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A B S T R A C T

This paper proposes a multi-objective mixed-integer linear programming (MILP) model for the optimal phasor
measurement unit (PMU) placement (OPP) problem. A majority of the solutions presented for the OPP problem
focus on minimizing cost while guaranteeing system observability. While this is a good approach to the OPP
problem, the effect of PMU allocation on various energy management system applications should also be con-
sidered. This paper addresses the OPP problem considering PMU installation costs, system observability, and
gross error detection. In order to allocate PMUs considering gross error detection, the Vulnerability Index (VI) is
used to quantify the vulnerability of each element in the system. A weighted goal programming (WGP) fra-
mework, which allows for the optimization of contradictory goals, which is a characteristic of the goals con-
sidered in this paper, is presented. The goals and weights of the framework are user inputs to the program
besides a hard budget restriction. The results of this paper show how the WGP framework allows the priorities of
the decision maker to influence the final PMU allocation presented by the MILP, making this model a valuable
framework for utilities planning to install PMUs on their network.

1. Introduction

It is well known that phasor measurement units (PMUs) have mul-
tiple benefits to offer power systems monitoring and control by fre-
quently providing precise wide-area measurements of both the magni-
tude and phase of voltages and currents [1]. Besides providing more
accurate measurements, PMUs can further increase measurement re-
dundancy on power systems [2]. Ideally, PMUs could be installed at
every bus so that redundancy is maximized and every bus has precise
and synchronous measurements. Unfortunately, this is not a feasible
strategy due to the high cost of PMUs. This cost is composed of pro-
curement of the devices, installation, ongoing maintenance, accessories
such as software and additional measurements, and the development of
a wide-area measurement system (WAMS) [3]. Because of this, a major
topic of recent research has been developing strategies to use the
minimal amount of PMUs on a system while maximizing the positive
impact on the monitoring and control of the power system. This re-
search topic is commonly known as the optimal PMU placement (OPP)
problem and begs the question of what qualifies as a positive impact.

The first and still popular idea to solve the OPP was to allocate
PMUs such that the system can be observable. This would allow PMU

measurements to be used in state estimation (SE) either in conjunction
with SCADA measurements or on their own [4]. This idea remains a
crucial one for PMU allocation due to the interest in the use of linear
state estimators, as shown in a survey conducted by the North American
Synchrophasor Initiative (NASPI) [5] as well as in a report by the North
American Electric Reliabilty Corporation (NERC) [6]. In order to opti-
mize the allocation of PMUs with observability in mind, a variety of
optimization techniques were studied. These include genetic algorithm,
dual search methods, greedy algorithm, and linear integer program-
ming, among others [7–10]. Manousakis et al. [11] reviews further
heuristic methods used to solve the OPP problem. More recently, more
realistic cost scenarios are considered with a genetic algorithm to focus
on cost minimization specifically [12]. The NERC report [6] points out
that there are two strategies to allocating PMUs for observability: (1)
minimize the number of PMUs to achieve observability and (2) max-
imize the observability for a given number of PMUs. One of the goals of
this paper is to present a strategy that can take on either of these
strategies or even a hybrid of them based on the user preference and
inputs.

The initial works of OPP strategies for observability only considered
allocation of PMUs at buses, but did not focus on which branches to
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measure currents. These strategies assumed that a PMU was installed
with all possible current measurements and that all of the PMUs would
have the same installation cost. In reality, the addition of current
measurements will augment the cost of PMU installation. In the au-
thors’ previous work [13], these current measurement costs are taken
into account through an updated cost function modeled through a
mixed integer linear programming (MILP) model that considers not
only which buses to install a PMU, but also which branches to install
current measurements. This helped reduce the cost of PMU installation
while maintaining observability.

Beyond allocating PMUs for observability goals, research has been
done considering other specific aspects of power systems real-time
monitoring. [14] allocates PMUs with the goal of improving the accu-
racy of the SE, but does not consider the potential for gross errors. [15]
attempts to enhance the detection of parameter errors through strate-
gically placed PMUs, but this is done without considering system ob-
servability. Madani et al. [16] takes a more holistic view for power
systems monitoring by looking at various application and infrastructure
concerns which could be enhanced through integrating more focused
strategies. Chen and Abur [17] aims to enable better bad data detection
through PMU measurements, but does not guarantee observability or
consider the selection of specific branch measurements. Aghaei et al.
[18] considers a multi-objective approach, minimizing the number of
PMUs while maximizing the system's expected redundancy. However,
simply maximizing redundancy doesn’t guarantee that the utility of the
new PMU measurements is optimized. Adding redundancy to a secure
area of the system is not as useful as adding redundancy to a vulnerable
area. Li et al. [19] takes an information theory approach and does not
directly consider observability or cost. Another multiobjective ap-
proach is taken in [20], where the objectives are maximizing reliability
with the minimum number of PMUs. Khiabani et al. [20], however, uses
a heuristic approach that does not guarantee optimality and does not
provide a way to directly consider financial costs. In [21], the authors
present a strategy for enhancing bad data detection by allocating PMUs
while still guaranteeing observability. This model, however, does not
explicitly include the installation costs of PMUs. The objective function
in [21] is formulated such that a minimum amount of PMUs will be
allocated, which means the improvement in bad data detection is lim-
ited. In this paper, the authors expand on this formulation by including
both installation costs as well as enhancing bad data detection ex-
plicitly. In general, previous strategies for the OPP problem provide
solutions without user input. Any weighting or metrics are calculated or
based on equipment specifications. Since there are many potential so-
lutions to the OPP problem, this paper presents a framework that allows
meaningful user input and can be easily expanded to include previously
presented indices and metrics.

This paper presents a multi-objective MILP model and WGP fra-
mework for the OPP problem. The specific contributions of this work
towards the state of the art are threefold:

1. An explicit mathematical model of the interdependencies between
the installation costs of PMUs and gross error detection.

2. A weighted goal programming framework applied to the OPP pro-
blem which allows for customization based on the user’s desired
approach and the addition of new goals.

3. An improved topological observability constraint which considers
both the PMU voltage measurements as well as the current mea-
surements.

The remainder of this paper is organized as follows. Section 2 pre-
sents key technical aspects of the OPP and goal programming. The multi
objective MILP model and WGP framework are presented and discussed
in Section 3. Section 4 presents a case study. Section 5 provides con-
cluding remarks of this work.

2. Background

2.1. Vulnerability Index

The Vulnerability Index (VI), known as UI in [21], quantifies the
vulnerability of a bus to undetectable gross errors in measurements
associated with that bus, considering the classical weighted least
squares state estimation (WLS SE) model [22]. In this paper, the VI
concept is extended to system branch measurements. This is most im-
portant because the addition of branch current measurements will help
with gross error detection, not just add cost. The VI is developed based
on the Innovation concept presented in [23–25]. In these works, a
geometrical view of the measurement error based on the classical WLS
SE model is presented. In the WLS SE, (1) is solved to minimize the
weighted norm of the residuals, where ∈z ℝm is the measurement
vector and ∈x ℝN is the state variables vector. Also, →h: ℝ ℝN m is a
continuously nonlinear differentiable function, ∈r ℝm is the measure-
ment residual vector assumed to have zero mean, standard deviation σ
and Gaussian probability distribution, and N= 2n − 1 is the number of
unknown state variables to be estimated (n is the number of buses of the
power system):

= +z h x r( ) (1)

Let x̂ be the solution of this minimization problem thus, the esti-
mated measurements vector is given by =z h xˆ ( ˆ) and the residuals
vector is defined as the difference between z and ẑ , i.e. = −r z ẑ. The
linearization of (1), at a certain operating point x*, implies:

= +z H x rΔ Δ (2)

where H is the Jacobian matrix of the measurement model.
If the system represented by (2) is observable, then the vector space

ℝm of the measurements can be decomposed in a direct sum of two
vector sub-spaces, in the following way:

= ⊕ ⊥H Hℝ ℝ( ) (ℝ( ))m (3)

so, the range space of H, given by Hℝ( ), is an N-dimensional vector sub-
space that belongs toℝm and ⊥H(ℝ( )) is its orthogonal complement, i.e.
if ∈u Hℝ( ) and ∈ ⊥v H(ℝ( )) , then 〈 〉 = =−u v u R v, 0T 1 . Then, it is
possible to decompose the measurements error vector e into two com-
ponents: undetectable (eU) and detectable (eD).

The detectable component is the same as the measurement residual,
r from (1), and is commonly used for error detection through the Chi-
squared test. The undetectable component of the error can be estimated
using the projection matrix of the WLS SE solution. For that purpose,
the Innovation Index (II) is defined as the ratio between these two
components of the error, e:

= e
e

II || ||
|| ||i

W

W

Di

Ui (4)

where the weight matrix W is the inverse of the diagonal measurement
covariance matrix. Using the II, the composed measurement error
(CME) can be easily calculated from the residual, r:

= +rCME 1 1
IIi i
i
2 (5)

From there, sensitivity analysis of both the residual and the CME is
done to compute the VI metric. In classical WLS SE, the sensitivity of
the residuals is defined as the change in residuals due to arbitrary
perturbation introduced in the measurement vector. Given the solution
of the linear estimation model, this sensitivity matrix can be expressed
as r = Sre. Sr can be easily calculated based on the Jacobian matrix and
W used in the WLS SE method [22]. Applying the same logic to the
CME, the sensitivity of the CME can be expressed as CME= SCMEe and
SCME calculated using (5):
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where K is the set of measurements associated with bus or branch i, J is
the set of all measurements, and SCME and Sr are the sensitivities of the
CME and residual, respectively, with respect to gross errors in mea-
surements. For a bus, the set of measurements associated with that bus
is all measurements taken directly on that bus or any branch connected
to that bus. For a branch, this set is any measurement taken directly on
that branch or on the two buses that the branch connects. This means
that a single measurement will impact multiple VI values on the system.
However, the impact will be different for each bus and branch a mea-
surement is associated with, so it should be taken into account multiple
times. The VI of a bus or branch quantifies the vulnerability of that bus
or branch measurement to gross errors with undetectable components.
The higher the VI, the more vulnerable that system component is to
undetected errors considering the classical WLS SE model. Therefore,
the objective of the optimization problem should be to allocate PMUs at
buses and branches with the highest VI. Innovation based metrics and
analysis has been used to enhance the detection of gross errors before
[24,26–29,21], but not while mathematically modeling the inter-
dependency between gross error detection and PMU installation costs.
By modeling this interdependency, it will be possible to determine if the
utility of a certain PMU or specific PMU measurement outweighs the
cost of installation.

2.2. PMU cost model

In [30], the US Department of Energy (DOE) presented a study on
the real-life costs of PMU installation. This was done by interviewing
nine utility companies that went through a PMU installation project. It
shows that the actual PMU devices make up a small percentage of the
total cost, normally in the 5–10% range. The majority of costs in PMU
installation projects come from the necessary communication infra-
structure to synchronize the PMUs and send the measurement data.
This can vary widely from company to company. This cost depends on
the existing communication infrastructure; is it sufficient for the addi-
tion of PMUs, does it need to be upgraded, or does a brand new com-
munication infrastructure need to be installed alongside the PMUs?
Other factors for cost include security and labor costs. Ultimately, the
DOE found that the average cost per PMU installed was anywhere from
$40,000 to $180,000.

In the OPP frameworks presented in [31,15,13,21], the costs of
PMUs was broken down to a base cost that includes voltages mea-
surements and additional costs for optional current measurements. The
framework presented in this paper requires the same type of cost model.
Since taking any measurements with PMUs requires a communication
system, this will be much larger than the additional current measure-
ment costs. In this paper, the base cost of a PMU installation is con-
sidered as $50,000 while the addition of current measurements is as-
sumed to cost $5000 per channel. The ratio between these comes from
the 5–10% range of device costs plus a small amount of labor required.
These values are in line with the DOE study [30] and costs used in other
research [31,15,13,21]. This work considers the costs will be the same
regardless of which bus a PMU is installed on.

2.3. Goal programming

GP is a multi-objective programming technique in which one tries to
minimize the distance of the solution to previously defined goals [32].
The GP framework is designed to optimize objectives that are contra-
dictory in nature. The most common example of this is using a cost
based objective against a disutility based objective. Added costs will
minimize disutility and vice versa. A GP framework can mathematically
model the interdependencies between problem objectives. It will be

impossible to achieve all of the objectives in the problem, so optimi-
zation is extremely valuable in this scenario. GP has two major subsets:
weighted GP (WGP) and lexicographic GP (LGP). This work uses a WGP
framework to mathematically model the two goals of the problem. WGP
is used because it allows for direct trade-offs to be mathematically
modeled between the different goals in the problem. LGP uses pre-
emptive priority levels for the goals of the problem where each priority
level is optimized individually. Higher priority levels are considered
infinitely more important than lower levels [33], which is not useful for
the two goals considered in the OPP problem presented here.

In WGP, the objective function is defined by the weighted normal-
ized distance between the predefined goal for one objective and the
explicit mathematical model which estimates the latter. The values of
the various goals in the WGP objective function are chosen by the user.
Since the objectives in WGP are contradictory, the goals set by the user
should not be simultaneously achievable. If they are, the solution will
be relatively trivial. The easiest goals to set are the extreme values for
each goal. These are often trivial or expected solutions based on the
optimization of just that objective. The advantage of using WGP is the
ability to find a middle ground between these individual optimizations.
To complete the formulation of the objective function, each differential
variable is multiplied by a weight and these terms are then added. An
important aspect of creating a fair model is the normalization of the
differential variables. If the objectives are not normalized properly,
objectives with larger magnitudes will attract the solution towards that
objective.

There have been many proposed techniques of normalization for GP
models. In this paper, the zero-one normalization technique is used
because it normalizes each differential variable individually rather than
the objective function as a whole [32]. This technique requires a closed
feasible set for each objective, which is not an issue with the OPP
problem [34]. In this technique, the normalization factor for each ob-
jective is the difference between the goal and the worst possible value
for that objective. Hence the differential value will be between zero and
one. Using this normalization technique, the extreme goal of an ob-
jective to be minimized would be 0 while the extreme goal of an ob-
jective to be maximized would be 1.

The weights in WGP can have two functions: normalization of the
goals and to indicate preference of the decision makers. Since nor-
malization has already been taken care of, the model presented in this
paper uses the weights to indicate preference. This will be discussed
further in the presented formulation in Section 3.

3. OPP using goal programming approach formulation

3.1. WGP framework

The WGP framework for the OPP problem is illustrated in Fig. 1. In
order to actually use this framework, existing software can be utilized
with a supplementary post processing step. Topology processing and
state estimation are standard procedures that have been done by uti-
lities for many years. The VI analysis consists of some simple calcula-
tions that are done using the projection matrix of the WLS SE solution
and the residuals of the solution. These calculations are discussed in
Section 2.1 where the final VI metric is shown in (6). One may further
use the extended WLS SE model [35]. The PMU cost model was de-
scribed in Section 2.2, but as long as a cost model provides a final cost
for the base PMU and additional current measurements, the proposed
model can easily handle different cost models. The goals, weights, and
budget are decided and set by the user of the framework. The inputs for
this framework are described in detail later, but are easily changed to
provide the user various options for their final optimal PMU allocation.

3.2. Goal programming formulation

As discussed, minimizing the number of PMUs is good for cost
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considerations, however, this minimal number does not need to be
strictly enforced. In reality, utilities may have flexibility with their
budget that allows them to allocate more PMUs than necessary [30].
This will add additional redundancy to the system as well, consequently
improving the accuracy of state estimation and gross error analysis.
Considering this possibility, this paper presents a multi-objective MILP
model using a WGP structure that can be easily used as a framework by
utilities to develop a PMU allocation strategy that fits their needs and
goals. The two objectives considered in this paper are financial cost and
gross error detection. Since these are contradictory goals, a WGP fra-
mework is ideal for creating an explicit mathematical model of these
interdependent conflicting objective values.

The presented WGP formulation is as follows:

+ω δ ω δmin
x x,

VI VI cost cost
s r (7)

= − …
+ …

δ x
x

where VI ([VI VI VI ]
[VI VI VI ] )

n s

m r

VI goal bs,1 bs,2 bs,

br,1 br,2 br,2 (8)

= + −δ c x c x c( )s s r rcost goal (9)

+ ≥x As. t. Qx 1s r r (10)

≥ xPxs r (11)

+ ≤c x c x bs s r r (12)

≥δ δ, 0VI cost (13)

where

= {x i
i

1 if PMU at bus
0 if no PMU at buss i, (14)

= ⎧
⎨⎩

=
⎧

⎨
⎪

⎩⎪

−x j

x j

1 if current phasor measured at sending end of branch
0 otherwise

1 if current phasor measured at receiving end of branch

0 otherwise

r j

r j

,2 1

,2

(15)

=c icost of installing a PMU at buss i, (16)

=c cost of measuring current at this locationr j, (17)

= ⎧
⎨⎩

A j i1 if branch is connected to bus
0 otherwiser,ij

(18)

=
=
−Q

Q
1

1
j j

j j

,2 1

,2 (19)

= ⎧
⎨⎩

= ⎧
⎨⎩

−P j i

P j i

1 if sending end of branch is connected to bus
0 otherwise

1 if receiving end of branch is connected to bus
0 otherwise

j i

j i

2 1,

2 ,
(20)

The objective function (7) for this framework follows the standard
WGP formulation. Each goal has its own term in the objective function
which consists of the weight of that objective and the difference vari-
able for that goal. Because this problem has two goals; enhanced error
detection and cost; there are two terms in the (7). The difference factor
for each goal is defined in (8) and (9). This is also where the actual
decision vectors xs and xr influence the objective function value. xs, as
described in (14), has one element per bus to decide if a PMU is to be
installed at that bus. xr, as described in (15), has two elements per
branch so that a current measurement can be taken from a PMU at
either end of the branch or both.

In (8), VIbs,i represents the VI of bus i while VIbr,j represents the VI of
branch location j. Both of these are calculated based on Eq. (6). Since
the framework aims to allocate PMUs at locations with the highest VI
values, the VI goal should be a high value that the program attempts to
match. Therefore, the difference is the goal subtracted by the total
normalized VI of buses and branches where PMU measurements are
allocated. Cost, on the other hand, is to be minimized, so the difference
factor is the total cost subtracted by the goal. The specific values for cs
and cr, described in (16) and (17), may vary from utility to utility, but
provided a final value for the base PMU cost and additional current
cost, this framework will handle different costs easily. As discussed in
2.2, this paper uses a cost model where each bus has the same costs, but
that is not a requirement for this framework. Overall, the objective
function minimizes the weighted sum of these difference factors.

The first constraint (10) guarantees observability of the system with
PMU measurements. The matrix Ar, as described in (18) in this con-
straint is built based on the topology of the system. Each element re-
presents whether a certain branch is connected to a certain bus. Natu-
rally, each column will have two elements with value 1, while the rest
will be 0. The Q matrix in (19) simply expands Ar to line up with the
decision vector xr. As discussed earlier, it is important to include this
constraint due to the interest in using PMU measurements for linear
state estimator purposes [5,6]. This constraint is very similar to the
observability constraint in [13], but has the added variable xs. In pre-
vious works, it was not necessary to include this variable because the

Fig. 1. Presented weighted goal programming framework.
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optimization problem was always looking to allocate the minimum
number of PMUs. Therefore, many branch currents were necessary to
meet the observability constraint anyway. It's possible for the WGP
framework to be configured to allocate PMUs at every bus. In this case,
no branch measurements should be necessary to meet the observability
constraint since each bus voltage is being measured directly. Without
the xs variable in (10), however, n

2
branch measurements would be

required to meet the constraint, where n is the number of buses on the
system. The addition of xs makes this is a more complete observability
constraint.

It is important to note that constraint (10) only guarantees topolo-
gical observability since it is a topology based equation. As discussed in
[36], in order to use a set of measurements for SE purposes, these
measurements must make the system numerically observable as well,
meaning the Jacobian matrix is full rank. With this in mind, the authors
included a separate numerical observability check by setting up a Ja-
cobian matrix for only PMU measurements. None of the solutions found
by the WGP presented a numerical observability problem.

Constraint (11) acts as a physical constraint to ensure that any po-
tential current measurements are being taken from a bus that has a
PMU allocated to it. The matrix P, as described in (20), is built based on
the topology of the system, similar to Ar. The difference is that each
branch is split into two columns so that the sending and receiving end
of each branch has its own column. Constraint (12) is a budget con-
straint where the total cost of the PMU installation and added current
measurements is below a budget specified by the user.

The constraints in (13) are important to understand when setting
the goals in the problem. These are non-negativity constraints on the
differential variables for each goal. This means that when a goal is set
by the user, the final solution is limited such that a goal cannot be
surpassed (making the difference a negative value). For example, the
IEEE 14-bus system requires four PMUs to guarantee observability.
However, if a utility has the budget to allocate five or more PMUs and
the goal is set to use that money, the model will allocate at least five
PMUs even if a potentially better solution only uses four PMUs. More
specific examples of this type of scenario will be discussed in Section 4.

3.3. User inputs and flexibility

In the presented approach for the OPP problem, there are five
variables that can be controlled by the user to make sure the framework
produces a solution that fits their needs:

1. VI goal

2. Cost goal
3. VI objective weight
4. Cost objective weight
5. Budget

Since the VI metric (6) represents the vulnerability of a bus or
branch to undetected gross errors in measurements, the VI goal is es-
sentially how much of the overall vulnerability of the system should be
addressed through adding PMU measurements on the system. The ex-
treme case of this would be covering the whole system, or allocating a
PMU at every bus on the system and measuring every branch current. In
this case, the numerical value for the VIgoal would be simply the nor-
malized sum of all bus and branch VI values. Because the model uses
zero-one normalization, this case is equivalent to a goal of 1. Therefore
for the user, it is easiest to simply define a value between 0 and 1, the
normalized range for the VI goal. The cost goal is the desired amount of
money that will be spent on PMU installation, while the budget is a
hard limit on how much money is allowed to be spent. While the nor-
malized cost values are also between 0 and 1, the framework can take in
a real dollar amount and calculate the normalized value. This is for the
user's convenience. The extreme limiting case for the cost goal would be
spending no money, i.e. cgoal = 0.

The two weight variables can be used to determine the priority of
the goals in the problem. It is simplest to keep these values between 0
and 1 because the ratio of the weights is more important than the actual
values. For example, weighting each goal with the same value means
the optimization will be done based simply on the difference factors (8)
and (9). The weights can also be used to temporarily ignore a certain
goal if its weight is set to 0. The effects of changing these five variables
is explored and presented in the case study discussed in Section 4.

4. Case studies

4.1. PMU allocation decisions

In order to validate the multi-objective MILP model and WGP fra-
mework, the IEEE 14-bus system is used, illustrated in Fig. 2, along with
the IEEE 118-bus system. The framework is programmed and solved in
MATLAB using the recently updated Optimization Toolbox 8.1, which
uses the common branch and bound method to solve the MILP [37].
The initial SCADA measurement set used to calculate the bus VI values
consisted of real and reactive power flows, real and reactive power
injections, and voltage magnitudes. As discussed in Section 2, the cost
model is such that all cs values are $50,000, while all cr values are
$5,000. This means the maximum cost for the 14 bus system is
$900,000, while the maximum cost for the 118 bus system is
$7,690,000. The various tests are done by changing the five variables
discussed in Section 3. The first set of tests is done with constant goals
for the two objectives while varying the goal weights. The constant
goals used are the extreme cases: cgoal = 0 and VIgoal = 1. The objective
of this test case is to investigate the model's results when varying the VI
and cost weights. The results of these tests are shown in Tables 1 and 2.
In these tables, the VI column shows the value for the second term in
the right side of Eq. (8), which is the sum of VI values for the buses and
branches covered in the PMU allocation solution.

In the first result (hereby known as the WGP Base case), the weights
are both set to 1, meaning each goal is weighted equally. As one might
expect, this results in PMUs being allocated to about half of the buses on
each system, eight PMUs on the 14 bus system and 55 PMUs on the 118
bus system. It is interesting to note that significantly more than half of
the available branch measurements are allocated in this scenario. Given
the fact that branch measurements are cheaper to install based on the
cost model, it is logical that more branches are being used relative to
the number available. The next two results examine the extreme cases
of completely eliminating a goal. These both give trivial solutions. If the
cost goal weight is set to zero, PMUs are allocated at every bus on the

Fig. 2. 14-Bus IEEE System.
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system and all possible branch measurements are taken as well. If the VI
goal weight is set to zero, the minimum number of PMUs and branch
measurements are allocated to achieve observability, which are the
results of past work in PMU allocation [7–10,13,19,20].

The next set of results explores lowering the VI goal weight, so that
the cost goal has more impact on the objective function. As expected,
these results show PMU allocation decisions in between the even
weights result and the minimum allocation result. As the VI goal weight
decreases, fewer PMUs are being allocated and the cost goes down as
well. One important point to note is that in the 14 bus result for
ωVI = 0.25, the allocation is actually slightly different than the
minimum allocation result even though they both have four PMUs and
ten branches covered. The difference can be seen by the different VI
values for each solution. This is because the VI values are considered
enough to differentiate between two different allocation results that
have the same cost. As expected, the VI value for the 0.25 weight so-
lution is slightly higher. In the last set of tests in Tables 1 and 2, the cost
goal weight is reduced and the expected pattern emerges in the allo-
cation results. As the cost goal weight decreases, the number of PMUs
allocated increases, increasing the cost and VI values as well.

As mentioned in Section 3.3, the ratio of the weights is more im-
portant than the actual values. In order to confirm this idea, tests were
run to determine if the same weight ratio produces the same result from
the WGP framework. For example, weights of 2 and 1 were used instead
of 1 and 0.5. A few examples of these tests on the 14 bus system are
shown in Table 3. It is up to the user to determine how they want to
change the weights of each goal, but it is important to understand that
the ratio of these weights is what will determine the final solution of the

WGP framework.
Tables 4 and 5 explore the effects of varying the goals in the pro-

blem rather than the weights. For these tests, both weights are held
constant at one. When changing the goals in the WGP framework, it is
important to understand the effect of the non-negativity constraints in
(13). These constraints ensure that the difference factor for each goal is
not a negative value. Negative difference values would render the goals
set by the user useless since making those differences as negative as
possible would minimize the overall objective function. This is de-
monstrated well in the test results shown in Tables 4 and 5. The first set
of tests lower the VI goal. By setting this goal to 0.5, for example, the
user is telling the WGP framework that they want PMUs to cover buses
and branches whose normalized VI values sum to no more than 0.5.
This limits the number of PMUs and branch measurements allocated by
the optimization problem, but the framework will still optimize within
that constraint. Using the example of 0.5, it is easy to see that the VI
value for the 14 bus solution is very close to 0.5 and is exactly 0.5 for
the 118 bus solution. This gives the user a way to limit the cost of the
PMU allocation solution without have specific cost goals in mind, but
rather considering how much of the vulnerability on the system do they
want to address via PMU measurements. One important observation
about using the VI goal is that while zero-one normalization is used for
the goals, setting the VI goal to zero will not have a feasible solution.
This is due to the observability constraint (10). The minimum VI value
for a feasible solution is provided by looking at the scenario where the
VI goal is ignored by giving it a weight of 0. For the 14 bus system, this
minimum is 0.24778. For the 118 bus system, the minimum is 0.24188.

The final test of Tables 4 and 5 show how the cost goal can be used
to set a minimum cost on the solution. This is again because of the non-
negativity constraints. The first test shows that setting a cost goal that is
below what the solution would have been anyway does not affect the
final solution. The last test shows that a minimum cost can be set easily
and increases the number of PMUs and branch measurements allocation
by the WGP framework. This would be used in the (admittedly unlikely)
scenario where the user must use a certain amount of funding on their
PMU allocation project. Similar to the minimum VI goal, the cost goal
has a maximum value for feasibility, which would the cost in the case of
all possible PMU measurements being allocated in the solution.

As mentioned earlier, the feasibility limits discussed for each goal
are due to the non-negativity constraints (13). Let us say that both
weights are set to 1, the cost goal to the maximum possible cost, and the
VI goal to 0 (these are the opposite extremes as in the tests in Tables 1
and 2). If the constraints (13) are used, the problem is infeasible, which
makes sense since the goals are not achievable. If the constraints (13)
are not used, the framework produces the same solution as the WGP
Base case. In fact, any set of goals in this situation would produce the

Table 1
14 bus PMU allocation with constant goals at extremes.

ωVI ωcost PMU buses Branches Cost ($1k) VI

1 1 8 28 $540 0.68234
1 0 14 40 $900 1.0000
0 1 4 10 $250 0.24778
0.25 1 4 10 $250 0.26128
0.5 1 4 12 $260 0.29028
0.75 1 5 19 $345 0.42624
1 0.25 14 40 $900 1.0000
1 0.5 13 39 $845 0.97162
1 0.75 12 37 $785 0.92631

Table 2
118 bus PMU allocation with constant goals at extremes.

ωVI ωcost PMU buses Branches Cost ($1M) VI

1 1 55 220 $3.85 0.67581
1 0 118 358 $7.69 1.0000
0 1 32 86 $2.03 0.24188
0.25 1 33 90 $2.10 0.30712
0.5 1 38 130 $2.55 0.45082
0.75 1 43 176 $3.03 0.55288
1 0.25 117 357 $7.635 0.99834
1 0.5 108 343 $7.115 0.97256
1 0.75 74 268 $5.04 0.80483

Table 3
Weight ratio tests on the 14 bus system.

ωVI ωcost PMU buses Branches Cost ($1k) VI

1 4 4 10 $250 0.26128
1 2 4 12 $260 0.29028
1.5 2 5 19 $345 0.42624
4 1 14 40 $900 1.0000
2 1 13 39 $845 0.97162
2 1.5 12 37 $785 0.92631

Table 4
14 bus PMU allocation with constant weights at 1.

VIgoal cgoal ($1k) PMU buses Branches Cost ($1k) VI

0.25 $0 4 10 $250 0.24972
0.5 $0 6 20 $400 0.49887
0.75 $0 8 28 $540 0.68234
1 $250 8 28 $540 0.26128
1 $750 12 37 $785 0.92631

Table 5
118 bus PMU allocation with constant weights at 1.

VIgoal cgoal ($1M) PMU buses Branches Cost ($1M) VI

0.25 $0 32 86 $2.03 0.25000
0.5 $0 40 152 $2.76 0.50000
0.75 $0 55 220 $3.85 0.67581
1 $3.00 55 220 $3.85 0.67581
1 $5.00 73 270 $5.00 0.79999
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WGP Base solution. It is important to use the non-negativity constraints
such that the goals can be used as meaningful inputs if the user so
chooses.

Finally, Tables 6 and 7 show how using the budget constraint im-
pacts the PMU allocation solution. This works intuitively as a normal
budget constrain, which is basically the opposite of the cost goal. If a
budget is used, the cost of the allocation cannot exceed that value. The
tests shown use the weights and goals of the WGP Base case, meaning
the only input that is being changed is the budget. From Tables 1 and 2,
we know that that the base case solutions for the 14 and 118 system
cost $540,000 and $3,850,000, respectively. The first two tests have
budgets below these values and therefore show a solution with fewer
PMUs. The second test shows that even if the budget restricts the so-
lution, the WGP framework is smart enough not to blindly use all of the
budget. This can be caused by the physical constraint (11) or simply
that of the available branch measurements, not all of them will reduce
the objective function. The final budget test simply shows that if the
optimal solution based on the weights and goals has a cost lower than
the budget, then the budget will not have an impact on the solution.

The results presented show a small number of possible input con-
figurations for this WGP framework in order to validate that the inputs
change the PMU allocation decisions in the way they are meant to. All
of the tests done by the authors passed the numerical observability
check by producing Jacobian matrices of full rank, confirming that this
is not a concern when using the WGP framework. The tests presented in
this paper hone in on each different type of input (weights, goals, and
budget) in order to directly show they work as intended in the WGP
framework. If a user chooses to, they can change all five inputs at once.
This will depend on the needs and goals of the user and it is up to the
user to determine which solution works best for their situation.

4.2. Gross error detection tests

In order to verify that the WGP model with the VI metric does im-
prove the detection of gross errors in measurements, error analysis tests
were done on some of the PMU allocation solutions. [21,29] show that
the VI metric can be used to enhance gross error detection, so these tests
are just confirmation that the WGP uses the VI metric in an intelligent
way. These tests consist of 1000 measurement set samples where in
25% of the samples, errors of a random size between 5 and 25 standard
deviations are added to one of the measurements at random. While the
detection of gross errors in measurements is important for state esti-
mation, it is also important to avoid false positives, which can lead
unnecessary changes to system operation just like an error could. Since
it is more common to have an error free measurement set, a majority of
the samples are error free. The gross error detection in this paper is
done through a CME based Chi-squared test [26]. These tests are done
for solutions provided by the WGP framework and the solutions from
[20]. In [20], a multi-objective framework is used to solve the OPP

problem with minimal PMUs while maximizing reliability. Various so-
lutions are provided based on differing PMU reliability levels. Similar
solutions based on cost are chosen for gross error detection compar-
isons. The results of these tests are shown in Tables 8 and 9.

As shown in the results, the VI metric continues to help improve
gross error detection when used in the WGP framework. In general,
more PMU measurements leads to better gross error detection, re-
gardless of the allocation method. The one exception to that is that most
expensive solutions to the 118 bus system. Basically, once the PMU
allocation goes beyond the WGP Base solution, gross error detection
results seem to drop a little bit. This isn’t entirely unexpected since it
has been shown that for a Chi-squared test, the rate of Type I errors
(false positives) can increase with a large number of measurements
[38]. The WGP solutions, shown in bold, provide a higher rate of cor-
rect decisions on if there is an error or not for all comparable solutions,
even when WGP provides the cheaper solution. This trend holds true for
both the 14 and 118 bus system.

4.3. Optimization performance analysis

When formulating any type of optimization problem, it is important
to consider and verify that the method being used does in fact converge
to optimal solutions and does so a timely manner. For multi-objective
optimization problems, a good way to analyze the performance is
through Pareto optimality. A solution is said to be Pareto optimal if
none of the objectives can be improved upon without deteriorating at
least one other objective [39]. In this paper, the WGP MILP formulation
only has two objectives, so a solution is Pareto optimal if lowering the
cost must lower the VI or if raising the VI must raise the cost. With two
objectives, this can be visualized relatively easily by plotting the Pareto
frontier alongside the solutions found by the WGP framework. These
results are shown in Figs. 3 and 4 for the 14 and 118 bus systems,
respectively. The Pareto frontiers in orange were generated by fixing
the cost of the PMU allocation and solving the optimization problem
such that the optimal VI value for that cost is found. The x-axis of the
plots are the cost in dollars, while the y-axis is the distance between the
normalized VI value of the solution and 1, the max normalized VI value
for the problem.

In the 14 bus Pareto frontier, it is interesting to point out the spikes
that seem to occur. These come from the physical constraint of the
problem where branch measurements must come from an allocated
PMU. Since branch measurements are cheaper than the actual PMU, the

Table 6
14 bus PMU allocation with varying budgets.

Budget ($1k) PMU buses Branches Cost ($1k) VI

$300 5 10 $300 0.32552
$500 7 26 $480 0.60879
$750 8 28 $540 0.68234

Table 7
118 bus PMU allocation with varying budgets.

Budget ($1M) PMU buses Branches Cost ($1M) VI

$3.00 43 170 $3.00 0.54709
$3.50 49 204 $3.47 0.60879
$7.50 55 220 $3.85 0.67851

Table 8
14 bus gross error analysis results.

Measurement set Cost ($1k) Correct decision %

SCADA only $0 85.1
WGP Base $540 94.7
0.95 Reliability $545 92.9
WGP ωVI = 0.75 $345 94.1
[20] 0.99 Reliability $340 93.6
WGP ωVI = 0.25 $250 92.8
[20] 0.9983 Reliability $275 92.2

Table 9
118 bus gross error analysis results.

Measurement set Cost ($1M) Correct decision %

SCADA only $0 83.0
WGP ωcost = 0.75 $5.04 89.1
0.95 Reliability $5.455 88.0
WGP Base $3.85 90.3
[20] 0.99 Reliability $4.075 88.8
WGP ωVI = 0.25 $2.10 85.1
[20] 0.9983 Reliability $2.545 84.6
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solution would ideally have many branch measurements. However,
there are only so many branches off of each bus. Each spike represents
when a new PMU must be installed to achieve a specific cost. In order to
achieve that exact cost, a PMU is added and branch measurements are
taken away, driving the δVI value up rapidly. As you can see in Fig. 3,
the WGP framework avoids these spikes when looking for a solution
when the cost of the solution is not set at a specific value. In Fig. 4, the
spikes are much smaller and often not even noticeable. This is due to
the fact that there is much more flexibility in the solutions due to there
being many more buses and branches.

For the both systems, it is clear that the WGP framework almost
always delivers a solution that is on the Pareto frontier, meaning they
are Pareto optimal solutions. For each system, there is one example of a
non-Pareto optimal solution. These solutions were developed deliber-
ately by setting goals that, frankly, don’t make sense to set. In order to
get these solutions, the VI goal was set very low while the cost goal was
set very high. In the 14 bus system, the VI goal was 0.5 while the cost
goal was $500,000. Both of these goals were achieved simultaneously,

which does minimize the objective function. However, it does not make
sense to set goals like this when using WGP. Similarly in the 118 bus
system, the VI goal was set to 0.75 while the cost goal was set to
$5,000,000. Again, both goals are achieved. When both goals are
achieved in the WGP framework, the solution will not be Pareto op-
timal. Based on this analysis, it is important for a user of this framework
to have an understanding of their system when setting goals. They
should know the goal limits for their system: the minimum and max-
imum costs of PMU installation for minimal and full observability, and
the normalized VI values of the minimum observability case. These
values can be obtained through using the framework with extreme
weight values, as done in Tables 1 and 2.

As a final note on the performance of the WGP framework, the
authors point out that a vast majority of the solutions for the 118 bus
system were found within a few seconds, with the occasional run that
took a few minutes. Since the OPP problem is a planning problem (not
real time), this is not really an issue for the WGP framework presented.

Fig. 3. 14 bus results of WGP framework along with Pareto frontier.

Fig. 4. 118 bus results of WGP framework along with Pareto frontier.
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5. Conclusion

This paper presents a multi-objective MILP model to solve the OPP
problem that allows the user to have an input in the final solution. The
model is built on a WGP framework. By creating a multi-objective MILP
model, this framework can be used by any off-the-shelf optimization
solver, making it easily implementable. This paper focuses on two goals
for PMU allocation: enhanced gross error detection and financial cost.
These are naturally interdependent contradictory goals, so a WGP fra-
mework is ideal for mathematically modeling the value of each goal
and optimizing the overall solution. Using this framework, the user has
control over five different variables within the program. The user can
set specific goal values for each goal, prioritize the goals by varying the
weights, and set a budget. When setting goal values, it is important for
the user to understand the limits of those values for their system. They
must also be careful not to set goals that are simultaneously achievable,
as this may lead to a non-Pareto optimal solution.

The model was tested on the IEEE 14 and 118 bus systems and the
results of the tests show that the model works as expected, varying the
number of PMUs as well as the location of the PMUs depending on the
values given for the five controllable variables. This model can easily
provide solutions from the minimum amount of PMUs required to al-
locating a PMU at every bus. Given logical input values from the user,
the WGP framework will always find the Pareto optimal solution for
those inputs. Gross error detection tests show that the WGP framework
use the VI metric well, such that gross error detection is improved more
by allocating PMUs with this framework than other multi-objective
solutions. The intermediate solutions provided by the WGP framework
depend on the goals and preferences of the user, making this framework
ideal for utilities. The model provides the user a wide variety of options
if desired but always finds a solution that fits the goals and priorities
provided by the user.
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