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Abstract—This paper presents a data-driven and physics-based
method for detection of false data injection (FDI) in Smart Grids
(SG). As the power grid transitions to the use of SG technology,
it becomes more vulnerable to cyber-attacks like FDI. Current
strategies for the detection of bad data in the grid rely on the
physics based State Estimation (SE) process and statistical tests.
This strategy is naturally vulnerable to undetected bad data as
well as false positive scenarios, which means it can be exploited
by an intelligent FDI attack. In order to enhance the robustness
of bad data detection, the paper proposes the use of data-driven
Machine Intelligence (MI) working together with current bad
data detection via a combined Chi-squared test. Since MI learns
over time and uses past data, it provides a different perspective
on the data than the SE, which analyzes only the current data and
relies on the physics based model of the system. This combined
bad data detection strategy is tested on the IEEE 118 bus system.

Index Terms—anomaly detection, false data injection, gross er-
ror analysis, machine intelligence, power system state estimation,
Reed-Xaoli.

I. INTRODUCTION

The next-generation power grid, named the Smart Grid
(SG), has drawn the attention of academia, industry and
government due to the great impact of such systems on
society, economics and the environment. These next generation
systems integrate control, communication and computation
aiming to achieve stability, efficiency and robustness of the
physical processes. While a great amount of research has been
done towards these objectives, science and technology related
to the cyber-physical security of SGs are still immature. Addi-
tionally, many critical infrastructures are currently transition-
ing towards the paradigm of SGs by increasing the dependency
of control of physical processes on communication networks,
thus becoming exposed to cyber-threats [1].

Power system monitoring is critical for guaranteeing reliable
operation of power grids. Currently, real-time monitoring is
done through Power System State Estimation (PSSE) [2].
PSSE provides relevant information on the condition of a
power grid based on the readings of sensors that measure
electrical quantities. These meter readings are commonly
transmitted to a Supervisory Control and Data Acquisition
(SCADA) system, which implements centralized monitoring
and control for the electrical grid, where PSSE is performed.
One very important feature of PSSE is its error processing

capability. Measurements that are clearly inconsistent are dis-
carded in the pre-filtering step, which precedes state estimation
itself. Following state estimation using pre-filtered data, a post-
processing step called bad data analysis is performed. This
step aims at detecting bad data or Gross Errors (GE), which
correspond to statistically large errors.

The increasing dependence on power system monitoring and
control raises concerns with respect to cyber-threats. One type
of cyber-attack that has drawn the attention of the academic
community is the false data injection (FDI) attack, whereby a
subset of measurements values are modified by an adversarial
attacker aiming to disrupt the power grid. While Bad Data
Analysis is capable of detecting many instances of Gross
Errors via tests such as J(x̂), largest normalized residual [3]
or innovation-based [4] approaches, cyber-attacks might be
engineered to be very hard to detect [5]. Methods devised
to treat FDI attacks include Generalized Likelihood Ratio
Detector with L-1 Norm Regularization [6], a scheme for
protecting a selected set of measurements and verifying the
values of a set of state variables independently [7] and the
estimation of the normalized composed measurement error for
detection of malicious data attacks [8]. However, some of these
methods present a few drawbacks, such as large computational
costs, including search routines, and the assumption that a few
measurements can be protected from cyber-attacks. Addition-
ally, they do not use information from past data to improve
its robustness.

In this paper we propose a data-driven, physics-based
method for the detection of FDI-type attacks in SG. This
method combines state estimation-based Bad Data Analytics
with purely data-driven anomaly analysis to detect malicious
data attacks.

The remainder of the paper is organized as follows. In
Section II, a review of PSSE is presented. The details of the
data-driven method are shown in Section III. The method that
combines phisics-based and data-driven methods is presented
in Section IV. The results of numerical tests used to evaluate
the performance of this combined method are shown in Section
V. Finally, Section VI presents the conclusions of this work.

978-1-7281-1981-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: University of Florida. Downloaded on May 18,2020 at 19:00:01 UTC from IEEE Xplore.  Restrictions apply. 



II. POWER SYSTEM STATE ESTIMATION

In modern Energy Management Systems (EMS), the State
Estimation (SE) process is the core process for situational
awareness of a power system and is used in many EMS
applications, including the detection of bad data. The common
approach to SE is using the classical Weighted Least Squares
(WLS) method described in [2]. In this approach, the system is
modeled as a set of non-linear equations based on the physics
of the system:

z = h(x) + e (1)

where z ∈ Rm is the measurement vector, x ∈ RN is the
vector of state variables, h : RN → Rm is a continuously non-
linear differentiable function, and e ∈ Rm is the measurement
error vector. Each measurement error, ei is assumed to have
zero mean, standard deviation σi and Gaussian probability
distribution. m is the number of measurements and N is the
number of states.

In the classical WLS approach, the best estimate of the state
vector in (1) is found by minimizing the cost function J(x):

J(x) = ‖z− h(x)‖2R−1 = [z− h(x)]TR−1[z − h(x)] (2)

where R is the covariance matrix of the measurements. In this
paper, we consider the standard deviation of each measurement
to be 1% of the measurement magnitude, which has been
shown to improve the detection of bad data [9]. In order to
solve this problem, (1) is linearized at a certain point x∗ in (3)
and the optimal states are found through an iterative process.

∆z = H∆x+ e (3)

where H = δh
δx is the Jacobian matrix of h at the current

state estimate x∗, ∆z = z − h(x∗) = z − z∗ is the correction
of the measurement vector and ∆x = x−x∗ is the correction
of the state vector. The WLS solution is the projection of ∆z
onto the Jacobian space by a linear projection matrix P , i.e.
∆z = P∆ẑ. Letting r = ∆z − ∆ẑ be the residual vector,
the P matrix that minimizes J(x) will be orthogonal to the
Jacobian range space and to r; ∆ẑ = H∆x̂. This is in the
form:

〈∆ẑ, r〉 = (H∆x̂)TR−1(∆z −H∆x̂) = 0. (4)

Solving (4) for ∆x̂:

∆x̂ = (HTR−1H)−1HTR−1∆z. (5)

At each iteration, a new incumbent solution x∗new is found
and updated following x∗new = x∗ + ∆x̂. (5) is solved each
iteration until ∆x̂ is sufficiently small to claim convergence of
the solution. Once the SE converges, the final residual values
in r are used for the detection of bad data in the measurement
vector z. The measurements are considered to be i.i.d, so
the statistical chi-squared test is used. The value of J(x) is
compared to the chi-squared value, χ2

(m−N),p, for (m − N)
degrees of freedom and probability p. If J(x) is larger than the

chi-squared value, an error is detected in the measurements,
as shown in (6). This error is identified by finding the largest
normalized residual value, (7).

J(x̂) =
m∑
i=1

[
zi − hi(x̂)

σi

]2
> χ2

(m−N),p (6)

rNi =

∣∣∣∣∣ ri√
Ωi,i

∣∣∣∣∣ (7)

where Ω = R − H(HTR−1H)−1HT is the covariance of
residuals.

III. DATA-DRIVEN MACHINE INTELLIGENCE

The Machine Intelligence layer of the smart power grid uses
the knowledge of already verified data to learn the normal
state of a properly functioning grid. It is then able to detect
any anomalies introduced into the system at any point forward
and alerts the Network layer to identify the anomaly, isolate it
from the remainder of the system and take appropriate action
to prevent contamination of the system, with regards to both
power distribution in other subsystems, and data assimilation
by the Machine Learning system itself.

The Machine Learning layer is implemented using the
famous Reed-Xaoli (RX) Anomaly Detection [10] algorithm
described in (8), where z is the new incoming data, µ is the
mean and

∑−1 is the inverse covariance matrix. (8) calculates
the Mahalanobis distance squared, δRX(z), of a given data z,
from the mean, µ of the distribution.

δRX(z) = (z − µ)
T
∑−1

(z − µ) (8)

The anomaly detector is trained with the first k number
of incoming samples that has not been flagged by the state
estimator to generate an initial µ and

∑−1 as a starting
point. It then accepts new data and uses (8) to determine its
Mahalanobis distance and compares it to a threshold value. If
the result is below the threshold, the new data is considered
to be normal data but if the result is above the threshold, the
new data is flagged as an anomaly.

Because data is dynamic and it changes gradually over time,
the anomaly detector must be able to adapt with changing
trends and so the mean, µ and inverse covariance matrix,∑−1 are updated using the Woodbury Matrix Identity [11]
in equations (9) and (10) respectively. Note that this update is
done only if the incoming data is considered normal data.

µnew = (1− α)µ+ α(z − µ) (9)

∑−1

new
=

1

1− α

[∑−1
− (z − µ)(z − µ)T

1−α
α + (z − µ)T (z − µ)

]
(10)

where z is the new data, µ is old mean,
∑−1 is the old

inverse covariance matrix and α is a hyper-parameter value
between zero and one that determines how much importance
is given to the new data sample versus the old mean. We
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determine the value of k and α through experimentation.

IV. DATA-DRIVEN PHYSICS MODEL FOR FDI DIAGNOSIS

In the proposed data driven physics based solution, we make
use of results from both the physics-based SE and the data-
based RX algorithm to find a combined distance measure. This
hybrid anomaly score will be compared with a threshold to
detect whether a given measurement is anomalous or normal.

For the SE part of the distance measure, each sample is
analyzed individually as described in Section II. The current
states of the system are estimated based on the measurement
set, and minimizing the objective function (6). The J(x̂) is
used as the SE portion of the combined distance measure.

The purely data-driven analysis is divided in two parts.
Initially for first k samples, we obtain predictions from SE
and identify the normal samples to form the initial mean and
covariance matrix for RX algorithm. We regard this phase as
training phase for the data driven RX algorithm, where the
trained model tries to understand the distribution of normal
samples. After obtaining the initial mean and covariance ma-
trices, we start the testing phase of RX algorithm where each
incoming sample is used to calculate the Mahalanobis distance
squared as shown in equation (8). We decide whether to update
the mean and covariance matrix based on a threshold value
for the samples in the testing phase. This threshold is based
on the distribution of Mahalanobis distance squared values
for the normal samples collected during training phase and it
is calculated as the sum of their mean and a constant times
their standard deviation. We observed that this distribution
was roughly following a bell curve, so a threshold value
corresponding to the constant value of 1.5 would cover nearly
94% of the all the Mahalanobis distance values for normal
samples. Hence, we decided the constant value to be 1.5.

The distance measures obtained from SE and RX algorithm
are then added and compared with a threshold value based
on the confidence level to detect whether a given sample is
normal or anomalous as shown in (11).

JC = δRX(z) + J(x̂) > χ2
(2m−N),p (11)

The distance measures from the SE and the RX algorithm
are added together and considered independent due to the
independence of the two estimation strategies. The SE uses
the physics based model of the power system and only
considers the current measurement set. The RX algorithm
considers past samples and is based purely on data, so these
distance measures are determined independently. The degrees
of freedom chosen for this combined Chi-squared test is a
summation of the m−N degrees of freedom in the SE Chi-
squared test and the m features used in the RX algorithm.

V. CASE STUDY

The proposed strategy for data-driven and physics-based
FDI diagnosis was validated using the IEEE 118-bus system.
The measurement set included all real and reactive power flows
and injections and all voltage magnitudes, resulting in 1070

measurements. Using the MATLAB package MATPOWER,
10,000 samples, or measurement sets, were generated with
Gaussian noise. 530 of these samples were chosen at random
to insert a GE into a single measurement within the sample.
These errors were of random size between 20 and 30 standard
deviations away from the true measurement value. Out of
these 10,000 samples, 2,000 (k) were used for training the
RX algorithm (with an α value of 0.8) while the remaining
8,000 were used for testing. The implementation of data driven
physics based model and evaluation of results was conducted
using Python libraries such as Pandas, SciPy [12], and Scikit-
learn [13] in Anaconda environment. The statistical tests (6)
and (11) are performed with a 95% confidence level.

A. Performance Analysis

To properly evaluate the performance of the 2 estimations
strategies included in this paper, we make use of classification
metrics [14] described below:

A Confusion Matrix is a table that describes the perfor-
mance of a classification model on a set of test data whose
ground truth values are known.

Fig. 1. Confusion Matrix Model

In Fig 1, True Positives (TP) refer to normal data that
is predicted as normal data. True Negatives (TN) refer to
anomalous data predicted as anomalous. False Positives (FP)
refer to anomalous data predicted to be normal. False Nega-
tives (FN) refer to normal data predicted to be anomalous.

Accuracy is the ratio of correctly predicted samples to the
total number of samples. Accuracy is a good performance
metric when the class sizes are balanced in the dataset. Nor-
mally in the real world, when working with anomaly detection
problem, the number of anomalous samples is usually a lot
lesser than the number of normal samples. This means the
class sizes are skewed in nature and accuracy would not
serve as a good performance metric for an anomaly detection
problem. We are including it in our analysis as it is one of the
most commonly used classification performance metrics. We
will also be including metrics such as Precision, Recall and F1-
score, which would provide a better measure of performance
for a given anomaly detection strategy. (12) shows the formula
to calculate overall accuracy of the model.
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Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision is the ratio of number of correctly predicted
normal samples to the overall predicted normal samples. Pre-
cision is an important metric when we want to minimize False
Positives. (13) shows the formula for calculating Precision
performance metric.

Precision =
TP

TP + FP
(13)

Recall (also called as Sensitivity) is the ratio of number of
correctly predicted normal samples to number of true normal
samples. This performance metric gives us an idea of how
good our model is at identifying normal samples. If we want
to minimize the False Negatives, we want to have a very
good value of Recall without precision being too low. Recall
can be given high preference if there is a need to update
the system parameters or store the data for future analysis
when the measurement is normal. (14) shows the formula for
calculating Recall performance metric.

Recall =
TP

TP + FN
(14)

F1-score is the harmonic mean of Precision and Recall. It
would be better to have a single performance metric that would
consider both Precision and Recall, and which strikes a balance
between them. A simple arithmetic mean would result in high
value even if the model is terrible, as if one of the values
between Precision and Recall is high, this would increase
arithmetic mean. When we consider harmonic mean, it would
result in a value which is more closer to the lower value among
Precision and Recall than arithmetic mean, hence resulting
in a more appropriate performance metric. This metric is
more useful than accuracy since we usually have uneven class
distribution for anomaly detection problems. (15) shows the
formula for calculating F1-score performance metric.

F1-score =
2 ∗Recall ∗ Precision
Recall + Precision

(15)

B. Numerical Results

We present the numerical values of performance metrics
such as Confusion matrix, Accuracy, Precision, Recall and F1-
score for both State estimator method and the proposed Data-
driven Physics based method.

Figure 2 shows the TP, TN, FP and FN values in a confusion
matrix for the state estimator method for identifying normal
and anomalous samples. The predicted values are compared
with the ground truth to arrive at these values.

In table I, we have presented the numerical values of
Accuracy, Precision, Recall and F1-score for both normal and
anomalous measurements from the anomaly detection model
obtained by state estimator method. As we discussed earlier,
when the class size is not balanced, just looking at metrics for
overall data might mislead the readers about the performance
of a model, hence we present the values of the performance

Fig. 2. Confusion Matrix for State Estimator model

metrics for each class. From table I, we can see that some of
the values for State estimator based method are low, notably
the F1 Score for the anomalous data which is very important
for an anomaly detection problem.

TABLE I
ANOMALY DETECTION METRICS FOR STATE ESTIMATOR

Class Accuracy Precision Recall f1-score
Normal 95.44 99.99 95.00 98.00

Anomalies 99.00 54.00 99.00 70.00

Figure 3 shows the TP, TN, FP and FN values in a
confusion matrix for the Data-driven Physics based method for
identifying normal and anomalous samples. Comparing Figure
3 with Figure 2 reveals that the combined model does much
better job with TP and FN values, and nearly same level of
performance as State estimator when it comes to FP and TN.

Fig. 3. Confusion Matrix for Data-driven Physics based model

In table II, we have presented the numerical values of
Accuracy, Precision, Recall and F1 Score for both normal
and anomalous measurements from the anomaly detection
model obtained by Data-driven Physics based method. The
value of F1 score has improved drastically for the combined
model when compared with the State estimator model for the
anomalous data.

In tables I and II, we have observed the values of perfor-
mance metrics for class-wise data. In table III, we can see the
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TABLE II
ANOMALY DETECTION METRICS FOR COMBINED MODEL

Class Accuracy Precision Recall f1-score
Normal 99.98 99.99 99.99 99.99

Anomalies 96.59 99.99 97.00 98.00

values of performance metrics for the overall dataset for both
state estimator and combined models. We have included this
table to make an easy comparison between the performance of
the 2 anomaly detection models obtained from state estimator
and data driven physics based methods. From table III, it is
evident that the proposed Data driven physics based model
performs better than the state estimator model in detecting
whether a given measurement is anomalous or normal.

TABLE III
PERFORMANCE RESULTS: COMPARISON OF DIFFERENT METHODOLOGIES

FOR OVERALL TEST DATA

Method Accuracy Precision Recall f1-score
State Estimator 95.62 98.00 96.00 96.00

Combined Model 99.81 99.99 99.99 99.99

VI. CONCLUSION

This paper presents a new Chi-squared test for the detection
of gross errors in power system measurements. Gross errors
come from many sources in power systems, including FDI
attacks as the grid becomes more digital as a SG. The new
Chi-squared test combines information from the classical WLS
SE residual vales and the Machine Learning RX Anomaly De-
tection Mahalanobis distance values. The error detection test
results show that this Data-driven and Physics-based combined
solution improves the performance of the detection of errors
in the measurement set for multiple metrics, especially the
f1-score, which is an important metric in anomaly detection
problems. The combination of data-driven and physics-based
solutions in power systems is critical to the future success of
the SG and this paper presents a successful application of both
solutions that will lead to other advances in the security and
reliability of the SG.

In our previous work [15], we proposed an hybrid dis-
tributed and decentralized software-defined networking ar-
chitecture for monitoring SG’s network communications and
physical data measurements for anomalous behavior. For
future work we plan to integrate the produced data-driven
physics model with the described SDN architecture to for-
mulate a 3-layered cyber-security system for SGs.
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