give a new proof of a theorem of D. Calegari that says that the Cayley graph of
a surface group with respect to any generating set lying in finitely many mapping
class group orbits has infinite diameter. This applies, for instance, to the generating
set consisting of all simple closed curves.
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1. Introduction

The objective of this note is to study the geometry of the Cayley graph of a surface
group with respect to certain infinite generating sets. We give an alternate proof
of a theorem of D. Calegari that addresses one of the first geometric questions one
might ask about these Cayley graphs: whether or not their diameter is infinite.

Let Σ be a closed oriented surface of genus at least 2 and let ∗ ∈ Σ be a base point.
We abbreviate π1(Σ, ∗) by π1(Σ). The relative mapping class group Mod(Σ, ∗) is the
group of isotopy classes of orientation-preserving diffeomorphisms of Σ that fix ∗.
The group Mod(Σ, ∗) acts on π1(Σ) by automorphisms, and Calegari’s theorem is
as follows.

Theorem 1.1 (D. Calegari, [3]). Let Σ be a closed oriented surface of genus at least
2 and let S ⊂ π1(Σ) be a generating set contained in finitely many Mod(Σ, ∗)-orbits.
Then the Cayley graph of π1(Σ) with respect to S has infinite diameter.

This theorem applies, for instance, to the set S of all simple closed curves in
π1(Σ), which satisfies the hypothesis of theorem 1.1 by the so-called change of
coordinates principle; see [7, § 1.3]. Farb had asked if theorem 1.1 was true in this
special case; see [3]. In fact, the general case follows from this one; see § 4 below.

Both Calegari’s proof and ours make use of the theory of quasi-morphisms.
However, while he constructs appropriate quasi-morphisms directly using the hyper-
bolic geometry of Σ, we instead embed π1(Σ) into Mod(Σ, ∗) as the point-pushing
subgroup and use the theory of stable commutator length on Mod(Σ, ∗).
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The idea of using quasimorphisms on Mod(Σ, ∗) to study its point-pushing sub-
group already appeared in work of Brandenbursky–Marcinkowski [2], who proved
a stronger version of theorem 1.1. Their theorem says that many elements of π1(Σ)
are undistorted with respect to the word metrics appearing in theorem 1.1. We han-
dle the details of the proof differently, and in particular introduce a novel invariant
of immersed closed curves in a surface that is of independent interest; see § 2.

Beyond theorem 1.1, little is known about the geometry and group theory of
π1(Σ) with respect to infinite generating sets. One exception is a theorem of the
second author [12] that gives a complete set of relations between the set of simple
closed curves in π1(Σ). A natural next question is whether the Cayley graph of
π1(Σ) with respect to the generating set consisting of all simple closed curves is
δ-hyperbolic.

Outline. In § 2 we construct an element x of π1(Σ) such that no element of
Mod(Σ, ∗) takes x to x−1. There is a well-known inclusion of π1(Σ) into Mod(Σ, ∗)
called the point-pushing map. Under this inclusion, x corresponds to a pseudo-
Anosov mapping class. In § 3 we apply a result of Calegari–Fujiwara to conclude that
the stable commutator length of x (as an element of Mod(Σ, ∗)) is positive. On the
other hand, we argue that if the Cayley graph in the statement of theorem 1.1 had
finite diameter, then the stable commutator length function on π1(Σ) � Mod(Σ, ∗)
would be the zero function. We close the paper in § 4 with a discussion of how to
derive theorem 1.1 from the special case where the generating set S consists of all
simple closed curves.

2. An irreversible curve

The goal of this section is to prove the following lemma. In its statement, we
denote the oriented closed curve obtained by reversing the orientation of an oriented
closed curve γ by γ̄. The (unbased) homotopy class of an oriented closed curve γ
is denoted [γ]. Finally, Mod(Σ) is the mapping class group of a surface Σ, i.e. the
group of isotopy classes of orientation-preserving diffeomorphisms of Σ.

Lemma 2.1. Let Σ be a closed oriented surface of genus at least 2 and let α be the
oriented closed curve in Σ shown in figure 1. Then [α] and [ᾱ] do not lie in the
same Mod(Σ)-orbit.

In the statement of the lemma and throughout the paper, when we refer to the
curve α we are of course referring to any of the infinitely many curves indicated
in figure 1; there is one such curve for each closed orientable surface of genus at
least 2.

Our strategy for proving lemma 2.1 is to introduce an invariant for homotopy
classes of oriented immersed closed curves in a surface (the homotopy classes of
left-turning one-cornered simple subcurves) and to show that α and ᾱ have distinct
invariants.

One-cornered subcurves. Let γ be an oriented immersed closed curve in a
surface with no self-tangencies. A one-cornered simple subcurve of γ is an oriented
closed curve δ with the following two properties:
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Figure 1. On the left is the oriented curve α. On the right are the simple one-cornered
subcurves of α. Each of them is left-turning.

• δ is obtained by starting at a self-intersection point p of γ and following γ until
it returns for the first time to p, and

• δ is freely homotopic to a simple closed curve.

The self-intersection point p at which δ begins and ends is the corner of δ.
We can also specify a direction of turning for δ. Let �v and �w be the tangent

vectors to δ at its starting and ending points, so �v and �w form a basis for the
tangent space to the surface at the corner p of δ. We will say that δ is right-turning
if (�v, �w) is a positively oriented basis for the tangent space and that δ is left-turning
otherwise.

All of the one-cornered simple subcurves of the immersed closed curve α in the
left-hand side of figure 1 are shown in the right-hand side of figure 1. All of these
one-cornered simple subcurves are left-turning.

The homotopy invariants. Let γ be an oriented immersed closed curve with
no self-tangencies. We now use the notions of left- and right-turning one-cornered
simple subcurves of γ in order to define an invariant of the homotopy class of γ.
Let

ocL(γ) = {[δ] | δ is a left-turning one-cornered simple subcurve of γ}
and

ocR(γ) = {[δ] | δ is a right-turning one-cornered simple subcurve of γ} .

For the curve α shown in figure 1, the set ocL(α) is the (nonempty) set of homotopy
classes of curves shown in the right-hand side of figure 1 and the set ocR(α) is empty.

The next lemma says that, at least under favourable circumstances, the sets
ocL(γ) and ocR(γ) are invariant under homotopies of γ. In its statement, we say
that γ is in minimal position if it is an immersed closed curve with no triple points
and if it has the minimal possible number of self-intersections among all such curves
that are homotopic to it.
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Figure 2. On the left is the Reidemeister III move. On the right are a monogon and a
bigon (both nonsingular).

Lemma 2.2. Let γ and γ′ be homotopic oriented immersed closed curves in minimal
position. Then ocL(γ) = ocL(γ′) and ocR(γ) = ocR(γ′).

Proof. Since γ and γ′ are in minimal position, a theorem of Hass–Scott [9] applies
to show that γ and γ′ can be connected by a sequence of ambient isotopies and the
‘Reidemeister III moves’ shown in the left-hand side of figure 2 (we remark that
Hass–Scott do not state their result in this form, but Paterson [11, theorem 1.2]
gives an alternate proof of their result and states it as we have). It is thus enough
to deal with the case where γ and γ′ differ by a single Reidemeister III move. This
is a straightforward check. �

Checking minimal position. Lemma 2.2 is only as useful as our ability to
check if a curve is in minimal position. We recall here a theorem of Hass–Scott that
gives a checkable criterion for a curve to be in minimal position, and use this to
conclude that the curve α from figure 1 is in minimal position (lemma 2.3 below).
The statement of the criterion requires two definitions. Let γ be an immersed closed
curve in Σ with no self-tangencies.

A singular monogon in γ is a subarc δ of γ with the following two properties:

• δ starts and ends at the same self-intersection point of γ and

• δ is nullhomotopic by a homotopy fixing its endpoints.

A prototypical example of this is a nonsingular monogon, i.e. one where δ is a simple
closed curve in the surface that bounds a disc; see the right-hand side of figure 2.

A singular bigon in γ is a pair of distinct subarcs δ and δ′ of γ with the following
three properties for some choice of orientation of δ and δ′:

• δ and δ′ start at the same self-intersection point of γ,

• δ and δ′ end at the same self-intersection point of γ, and

• δ and δ′ are homotopic by a homotopy that fixes their starting and ending
points.

A prototypical example of this is a nonsingular bigon, i.e. one where δ ∪ δ′ is a
simple closed curve in the surface that bounds a disc; see the right-hand side of
figure 2.
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Hass–Scott [8] proved that an immersed closed curve in a surface with no triple
points and no self-tangencies is in minimal position if and only if it does not have
any singular monogons or singular bigons; see Paterson [11] for an alternate proof.

The curve α from figure 1 has no triple points and does not have any singular
monogons or singular bigons. We thus have the following lemma.

Lemma 2.3. Let Σ be a closed oriented surface of genus at least 2 and let α be the
oriented closed curve in Σ shown in figure 1. Then α is in minimal position.

Finishing the proof. We now apply Lemmas 2.2 and 2.3 to prove lemma 2.1,
which states that [α] and [ᾱ] do not lie in the same Mod(Σ)-orbit.

Proof of lemma 2.1. As in the statement, let α be the oriented immersed closed
curve in the surface Σ depicted in the left-hand side of figure 1. Let φ be an
orientation-preserving diffeomorphism of Σ and [φ] ∈ Mod(Σ) its mapping class.
We must prove that [φ(α)] �= [ᾱ].

As discussed above, ocL(α) �= ∅ and ocR(α) = ∅. We thus have that

ocL(ᾱ) = ocR(α) = ∅
and

ocL(φ(α)) = [φ](ocL(α)) �= ∅.
In particular, ocL(ᾱ) �= ocL(φ(α)).

By lemma 2.3, the curve α is in minimal position. It follows that ᾱ and φ(α) are
also in minimal position. By lemma 2.2, we have [φ(α)] �= [ᾱ], as desired. �

3. The proof of theorem 1.1

In this section, we prove theorem 1.1. The proof involves the theory of stable
commutator length, so we begin by recalling some basic facts about this.

Stable commutator length. Let G be a group. For g ∈ [G,G], define the
commutator length cl(g) to be the minimal number of commutators needed to
express g. The function

cl : [G,G] → Z�0

is subadditive in the sense that

cl(gh) � cl(g) + cl(h)

for all g, h ∈ [G,G]. The stable commutator length of g ∈ [G,G] is the real number

scl(g) = lim
n→∞

1
n

cl(gn).

The subadditivity implies that this limit exists. See Calegari’s book [4] for a survey
of stable commutator length.

A criterion for a Cayley graph to have infinite diameter. Theorem 1.1
states that certain Cayley graphs for π1(Σ) have infinite diameter. Since

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2019.22
https://www.cambridge.org/core


6 D. Margalit and A. Putman

[π1(Σ), π1(Σ)] �= π1(Σ), we cannot apply the theory of stable commutator length
directly to prove this theorem. Instead, we will apply the following lemma.

Lemma 3.1. Let G be a group and let scl : [G,G] → R be its stable commutator
length function. Let H be a normal subgroup of G such that H < [G,G]. The group
G acts on H by conjugation; let S be a generating set for H that is contained in
finitely many G-orbits. Assume that the Cayley graph of H with respect to S has
finite diameter. Then scl(h) = 0 for all h ∈ H.

We emphasize that in the statement of lemma 3.1 the expression scl(h) refers to
the stable commutator length of h as an element of G.

Proof of lemma 3.1. Since the Cayley graph of H with respect to S has finite diam-
eter, there exists some C � 0 such that every element of H can be written as a
product of at most C elements of S ∪ S−1. Let cl : [G,G] → Z be the commutator
length function and define

D = sup
{
cl(s) | s ∈ S ∪ S−1

}
.

Since the commutator length function on [G,G] is invariant under the conjugation
action of G and S is contained in finitely many G-orbits, we have D < ∞. For all
h ∈ H, we then have

cl(h) � CD

and thus

scl(h) = lim
n�→∞

1
n

cl(hn) � lim
n�→∞

1
n

CD = 0. �

Surface subgroups of mapping class groups. Let Σ be a closed oriented
surface of genus at least 2. The group π1(Σ) can be embedded into Mod(Σ, ∗) as the
point-pushing subgroup; see [7, § 4.2]. This point-pushing subgroup is the kernel of
the natural surjective map Mod(Σ, ∗) → Mod(Σ), so we have a short exact sequence

1 → π1(Σ) → Mod(Σ, ∗) → Mod(Σ) → 1

called the Birman exact sequence.

Remark 3.2. There is one annoying technical issue here. In π1(Σ) we multiply
paths from left to right, but in Mod(Σ, ∗) we compose mapping classes from right to
left. The naive inclusion π1(Σ) → Mod(Σ, ∗) is thus an anti-homomorphism rather
than a homomorphism. To fix this, we compose the inclusion π1(Σ) → Mod(Σ, ∗)
with the inversion map on π1(Σ), so x ∈ π1(Σ) corresponds to the point-pushing
mapping class that pushes ∗ around x−1.

We will need the following two properties of the point-pushing subgroup:

• the conjugation action of Mod(Σ, ∗) on the normal subgroup π1(Σ) is the
natural one induced by the action of diffeomorphisms on Σ and

• π1(Σ) lies in the commutator subgroup of Mod(Σ, ∗).
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The second property is vacuous when the genus of Σ is at least 3 since in these cases
Mod(Σ, ∗) is perfect. For the case of genus 2, we observe that π1(Σ) is generated
by nonseparating simple loops and thus the point-pushing subgroup is generated
by products TaT−1

b , where Ta and Tb are Dehn twists about nonseparating curves
in Σ; see [7, §4.2]. Since all Dehn twists about nonseparating curves are conjugate
in Mod(Σ, ∗), it follows that TaT−1

b (and hence all of the point pushing subgroup)
lies in the commutator subgroup of Mod(Σ, ∗).

Finishing the proof. We are now ready to prove our main theorem. The proof
will bring to bear the Nielsen–Thurston classification, which classifies elements
of the mapping class group as either periodic, reducible, or pseudo-Anosov; see
[7, § 13.3] for details and background.

Proof of theorem 1.1. By lemma 3.1, it is enough to exhibit a single element of
π1(Σ) whose Mod(Σ, ∗)-stable commutator length is nonzero. Let x ∈ π1(Σ) be any
element freely homotopic to the curve α from lemma 2.1. The curve x fills Σ, mean-
ing that it has a minimal position representative where all of the complementary
regions are disks. In fact we may choose the base point ∗ and the element x such that
the minimal position representative is α. By a theorem of Kra [10], the associated
element of Mod(Σ, ∗) is pseudo-Anosov (see also [7, §14.1.4]).

By lemma 2.1, there is no f ∈ Mod(Σ, ∗) such that f∗(x) = x−1. Since surface
groups have unique roots (see, e.g. [6, Problem 1.20 & theorem 3.11]), it then
follows that for each n � 1 there does not exist an f ∈ Mod(Σ, ∗) with f∗(xn) =
x−n. In other words, no positive power of the mapping class associated with x is
conjugate in Mod(Σ, ∗) to its inverse. A theorem of Calegari–Fujiwara [5, theorem
C] states that if a pseudo-Anosov element of Mod(Σ, ∗) has no positive power that is
conjugate to its inverse, then its stable commutator length is nonzero. In particular
the stable commutator length of x ∈ Mod(Σ, ∗) is nonzero, as desired. �

Remark 3.3. The theorem of Calegari–Fujiwara used in the proof above was later
generalized by Bestvina–Bromberg–Fujiwara [1] to give a complete characterization
of which mapping classes have positive stable commutator length.

4. Deriving the general case from the special case

Neither our proof nor Calegari’s original proof of theorem 1.1 appear to simplify
in the case where the generating set S is the set of all simple closed curves in
π1(Σ). However, it is interesting to observe that the general case follows from this
one. Indeed, assume that the Cayley graph of π1(Σ) with respect to S has infinite
diameter, and consider any generating set S′ ⊂ π1(Σ) that is contained in finitely
many Mod(Σ, ∗)-orbits. We will show how to deduce that the Cayley graph of
π1(Σ) with respect to S′ has infinite diameter. Enlarging S′ can only shrink the
diameter of the Cayley graph, so without loss of generality we can assume that
S′ = Mod(Σ, ∗) · S′

0 for some finite generating set S′
0 for π1(Σ). For later use, let

S0 ⊂ S also be a finite generating set for π1(Σ) such that S = Mod(Σ, ∗) · S0.
It is enough now to prove that the Cayley graphs of π1(Σ) with respect to S and

S′ are quasi-isometric. Letting ‖ · ‖S and ‖ · ‖S′ be the associated word norms on
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π1(Σ), this is equivalent to showing that there exists some C, C ′ � 1 such that

‖w‖S′ � C‖w‖S and ‖w‖S � C ′‖w‖S′

for all w ∈ π1(Σ). The proofs of the existence of C and C ′ are the same, except
with the roles of {S, S0} and {S′, S′

0} reversed; we will write the argument for C.
Since S0 is a finite generating set for π1(Σ), there exists some C � 1 such that

‖s‖S′ � C for all s ∈ S0. For φ ∈ Mod(Σ) and s ∈ S0, we thus have

‖φ(s)‖S′ = ‖s‖φ−1(S′) = ‖s‖S′ � C;

here we are using the fact that S′ is Mod(Σ)-invariant. Since S = Mod(Σ) · S0, this
implies that ‖s‖S′ � C for all s ∈ S. From this, we see that ‖w‖S′ � C‖w‖S for all
w ∈ π1(Σ), as desired.
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