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Abstract—Over the past decades, the major objectives of 
computer design have been to improve performance and to 
reduce cost, energy consumption, and size, while security has 
remained a secondary concern. Meanwhile, malicious attacks 
have rapidly grown as the number of Internet-connected devices, 
ranging from personal smart embedded systems to large cloud 
servers, have been increasing. Traditional antivirus software 
cannot keep up with the increasing incidence of these attacks, 
especially for exploits targeting hardware design vulnerabilities.  
For example, as DRAM process technology scales down, it 
becomes easier for DRAM cells to electrically interact with each 
other. For instance, in Rowhammer attacks, it is possible to 
corrupt data in nearby rows by reading the same row in DRAM. 
As Rowhammer exploits a computer hardware weakness, no 
software patch can completely fix the problem. Similarly, there is 
no efficient software mitigation to the recently reported attack 
Spectre. The attack exploits microarchitectural design 
vulnerabilities to leak protected data through side channels.  In 
general, completely fixing hardware-level vulnerabilities would 
require a redesign of the hardware which cannot be backported.  
In this paper, we demonstrate that by monitoring deviations in 
microarchitectural events such as cache misses, branch 
mispredictions from existing CPU performance counters, 
hardware-level attacks such as Rowhammer and Spectre can be 
efficiently detected during runtime with promising accuracy and 
reasonable performance overhead using various machine 
learning classifiers. 

Keywords—security, machine learning, malware detection, 
microarchitectural features 

I. INTRODUCTION 

Traditional antivirus (AV) software is normally used to 
protect computer systems from cyber attacks targeting software 
vulnerabilities above the operating system (OS) level. 
However, more recent attacks targeting computer architecture 
and hardware design flaws cannot be detected by such antivirus 
tools since the attacks are not based in the software application 
or the OS and do not leave traces in system log files. 
Therefore, such attacks are serious security risk for all systems 
using these flawed hardware designs. 

Common computer hardware components such as the 
memory may behave unexpectedly under specific conditions 
and can be exploited by malicious attackers. For example, the 
Rowhammer [35] vulnerability is a hardware design defect in 
DRAM chips that allows attackers to flip bits in memory at 
unauthorized locations by repeatedly accessing physically 
adjacent rows within a DRAM refresh interval rapidly. 

Rowhammer can be exploited to mount attacks and bypass 
existing software security and trust features including memory 
isolations. Increasingly advanced Rowhammer attacks could 
compromise various platforms including standalone personal 
computers [36], web browsers [37, 38], virtual machines in 
clouds [39, 40], and mobile devices [41]. Such attacks can be 
used to escalate privileges [36, 37, 41], break cryptographic 
keys [39], compromise remote systems over the network [42], 
or lock down a processor by denial-of-service attack [43].  

Further, information can be leaked to unprivileged parties 
by analyzing the differences in unintended side channels. 
These unintentional side channels can use timing information 
[1-4], power consumption [5-7], electromagnetic radiation 
[8,9], light emission [10], or even sound [11]. In 
microarchitectural side-channel attacks, malicious processes 
attempt to interfere with the victim through shared 
microarchitectural resources.  The interference pattern such as 
cache timing [12-15], branch prediction history [16,17], or 
Branch Target Buffers [18,19] can then be exploited to infer 
secrets.  

Speculative execution reduces the processor idle time to 
improve performance by executing predicted path prematurely 
according to the execution history before the actual path is 
known definitively. Spectre attacks [20, 21] exploit speculative 
execution by tricking the processor into taking the wrong 
branch, instructions associated with the malicious branch 
execution path can be carefully crafted to leak the victim’s 
memory or register contents through microarchitectural side 
channels. Kocher et al. [21] demonstrated the use of cache side 
channels for their attack implementation, although there could 
be other side channels.  Spectre attacks works well on various 
Intel, AMD and ARM processors. Furthermore, the KAISER 
software patch [22] to mitigate Meltdown attacks cannot 
defend against Spectre attacks. To completely solve the 
problem, changes to the processor design and instruction set 
architectures (ISAs) are required.  

Unlike antivirus software which scans suspicious 
instructions in binaries and system logs files in a static fashion, 
recent research has shown that malicious software and attacks 
can be detected in modern processors through the use of 
dynamic microarchitectural execution patterns gleaned from 
widely available hardware performance counters (HPC). 
Demme et al. [23] adopted offline analysis based on various 
supervised machining learning algorithms to show that 
malware classification is possible using a complete trace of the 
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program behavior after execution.  Compared with higher-level 
features in the OS and application, these microarchitectural 
features have less complexity and are easier to collect with low 
overhead.  These features include events such as cache miss 
rate, branch misprediction rate, data reference patterns etc and 
could be highly effective in detecting attacks targeting 
hardware vulnerabilities as such attacks happen below the OS 
level.   

In this paper, we demonstrate the use of low-level 
microarchitectural features to detect Rowhammer and Spectre 
during the attacks. As opposed to traditional static signature-
based AV, this hardware performance counter based detection 
approach monitors the dynamic behavior of the system in the 
hardware level with low overhead and allows the system 
administrator to, effectively and in real-time, catch malicious 
code execution especially attacks exploiting hardware 
vulnerabilities such as Rowhammer and Spectre. To this end, 
we collected microarchitectural traces from a Linux system 
based on an Intel x86 processor in a “clean” environment and 
in a system under attack, respectively. In particular, because of 
the nature of Rowhammer and Spectre attacks which may 
potentially alter the branch prediction or cache miss behaviors 
of the victim’s processor, we monitor those related features 
from performance counters and then use machine learning 
methods to train and test classifiers to detect the attack. Unlike 
previous offline detection method using the entire program 
traces after attack [23], we propose to use the Weighted 
Moving Average (WMA) of the time series data from the 
output of the classifier to make real-time decisions 
successively over sliding windows of program execution.  The 
online detector can catch 100% of both attacks with 0% false 
positives for Rowhammer and 0.77% false positives for Spectre 
in the best-case scenario. 

The rest of the paper is organized as follows. We first 
introduce Rowhammer and Spectre attacks in section II. 
Understanding how the attacks work helps us to select the 
hardware performance counter features for effective detection. 
In section III, we compare different machine learning 
algorithms to train the base classifier and introduce the metrics 
to evaluate the performance of classifier. Then an online 
detection approach that uses the output from the trained base 
classifier is proposed. In section IV, detailed experimental 
setup to collect the selected microarchitectural events in clean 
environment and in system under attack is described. The 
detection performance results for Rowhammer and Spectre 
attacks are presented in section V. Finally, we conclude in 
section VI. 

II. BACKGROUND 

Exploits targeting hardware-based vulnerabilities constitute 
serious risks for wide range of computer systems as they can 
bypass most of the existing defense mechanisms. For example, 
with increased density and reduced reliability of DRAM, 
Rowhammer attacks allow data corruption in memory by 
repeatedly accessing the same row in DRAM. Spectre exploits 
critical modern processor design flaws caused by speculative 
execution to allow attackers to steal sensitive information from 
users’ devices through microarchitectural side channels. In this 
section, we discuss in detail the above-mentioned attacks. 

A. Rowhammer 

To increase capacity and reduce energy consumption, 
DRAM chips have to be physically denser. However, smaller 
cells can only hold a lower charge which reduces the noise 
margin. Higher proximity of cells also introduces 
electromagnetic coupling effects. Therefore, every time a 
DRAM row is read from a memory bank, the memory cells in 
adjacent rows leak a small amount of charge. If this happens 
frequently within one refresh cycle, the affected cells can 
potentially leak enough charge to cause the stored bit value to 
flip, a phenomenon known as Rowhammer [35].  

In singled-sided Rowhammer attacks [35], only one side of 
the neighboring row to the victim row is rapidly accessed. A 
newer version, namely double-sided Rowhammer [36], 
hammers both sides of the neighboring rows to increase the 
possibility of bit flip. To successfully trigger bit flip from CPU, 
memory accesses have to bypass CPU caches and reach the 
target row in DRAM as frequently as possible. This could 
generate abnormally large number of cache misses during a 
short time period. To avoid caches, attackers can use cache 
flushing instructions [36, 39, 40], eviction buffers [37, 38, 45], 
and non-temporal store instructions [47]. 

B. Countermeasures to Rowhammer 

Due to the possible catastrophic damages caused by 
Rowhammer attacks, solutions to protect users from such 
attacks are urgently needed. Hardware solutions to DRAM 
scaling challenges such as error correcting code or target row 
refresh [44] may be able to protect future memories from 
Rowhammer attacks, but cannot be deployed in existing 
hardware. Software-based protections [36, 37, 45, 46], which 
can be implemented on existing systems, cannot defend against 
all types of advanced Rowhammer attacks. 

Previous research [45] has shown the feasibility of using 
hardware performance counters to monitor the last-level cache 
miss rate and compared it with a fixed threshold to detect 
Rowhammer attacks. To reduce the number of false positives, 
we proposed to train the base classifier with models of 
different complexity and use the Weighted Moving Average 
(WMA) from the output of the base classifier over a sliding 
window during program execution. In this paper, we take 
Rowhammer as an example to demonstrate the effectiveness of 
microarchitectural features to detect attacks exploiting 
hardware vulnerabilities and to build the foundation for future 
works on more advanced Rowhammer and other attacks.   

C. Description of Spectre 

void victim_function (size_t x) { 
if (x < array1_size) { 

temp &= array2[array1[x] * 512]; 
}} 

Example 1: Conditional Branch Example 

As reported in [20, 21], Spectre has two variants: bounds 
check bypass and branch target injection. The first variant 
exploits conditional branch mispredictions. For example, the 
victim function in Example 1 receives an integer x from an 
untrusted source. The function does a bound check on x to 
prevent the process from reading unauthorized memory outside 



array1 to ensure security. However, speculative execution can 
lead to out-of-bounds memory reads. Suppose the attacker 
makes several calls to victim_function() to train the branch 
predictor to expect taking the branch by feeding it with valid 
values of x, then calls the same function with an out-of-bound x 
that points to a secret byte in the victim’s memory. 

The attack usually consists of three phases. In general, it 
starts with the setup phase where the attacker prepares the side 
channel to leak the victim’s sensitive information, and other 
necessary pre-requisites such as to mis-train the branch 
predictor to take erroneous execution path, and to load target 
memory location into registers, etc.  In the following phase, the 
attacker diverts confidential information from the victim’s 
context to a microarchitectural side channel by exploiting 
different hardware vulnerabilities such as out-of-order 
execution or speculative execution. Then during the final 
phase, the attacker gains access to the secret data through the 
prepared side channel in the previous stages. 

In the setup phase of Spectre attacks, the adversary 
prepares for three conditions. Firstly, a malicious out-of-bound 
value of x is chosen such that array1[x] points to a secret byte 
s in the victim’s memory. The cache is then configured so that 
array1_size and array2 are not in the cache, but the secret s in 
the cache. Lastly, the branch predictor is trained to expect the 
condition x < array1_size to be true.  

During the second phase, the victim function starts by 
comparing the malicious value of x with array1_size. Because 
array1_size is not cached, the mis-trained branch predictor 
assumes the condition to be true while waiting for the value of 
array1_size to be loaded from memory. The processor 
speculatively executes the instruction inside the if condition. 
Reading secret data s from array1[x] is fast because it is a 
cache hit. Then s is used to compute the address of 
array2[s*512] and the program quickly starts to read data from 
this address in memory. While waiting for the read to return, 
the value of array1_size has finally arrived. The processor then 
realizes the branch predictor selected the wrong execution path 
which compels it to roll back the register states. However, the 
cache state of array2 has already been affected by the memory 
read from the specific address related to the secret s and is not 
reversed.  

In the final phase of the attack, using cache side channel 
attacks such as the method proposed in [13] can identify which 
cache line in array2 was loaded by measuring the timing 
differences. Such information can then be used to infer the 
value of the secret byte.  

The second variant of Spectre targets the indirect jump 
target prediction. It allows the program to jump to an address 
contained in a register, in a memory location, or in the stack. 
Like the first variant, if the target address is not in the cache, 
the attacker can train the branch predictor to jump to an 
erroneous location. 

The two variants discussed above rely on the changes in the 
state of the cache caused by the speculative execution. There 
could be potential other variants of the attack. In general, any 
observable changes from speculatively executed code may 
cause the leaking of confidential information. 

D. Mitigating Spectre 

Mitigating the effects of Spectre is difficult because there 
are many variations of possible attacks. To prevent conditional 
branch vulnerability, speculative execution needs to be stopped 
on all potentially sensitive execution paths. However, insertion 
of such blocking mechanisms in all conditional branches and 
their destinations by compiler would severely degrade 
performance. Software mitigation to indirect branch 
vulnerability is even more challenging as there is no 
architecturally-defined method to block it and indirect jumps 
vary across different processors. 

E. Detecting Spectre 

Besides patching the systems, it is also important to 
proactively detect malicious attacks and stop them as early as 
possible. To our knowledge, no existing research shows the 
effectiveness of detecting Spectre using hardware performance 
counters. Despite the fact that many different variants of 
Spectre attacks exist, they all entail training the branch 
predictor to take the wrong execution path, and then leak the 
confidential information through an observable 
microarchitectural side channel.  

For the case of conditional branch example in Example 1, 
the attacker calls the victim function multiple times so as to 
cause the condition to be true.  In turn, this means that the 
branch misprediction rate will be reduced during the attack.  In 
the final step of the attack, the secret data are leaked through 
cache side channels. The attacker needs to constantly flush the 
cache to make sure array2 and array1_size are not cached, 
which means that the cache miss rate will likely rise.  
Consequently, monitoring the deviation of these two 
microarchitectural behaviors is one possible hint as to how to 
detect the attack.  

To further validate our hypothesis, we conducted 
experimental attacks based on the proof of concept code in [21] 
and periodically collected microarchitectural traces from 
hardware performance counters.  An analysis of these results is 
presented in subsequent sections. The proposed detection 
method can be further extended to other variations of Spectre 
attacks by monitoring additional microarchitectural features 
depending on the side channels likely to be exploited. 

Attackers may attempt to evade detection by reverse-
engineering the detector and mimicking the behavior of normal 
programs. Several researchers (including Khasawneh  et al. 
[48]) have developed this kind of evasive malware by adding 
instructions into the control flow graph of the malware without 
changing the execution state of the program. However, for 
Spectre attacks to avoid detection, attackers must also ensure 
that cache and branch predictor states are not affected, which 
we believe would be extremely difficult to effectively design 
for several reasons.  First the attack itself is very time 
consuming: for each bit the attacker must perform multiple 
training rounds on the branch predictor followed by cache side 
channel attacks. Adding additional delays may make the attack 
extremely slow. Second, adding delays may make the cache 
side channel ineffective as other running programs may change 
the cache status during the delay. Third, as the attack is 
hardware specific, it is very difficult to design evasive attacks 
that work for different machines. In addition, if an attacker 



could still hide a Spectre attack from detection without slowing 
it down, we could adopt the evasion-resilient detection method 
proposed in [48] and randomize the performance counter data 
collection periods to defend such evasion. 

III. PROPOSED ONLINE DETECTION APPROACH 

Our proposed detection approach first collects 
microarchitectural features from performance counters in every 
sampling period.  For Rowhammer and the variant of Spectre 
attacks discussed in the previous section using conditional 
branches, we choose to monitor 4 events related to cache 
access and branch prediction behaviors, namely cache 
references, cache misses, branch instructions retired and branch 
mispredictions. The data are collected in a “clean” environment 
where the computer runs typical desktop applications like web 
browser, video player, and text editors, as well as in an 
environment under attack (the same desktop applications are 
run in the two cases). The data are then labeled to train the 
machine learning classifier offline. At runtime, the trained 
classifier classifies the input data at each time interval and the 
output time series is fed into the online detection mechanism to 
decide whether the system is under attack. The online detector 
is implemented as a software thread and continuously running 
on a separate core to collect performance counter data and 
classify malicious attacks. This section describes the machine 
learning algorithms we used to train the classifier and our 
proposed online detection approach in details. 

A. Machine Learning Classifiers 

Machine learning algorithms can be used to train classifiers 
that determine the class y to which a given data set x belongs. 
In most cases, the relationship between x and y is described by 
a probability distribution P(x,y). The optimal class membership 
decision is to choose the class label y such that the posterior 
distribution P(y|x) is maximized [24]. We use supervised 
learning [25] to train the attack detector with a set of pre-
labeled examples. Supervised learning entails a training phase 
and a testing phase. 

For each type of attacks, we collect data in 10 independent 
runs and use the same number (1,200) of samples from both 
classes to avoid any bias. Then, we randomly divide the 
collected data into training (80%) and test (20%) data, then 
separate the training data into training (80%) and validation 
(20%) data. 

We choose the following three different machine learning 
algorithms to build the classifier with increasing complexity of 
the model (many other machine learning algorithms are 
available, but for demonstration purposes, we chose 3 
commonly used ones with different complexities according to 
the data size): 

1) Logistic Regression (LR): LR is a simple linear 
classification algorithm. It attemps to separate multi-
dimensional input data points by hyperplanes where points on 
one side of the plane belong to the “normal” class and points 
on the other side belong to the “malicious” class. In general, 
the programs are not linearly separable, so LR gives a 
probability between 0 and 1 for the likelihood of a program 
trace being malicious. This probability is then converted into a 

binary decision by comparing it with a pre-defined threshold. 
Compared with other non-linear models, LR has fewer 
parameters and requires less time to train.   

2) Support Vector Machine (SVM): SVM finds the 
optimal separating boundaries between data sets by modeling 
and solving the classification problem as a constrained 
quadratic optimization problem [26, 27]. The degrees of 
nonlinearity and flexiblity can be adjusted by using different 
kernel functions such as polynomial kernel, radial basis 
function kernel (RBF), etc. The classification result is 
dichotomous where the membership function could be either 0 
or 1 without probability distribution. SVM has received 
considerable research interest over the past years because its 
performance is comparable with other non-linear models for 
many classification problems and it is less complex than 
artifical neural networks.   

3) Artificial Neural Networks (ANN): ANNs consist in 
networks of perceptrons (Multilayer Perceptron - MLP) that 
approximate a classification function for the training data. 
ANNs usually contain an input layer, an output layer, and 
multiple hidden layers of perceptrons in between. It is a 
popular and promising machine learning technique due to its 
capability of mapping highly nonlinear data samples unlike 
any other statistical regression models. When there is no 
hidden layer, the network is actually identical to the LR model 
if the logistic activation function is used [28, 29]. By 
introducing nonlinear hidden neurons to the network, the 
output of the network can become a nonlinear function of the 
inputs. In classification problems, this can model the problem 
of nonlinear decision boundaries. Researchers have developed 
many models based on Back Propagation Networks (BPN) 
and Radial Basis Function Networks (RBFN) for highly 
nonlinear time series predictions [30, 31]. In general, ANN is 
more flexible than LR to model more complex data. However, 
it requires much longer time and more data to train the model. 

B. Online Attack Detection 

We use similar sliding-window based online classification 
methods as proposed in [49] to detect malicious behaviors at 
runtime. To this end, we collect microarchitectural features 
periodically (every 100 ms). The multidimensional data are 
then feed to a machine learning classifier to make decisions as 
to whether malicious code is being executed or not. The 
problem of detecting malicious attacks in real time is to make 
decisions according to the binary time series generated by the 
base classifier.  

 

Fig. 1. Example of sliding window. 



To smooth the fluctuated time series data, a Weighted 
Moving Average (WMA) is used to filter out noise for better 
decision making by assigning a weight factor to each element 
in the time series. More recent data are assigned with higher 
weights. Then we segment the data using a sliding window [32, 
33] to calculate the average of consecutive decisions within the 
current window. If the average is above a certain threshold, we 
conclude that an attack (malicious code) is in progress. Fig. 1 
illustrates an example of a sliding window process with a 
window size of 5. Each numbered segment corresponds to the 
classification result of each sampling period. The initial 
window contains the first 5 decisions. The data within this 
window are used to determine the final classification result for 
the current time. The detection runs continuously for the next 
period where the window slides to the right by one segment to 
cover data from segment 2 to 6, and it moves on to the next 
window accordingly.  

In our experiments, we choose the window size to be 10 
and sampling period of performance counters data collection to 
be 100 ms, which means our detector makes decision on 
whether the system is under attack every second. While 
window size and sampling period could affect detection 
accuracy and overall system performance overhead for 
different hardware systems, we selected the above numbers so 
as to yield satisfiable detection accuracy without a major 
slowdown of the system. In future work, we plan to use a 
variety of windows sizes and sampling periods to improve the 
resilience of our detector and keep the performance overhead 
minimum.  

C. Evaluation of Detection Performance 

A key criterion to evaluate the detection performance is the 
accuracy of the model used to make decisions on previously 
unseen data. To characterize accuracy, we use metrics such as 
False Positives (FP) which is the percentage of misclassified 
malicious instances, and False Negatives (FN) which is the 
percentage of misclassified normal instances. A detection 
approach with good performance is expected to minimize both. 

To visualize the tradeoff between percentage of correctly 
identified malicious instances and the percentage of normal 
instances misclassified, we use Receiver Operating 
Characteristic (ROC) graphs plotting True Positives (TP = 
100% - FN) against FP. In addition, to compare the 
performance of different models, we compute and compare the 
area under the ROC curve for each model. The Area Under 
Curve (AUC) score, also known as the c-index, provides a 
quantitative metric of how well an attack detection approach 
can distinguish between malicious and normal execution with a 
higher AUC value for better performance. 

IV. EXPERIMENTAL SETUP 

To examine whether performance counter data can be used 
to effectively detect attacks targeting hardware design 
vulnerabilities, we take Rowhammer and Spectre attacks as 
examples and collect events which have the potential to be 
affected by the attacks (this includes cache references, cache 
misses, branch instructions retired and branch mispredictions 
from running the attacks on top of normal programs and 
running typical benign applications alone respectively). The 

results are then analyzed and preprocessed before being used to 
train different classifiers to detect malicious behavior. In this 
section, we describe the details of the data collection 
mechanism and the system settings under attack and in normal 
conditions. In this paper, we demonstrate the proposed online 
detector under a standalone personal computer environment, 
but our work could easily be extended to server environment in 
the future.   

A. Data Collection Mechanism 

We run the attack on a typical personal laptop with Debian 
Linux 4.8.5 OS on Intel® Core™ i3-3217U 1.8 GHz processor 
with 3MB cache and 4GB of DDR3 memory from Micron. The 
Intel processor contains a model-specific performance counter 
monitor (PCM) and can be configured to count four different 
hardware events at the same time. According to the discussion 
on the nature of Rowhammer and Spectre attacks in Section II, 
we choose the following available events for our system: 

• Last-level cache reference event (LLC references) 

• Last-level cache misses event (LLC misses) 

• Branch instruction retired event (branches) 

• Branch mispredict retired event (branch mispredictions) 

We use the standard profiling infrastructure of Linux, perf 
tools, to obtain system-wide performance counter data. We run 
perf every 100 ms to record the required data without 
excessively degrading the performance. 

B. Test Environment Setup 

In a clean environment, we sought to create realistic 
scenarios by randomly browsing popular websites (according 
to Wikipedia in FireFox) in different orders and by streaming 
videos from browser plug-ins. In addition, we also ran text 
editors to read and edit files.  For data collection when the 
system is under malicious attack, we launched malicious 
attacks on top of normal running applications. To demonstrate 
the effectiveness of detecting attacks exploiting hardware 
vulnerabilities, we chose the double-sided Rowhammer attack 
and the Spectre proof of concept attack and ran them 
independently.  The system status is reset after each run to 
ensure the measurements are independent across different clean 
and exploit runs. We collect overall performance counter data 
across the system rather than for individual processes.  This is 
to make the classification problem closer to real world 
conditions, albeit more difficult. 

V. RESULTS 

In the experiment described in section III, we collected data 
from four performance counters at the same time periodically 
in 10 separate runs.  Each run produced 1,200 malicious and 
normal samples respectively.  In this section, we first analyzed 
the collected raw data to assess whether it is feasible to 
differentiate measurements in a clean environment from those 
under attack by visualizing the distribution of data. Then, we 
used different machine learning algorithms to train the 
classifier and build the real-time attack detector using the 
sliding window approach discussed previously. 



A. Data Distribution Analysis 

Our data collection mechanism produces 4-dimensional 
time series data. Each sample contains event counts for branch 
mispredictions, LLC misses, branches, and LLC references 
during the sampling period. We also calculate the branch miss 
rate (1) and LLC miss rate (2) for each interval as: 

 branch miss rate = branch mispredictions / branches (1) 

 LLC miss rate = LLC misses / LLC references (2) 

We use boxplot to visualize the range and variance of the 
measured data for each individual microarchitectural feature.  
Fig. 2 and Fig. 3 give a direct indication of the feasibility to 
detect malicious attacks using one particular feature.  

For Rowhammer attacks as shown in Fig. 2, the LLC 
misses, LLC references and LLC miss rate are all concentrated 
in regions higher during the attack than during normal 
operations. The reason is that in order to successfully flip bits 
in the memory, the attacker has to bypass the cache and access 
the neighboring rows next to the victim row in DRAM in rapid 
sequence. This results in more cache misses within a short time 
of period. Unlike previous work which only considers the 
impact on cache behavior, we also notice that the number of 
branch miss rate is greatly reduced. This is because the exploit 
keeps looping through the same instructions to repeatedly 
access the same rows in memory. This extra feature could help 
to reduce the error rate in the detection of Rowhammer.    

       Branch Mispredictions LLC Misses 

  

Branches LLC References 

  

Branch Miss Rate (%) LLC Miss Rate (%) 

  

Fig. 2. Distribution of microarchitectual features from performance counters 
for Rowhammer. 

For the Spectre attacks shown in Fig. 3, we observe an 
increased number of branches and branch mispredictions 
during the attacks. In contrast, the branch miss rate is 

decreased. This is because the attacker tries to train the branch 
predictor by calling the conditional branch many times with 
different input values that make the condition true. For the 
LLC, the number of references and misses are both increased 
with the miss rate concentrated on the higher percentage region 
due to cache side channel attacks. The experimental results 
validate our hypothesis proposed in section II. 

       Branch Mispredictions LLC Misses 

 

Branches LLC References 

 

Branch Miss Rate (%) LLC Miss Rate (%) 

  

Fig. 3. Distribution of microarchitectual features from performance counters 
for Spectre. 

LLC References, LLC Misses 

 

Fig. 4. Distribution of branch miss rate and LLC miss rate features for 
Rowhammer. 

In addition, we also analyze the feasibility of distinguishing 
the collected performance counter data using more than one 



feature by plotting the sample points in 2D and 3D graphs with 
each dimension corresponding to one feature. 

LLC References, LLC Misses, Branch Miss Rate (%) 

 

Fig. 5. Distribution of LLC references, LLC misses and branch miss rate 
features for Rowhammer. 

Fig. 4 shows the distribution of normal and malicious 
sample points for Rowhammer attacks using only cache related 
features including LLC references and LLC misses. Fig. 5 uses 
LLC references, LLC misses and branch miss rate. We can 
observe the data points of two different classes distribute in 
two different regions and the boundaries between the two are 
obvious in both plots. Therefore, we believe it is feasible to use 
the chosen microarchitectural features to detect Rowhammer 
attacks. In particular, with an additional branch feature, the 
boundary is clearer in Fig. 5 which can lead to better 
classification performance. 

Branch Miss Rate, LLC Miss Rate 

 

Fig. 6. Distribution of branch miss rate and LLC miss rate features for 
Spectre. 

Similarly, Fig. 6 shows the distribution of normal and 
malicious sample points for Spectre attacks using branch miss 
rate and LLC miss rate parameters. Fig. 7 uses LLC references, 

LLC misses and branch miss rate. We can also see that there 
are clear boundaries between the two classes in both figures. 
Therefore, we believe we can detect Spectre attacks using the 
microarchitectural features we selected. 

LLC References, LLC Misses, Branch Miss Rate (%) 

 

Fig. 7. Distribution of LLC references, LLC misses and branch miss rate 
features for Spectre. 

B. Online Detection Performance  

Depending on the distribution of the collected performance 
counter data, we use different machine learning algorithms of 
different complexity.  As mentioned in section III.A, this is 
used to train the base classifier.  We then smooth the output of 
the base classifier with WMA and finally build the online 
detector based on the sliding window approach described 
earlier. The performance of the detection varies with the 
classifiers used.   

A simple model using Logistic Regression is first built with 
default parameters. To further enhance the detection accuracy, 
different parameters are tuned for the model. If the theoretical 
best accuracy is not reached, we then move on to more 
complex models using Support Vector Machine, then Multi 
Layer Perceptron.  We use randomized search over different 
parameters of different models to find the best combination, 
where each setting is sampled over a distribution of possible 
parameter values. Compared with exhaustive search, it is less 
computationally expensive and gives results that are close to 
the optimal solution. The parameters for different classifiers 
used in our experiments are as follows: 

1) Logistic Regression (LR): 
a) Regularization strength C: Trades off 

misclassificaiton of training examples against simplicity of 
decision boundary. A smaller C gives a smoother boundary for 
stronger regularization,  

b) Regularization parameters L1 and L2: Prevents 
overfitting by imposing a penalty on the coefficients. 

2) Support Vector Machine (SVM):  
a) Gamma parameter: Defines how far the influence of 

a single training sample reaches. 



b) Regularization strength C: Works similarly to the C 
paramenter in LR. 

c) Kernel: Includes linear, radial basis function (RBF), 
or polynomial kernel. 

3) Multi Layer Perceptron (MLP): 
a) Hidden layer sizes: Defines the number of hidden 

layers in the network and number of hidden neurons in each 
layer. 

b) Activation function: Actives the neurons in the 
hidden layers, can be logistic, rectified linear unit function or 
hyperbolic tangent function. 

c) Regularization parameter alpha: Avoids overfitting. 
To choose the most suitable classifier, in real world 

applications such those found in embedded systems, we need 
to consider constraints of time, power consumption, memory 
resources, etc.  In addition, we need to know how much the 
system is allowed to tolerate in terms of false positives and 
false negatives.    

 
Fig. 8. ROC for online detection of Rowhammer using logistic regression.    

To quantitatively evaluate the performance of online 
detection based on different classifiers, we look at the Receiver 
Operating Characteristic (ROC) curves which plots false 
positive rate as the x-axis against true positives as the y-axis as 
shown in Fig. 8, 9, 10. Indeed, ROC curves are typically used 
to show the tradeoff between false positives and true positives. 
If we allow a higher rate of false positives (in other words, 
moving towards the right of the graph), the detector should be 
able to catch more malicious attacks. The dotted diagonal line 
connecting (0,0) and (1,1) represents the performance of a 
classifier that randomly guesses. For a classifier performs 
better than random guess, its ROC will lie above the diagonal. 
We can see that all our trained classifiers have better 
performance than random guess.   

  Fig. 8 shows the ROC curve for online detection 
of Rowhammer attacks using simple Logistic Regression with 
default parameters. We can see the trade-off is minimal in this 
case: as we move from the top left corner of the ROC curve to 

the right along the curve to allow more false positives, the true 
positive rate does not increase much (from 99.77% to 100%). 
To choose the best configuration, we pick the point on the 
curve at the top left corner which gives the lowest sum of false 
negatives and false positives.  For a simple model such as LR, 
we are able to obtain an AUC value of 0.9979 which is 
obviously very close to 1.  

 
Fig. 9. ROC for online detection of Rowhammer using different classifiers.    

 
Fig. 10. ROC for online detection of Spectre using different classifiers.    

Fig. 9 compares the ROC curves for all the trained 
classifiers for Rowhammer attacks in our experiment. We can 
see that they all perform very well with an AUC value above 
0.99. As we were building models with increasing complexity, 
the SVM with polynomial kernel of degree 3 could reach the 
best possible AUC value of 1, which means a 0% error rate. 
Therefore, we conclude that increasing the complexity of 
models based on MLP would not lead to any further 
improvement.   



Similarly, in Fig. 10, we plot the AUC curves for the online 
detectors using different classifiers for Spectre attacks. 
Compared with Rowhammer attacks, the performance counter 
data are spread more randomly as we discovered while training 
and testing the classifiers with increasing complexities. 
Therefore, we built more complex models using MLP with 2 
hidden layers. In general, all the classifiers give fairly good 
results with AUC values above 0.98. Overall, MLP 
outperforms other classifiers with the highest AUC value. 

TABLE I.  PERFORMANCE OF DIFFERENT CLASSIFIERS FOR 
ROWHAMMER 

Classifier AUC  FP (%) FN (%) 
Training 

Time (sec) 

LR 0.9979423868 0 0.23 0.03 

Tuned LR 0.9979423868 0 0.23 0.03 

SVM 0.9979423868 0 0.23 0.05 

SVM with 
Polynomial 
Kernel 

1 0 0 7 

TABLE II.  PERFORMANCE OF DIFFERENT CLASSIFIERS FOR SPECTRE 

Classifier AUC  FP (%) FN (%) 
Training 

Time (sec) 

LR 0.9810939999 3.83 3.40 0.04 

Tuned LR 0.9956850054 1.15 2.43 0.04 

SVM 0.9840326600 0.77 2.43 0.06 

SVM with 
Polynomial 
Kernel 

0.9913142134 0.77 0.97 9.8 

MLP 0.9998512071 0.77 0 95 

We compare the performance of each classifier 
quantitatively using the AUC index and we choose the best 
point on the ROC which gives the minimum FP and FN shown 
in Table I and Table II. For Rowhammer attacks, using SVM 
with a polynomial kernel of degree 3 can already achieve 
perfect results (0% error rate). Our detector achieved better 
detection accuracy than the previous Rowhammer detector 
ANVIL [45] which exhibits 1% false positives. For Spectre 
attacks, the best case using MLP with 2 hidden layers gives 0% 
false negatives with only 0.77% false positives. We also 
observe that more complex models require longer training time 
since there are more parameters. 

VI. CONCLUSIONS 

The impact of malicious attacks targeting hardware 
vulnerabilities can be catastrophic and widespread as they 
usually can bypass traditional software-based security 
defenses. This paper has proposed to detect such attacks by 
monitoring microarchitectural features deviations.  This is done 
by collecting related data from performance counters. We take 
Rowhammer (exploits DRAM disturbance error vulnerability) 
and Spectre (exploits speculative execution and side channel 
vulnerabilities) attacks to demonstrate the feasibility and 
effectiveness to detect such attacks using microarchitectural 
features. The features are collected from hardware performance 
counters normally available in modern processors. An online 
detection method is adopted to detect malicious behaviors 

during the attack at early stage rather than offline detection 
after the damage is done. The experimental results show 
promising detection accuracy with 0% overall error rate for 
Rowhammer attacks using SVM, and only 0.77% false 
positives and 0% false negatives for Spectre attacks using a 
trained multilayer Perceptron classifier. As complete mitigation 
to the Spectre is challenging, it is imperative to dynamically 
detect such attacks. 

There are many variants of Spectre depending on the types 
of hardware design flaws and side channels being exploited. 
New variants are continuously discovered and researchers 
recently identified a new speculative store bypass vulnerability 
[34]. It should be noted however, that all the variants use a side 
channel to infer confidential information in the final attack 
stage. In addition, evasive attacks are difficult to perform 
effectively especially when evasion-resilient detector [48] is 
used. We thus conclude it is possible to detect malicious 
behaviors by monitoring changes in these hardware side 
channels. For Rowhammer attacks, there are also many new 
variants that circumvent recent security defenses for different 
architectures ranging from mobile devices to cloud servers. 
The research we have just presented has shown that the 
proposed approach is particularly effective for Rowhammer 
and Spectre attacks targeting hardware vulnerabilities. Future 
work will examine other variants of Rowhammer and Spectre 
attacks and different attacks which exploit other hardware 
design vulnerabilities in different domains such as CPU, 
memory, GPU, etc and in server environments. To further 
improve the detection performance, we will experiment online 
machining learning algorithms and implement the detector in 
dedicated FPGA. 
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