
Improvement in Vulnerability and Error Analysis: A
Synthetic Measurement Approach

Surya Chandan Dhulipala, Cody Ruben, Arturo Bretas
Department of Electrical & Computer Engineering

University of Florida
Gainesville, FL

chandandhulipala@ufl.edu, cruben31@ufl.edu, arturo@ece.ufl.edu

Newton Bretas
Department of Electrical and Computer Engineering

University of Sao Paulo
Sao Carlos, SP, Brazil

ngbretas@sc.usp.br

Abstract—Gross error analysis of measurements is very chal-
lenging in power systems, even in transmission systems with
relatively high measurement redundancy. It is especially chal-
lenging to detect gross errors in measurements which are
most vulnerable to undetectable errors, considering the classical
residual based approach. This paper aims to ameliorate gross
error analysis by augmenting the current measurement set with
synthetic measurements (SM). SM are allocated by performing
vulnerability analysis on the power system. A novel index called
Vulnerability Index (VI) has been proposed to evaluate which
measurement or bus is vulnerable to undetectable errors for a
given measurement scenario. This method was tested on a 14
bus system and the results show that augmentation using SM can
improve the performance of bad data detection and identification
in measurements. Analysis of the influence of SM on bus VI and
exclusion of various types of measurements is also performed.

Index Terms—Vulnerability index , Gross error analysis, syn-
thetic measurements, Smart grid, Cyber-attack, State estimation.

I. INTRODUCTION

An important issue for the power grid is the detection of
gross errors in measurements. These measurements come from
various devices, both old and new, throughout the grid and are
used by Energy Management Systems (EMS) to provide real
time monitoring and situational awareness of the grid. The
State Estimation (SE) process uses all of these measurements
to estimate the current state of the power grid, which is
then used in many applications for real time monitoring and
control [1]. Therefore, it is critical to correctly detect when
a measurement is in error, as this will have cascading affects
throughout an EMS. These gross errors can come in many
forms, including broken devices, communication errors, and
with the implementation of Smart Grid (SG) devices, cyber-
attacks as well [2]. As more opportunities for gross errors are
introduced to the grid, it becomes increasingly important to
develop more accurate and robust bad data detection (BDD)
solutions.

Since BDD is a critical application within an EMS, much
research has been dedicated to this problem. The most com-
mon BDD solution that is used is the statistical Chi-square
test which is based on the residual values of a Weighted
Least Squares (WLS) SE [1]. There have been attempts to
improve upon this by modifying the test [3], but it has been
shown that the use of the residual values is an issue in

itself. Rather, a geometrical interpretation of the WLS SE
solution, known as the Innovation concept, shows that the
error itself can be estimated and used in the Chi-squared test
[4], [5]. This theory has been applied to BDD improvement
[6], [7], including the development of a Vulnerability Index
(VI) [8]. These strategies do not directly address the fact
that measurement redundancy is an important factor in using
the statistical Chi-squared test. The underlying assumption in
using the Chi-squared distribution is that the measurements
have normal Gaussian noise. Due to the nature of the Chi-
squared distribution, this assumption holds more accurately
with higher degrees of freedom, or added redundancy [1].
Psuedo-measurements have been used as an attempt to add
redundancy to power systems, but since these are based on
historical data, they are not always available and reliable for
SE [9].

This paper proposes the use of Synthetic Measurements
(SM) as a way to add reliable redundancy to the power
grid measurement set. SM, unlike pseudo-measurements, are
derived based on the current state of the system, making them
robust to load changes over time. Furthermore, the VI will
be used to locate SM strategically. The VI will quantify the
weak points of the system in terms of BDD so that the SM
are located where they will have the greatest impact on BDD.

The remainder of the paper is organized as follows. In
Section II, we present the WLS SE algorithm along with the
Innovation concept. In Section III, the Synthetic Measurement
strategy is presented. In Section IV, simulation results of the
proposed method are shown. Finally, some concluding remarks
are presented in Section V.

II. BACKGROUND

A. State Estimation and Geometrical Interpretation Theory

The power system with n buses and m measurements is
modeled as a set of non-linear equations as follow [1]:

z = h(x) + e (1)

Where z ∈ Rm is the measurement vector, x ∈ RN is the
state variables vector, h(x) : Rm → RN , (m > N) is a
non-linear differentiable function that relates the states to the
measurements, e is the measurement error vector assumed
with zero mean, standard deviation σ and having Gaussian
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probability distribution, and N = 2n-1 is the number of
unknown state variables.

Weighted Least Square (WLS) is a classical state estimator
that searches for the best estimates of the states x of the well-
known problem that minimizes the cost function as follow:

J(x) = ‖z − h(x)‖2R−1 = [z − h(x)]TR−1[z − h(x)] (2)

where R is the measurement covariance matrix. J(x) index
is a norm in the measurements vector space. Let x̂ be the
solution of the aforementioned minimization problem, then the
estimated measurement vector is ẑ = h(x̂). The residual is
defined as the difference between ẑ and z, which means r =
z − ẑ. Linearizing (1) at a certain operating point x∗ yields
the following:

4z = H 4 x+ e (3)

where H = ∂h
∂x is the Jacobian matrix of h calculated at the

point x∗. 4z = z−h(x∗) = z− z∗ and 4x = x−x∗ are the
correction of measurement and state vector respectively. Under
observability condition, i.e rank(H) ≥ N , the vector space of
measurements can be decomposed into two sub-spaces that
are orthogonal to each other. Let P be a linear operator such
that 4ẑ = P 4 z and the residual vector r be 4z − 4ẑ.
Then, the vector 4ẑ = H 4 x̂ is orthogonal to the residual
vector r, since P projects the measurement vector mismatch
4z orthogonally in the range space of H . Equivalently,

< 4x̂, r >= (H 4 x)TR−1(4z −H 4 x̂) = 0 (4)

Solving (4) for 4x̂, one can obtain the following:

4x̂ = (HTR−1H)−1HTR−1 4 z (5)

In other words, the projection matrix P is the idempotent
matrix that has the following expression:

P = H(HTR−1H)−1HTR−1 (6)

So, it is possible to decompose the measurement vector to two
component as follow:

e = Pe︸︷︷︸
eU

+ (I − P )e︸ ︷︷ ︸
eD

(7)

The component eD is the detectable error which is the residual
in the classical model while the component eU is the unde-
tectable error. eD is in the orthogonal space to the range space
of Jacobian whereas eU is hidden in the Jacobian space. The
geometric interpretation is illustrated in Fig.1.

‖e‖2 = ‖eD‖2 + ‖eU‖2 (8)

This error vector is called Composed Measurement Error
(CME). In order to find the masked error and compose
it, the Innovation Index (II) is introduced to quantify the
undetectable error which is proposed by [4] and is presented
in the following:

IIi =

∥∥eiD∥∥∥∥eiU∥∥ =

√
1− Pii√
Pii

(9)

Fig. 1. Illustration of Geometrical Interpretation Method

Low Innovation index means there is a large component of
error is not reflected from residual. Therefore, the residual
will be very small even if there is a gross error. By using (8)
and (9), the composed measurement error will be as follow:

CMEi = ri

(√
1 +

1

IIi
2

)
(10)

If instead we work with normalized residual one can obtain
Composed Normalized error (CNE) as follow:

CNEi = rNi

(√
1 +

1

IIi
2

)
(11)

Where rN is the normalized residual. Otherwise, error can be
normalized by:

CMENi =
ri
σi

(√
1 +

1

IIi
2

)
(12)

where σ is the standard deviation for the measurement and
one can use CNE to correct the measurement.

B. Vulnerability Index

The Vulnerability Index (VI), known as UI in [8], quantifies
the vulnerability of a bus to undetectable gross errors in
measurements associated with that bus. This metric is devel-
oped based on the Innovation concept presented in [4], [5].
Sensitivity Analysis is performed to determine the effect of
certain input on the uncertainty of output. S4x̂ is used to
determine the impact 4x̂ caused on the state estimate by an
arbitrary perturbation ∆z introduced in measurement vector.
S4x̂ (∂x̂∂z ) is given by:

S4x̂ =
∂x̂

∂z
= G−1HTW (13)

where
G = HTWH and W = R−1. (14)

Similarly, the effect of ∆z on the residual is given by Sr as:

Sr = I −HG−1HTW (15)

where G and W are given by (14). Similar analysis can be
performed to quantify the effect of ∆z on C.M.E and this
sensitivity matrix is denoted by SCME . Since, residual is
detectable component of error and CME is composed of both
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the detectable and undetectable component of the error, we
theorize the difference of SCME and Sr [10], [11] should give
a sensitivity matrix denoting the effect of ∆z on undetectable
component of error. We make use of aforementioned properties
of sensitivity matrices to define a vulnerability index of a bus
as shown in (16).

V Ii =

√√√√ 1

K

K∑
k=1

J∑
j=1

(SCME(k, j)− Sr(k, j))2 (16)

where K is the set of measurements associated with bus i,
J is the set of all measurements, and SCME and Sr are
the sensitivities of the CME and residual, respectively, with
respect to gross errors in measurements. The VI of a bus
will quantify the vulnerability of that bus to gross errors with
large undetectable components. The higher the VI of a bus, the
more vulnerable that bus is to undetected errors considering
the classical WLS solution.

C. Error Analysis

Assuming that the measurement errors ei, i = 1, ....m, are
normal and independent, each having mean zero and variance
σ2
i , N(0, σ2

i ), then the performance index, J(x̂), is

J(x̂) =

m∑
i=1

(
zmeasi − ẑi

σi

)2

(17)

and follows a χ2
m−N distribution, i.e., a chi-square distribution

with m − N degrees of freedom, with m being the number
of measurements and N the number of state variables, where
zmeasi − ẑi = r (residual).
• If J(x̂) > C then reject the hypothesis HO that there is

no error.
• If J(x̂) ≤ C then accept the hypothesis HO.

where C = χ2
m−N,1−α. A modified chi-square test for bad

data detection has been proposed by [12]. [12] proposes
standardizing residual (r) using standard deviation (SD) of
residual from the diagonal of co-variance matrix of residual. A
similar chi-square test can be formulated by replacing residual
with the CME but with different degrees of freedom (m),
while considering the minimization of the weighted norm of
the error [13]. The CME should be normalized by the S.D of
measurement and the proof that SD of CME is the same as
SD of measurement is shown in the Appendix.

III. SYNTHETIC MEASUREMENTS USING VULNERABILITY
INDEX

A. Vulnerability Index

Errors in measurements can be introduced by various factors
like cyber-attacks, faulty equipment and communication chan-
nel noise. The Vulnerability Index (VI) is not the property of
the system but, given the measurement set for the system, the
VI characterizes the vulnerability of the system to undetectable
errors, considering the classical residual BBD. The VI of a
bus characterizes the vulnerability of the bus to undetectable
errors taking into account all the measurements associated

with the bus. For a given measurement set, VI analysis can
be performed on the system to determine where SM can be
allocated to improve the detectability of errors.

B. Synthetic Measurements

In this paper, SM are defined as the measurements that
are obtained form either the current state estimate or the
states obtained from preceding scan of measurements. Adding
redundancy via SM will cause the CMEs to have a more
Gaussian behavior, thereby improving the reliability of the
gross error detection and identification test. As opposed to
the commonly used pseudo-measurements, SM are calculated
from the current state of system, make them more appropriate
for improving bad data error analysis. SM are calculated
from the state of the system, while considering the weights
associated to the precision of meters. Otherwise, the gross
error analysis considers the two step state estimation approach
[6], where the weights are given as a percentage of the
measurement magnitude. SM are selected considering the bus
VI values. All of the VI values are ordered and the buses
with the highest VI values will have SM added to them. The
number of buses and SM will depend on the system being
analyzed.

IV. RESULTS

The proposed method was tested using the 14-bus test
system shown in Fig. 2. This system has 27 (2∗n−1;where n
is the number of buses) states. A measurement set consisting
of both active and reactive power flows and injections is
considered. A total of 81 measurements are considered making
the redundancy equal to 3 which is typical for transmission
systems. These are the measurements that are used directly
in the measurement error detection. As described in Section
III, the concept of SM is used to add measurement redun-
dancy to the NLSE rather than the commonly used pseudo-
measurements. In order to determine where on the system SM
will be added, a VI analysis of the system is done. Based
on the measurement set considered, the bus VI values for
each of the fourteen buses on the system for various cases
are shown in Table II. These pre-processing values are shown
in the “Only SCADA” cases. Certain cases where a certain
class (Pij and Pji) of measurements are removed were also
presented. These cases were taken into account to depict lack
of certain measurement channels in SCADA. Plots of VI for
the aforementioned cases are illustrated in Fig.3 and Fig.4.
Buses 2 and 5 have significantly higher VI when compared
to other buses which is evident from the peaks in Fig.3 and
Fig.4.

This analysis shows that bus 2 is the most vulnerable to
gross errors in measurements going undetected by the standard
residual based chi-square test followed by bus 5. We also see
that buses 1 and 4 are also relatively vulnerable. The decision
to introduce SM at bus 2 and bus 5 was made based on the
fact that VI values for these buses were significantly higher
than VI of other buses. It is proposed to generate SM for the
real power flows from bus 5 to bus 2 and vice versa from the

This work was supported by NSF ECCS grants 1646229 and 1809739.

Authorized licensed use limited to: University of Florida. Downloaded on May 18,2020 at 18:47:09 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. 14 Bus Test System

Fig. 3. Effect of addition of SM on VI of buses

above analysis. Additionally, reactive power injection at bus
2 and bus 5 were also considered as SM. This adds the most
local redundancy to buses 2 and 5. The SM are created based
on the results of the latest scan of measurements.

To evaluate the effectiveness of the introduction of SM in
the error detection process, Monte Carlo analysis is performed
in MATLAB considering 5000 scenarios of various loading
conditions and random errors in the measurement. The various
loading conditions are simulated in the MATPOWER package
[14]. For this analysis, a scenario is correct only when the error
is both detected and identified correctly. The improvement of
accuracy in error detection was up to 7.74%. The improvement
of accuracy of error analysis with introduction of SM is shown
in Table I, III and IV. The introduction of SM also improves
the VI of the bus, consequently the buses are less vulnerable
to undetected gross errors.

TABLE I
ERROR ANALYSIS RESULTS FOR FULL SCADA CASE

Detection Identification Total
Without SM 91.16% 65.93% 60.63%

With SM 91.62% 74.04% 67.84%

Fig. 4. Effect of addition of SM on VI of buses after power flow measurements
are removed

TABLE II
VI VALUES OF ALL BUSES

Case Bus VI values

Only SCADA [0.753,1.193,0.331,0.728,1.117,0.249,0.186,
0.260,0.197,0.271,0.310,0.303,0.242,0.234]

SCADA+SM [0.762,1.001,0.312,0.670,0.970,0.235,0.179,
0.258,0.188,0.261,0.292,0.298,0.237,0.228]

SCADA-Pij
[0.892,1.607,0.567,0.989,1.427,0.358,0.229,
0.261,0.287,0.444,0.507,0.439,0.419,0.432]

SCADA-Pij+SM [0.911,1.361,0.502,0.949,1.241,0.344,0.217,
0.261,0.269,0.425,0.490,0.433,0.404,0.415]

SCADA-Pji
[0.957,1.603,0.568,1.033,1.424,0.400,0.235,
0.187,0.351,0.378,0.469,0.732,0.697,0.678]

SCADA-Pji+SM [0.984,1.353,0.503,0.991,1.237,0.394,0.213,
0.177,0.332,0.344,0.428,0.733,0.694,0.672]

V. CONCLUSIONS

This paper presents a method to ameliorate gross error
analysis by augmenting the current measurement set with
synthetic measurements. Synthetic measurements are allocated
by performing vulnerability analysis on the system. A novel
index called Vulnerability Index (VI) has been proposed to
evaluate which measurement or bus is vulnerable to unde-
tectable errors for a given measurement scenario. Results show
that augmentation using synthetic measurements can improve
the performance of bad data detection and identification in
measurements.

TABLE III
ERROR ANALYSIS RESULTS FOR SCADA - Pij CASE

Detection Identification Total
Without SM 61.3% 51.83% 50.5%

With SM 81.9% 59.53% 53.6%

TABLE IV
ERROR ANALYSIS RESULTS FOR SCADA- Pji CASE

Detection Identification Total
Without SM 60.86% 51.25% 50.7%

With SM 80.13% 69.78% 67.83%
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APPENDIX

Sensitivity of CME:

Sr =
r

e

CMEi = ri

√
1 +

1

II2i

Let:

ICi =

√
1 +

1

II2i

IC =

IC1 . . . 0
...

. . .
...

0 . . . ICm


So:

CME = IC ∗ r

SCME =
CME

e
=

IC ∗ r
e

= IC ∗ Sr

Covariance and SD of CME:

ΩCME = Cov(CME) = E(CME ∗ CMET )

ΩCME = SCME ∗ E(e ∗ eT ) ∗ STCME

ΩCME = SCME ∗R ∗ STCME

ΩCME = IC ∗ S ∗R ∗ ST ∗ ICT

ΩCME = IC ∗ S ∗R ∗ ICT

ΩCME,ii = ICi ∗ Sii ∗Rii ∗ ICi
ΩCME,ii = IC2

i ∗ Sii ∗Rii

IC2
i = 1 +

1

II2i
= 1 +

1− Sii
Sii

=
Sii + 1− Sii

Sii
=

1

Sii

ΩCME,ii =
1

Sii
∗ Sii ∗Rii = Rii√

ΩCME,ii = σCME,i =
√
Rii = σi
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