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Abstract—With the rapid advances in the infrastructure of
power networks, modern power systems have become vulnerable
to cyber-attacks. An attacker can mislead the operators in
power system control centers by introducing malicious data that
affect the outputs of the state estimator which turn disrupts
in the operation and control functions of many power system
applications. Hence, an accurate and fast algorithm for detecting,
identifying and correcting malicious data injection attacks is
crucial to prevent catastrophic failures in power systems. This
paper presents further contributions to power system real-time
monitoring in the presence of a malicious data injection attacks.
State of the art solutions consider either measurement or param-
eter is free of error when estimating the state variables, such as
complex voltages. However, malicious data in measurements and
parameters can be injected simultaneously and such assumption
does not provide an accurate solution. In this work, a relaxed
model strategy is proposed to handle such simultaneous data
attack. The framework of measurement gross error analysis
is deployed in processing and analyzing attacks. Chi-square
x? Hypothesis Testing applied to the normalized composed
measurement error (CME") is considered for detecting cyber-
attacks. The property of largest normalized error test is used
for identifying malicious data injection. The correction of cyber-
attack considers the type of attack and the composed normalized
error (C N E) in a relaxed model strategy that takes into account
the effect of the measurement in error when correcting the
attacked parameter. The proposed model is validated on IEEE
14-bus system.

Index Terms—Smart grid, malicious data injection, state esti-
mation, parameter error, weighted least square

I. INTRODUCTION

The control and operation of modern power systems are
becoming more complex due to the advancements in sensors
and communication networks. The gradual developments in
the power system’s infrastructure enhances the automation
level which in turn results in a reliable electricity supply.
However, the underlying cyber-systems, which support the
reliability of supplied power, need to have countermeasures
against the pervasive application of information technologies
in order to ensure the safety and economy of power system
operations.

Cyber physical security of power systems has become a
crucial concern for the future of real-time operation. State
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estimation in the control center is of utmost importance to
be protected against cyber-attacks. In fact, an inaccurate state
estimator solution cannot operate with the new cyber physical
security demands for real-time system operation. Such estima-
tor can lead to convergence issues which was considered as
one of the several factors that lead to the catastrophic failures
of the 2003 Northeast blackout in the U.S [1]. Therefore,
continuous development of power systems state estimators is
vital to keep the grid operation secure. This paper pertains to
the development of state estimation in regards to a defense
strategy against false data injection attacks.

In the paper by Liu [2] .it is shown that it is possible
for a hacker to inject malicious data in Weighted Least
Squares (WLS) state estimation and not become detected by
classical residual based gross analysis solutions. In [3], an
algorithm is proposed to strategically allocate secure phasor
measurement units (PMUs) at key buses in the network to
defend against false data injection attacks on measurements.
In [4], an algorithm which is based on monitoring variance in
equivalent impedance of transmission line is developed to face
the problem of how to detect and allocate manipulation attacks
in PMU data. In [5], the cyber-attack tests from the perspective
of the attackers is considered. A schematic explanation of how
cyber-attack analysis works in power system state estimation
and algorithm to solve security problems in state estimation
are addressed in [6].

However, [7], [8] and the aforementioned papers considered
only the manipulation data attacks through the measurement
residual analytics which is only one component of the error as
demonstrated in [9]-[11]. In previous work by Bretas [11], au-
thors proposed the concept of Innovation Index and presented a
new algorithm to test malicious injection data in measurements
which have significant effects on state estimation. In this
method, one can find the masked error, undetectable error,
in the Jacobian range space which is not reflected through
the residual. Malicious attacks on static data in topology, i.e.
the network parameters, is another source of concern in state
estimation. The work in [12], [13] investigated the presence of
cyber-attacks in the topology of grid network. [13] presented
a relaxed model to correct measurements and parameters that
are being attacked simultaneously. One can see that parameter
errors can be accurately corrected via the relaxed model in [13]
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if enough iterations are performed for the correction process.

In this paper, a new contribution to the relaxed model
proposed in [13] is presented. Specifically, the relaxed model
in [13] does not consider the effect of the measurement in
error when correcting the attacked parameter. This may lead
to necessary high iterations number for convergence. The
presented model incorporates such effect. Since the relaxed
model is an iterative based solution, the number of operations
for correcting the errors in measurements and/or parameters
can be thus greatly reduced. In the power system industry, the
process of state estimation usually takes 3 to 10 seconds to
converge. Further, state estimation is reported to run as fast as
every 10 seconds. Thus, if one would consider simultaneous
malicious data attacks, the necessary time for convergence
would logically increase, creating an upper bound limit for
state estimation runs. Therefore, a faster solution is vital for
cyber secure real-time monitoring. Validation is carried out
using the IEEE 14-bus system. The case study shows that by
using the presented model, one can reach the accurate solution
faster than the state of the art [13].

The remainder of this paper is organized as follows. Section
II presents a summary of the state estimation with Innovation
Index. Section III presents the relaxed model strategy for cor-
recting simultaneous attacks on measurements and parameters.
A case study and test results discussion are presented in section
IV. The conclusion of this work is presented in Section V.

II. STATE ESTIMATION WITH INNOVATION INDEX

The power system with n buses and m measurements is
modeled as a set of non-linear algebraic equations as follow
[14]:

z=h(z)+e (1)

Where z € R™ is the measurement vector, © € RY is the
state variables vector, h(z) : RY — R™ (m > N), is a
non-linear differentiable function that relates the states to the
measurements, e is the measurement error vector assumed
with zero mean, the standard deviation o and having Gaussian
probability distribution, and N = 2n — 1 is the number of
unknown state variables.

Weighted least squares is a classical state estimator that
search for the best estimates of the states x of the well-known
problem that minimizes the cost function as follow:

J(@) = ||z = h(@) |31 = [z = h(@)] "R~ [z = h(z)]  (2)

where R is the measurement covariance matrix. J(x) index
is geometrically a norm in the measurements vector space
R™. Let & be the solution of the aforementioned minimization
problem, then the estimated measurement vector is 2 = h(Z).
The residual is defined as the difference between Z and z,
which means » = z — 2. Linearizing (1) at a certain operating
point z* yields the following:

Nz=HAzx+e 3)

where H = % is the Jacobian matrix of h calculated at the

point z*. Az = z — h(z*) = z — 2* and Az = x — x™* are the

correction of measurement and state vector respectively. Under
observability condition for the system in (3), i.e rank(H) =
N, the vector space of measurements can be decomposed into
two sub-spaces that are orthogonal to each other as follow:

R™ = R(H) ® [R(H)]" )

where R(H) is the range space of H and it is a N dimensional
sub-space vector that belongs to R™ while R(H)t is the
orthogonal complement.

The state estimation can be formulated as a projection. Let
K be a linear operator such that AZ = K A z and the
residual vector r = Az — AZ. Then, the vector AZ = HA T
is orthogonal to the residual vector r, since K projects the
measurement vector mismatch Az orthogonally in the range
space of H. Equivalently,

<Nzr>=HADTR Y Az—HAZ)=0 (5
Solving (5) for AZ, one can obtain the following:
At =(H'RT'H)'H'R™ ' A 2 (6)

In other words, the projection matrix K is the idempotent
matrix that has the following expression:

K=HH'R'H)"'HTR™! (7)

The geometrical position of the measurement error in re-
lation to the range space of H provides another way of
interpreting the state estimation. Hence, as the measurements’
vector can be decomposed into two subspaces as in (4), it is
possible to decompose the measurement error vector into two
components as follow:

e=Ke+(I—-K)e (8)
ey ep

The component ep is the detectable error which is the residual
in the classical model while the component ey is the unde-
tectable error. ep is in the orthogonal space to the range space
of Jacobian whereas ey is hidden in the Jacobian space.

lell” = llenll* + lleu® 9

The error vector in (9) is called Composed Measurement
Error (CM E). In order to quantify the undetectable error, the
Innovation Index (/1) is introduced [10] and is presented in
the following:

lenll _ vI—Fi
levl v

Low Innovation index means there is a large component of
error that is not reflected from residual. Therefore, the residual
will be very small even if there is a gross error. By using (9)

and (10), the composed measurement error can be expressed
in terms of the residual and the innovation index as follow:

1
CME; =r; | (/14 —

II; =

(10)

(1)
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If normalized residual is used instead, one can obtain Com-
posed Normalized Error (CN F) as follow:

1
CNE; =N [ [1+ —

Where rY is the normalized residual of meaurement i. Oth-
erwise, CM E can be normalized as follow:

T 1
CMEN = 2 14+ —

where o; is the standard deviation for measurement .

(12)

(13)

III. RELAXED MODEL STRATEGY

It is believed that an attacker can introduce data in the
state estimator through measurements or network parameters.
Meanwhile, malicious data can be injected simultaneously in
measurements as well as the parameters of the grid model. The
work in [13] proposed a methodology to deal with such attack.
The method relaxes the model of the simultaneous attacks
to measurements and parameters by considering initially that
measurements are without errors. Then, one can estimate the
system state, 2", considering p”, through the iterative solution
of the the model 2" = h(z™). After convergence, an estimate
of the corrected parameters p"*! are obtained through the
Taylor series expansion of the model z™ = h(z",p").The
obtained estimated parameters, p"*1, which are considered to
be without errors, are used in the state estimation to estimate
the new states z™t!, and then a new measurements 2”1
are obtained through the correction of the measurements in
errors using their C N E. From the new measurements, 2L
and the new states z"T!, a new set of parameters p"t2
can be estimated through the Taylor series expansion of the
model 2"t = h(z™ ! p™*1). The process continues until a
convergence is achieved.

Since the relaxed model is solved iteratively, normally it
takes several iterations to correct the parameter in error to
reach an accurate value (1% approximation error). However,
an extra step in correcting the parameter will cost several
iterations to reach convergence. Therefore, a faster solution
will be reached if the effect of the parameters in error to the
estimated measurement values is considered in the correction
process of attacked parameters. Hence, the extended relaxed
model in this paper considers such effect in which the number
of operations for correcting parameters is reduced. To illustrate
the effect of parameter errors in the measurement correction,
consider the residual vector in its normalized form to be as
follow:

PN (14)
VSR
where S is the sensitivity matrix and is given by the following
expression:

S=I-K (15)

where K is the projection matrix as in (7). By substituting
(15) for measurement ¢ into (14), and using the result of the

substitution with the equation (10) into (12), one can write the
composed normalized error for measurement ¢ to be as follow:

CNE; — T _ zi — hi(z, p)
kii)o

(1 —kii)o; (1- (16)

By expanding the model z; = h;(x,p) using Taylor series
expansion, one can get the following:
Oh;(x,
Ip
where Ap is the parameter error. From (17), the parameter
error can be calculated to be as follow:

zi = hiy 17)

zi —hig

Ap =
Hpo

(18)
where H, o is the Jacobian of parameters. It is important
to note that the quantities in (18) are all known. By using
the model in (17) for the residual into (16), the composed
normalized error for measurement ¢ can be written in the
following form:

i = [hu(w) + 2422 A p)
(1 — kii)O' i

where Ap is the parameter error calculated through Taylor

series. Since CNFE is used for correcting measurements in

error, one can see through (19) that the total effect of the
parameter on measurement is:

CONE; = (19)

Ohi(z.p) A P

Total Effect = — 2

If Total Effect in (20) is normalized, then one can get the
coefficient of masked error in the parameter correction to be:

—ki;

)
= = —ky
( 1—1147“ )
Through this coefficient and (8), (10) and (12), one can get
the deviation of h caused by the parameter in error to be as

follow: A

—kii
Then, one can calculate the masked parameter error through
the projection from Ah to Ap by using (17):

Coefficient of masked error = 201

(22)

Apo
ANp= ——r— 23
D i, o (23)
Therefore, the total correction is:
CPE=AAp+/Ap (24)

where CPE is Composed Parameter Error. Therefore, if the
attacked parameters are corrected considering C'PE in (24)
rather than Ap alone [13], a faster solution can be reached.

Errors can be injected into measurements and/or parameters.
In the case of a measurement cyber-attack, the correction of
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the erroneous measurement value is performed by applying
the following equation:

Zc = ZlE — CNEiO'i

K2

(25)

where zzc is the corrected measurement, zlE is the measure-

ment with error, C N F; is the one that is obtained using (12),
and o; is the standard deviation of the measurement. However,
if the attack is characterized as a parameter attack, then the
affected parameter is corrected first using equation (18) and
then a second correction is performed using equation (24) in
order to take into account the effect of the attacked parameters
on measurements. If measurements and parameters are free of
errors, then no attack is present. Hence, the detection routine
will not flag. The flowchart of the presented algorithm is
shown in Fig. 1.

N nn@

Read Input Data
( Network Parameters with a set of measurem ents)
and Perform WL S

Compute

£, K ITLCMEY

Perform the gross error detection by applying the
Chi Square Test to CME*

Is objective
tion J(x) > C7

Build a descending list of m easurements based on
the CME" value

Is there amy isolated

measurem ent with
CME™

above the threshold?

Correct the
measurem et using

(23)

Perform the param eter and the m easurem ent
correction through the relaxed model strategy.
Correct the measurem ent using (23) and the
parameter using (18)

Perform the proposed
second correction
maodel {24)

End

Fig. 1. The flowchart of the algorithm

IV. CASE STUDY

The proposed methodology is validated using the IEEE 14-
bus system. In this paper, a set of 107 measurements obtained
from MATPOWER [15] are considered, which lead to the GRL
(Global Redundancy Level) of 3.96. The system topology and
parameters are found in [16]. For the next tables, the following
nomenclature is used: P : a, @ : a are real and reactive power
injection at bus a respectively; P : a — b, () : a — b are real
and reactive power flow from bus a to bus b respectively; gq,—p
the series conductance of the line between bus a and bus b;
b,—p and bgfj , are the series and shunt susceptance of the line
between bus a and bus b respectively. In the following, two
scenarios of malicious data attacks are presented.

A. Attack Scenario 1

In this scenario, a cyber-attack is simulated by adding (-
10%) to the series and shunt parameter of the line 06 — 13.
The data base values of gog_13, bog—13 and bgg,m are 3.0989,
—6.1028 and O respectively. The results are presented in
TABLE 1. From TABLE I, one can see that the objective
function J(x) is 567.3243 ,which is higher than C' ,the value
that is obtained from x? distribution using df = m = 107
and confidence probability level of 0.95. Therefore, the attack
is detected through the Chi square test. For identification,
the list of the composed measurement error in normalized
form, i.e. CMEYN, for all measurements is obtained in a
descending order based on their absolute values. Considering
space limitations, only part of the CMEY list is presented,
which is the part of interest. One can see from the list that the
CMEY absolute value of Q15 is above the threshold value
($=3) and is the largest among other suspicious measurements.
At the same time, the other measurements related to the line
06 — 13, i.e P13, Pog_13, Qos—13 and Pyg, are also above the
threshold value (3. Therefore, this situation characterizes a
parameter cyber-attack in the line 06 — 13 since the error is
spread out on the function h(z). For the correction process,
the suspicious parameters of this line were corrected in two
ways :

1) Using Ap in relaxed model strategy [13].
2) Using C'PFE as presented in (24).

For comparison purposes, the corrected values of the pa-
rameters in error using the relaxed model strategy in [13],
named as (method 1) for reference, are presented in TABLE
IT while TABLE III presents the corrected values using the
presented model, named as (method 2). By inspecting the
corrected values of the suspicious parameters in each time
step of the correction process, the presented model, method 2,
obtained more accurate correction than the one obtained from
method 1. In other words, method 2 resulted in a 0.0540%
approximation error, after second correction, while method 1
obtained 0.1258% approximation error in the third correction
step. One can conclude that a faster and at the same time more
accurate solution is obtained using the presented model in this

paper.
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TABLE I
PROCESSING CYBER-ATTACKS
Processing Measurement Cyber-Attack Step 1
J(x) = 567.3243 > C = 132.14 Attack Detected!
CMEN Descending List
Measurement II CMEN CNE
Q:13 0.8397 10.2908 16.0026
P : 06 1.2717 9.0702 15.0637
Q:06—13 3.8199 8.1708 8.4461
P:06—13 3.7055 7.8430 8.1236
P:05 0.1791 5.0185 28.4605
P:13 1.7892 4.1095 4.7079
P:06—12 27976 | -3.0920 -3.2836
TABLE II

CORRECTED PARAMETERS USING THE MODEL IN [13]

Parameter correction
Parameter First correction Second correction Third correction
(Approx. error %) (Approx. error %) (Approx. error %)
9o6—13 3.0277 (2.2975 %) 3.0820 (0.5456 %) 3.0950 (0.1258 %)
bos—13 -5.9625 (2.2975 %) | -6.0695 (0.5456 %) | -6.0951 (0.1258 %)
582_13 0 0 0

TABLE III
CORRECTED PARAMETERS USING THE PRESENTED MODEL

TABLE IV
PROCESSING CYBER-ATTACKS

Processing Measurement Cyber-Attack Step 1
J(x) = 918.7029 > C = 132.14 Attack Detected!
CMEN Descending List
Measurement II CMEN CNE
P:03—-04 1.6150 | 12.4870 14.6870
Q:03—-04 2.1491 12.2349 13.4836
P :04—-03 2.0175 8.8496 9.8770
Q:02-03 0.9564 6.7753 9.8025

Q:04 0.4162 | -6.6930 | -17.4168
Q:04—-03 3.2032 | -4.2339 -4.4354
P :07—-09 1.7252 4.4202 5.1091

P:04 1.2461 4.0893 5.2432

in TABLE VI. A 20% error is a very high-value parameter
cyber-attack. However, the purpose is to show the advantage
of the presented method. From TABLE V, the error in the
parameter after three operations of correction which means
30 iterations is still 1.1501%. However, the presented model,
which obtained the results in TABLE VI, requires only 2
operations of correction to get nearly the same results as
method 1. If the proposed method is extended for 3 times
correction as method 1 by changing the convergence criteria,
the approximation would be below 0.01%.

TABLE V
CORRECTED PARAMETERS USING THE MODEL IN [13]

Parameter correction
Parameter First correction Second correction Third correction
(Approx. error %) (Approx. error %) (Approx. error %)
9go6—13 3.1369 (1.2256 %) 3.0937 (0.0540 %) 3.0993 (0.0098 %)
bos—13 -6.0341 (1.2256 %) | -6.0995 (0.0540 %) | -6.1034 (0.0098 %)
bi6_13 0 0 0

B. Attack Scenario 11

For this scenario, a cyber-attack is simulated by adding (-
20%) to the series and shunt parameter of Line 03 — 04.A
cyber-attack of magnitude 5 o is added to the measurement
of the real power flow between bus 7 and bus 8, i.e, P :
07 — 09 = 0.2808. The data base values of gg3_g4, bo3—04
and bgh_ 4 are 1.9860, —5.0688 and 0.0064 respectively. The
result of this case is shown in TABLE IV. For attack detection,
one can see that objective function J(z) is 918.7029, which
is higher than the threshold value C. Thus, a data attack in
the system is detected. For identification, a descending list
of the CMEYN for all measurements is tabulated. Several
measurements related to line 03 — 04 have an absolute value
of CM EYN above the threshold value 3, which again charac-
terizes a parameter cyber-attack. In the correction stage, the
parameters of the suspicious line are corrected using the same
methods as presented in scenario L.

For comparison, the results using method 1 is presented
in TABLE V whereas the ones using method 2 is shown

Parameter correction
Parameter First correction Second correction Third correction
(Approx. error %) (Approx. error %) (Approx. error %)
90304 2.1452 (8.0196 %) | 2.0470 (3.0717 %) | 2.0088 (1.1501 %)
bos—04 -5.4753 (8.0196 %) | -5.2245 (3.0717 %) | -5.1271 (1.1501 %)
bk o4 0.0069 (7.8125 %) | 0.0066 (3.1250 %) | 0.0065 (1.5625 %)

TABLE VI
CORRECTED PARAMETERS USING THE PRESENTED MODEL

Parameter correction
Parameter First correction Second correction Third correction
(Approx. error %) (Approx. error %) (Approx. error %)
90304 2.1008 (5.7804 %) 2.0149 (1.4551 %) 1.9928 (0.0100 %)
boz—o04 -5.3619 (5.7804 %) | -5.1426 (1.4551 %) | -5.0862 (0.0100 %)
bk o4 0.0067 (4.6875 %) | 0.0065 (1.5625 %) 0.0064 (0 %)

After correcting the parameter in attack using method 2 and
re-running the state estimator, another cyber-attack is detected.
The result is shown in TABLE VII. As seen, the only C M EN
value (absolute value) above the threshold is the real power
flow of the line 07 — 09. Therefore, the measurement FPy7_g9
is in error. The correction of measurements as shown in the
flowchart is performed using their C N E values. The approx-
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TABLE VII
PROCESSING CYBER-ATTACKS, FIRST STEP.

Processing Measurement Cyber-Attack Step 1
J(x) = 145.6037 > C = 132.14 Attack Detected!
CMEN Descending List
CMEN
4.3327

CNE
5.0081

Measurement II
P :07—-09 1.668

imate error after correction is found to be 0.0769%. After re-
running the state estimator again, no C'M EN value is found
to be above the threshold. Therefore, both the measurement
and the parameter in error are corrected.

From scenario I and scenario II, one can see that the
presented method is able to detect, identify and correct si-
multaneous cyber-attacks associated with measurements and
parameters. Besides, an accurate correction of errors and faster
solution were obtained by using C'PE for correcting the
parameter in error. In addition to the cases in I and II, several
scenarios were simulated and the presented model in this
paper, i.e., method 2, on average saves 1/5 to 1/3 of operation
time compared to the model presented in [13]. In TABLE VIII,
statistics for other cases are presented for comparison purposes
between the model in [13], method 1, and the presented model
in this paper, method 2. As one can see, correcting parameters
using CPFE in (24) rather than Ap in (18) alone requires
less operations than the model in [13] while providing a
best estimate. For instance, when 20% error is added to the
parameters of the line 06 —11, method 2 outperformed method
1, since the approximation error is found to be less than 1%
after two operations.

TABLE VIII
OTHER CASES FOR COMPARISON
Parameter Correction
Line Method First correction Second correction Third correction
Approx. error in % | Approx. error in % | Approx. error in %
1 5.0707 1.2017 0.2784
06 — 11
(20% error added) 2 3.2119 0.3859
1 6.6567 2.4427 0.9203
09 — 10
(-20% error added) 2 3.5888 0.9194
1 4.1002 1.1006 0.2277
09 — 14
(-20% error added) 2 2.4264 0.4291

V. CONCLUSIONS

This paper presented a methodology for malicious data
injection attacks detection, identification and correction. It
presents a model to the masked parameter error via the effect
of parameter error on the measurement. Second time correction
equation, i.e equation (24), is proposed to efficiently deal
with a malicious cyber-attack on a parameter. In this method,
detection for error is based on chi square test of the composed
measurement error, identification is based on Generalized
Largest Normalized error test, correction of measurement is
implemented using composed normalized error, and correction

of parameter is based on the relaxed strategy using CPE
presented in this paper. The major advantage of the proposed
method is that one can save on average 1/5 to 1/3 of the time
to process the correction stage for parameter in error.
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