
Detecting Malicious Attacks Exploiting Hardware Vulnerabilities Using
Performance Counters

Congmiao Li, Jean-Luc Gaudiot
Electrical Engineering and Computer Science

University of California, Irvine
Irvine, USA

congmial@uci.edu, gaudiot@uci.edu

Abstract—Over the past decades, the major objectives of
computer design have been to improve performance and to
reduce cost, energy consumption, and size, while security has
remained a secondary concern. Meanwhile, malicious attacks
have rapidly grown as the number of Internet-connected devices,
ranging from personal smart embedded systems to large cloud
servers, have been increasing. Traditional antivirus software
cannot keep up with the increasing incidence of these attacks,
especially for exploits targeting hardware design vulnerabilities.
For example, as DRAM process technology scales down, it
becomes easier for DRAM cells to electrically interact with each
other. For instance, in Rowhammer attacks, it is possible to
corrupt data in nearby rows by reading the same row in DRAM.
As Rowhammer exploits a computer hardware weakness, no
software patch can completely fix the problem. Similarly, there is
no efficient software mitigation to the recently reported attack
Spectre. The attack exploits microarchitectural design
vulnerabilities to leak protected data through side channels. In
general, completely fixing hardware-level vulnerabilities would
require a redesign of the hardware which cannot be backported.
In this paper, we demonstrate that by monitoring deviations in
microarchitectural events such as cache misses, branch
mispredictions from existing CPU performance counters,
hardware-level attacks such as Rowhammer and Spectre can be
efficiently detected during runtime with promising accuracy and
reasonable performance overhead using various machine
learning classifiers.

Keywords—security, machine learning, malware detection,
microarchitectural features

I. INTRODUCTION

Traditional antivirus (AV) software is normally used to
protect computer systems from cyber attacks targeting software
vulnerabilities above the operating system (OS) level.
However, more recent attacks targeting computer architecture
and hardware design flaws cannot be detected by such antivirus
tools since the attacks are not based in the software application
or the OS and do not leave traces in system log files.
Therefore, such attacks are serious security risk for all systems
using these flawed hardware designs.

Common computer hardware components such as the
memory may behave unexpectedly under specific conditions
and can be exploited by malicious attackers. For example, the
Rowhammer [35] vulnerability is a hardware design defect in
DRAM chips that allows attackers to flip bits in memory at
unauthorized locations by repeatedly accessing physically
adjacent rows within a DRAM refresh interval rapidly.

Rowhammer can be exploited to mount attacks and bypass
existing software security and trust features including memory
isolations. Increasingly advanced Rowhammer attacks could
compromise various platforms including standalone personal
computers [36], web browsers [37, 38], virtual machines in
clouds [39, 40], and mobile devices [41]. Such attacks can be
used to escalate privileges [36, 37, 41], break cryptographic
keys [39], compromise remote systems over the network [42],
or lock down a processor by denial-of-service attack [43].

Further, information can be leaked to unprivileged parties
by analyzing the differences in unintended side channels.
These unintentional side channels can use timing information
[1-4], power consumption [5-7], electromagnetic radiation
[8,9], light emission [10], or even sound [11]. In
microarchitectural side-channel attacks, malicious processes
attempt to interfere with the victim through shared
microarchitectural resources. The interference pattern such as
cache timing [12-15], branch prediction history [16,17], or
Branch Target Buffers [18,19] can then be exploited to infer
secrets.

Speculative execution reduces the processor idle time to
improve performance by executing predicted path prematurely
according to the execution history before the actual path is
known definitively. Spectre attacks [20, 21] exploit speculative
execution by tricking the processor into taking the wrong
branch, instructions associated with the malicious branch
execution path can be carefully crafted to leak the victim’s
memory or register contents through microarchitectural side
channels. Kocher et al. [21] demonstrated the use of cache side
channels for their attack implementation, although there could
be other side channels. Spectre attacks works well on various
Intel, AMD and ARM processors. Furthermore, the KAISER
software patch [22] to mitigate Meltdown attacks cannot
defend against Spectre attacks. To completely solve the
problem, changes to the processor design and instruction set
architectures (ISAs) are required.

Unlike antivirus software which scans suspicious
instructions in binaries and system logs files in a static fashion,
recent research has shown that malicious software and attacks
can be detected in modern processors through the use of
dynamic microarchitectural execution patterns gleaned from
widely available hardware performance counters (HPC).
Demme et al. [23] adopted offline analysis based on various
supervised machining learning algorithms to show that
malware classification is possible using a complete trace of the

Acknowledgments -This work is partly supported by the National Science
Foundation (NSF) under Grant No. CCF-1763793/3654. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF.

program behavior after execution. Compared with higher-level
features in the OS and application, these microarchitectural
features have less complexity and are easier to collect with low
overhead. These features include events such as cache miss
rate, branch misprediction rate, data reference patterns etc and
could be highly effective in detecting attacks targeting
hardware vulnerabilities as such attacks happen below the OS
level.

In this paper, we demonstrate the use of low-level
microarchitectural features to detect Rowhammer and Spectre
during the attacks. As opposed to traditional static signature-
based AV, this hardware performance counter based detection
approach monitors the dynamic behavior of the system in the
hardware level with low overhead and allows the system
administrator to, effectively and in real-time, catch malicious
code execution especially attacks exploiting hardware
vulnerabilities such as Rowhammer and Spectre. To this end,
we collected microarchitectural traces from a Linux system
based on an Intel x86 processor in a “clean” environment and
in a system under attack, respectively. In particular, because of
the nature of Rowhammer and Spectre attacks which may
potentially alter the branch prediction or cache miss behaviors
of the victim’s processor, we monitor those related features
from performance counters and then use machine learning
methods to train and test classifiers to detect the attack. Unlike
previous offline detection method using the entire program
traces after attack [23], we propose to use the Weighted
Moving Average (WMA) of the time series data from the
output of the classifier to make real-time decisions
successively over sliding windows of program execution. The
online detector can catch 100% of both attacks with 0% false
positives for Rowhammer and 0.77% false positives for Spectre
in the best-case scenario.

The rest of the paper is organized as follows. We first
introduce Rowhammer and Spectre attacks in section II.
Understanding how the attacks work helps us to select the
hardware performance counter features for effective detection.
In section III, we compare different machine learning
algorithms to train the base classifier and introduce the metrics
to evaluate the performance of classifier. Then an online
detection approach that uses the output from the trained base
classifier is proposed. In section IV, detailed experimental
setup to collect the selected microarchitectural events in clean
environment and in system under attack is described. The
detection performance results for Rowhammer and Spectre
attacks are presented in section V. Finally, we conclude in
section VI.

II. BACKGROUND

Exploits targeting hardware-based vulnerabilities constitute
serious risks for wide range of computer systems as they can
bypass most of the existing defense mechanisms. For example,
with increased density and reduced reliability of DRAM,
Rowhammer attacks allow data corruption in memory by
repeatedly accessing the same row in DRAM. Spectre exploits
critical modern processor design flaws caused by speculative
execution to allow attackers to steal sensitive information from
users’ devices through microarchitectural side channels. In this
section, we discuss in detail the above-mentioned attacks.

A. Rowhammer

To increase capacity and reduce energy consumption,
DRAM chips have to be physically denser. However, smaller
cells can only hold a lower charge which reduces the noise
margin. Higher proximity of cells also introduces
electromagnetic coupling effects. Therefore, every time a
DRAM row is read from a memory bank, the memory cells in
adjacent rows leak a small amount of charge. If this happens
frequently within one refresh cycle, the affected cells can
potentially leak enough charge to cause the stored bit value to
flip, a phenomenon known as Rowhammer [35].

In singled-sided Rowhammer attacks [35], only one side of
the neighboring row to the victim row is rapidly accessed. A
newer version, namely double-sided Rowhammer [36],
hammers both sides of the neighboring rows to increase the
possibility of bit flip. To successfully trigger bit flip from CPU,
memory accesses have to bypass CPU caches and reach the
target row in DRAM as frequently as possible. This could
generate abnormally large number of cache misses during a
short time period. To avoid caches, attackers can use cache
flushing instructions [36, 39, 40], eviction buffers [37, 38, 45],
and non-temporal store instructions [47].

B. Countermeasures to Rowhammer

Due to the possible catastrophic damages caused by
Rowhammer attacks, solutions to protect users from such
attacks are urgently needed. Hardware solutions to DRAM
scaling challenges such as error correcting code or target row
refresh [44] may be able to protect future memories from
Rowhammer attacks, but cannot be deployed in existing
hardware. Software-based protections [36, 37, 45, 46], which
can be implemented on existing systems, cannot defend against
all types of advanced Rowhammer attacks.

Previous research [45] has shown the feasibility of using
hardware performance counters to monitor the last-level cache
miss rate and compared it with a fixed threshold to detect
Rowhammer attacks. To reduce the number of false positives,
we proposed to train the base classifier with models of
different complexity and use the Weighted Moving Average
(WMA) from the output of the base classifier over a sliding
window during program execution. In this paper, we take
Rowhammer as an example to demonstrate the effectiveness of
microarchitectural features to detect attacks exploiting
hardware vulnerabilities and to build the foundation for future
works on more advanced Rowhammer and other attacks.

C. Description of Spectre

void victim_function (size_t x) {
if (x < array1_size) {

temp &= array2[array1[x] * 512];
}}

Example 1: Conditional Branch Example

As reported in [20, 21], Spectre has two variants: bounds
check bypass and branch target injection. The first variant
exploits conditional branch mispredictions. For example, the
victim function in Example 1 receives an integer x from an
untrusted source. The function does a bound check on x to
prevent the process from reading unauthorized memory outside

array1 to ensure security. However, speculative execution can
lead to out-of-bounds memory reads. Suppose the attacker
makes several calls to victim_function() to train the branch
predictor to expect taking the branch by feeding it with valid
values of x, then calls the same function with an out-of-bound x
that points to a secret byte in the victim’s memory.

The attack usually consists of three phases. In general, it
starts with the setup phase where the attacker prepares the side
channel to leak the victim’s sensitive information, and other
necessary pre-requisites such as to mis-train the branch
predictor to take erroneous execution path, and to load target
memory location into registers, etc. In the following phase, the
attacker diverts confidential information from the victim’s
context to a microarchitectural side channel by exploiting
different hardware vulnerabilities such as out-of-order
execution or speculative execution. Then during the final
phase, the attacker gains access to the secret data through the
prepared side channel in the previous stages.

In the setup phase of Spectre attacks, the adversary
prepares for three conditions. Firstly, a malicious out-of-bound
value of x is chosen such that array1[x] points to a secret byte
s in the victim’s memory. The cache is then configured so that
array1_size and array2 are not in the cache, but the secret s in
the cache. Lastly, the branch predictor is trained to expect the
condition x < array1_size to be true.

During the second phase, the victim function starts by
comparing the malicious value of x with array1_size. Because
array1_size is not cached, the mis-trained branch predictor
assumes the condition to be true while waiting for the value of
array1_size to be loaded from memory. The processor
speculatively executes the instruction inside the if condition.
Reading secret data s from array1[x] is fast because it is a
cache hit. Then s is used to compute the address of
array2[s*512] and the program quickly starts to read data from
this address in memory. While waiting for the read to return,
the value of array1_size has finally arrived. The processor then
realizes the branch predictor selected the wrong execution path
which compels it to roll back the register states. However, the
cache state of array2 has already been affected by the memory
read from the specific address related to the secret s and is not
reversed.

In the final phase of the attack, using cache side channel
attacks such as the method proposed in [13] can identify which
cache line in array2 was loaded by measuring the timing
differences. Such information can then be used to infer the
value of the secret byte.

The second variant of Spectre targets the indirect jump
target prediction. It allows the program to jump to an address
contained in a register, in a memory location, or in the stack.
Like the first variant, if the target address is not in the cache,
the attacker can train the branch predictor to jump to an
erroneous location.

The two variants discussed above rely on the changes in the
state of the cache caused by the speculative execution. There
could be potential other variants of the attack. In general, any
observable changes from speculatively executed code may
cause the leaking of confidential information.

D. Mitigating Spectre

Mitigating the effects of Spectre is difficult because there
are many variations of possible attacks. To prevent conditional
branch vulnerability, speculative execution needs to be stopped
on all potentially sensitive execution paths. However, insertion
of such blocking mechanisms in all conditional branches and
their destinations by compiler would severely degrade
performance. Software mitigation to indirect branch
vulnerability is even more challenging as there is no
architecturally-defined method to block it and indirect jumps
vary across different processors.

E. Detecting Spectre

Besides patching the systems, it is also important to
proactively detect malicious attacks and stop them as early as
possible. To our knowledge, no existing research shows the
effectiveness of detecting Spectre using hardware performance
counters. Despite the fact that many different variants of
Spectre attacks exist, they all entail training the branch
predictor to take the wrong execution path, and then leak the
confidential information through an observable
microarchitectural side channel.

For the case of conditional branch example in Example 1,
the attacker calls the victim function multiple times so as to
cause the condition to be true. In turn, this means that the
branch misprediction rate will be reduced during the attack. In
the final step of the attack, the secret data are leaked through
cache side channels. The attacker needs to constantly flush the
cache to make sure array2 and array1_size are not cached,
which means that the cache miss rate will likely rise.
Consequently, monitoring the deviation of these two
microarchitectural behaviors is one possible hint as to how to
detect the attack.

To further validate our hypothesis, we conducted
experimental attacks based on the proof of concept code in [21]
and periodically collected microarchitectural traces from
hardware performance counters. An analysis of these results is
presented in subsequent sections. The proposed detection
method can be further extended to other variations of Spectre
attacks by monitoring additional microarchitectural features
depending on the side channels likely to be exploited.

Attackers may attempt to evade detection by reverse-
engineering the detector and mimicking the behavior of normal
programs. Several researchers (including Khasawneh et al.
[48]) have developed this kind of evasive malware by adding
instructions into the control flow graph of the malware without
changing the execution state of the program. However, for
Spectre attacks to avoid detection, attackers must also ensure
that cache and branch predictor states are not affected, which
we believe would be extremely difficult to effectively design
for several reasons. First the attack itself is very time
consuming: for each bit the attacker must perform multiple
training rounds on the branch predictor followed by cache side
channel attacks. Adding additional delays may make the attack
extremely slow. Second, adding delays may make the cache
side channel ineffective as other running programs may change
the cache status during the delay. Third, as the attack is
hardware specific, it is very difficult to design evasive attacks
that work for different machines. In addition, if an attacker

could still hide a Spectre attack from detection without slowing
it down, we could adopt the evasion-resilient detection method
proposed in [48] and randomize the performance counter data
collection periods to defend such evasion.

III. PROPOSED ONLINE DETECTION APPROACH

Our proposed detection approach first collects
microarchitectural features from performance counters in every
sampling period. For Rowhammer and the variant of Spectre
attacks discussed in the previous section using conditional
branches, we choose to monitor 4 events related to cache
access and branch prediction behaviors, namely cache
references, cache misses, branch instructions retired and branch
mispredictions. The data are collected in a “clean” environment
where the computer runs typical desktop applications like web
browser, video player, and text editors, as well as in an
environment under attack (the same desktop applications are
run in the two cases). The data are then labeled to train the
machine learning classifier offline. At runtime, the trained
classifier classifies the input data at each time interval and the
output time series is fed into the online detection mechanism to
decide whether the system is under attack. The online detector
is implemented as a software thread and continuously running
on a separate core to collect performance counter data and
classify malicious attacks. This section describes the machine
learning algorithms we used to train the classifier and our
proposed online detection approach in details.

A. Machine Learning Classifiers

Machine learning algorithms can be used to train classifiers
that determine the class y to which a given data set x belongs.
In most cases, the relationship between x and y is described by
a probability distribution P(x,y). The optimal class membership
decision is to choose the class label y such that the posterior
distribution P(y|x) is maximized [24]. We use supervised
learning [25] to train the attack detector with a set of pre-
labeled examples. Supervised learning entails a training phase
and a testing phase.

For each type of attacks, we collect data in 10 independent
runs and use the same number (1,200) of samples from both
classes to avoid any bias. Then, we randomly divide the
collected data into training (80%) and test (20%) data, then
separate the training data into training (80%) and validation
(20%) data.

We choose the following three different machine learning
algorithms to build the classifier with increasing complexity of
the model (many other machine learning algorithms are
available, but for demonstration purposes, we chose 3
commonly used ones with different complexities according to
the data size):

1) Logistic Regression (LR): LR is a simple linear
classification algorithm. It attemps to separate multi-
dimensional input data points by hyperplanes where points on
one side of the plane belong to the “normal” class and points
on the other side belong to the “malicious” class. In general,
the programs are not linearly separable, so LR gives a
probability between 0 and 1 for the likelihood of a program
trace being malicious. This probability is then converted into a

binary decision by comparing it with a pre-defined threshold.
Compared with other non-linear models, LR has fewer
parameters and requires less time to train.

2) Support Vector Machine (SVM): SVM finds the
optimal separating boundaries between data sets by modeling
and solving the classification problem as a constrained
quadratic optimization problem [26, 27]. The degrees of
nonlinearity and flexiblity can be adjusted by using different
kernel functions such as polynomial kernel, radial basis
function kernel (RBF), etc. The classification result is
dichotomous where the membership function could be either 0
or 1 without probability distribution. SVM has received
considerable research interest over the past years because its
performance is comparable with other non-linear models for
many classification problems and it is less complex than
artifical neural networks.

3) Artificial Neural Networks (ANN): ANNs consist in
networks of perceptrons (Multilayer Perceptron - MLP) that
approximate a classification function for the training data.
ANNs usually contain an input layer, an output layer, and
multiple hidden layers of perceptrons in between. It is a
popular and promising machine learning technique due to its
capability of mapping highly nonlinear data samples unlike
any other statistical regression models. When there is no
hidden layer, the network is actually identical to the LR model
if the logistic activation function is used [28, 29]. By
introducing nonlinear hidden neurons to the network, the
output of the network can become a nonlinear function of the
inputs. In classification problems, this can model the problem
of nonlinear decision boundaries. Researchers have developed
many models based on Back Propagation Networks (BPN)
and Radial Basis Function Networks (RBFN) for highly
nonlinear time series predictions [30, 31]. In general, ANN is
more flexible than LR to model more complex data. However,
it requires much longer time and more data to train the model.

B. Online Attack Detection

We use similar sliding-window based online classification
methods as proposed in [49] to detect malicious behaviors at
runtime. To this end, we collect microarchitectural features
periodically (every 100 ms). The multidimensional data are
then feed to a machine learning classifier to make decisions as
to whether malicious code is being executed or not. The
problem of detecting malicious attacks in real time is to make
decisions according to the binary time series generated by the
base classifier.

Fig. 1. Example of sliding window.

To smooth the fluctuated time series data, a Weighted
Moving Average (WMA) is used to filter out noise for better
decision making by assigning a weight factor to each element
in the time series. More recent data are assigned with higher
weights. Then we segment the data using a sliding window [32,
33] to calculate the average of consecutive decisions within the
current window. If the average is above a certain threshold, we
conclude that an attack (malicious code) is in progress. Fig. 1
illustrates an example of a sliding window process with a
window size of 5. Each numbered segment corresponds to the
classification result of each sampling period. The initial
window contains the first 5 decisions. The data within this
window are used to determine the final classification result for
the current time. The detection runs continuously for the next
period where the window slides to the right by one segment to
cover data from segment 2 to 6, and it moves on to the next
window accordingly.

In our experiments, we choose the window size to be 10
and sampling period of performance counters data collection to
be 100 ms, which means our detector makes decision on
whether the system is under attack every second. While
window size and sampling period could affect detection
accuracy and overall system performance overhead for
different hardware systems, we selected the above numbers so
as to yield satisfiable detection accuracy without a major
slowdown of the system. In future work, we plan to use a
variety of windows sizes and sampling periods to improve the
resilience of our detector and keep the performance overhead
minimum.

C. Evaluation of Detection Performance

A key criterion to evaluate the detection performance is the
accuracy of the model used to make decisions on previously
unseen data. To characterize accuracy, we use metrics such as
False Positives (FP) which is the percentage of misclassified
malicious instances, and False Negatives (FN) which is the
percentage of misclassified normal instances. A detection
approach with good performance is expected to minimize both.

To visualize the tradeoff between percentage of correctly
identified malicious instances and the percentage of normal
instances misclassified, we use Receiver Operating
Characteristic (ROC) graphs plotting True Positives (TP =
100% - FN) against FP. In addition, to compare the
performance of different models, we compute and compare the
area under the ROC curve for each model. The Area Under
Curve (AUC) score, also known as the c-index, provides a
quantitative metric of how well an attack detection approach
can distinguish between malicious and normal execution with a
higher AUC value for better performance.

IV. EXPERIMENTAL SETUP

To examine whether performance counter data can be used
to effectively detect attacks targeting hardware design
vulnerabilities, we take Rowhammer and Spectre attacks as
examples and collect events which have the potential to be
affected by the attacks (this includes cache references, cache
misses, branch instructions retired and branch mispredictions
from running the attacks on top of normal programs and
running typical benign applications alone respectively). The

results are then analyzed and preprocessed before being used to
train different classifiers to detect malicious behavior. In this
section, we describe the details of the data collection
mechanism and the system settings under attack and in normal
conditions. In this paper, we demonstrate the proposed online
detector under a standalone personal computer environment,
but our work could easily be extended to server environment in
the future.

A. Data Collection Mechanism

We run the attack on a typical personal laptop with Debian
Linux 4.8.5 OS on Intel® Core™ i3-3217U 1.8 GHz processor
with 3MB cache and 4GB of DDR3 memory from Micron. The
Intel processor contains a model-specific performance counter
monitor (PCM) and can be configured to count four different
hardware events at the same time. According to the discussion
on the nature of Rowhammer and Spectre attacks in Section II,
we choose the following available events for our system:

• Last-level cache reference event (LLC references)

• Last-level cache misses event (LLC misses)

• Branch instruction retired event (branches)

• Branch mispredict retired event (branch mispredictions)

We use the standard profiling infrastructure of Linux, perf
tools, to obtain system-wide performance counter data. We run
perf every 100 ms to record the required data without
excessively degrading the performance.

B. Test Environment Setup

In a clean environment, we sought to create realistic
scenarios by randomly browsing popular websites (according
to Wikipedia in FireFox) in different orders and by streaming
videos from browser plug-ins. In addition, we also ran text
editors to read and edit files. For data collection when the
system is under malicious attack, we launched malicious
attacks on top of normal running applications. To demonstrate
the effectiveness of detecting attacks exploiting hardware
vulnerabilities, we chose the double-sided Rowhammer attack
and the Spectre proof of concept attack and ran them
independently. The system status is reset after each run to
ensure the measurements are independent across different clean
and exploit runs. We collect overall performance counter data
across the system rather than for individual processes. This is
to make the classification problem closer to real world
conditions, albeit more difficult.

V. RESULTS

In the experiment described in section III, we collected data
from four performance counters at the same time periodically
in 10 separate runs. Each run produced 1,200 malicious and
normal samples respectively. In this section, we first analyzed
the collected raw data to assess whether it is feasible to
differentiate measurements in a clean environment from those
under attack by visualizing the distribution of data. Then, we
used different machine learning algorithms to train the
classifier and build the real-time attack detector using the
sliding window approach discussed previously.

A. Data Distribution Analysis

Our data collection mechanism produces 4-dimensional
time series data. Each sample contains event counts for branch
mispredictions, LLC misses, branches, and LLC references
during the sampling period. We also calculate the branch miss
rate (1) and LLC miss rate (2) for each interval as:

 branch miss rate = branch mispredictions / branches (1)

 LLC miss rate = LLC misses / LLC references (2)

We use boxplot to visualize the range and variance of the
measured data for each individual microarchitectural feature.
Fig. 2 and Fig. 3 give a direct indication of the feasibility to
detect malicious attacks using one particular feature.

For Rowhammer attacks as shown in Fig. 2, the LLC
misses, LLC references and LLC miss rate are all concentrated
in regions higher during the attack than during normal
operations. The reason is that in order to successfully flip bits
in the memory, the attacker has to bypass the cache and access
the neighboring rows next to the victim row in DRAM in rapid
sequence. This results in more cache misses within a short time
of period. Unlike previous work which only considers the
impact on cache behavior, we also notice that the number of
branch miss rate is greatly reduced. This is because the exploit
keeps looping through the same instructions to repeatedly
access the same rows in memory. This extra feature could help
to reduce the error rate in the detection of Rowhammer.

 Branch Mispredictions LLC Misses

Branches LLC References

Branch Miss Rate (%) LLC Miss Rate (%)

Fig. 2. Distribution of microarchitectual features from performance counters
for Rowhammer.

For the Spectre attacks shown in Fig. 3, we observe an
increased number of branches and branch mispredictions
during the attacks. In contrast, the branch miss rate is

decreased. This is because the attacker tries to train the branch
predictor by calling the conditional branch many times with
different input values that make the condition true. For the
LLC, the number of references and misses are both increased
with the miss rate concentrated on the higher percentage region
due to cache side channel attacks. The experimental results
validate our hypothesis proposed in section II.

 Branch Mispredictions LLC Misses

Branches LLC References

Branch Miss Rate (%) LLC Miss Rate (%)

Fig. 3. Distribution of microarchitectual features from performance counters
for Spectre.

LLC References, LLC Misses

Fig. 4. Distribution of branch miss rate and LLC miss rate features for
Rowhammer.

In addition, we also analyze the feasibility of distinguishing
the collected performance counter data using more than one

feature by plotting the sample points in 2D and 3D graphs with
each dimension corresponding to one feature.

LLC References, LLC Misses, Branch Miss Rate (%)

Fig. 5. Distribution of LLC references, LLC misses and branch miss rate
features for Rowhammer.

Fig. 4 shows the distribution of normal and malicious
sample points for Rowhammer attacks using only cache related
features including LLC references and LLC misses. Fig. 5 uses
LLC references, LLC misses and branch miss rate. We can
observe the data points of two different classes distribute in
two different regions and the boundaries between the two are
obvious in both plots. Therefore, we believe it is feasible to use
the chosen microarchitectural features to detect Rowhammer
attacks. In particular, with an additional branch feature, the
boundary is clearer in Fig. 5 which can lead to better
classification performance.

Branch Miss Rate, LLC Miss Rate

Fig. 6. Distribution of branch miss rate and LLC miss rate features for
Spectre.

Similarly, Fig. 6 shows the distribution of normal and
malicious sample points for Spectre attacks using branch miss
rate and LLC miss rate parameters. Fig. 7 uses LLC references,

LLC misses and branch miss rate. We can also see that there
are clear boundaries between the two classes in both figures.
Therefore, we believe we can detect Spectre attacks using the
microarchitectural features we selected.

LLC References, LLC Misses, Branch Miss Rate (%)

Fig. 7. Distribution of LLC references, LLC misses and branch miss rate
features for Spectre.

B. Online Detection Performance

Depending on the distribution of the collected performance
counter data, we use different machine learning algorithms of
different complexity. As mentioned in section III.A, this is
used to train the base classifier. We then smooth the output of
the base classifier with WMA and finally build the online
detector based on the sliding window approach described
earlier. The performance of the detection varies with the
classifiers used.

A simple model using Logistic Regression is first built with
default parameters. To further enhance the detection accuracy,
different parameters are tuned for the model. If the theoretical
best accuracy is not reached, we then move on to more
complex models using Support Vector Machine, then Multi
Layer Perceptron. We use randomized search over different
parameters of different models to find the best combination,
where each setting is sampled over a distribution of possible
parameter values. Compared with exhaustive search, it is less
computationally expensive and gives results that are close to
the optimal solution. The parameters for different classifiers
used in our experiments are as follows:

1) Logistic Regression (LR):
a) Regularization strength C: Trades off

misclassificaiton of training examples against simplicity of
decision boundary. A smaller C gives a smoother boundary for
stronger regularization,

b) Regularization parameters L1 and L2: Prevents
overfitting by imposing a penalty on the coefficients.

2) Support Vector Machine (SVM):
a) Gamma parameter: Defines how far the influence of

a single training sample reaches.

b) Regularization strength C: Works similarly to the C
paramenter in LR.

c) Kernel: Includes linear, radial basis function (RBF),
or polynomial kernel.

3) Multi Layer Perceptron (MLP):
a) Hidden layer sizes: Defines the number of hidden

layers in the network and number of hidden neurons in each
layer.

b) Activation function: Actives the neurons in the
hidden layers, can be logistic, rectified linear unit function or
hyperbolic tangent function.

c) Regularization parameter alpha: Avoids overfitting.
To choose the most suitable classifier, in real world

applications such those found in embedded systems, we need
to consider constraints of time, power consumption, memory
resources, etc. In addition, we need to know how much the
system is allowed to tolerate in terms of false positives and
false negatives.

Fig. 8. ROC for online detection of Rowhammer using logistic regression.

To quantitatively evaluate the performance of online
detection based on different classifiers, we look at the Receiver
Operating Characteristic (ROC) curves which plots false
positive rate as the x-axis against true positives as the y-axis as
shown in Fig. 8, 9, 10. Indeed, ROC curves are typically used
to show the tradeoff between false positives and true positives.
If we allow a higher rate of false positives (in other words,
moving towards the right of the graph), the detector should be
able to catch more malicious attacks. The dotted diagonal line
connecting (0,0) and (1,1) represents the performance of a
classifier that randomly guesses. For a classifier performs
better than random guess, its ROC will lie above the diagonal.
We can see that all our trained classifiers have better
performance than random guess.

 Fig. 8 shows the ROC curve for online detection
of Rowhammer attacks using simple Logistic Regression with
default parameters. We can see the trade-off is minimal in this
case: as we move from the top left corner of the ROC curve to

the right along the curve to allow more false positives, the true
positive rate does not increase much (from 99.77% to 100%).
To choose the best configuration, we pick the point on the
curve at the top left corner which gives the lowest sum of false
negatives and false positives. For a simple model such as LR,
we are able to obtain an AUC value of 0.9979 which is
obviously very close to 1.

Fig. 9. ROC for online detection of Rowhammer using different classifiers.

Fig. 10. ROC for online detection of Spectre using different classifiers.

Fig. 9 compares the ROC curves for all the trained
classifiers for Rowhammer attacks in our experiment. We can
see that they all perform very well with an AUC value above
0.99. As we were building models with increasing complexity,
the SVM with polynomial kernel of degree 3 could reach the
best possible AUC value of 1, which means a 0% error rate.
Therefore, we conclude that increasing the complexity of
models based on MLP would not lead to any further
improvement.

Similarly, in Fig. 10, we plot the AUC curves for the online
detectors using different classifiers for Spectre attacks.
Compared with Rowhammer attacks, the performance counter
data are spread more randomly as we discovered while training
and testing the classifiers with increasing complexities.
Therefore, we built more complex models using MLP with 2
hidden layers. In general, all the classifiers give fairly good
results with AUC values above 0.98. Overall, MLP
outperforms other classifiers with the highest AUC value.

TABLE I. PERFORMANCE OF DIFFERENT CLASSIFIERS FOR
ROWHAMMER

Classifier AUC FP (%) FN (%)
Training

Time (sec)

LR 0.9979423868 0 0.23 0.03

Tuned LR 0.9979423868 0 0.23 0.03

SVM 0.9979423868 0 0.23 0.05

SVM with
Polynomial
Kernel

1 0 0 7

TABLE II. PERFORMANCE OF DIFFERENT CLASSIFIERS FOR SPECTRE

Classifier AUC FP (%) FN (%)
Training

Time (sec)

LR 0.9810939999 3.83 3.40 0.04

Tuned LR 0.9956850054 1.15 2.43 0.04

SVM 0.9840326600 0.77 2.43 0.06

SVM with
Polynomial
Kernel

0.9913142134 0.77 0.97 9.8

MLP 0.9998512071 0.77 0 95

We compare the performance of each classifier
quantitatively using the AUC index and we choose the best
point on the ROC which gives the minimum FP and FN shown
in Table I and Table II. For Rowhammer attacks, using SVM
with a polynomial kernel of degree 3 can already achieve
perfect results (0% error rate). Our detector achieved better
detection accuracy than the previous Rowhammer detector
ANVIL [45] which exhibits 1% false positives. For Spectre
attacks, the best case using MLP with 2 hidden layers gives 0%
false negatives with only 0.77% false positives. We also
observe that more complex models require longer training time
since there are more parameters.

VI. CONCLUSIONS

The impact of malicious attacks targeting hardware
vulnerabilities can be catastrophic and widespread as they
usually can bypass traditional software-based security
defenses. This paper has proposed to detect such attacks by
monitoring microarchitectural features deviations. This is done
by collecting related data from performance counters. We take
Rowhammer (exploits DRAM disturbance error vulnerability)
and Spectre (exploits speculative execution and side channel
vulnerabilities) attacks to demonstrate the feasibility and
effectiveness to detect such attacks using microarchitectural
features. The features are collected from hardware performance
counters normally available in modern processors. An online
detection method is adopted to detect malicious behaviors

during the attack at early stage rather than offline detection
after the damage is done. The experimental results show
promising detection accuracy with 0% overall error rate for
Rowhammer attacks using SVM, and only 0.77% false
positives and 0% false negatives for Spectre attacks using a
trained multilayer Perceptron classifier. As complete mitigation
to the Spectre is challenging, it is imperative to dynamically
detect such attacks.

There are many variants of Spectre depending on the types
of hardware design flaws and side channels being exploited.
New variants are continuously discovered and researchers
recently identified a new speculative store bypass vulnerability
[34]. It should be noted however, that all the variants use a side
channel to infer confidential information in the final attack
stage. In addition, evasive attacks are difficult to perform
effectively especially when evasion-resilient detector [48] is
used. We thus conclude it is possible to detect malicious
behaviors by monitoring changes in these hardware side
channels. For Rowhammer attacks, there are also many new
variants that circumvent recent security defenses for different
architectures ranging from mobile devices to cloud servers.
The research we have just presented has shown that the
proposed approach is particularly effective for Rowhammer
and Spectre attacks targeting hardware vulnerabilities. Future
work will examine other variants of Rowhammer and Spectre
attacks and different attacks which exploit other hardware
design vulnerabilities in different domains such as CPU,
memory, GPU, etc and in server environments. To further
improve the detection performance, we will experiment online
machining learning algorithms and implement the detector in
dedicated FPGA.

REFERENCES

[1] P. Kocher, “Timing attacks in implementations of Diffie-Hellman, RSA,
DSS, and other systems,” Proceedings Crypto '96, Lecture Notes in
Computer Science, vol. 1109, Springer-Verlag, pp. 104-113.

[2] Werner Schindler, “A Timing Attack against RSA with the Chinese
Remainder Theorem,” CHES 2000, pp.109-124, 2000.

[3] Werner Schindler, “Optimized Timing Attacks against Public Key
Cryptosystems,” Statistics and Decisions, 20:191-210, 2002.

[4] David Brumley and Dan Boneh, “Remote Timing Attacks are Practical,”
Proceedings of the 12th USENIX Security Symposium, pp.1-14, August
2003.

[5] C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Advances
in Cryptology - CRYPTO ’99, vol. 1666 of Lecture Notes in Computer
Science, pp.388-397, Springer-Verlag, 1999.

[6] J.-S. Coron and L. Goubin, “On Boolean and arithmetic masking against
differential power analysis,” Cryptographic Hardware and Embedded
Systems (CHES 2000), vol. 1965 of Lecture Notes in Computer Science,
pp. 231-237, Springer-Verlag, 2000.

[7] J. Waddle and D. Wagner, “Towards efficient second order power
analysis,” Cryptographic Hardware and Embedded Systems (CHES
2004), vol. 3156 of Lecture Notes in Computer Science, pp. 1-15,
Springer-Verlag, 2004.

[8] K. Gandolfi,C.Mourte, F. Olivier, “Electromagnetic Analysis: Concrete
Results,” CHES 2001, LNCS 2162, pp.251-261, 2001.

[9] J.J. Quisquater, D. Samyde, “Electromagnetic analysis (EMA):
measures and countermeasures for smart cards,” E-smart 2001, LNCS
2140, pp.200–210, 2001.

[10] M. Kuhn, “Optical Time-Domain Eavesdropping Risks of CRT
Displays,” Proc of the 2002 Symposium on Security and Privacy, pp.3-
18,2002.

[11] A. Shamir, E.Tramer, “Acoustic cryptanalysis: on nosy people and noisy
machines,” Eurocrypt 2004 rump session, 2004.

[12] D. A. Osvik, A. Shamir and E. Tromer, “Cache attacks and
Countermeasures: the Case of AES,” Cryptology ePrint Archive, Report
2005/271, 2005.

[13] D. J. Bernstein, “Cache-timing Attacks on AES”, http://cr.yp.to/antiforg
ery/cachetiming20050414.pdf, 2005.

[14] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a high resolution, low
noise, L3 cache side-channel attack,” USENIX Security, San Diego,
CA, US, Aug 2014, pp.719–732.

[15] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” IEEE Symposium on Security and
Privacy (S&P), May 2015, pp. 605–622.

[16] Aciiçmez, O., Gueron, S., and Seifert, J.-P., “New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures,”
11th IMA International Conference on Cryptography and Coding (Dec.
2007), S. D. Galbraith, Ed., vol. 4887 of Lecture Notes in Computer
Science, Springer, Heidelberg, pp. 185–203.

[17] Aciiçmez, O., Koç, Çetin Kaya., and Seifert, J.-P., “Predicting secret
keys via branch prediction,” Topics in Cryptology CT-RSA 2007 (Feb.
2007), M. Abe, Ed., vol. 4377 of Lecture Notes in Computer Science,
Springer, Heidelberg, pp. 225–242.

[18] Evtyushkin, D., Ponomarev, D. V., and Abughazaleh, N. B., “Jump over
ASLR: attacking branch predictors to bypass ASLR,” MICRO (2016),
IEEE Computer Society, pp. 1–13.

[19] Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., and Peinado, M.,
“Inferring fine-grained control flow inside SGX enclaves with branch
shadowing,” 26th USENIX Security Symposium, USENIX Security
2017, pp. 557–574.

[20] Horn, J., “Reading privileged memory with a side-channel,”
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html, 2018.

[21] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y., “Spectre
attacks: Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[22] Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., and
Mangard, S., “KASLR is dead: long live KASLR,” International
Symposium on Engineering Secure Software and Systems, Springer, pp.
161–176, 2017

[23] Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, A.,
Sethumadhavan, S., Stolfo, S., “On the feasibility of online malware
detection with performance counters,” Proceedings of the International
Symposium on Computer Architecture (ISCA), 2013.

[24] Duda R, Hart P, Stork D., “Pattern classification. 2nd ed,” New York:
Wiley/Interscience; 2000.

[25] J. Frank, “Machine learning and intrusion detection: Current and future
directions,” in Proc. National 17th Computer Security Conference,
Washington,D.C., October 1994.

[26] Cristianini N, Shawe-Taylor J., “An introduction to support vector
machines and other kernel-based learning methods,” Cambridge:
Cambridge University Press; 2000.

[27] Schölkopf B, Smola A., “Learning with kernels: support vector
machines, regularization, optimization, and beyond,” Cambridge, MA:
MIT Press; 2002.

[28] Bishop C., “Neural networks for pattern recognition,” Oxford: Oxford
University Press; 1995.

[29] Hastie T, Tibshirani R, Friedman J., “The elements of statistical
learning: data mining, inference, and prediction,” New York: Springer;
2001.

[30] Sharma, D.K., Sharma, H.P. & Hota, H.S., “Future Value Prediction of
US Stock Market Using ARIMA and RBFN,” International Research
Journal of Finance and Economics (IRJFE), 2015, 134, 136-145.

[31] Handa, R., Hota, H.S., & Tandan, S.R., “Stock Market Prediction with
various technical indicators using Neural Network techniques,”
International Journal for research in Applied Science and Engineering
Technology (IJRASET), 2015, 3(4) , 604-608.

[32] E. Keogh, S. Chu, D. Hart, M. Pazzani, “Segmenting time series: A
survey and novel approach,” Data Mining Time Series Databases, vol.
57, pp. 1-22, 2004.

[33] Vafaeipour, M., Rahbari, O., Rosen, M.A., Fazelpour, F. & Ansarirad,
P., “Application of sliding window technique for prediction of wind
velocity time series,” International journal of Energy and environmental
engeering (springer), 5,105-111, 2014.

[34] Horn, J., “Speculative execution, variant 4: speculative store bypass”,
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, May
2018.

[35] Kim, Y.R., Daly, J., Kim, C., Fallin, J., Lee, H., Lee, D., Wilkerson, C.,
Lai, K., Mutlu, O, “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA),
Minneapolis, MN, USA, 14–18 June 2014. �

[36] Seaborn M. and Dullien T., “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” in Black Hat Briefings, 2015.

[37] Bosman, E., Razavi, K., Bos, H., Giuffrida, C., “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” IEEE
Symposium on Security and Privacy (SP), 2016.  

[38] Gruss, D., Maurice, C., Mangard, S., “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), 2016.  

[39] Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida, C., Bos, H.,
“Flip Feng Shui: Hammering a Needle in the Software Stack,” in the
Proceedings of the 25th USENIX Security Symposium, 2016.  

[40] Xiao, Y., Zhang, X., Zhang, Y., Teodorescu, M.R., “OneBitFlips,
OneCloudFlops: Cross-VM Row Hammer Attacks and Privilege
Escalation,” in the Proceedings of the 25th USENIX Security
Symposium (SEC), 2016.  

[41] Van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice,
C., Vigna, G., Bos, H., Razavi, K., Giuffrida, C.  , “Drammer:
Deterministic Rowhammer Attacks on Mobile Platforms,” ACM
SIGSAC Conference on Computer and Communications Security
(CCS), 2016.  

[42] Tatar, A., Krishnan, R., Athanasopoulos, E., Giuffrida, C., Bos, H., And
Razavi, K., “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” in the Proceedings of the 2018 USENIX Annual Technical
Conference (USENIX ATC ’18).

[43] Jang, Y., Lee, J., Lee, S., And Kim, T., “SGX-Bomb: Locking Down the
Processor via Rowhammer Attack,” in Proceedings of the 2nd
Workshop on System Software for Trusted Execution (SysTEX), 2017.

[44] Kasamsetty, K., “DRAM scaling challenges and solutions in LPDDR4
context,” MemCon 2014.

[45] Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y.,
Austin, T., “ANVIL: Software-Based Protection Against Next
Generation Rowhammer Attacks,” in the Proceedings of the Twenty-
First International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2016.

[46] Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A.R., “Can't
touch this: Software-only mitigation against rowhammer attacks
targeting kernel memory,” 26th USENIX Security Symposium 2017.

[47] Qiao, R., Seaborn, M., “A new approach for rowhammer attacks,” 2016
IEEE International Symposium on Hardware Oriented Security and  
Trust (HOST). pp.161–166 , May 2016.  

[48] Khaled N. Khasawneh, Nael Abu-Ghazaleh, Dmitry Ponomarev, Lei
Yu, “RHMD: evasion-resilient hardware malware detectors,”
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, October 14-18, 2017.

[49] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, D. Ponomarev,
“Malware-aware processors: A framework for efficient online malware
detection,” Proc. IEEE 21st Int. Symp. HPCA, pp. 651-661, Feb. 2015.

