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Abstract— Recently false data injection attacks have defined a 
new class of gross errors in power system state estimation (SE). 
Considering that malicious intrusions can be launched on 
measurements, power system topology, transmission line 
parameters data, or even a simultaneous combination of them, it is 
very important to diagnosis the state estimator input data (SEID) to 
provide a proper defense. In the literature, this theme is seldom 
evaluated and strong assumptions are made on such approaches. In 
this paper the defense of the SEID against a false data injection 
using an incremental learning support vector machine (ILSVM) is 
presented. The proposed incremental learning algorithm adjusts, in 
real time, the SVM net with a fast re-training, aiming to evolve its 
network just as the cyber-attacks injection can do.  A Monte Carlo 
simulation is used as reference considering different test scenarios 
in the IEEE 14-bus test system.  

Index Terms— False data injection, Incremental learning 
support vector machine, State estimation. 

I. INTRODUCTION 

Data communication through the internet has lot of 
advantages, but inherently it increases the risk of exposure to 
cyber threats. . Cyber-attacks are a reality in smart grids. Most 
recently a cyber-attack in a power grid in Ukraine left about 
225,000 customers without electricity [1]. Therefore, cyber 
security becomes a crucial resource to ensure the integrity and 
resilience of smart grid operations. In [2] is shown that a 
malicious attack in measurements set data is able to bypass 
classical bad data detection algorithms. In [3], similar result is 
obtained to malicious attacks in network data. Based on these 
considerations many studies have been made to analyze the 
power system vulnerabilities and countermeasures to cyber-
attacks [2]-[9].  

Power systems state estimation has three inputs data type, 
measurements, power system topology and transmission line 
parameters data. The false data injection (FDI) can be launched 
in any one or in both of them. Naturally, the more information 
one has about the possible cyber-attack the more efficient the 
countermeasure can be. A possible countermeasure against 
cyber-attack is to eliminate or correct the measurements where 

the cyber-attack occurred. This procedure is effective only if the 
cyber-attack is launched in measurements data, because the 
largest normalized residual test can be applied to identify the 
measurement with gross errors (GE) [2]. Therefore, to correct the 
proper input data under attack, it is necessary the correct and 
accurate detection and identification of the attack. In the 
literature, this theme is seldom evaluated. For that purpose, 
schemes based on the error [10] or the residual characteristic as 
well as on the Lagrange multipliers are used [11]-[14]. Strong 
assumptions are made on such approaches, as the need of high 
local redundancy and that the detection is only considered when 
just one specific attack type exists. 

In the classical bad data detection, topological errors 
identification is usually based on the generalized state estimator 
[11]-[14]. The correction is performed modifying the status of the 
closest breaker/switch (on/off) from the branch identified with 
topological error. Therefore, the status of breaker/switch is 
considered as a source of the possible power system topological 
error. On the other hand, when a cyber-attack is launched on 
power system topology an exclusion/insertion/transference of a 
branch occurs directly on the branch line data instead on 
breaker/switches status. In this case, only the changing of status 
on breaker/switch will not correct the power system topology. 
Considering that the strategies of false data injection in state 
estimation inputs data can adapt and evolve overtime, it is very 
significant that the proposed defense solution has an on-line 
learning mechanism to face these issues. 

More recently, using topological and geometrical approaches 
[10], [15]–[18], proposed solutions to compose the measurement 
error and then correct the measurement magnitudes for those 
measurements identified as containing a gross error. The 
simulations reported in these papers have shown many situations 
where the classical state estimation fails in the gross error 
detection as well as in the identification test but, using the 
composed measurement error proposal, besides detecting and 
identifying the measurements with gross errors correctly, it was 
able to estimate the measurement’s errors and made the 
measurement’s correction in an accurate way. 
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In this paper a FDI attack detection and identification 
methodology, based on ILSVM, are presented. The paper main 
contributions are: (a) a geometrical view of state estimation is 
used to convert the measurement residuals to the errors, 
improving the classical bad data detection, even on areas with 
low local measurement redundancy; b) the SE data base under 
FDI is identified accurately by a SVM approach; c) an 
incremental Learning SVM for real-time learning is proposed. 
This approach aims to acquire new knowledge from possible new 
strategies of intruders to bypass the FDI detector. 

II. INNOVATION CONCEPT 

In classical weighted least squared (WLS) estimator, 
considering the power system modeled as a set of non-linear 
equations [19]-[20], the objective is to find the best estimative for 
the N-dimensional estimated state vector ݔො, which minimizes the 
cost function J(x): 

ݖ  = ℎ(ݔ) + ݁ (1) 
 

(ݔ)ܬ  = ݖ] − ℎ(ݔ)]்ܹ[ݖ − ℎ(ݔ)] (2) 
where x is the state vector, ݖ	 ∈ 	ℝே  is the measurement 

vector, N is the number of unknown state variables, ℎ:	ℝே → ℝ௠ 
is a continuous nonlinear differentiable function, m is the number 
of measurements, e is the error vector assumed with zero mean 
and Gaussian probability distribution and W is the weighted 
matrix. The solution of the afore-mentioned minimization 
problem is obtained through the linearization of (2). At a certain 
operation point, yields, 

 Δݖ = ݔΔܪ + ݁ (3) 

Where H is the matrix of first derivatives of the nonlinear 
functions of vector h(x), known as the Jacobian, calculated at the 
point represented by the vector of estimated state variables. 

Therefore, the solution can be obtained by: 

௞ݔ∆  =  ௞ (4)ݖ∆்ܹܪଵି[ܪ்ܹܪ]

The iterative process starts from an initial state vector and, at 
each iteration k; the corrections in the state variables ∆ݔ௞ are 
obtained using (4). The vector of state variables update until a 
stopping criterion is satisfied. 

This work is based on Innovation concept introduced by [10], 
[15]-[18]. This method is just briefly brought the concept and the 
formulation here. If the system described by (1) and (2) is 
observable, then the vector space of measurements Rm can be 
decomposed into a direct sum of two vector subspaces, 

 ܴ௠ =  (5) ୄ(ܪ)ܴ⨁(ܪ)ܴ

in which the range space of H is an N-dimensional vector 
subspace into Rm and ܴ(ܪ)ୄ is its orthogonal complement. 

In the linear state estimation formulation, the solution of (3) 
can be understood as a projection of the measurement vector 

mismatch Δz onto R(H). In [16] is defined the linear operator P 
that performs this projection, as follows: 

 ܲ =  (6) . ்ܹܪଵି[ܪ்ܹܪ]ܪ

Based on (5) and (6), the linear formulation of the state 
estimation can be used to decompose the measurement error 
vector e into two parts: the detectable and the undetectable 
components. The detectable component is the residual 
measurement vector and undetectable component is orthogonal 
the detectable component and calculated as follow: 

 ݁஽ = ܫ) − ܲ)݁. (7) 
 

 ݁௎ = ܲ݁. (8) 
 

 ‖݁௜‖ௐଶ = ‖݁஽௜‖ௐଶ + ‖݁௎௜‖ௐଶ  (9) 
In order to find the undetectable component and compose the 

measurement’s total error for ith measurement, it is used II: 

௜ܫܫ  = ‖௘ವ೔‖ೈ‖௘ೆ೔‖ೈ (10) 

A measurement with low Innovation Index (II) indicates that 
a large component of its error is not reflected in its residual as 
obtained by the classical WLS estimator. Consequently, even 
when those measurements have gross errors, their residuals will 
be relatively small. Based on (9) and (10) is possible to estimate 
the composed measurement error of the measurement i based on 
its standard deviation, as follow: 

 ‖݁௜‖ௐଶ = ‖݁஽௜‖ௐଶ + ቛ௘ವ೔ூூ೔ ቛௐଶ  

 ‖݁௜‖ௐ = ௜ேܧܯܥ = ‖݁஽௜‖ௐට1 + ଵூூ೔మ = ௥೔ఙ೔ ට1 + ଵூூ೔మ (11) 

Where ri is the residue of measurement i, σi is the standard 
deviation of the measurement i. 

In [10] is shown that Cyber-attack detection can be made 
through a Chi-square (χ2) Hypothesis Testing (HT) applied to the 
composed measurement error, where bad data will be suspect if: 

[ேܧܯܥ]்[ேܧܯܥ]  ≥ ߯௠,௣ଶ  (12) 

Where p is the detection confidence probability and m are the 
degrees of freedom. 

In [15] is considered that in the detection stage it does not 
matter how reliable a measurement is because it is assumed that 
all them may contain errors. Therefore, it is attributed weights to 
the measurements as described by (13): 

 ௜ܹ௜ = 1 ⁄ଶ(௜ݖ0.1)  (13) 
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III. PROPOSED ALGORITHM 

The algorithm describing the cyber-attack defense proposed 
in this paper is shown below. More details are shown in next 
subsections. 
(1) Collect input data; 
(2) Perform WLS and calculate II and CMEN; 
(3) Compute mean and standard deviation of CMEN and II; 
(4) Define X=[CMEN

mean IImean CMEN
STD IISTD]; 

(5) Classify X using ILSVM in: 0. no cyber-attack detected; 1. 
cyber-attack detected in real-time measurements data; 2. 
cyber-attack detected in line parameters data; 3. cyber-
attack detected in power system topology data and 4. cyber-
attack detected in simultaneous SEID.  

(6) If the incoming set is suspicious of being a data that will 
acquire new knowledge for current SVM model, re-trains 
the SVM model and go to step 5. In this case, the incoming 
set produces an upgrade of the FDI detector training data 
while retaining the previous knowledge learned; 

A. Data model 

In order to show that the results of ILSVM do not depend on 
meter locations, the measurement plan (MP) is generated 
considering two groups of measurements: default set of 
measurements (DSM) and probabilistic set of measurements 
(PSM). DSM is the set of measurements provided by meters 
installed in substation control house. PSM is the set of 
measurements obtained by Monte Carlo Simulation (MCS) 
between all possible meters in order to complete the 
measurement plan. The MCS sampling is built to determine 
randomly various measurement plans and, per case, 400 MCS 
samples are being generated. A MP is only considered eligible if 
the system is observable, otherwise, a new measurement plan is 
generated. 

The measurement values used in the tests from a load flow 
solution (zlf) were obtained. The standard deviation σ is given by 
σ = (pr*zfl)/3 where pr is the meter precision, equal to 4%. Every 
MP has an associated random noise, so that they vary from ±2σ 
of its original values.  

Eight groups of samples were generated to test ILSVM, 
named as: G0 - samples without false data injection; G1- samples 
with an associated random multiple measurement cyber-attack 
that vary from 4σ to 9σ applied in a group of one to five 
measurements chosen randomly; G2 - samples with an associated 
random parameter cyber-attack that vary the magnitudes of the 
transmission line series parameters from 20% to 80% applied in a 
group from 1 to 3 transmission lines (chosen randomly); G3 - 
samples considering an associated random exclusion/transference 
topological cyber-attack, where a line was excluded or 
transferred; G4 - samples considering simultaneous cyber-attack 
described in G1/G2; G5 - samples considering simultaneous 
cyber-attack described in G1/G3;  G6 - samples considering 
simultaneous cyber-attack described in G2/G3; and G7 - samples 
considering simultaneous cyber-attack described in G1/G2/G3. 

B. Train data 

In [15] is presented the proof that measurements errors are 
independent random variables having a Gaussian distribution 
with zero mean and known variance. Due to specific 
characteristic of II and CMEN for each SEID when under cyber-
attack, it is possible use them to distinguish one from the other. 
Based on this observation, the descriptive statistics mean and 
standard deviation of II and CMEN are used as training data for 
the algorithm. For illustration, the mean and standard deviation 
of II and CMEN was evaluated considering 1000 samples of each 
group described in section 3A. Fig. 1 and Fig. 2 summarize the 
mean and standard deviation of II and CMEN obtained for those 
groups. In these tests, the measurement plan considers 95 
measurements for IEEE 14 bus system. These results show that 
the mean and standard deviation of CMEN and II present different 
trends for each input data under cyber-attack, indicating they 
have potential as training data to identify the FDI point. 

 
Figure 1.  Mean and standard deviation of CME and II for G0, G1, G2 and G3. 

 

Figure 2.  Mean and standard deviation of CME and II for G4, G5 G6 and G7. 
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C. Incremental learning SVM 

SVM are a set of supervised learning methods used for 
analyzing patterns and classifying data [21]. SVMs seek to 
determine the optimization position of a linear hyperplane 
separator between binary data classes. The closest data points to 
the optimal hyperplane of each class are called Support Vectors 
(SVs). In situations where the data is not easily separable, SVM 
can use a soft margin, meaning a hyperplane that separates many, 
but not all data points. This process involves adding a non-
negative slack vector variable ξ and a tunable penalty parameter 
C. ξ is upper bound on number of training errors and C is a 
parameter that controls the trade-off between margin and training 
error. However, in many real-world problems, the boundary 
between categories is nonlinear, not being well separated by a 
linear separating hyperplane even using a soft margin. SVMs try 
to solve this problem applying kernel functions to map the 
dataset into a higher dimensional feature space and to become 
linear separable in that new space. 

Incremental learning algorithms SVM [22] search a 
continuous accommodation of new knowledge whenever new 
data becomes available (plasticity) but without forgetting the 
previously learned one (stability). A new model is generated 
when the incoming data set is considered a new knowledge for 
the current model. Several studies have focused on practical 
applications of online learning [23]-[25]. In essence, ILSVM 
takes advantage of an important property of SVM, i.e., the SVs 
form a succinct and sufficient set to ensure the same result as 
training on the complete example set that generate them. The 
algorithm proposed in [22] re-trains the SVM model using the 
current SVs and the new incoming instances considered as a new 
knowledge for the current model. Therefore, this re-training can 
be effective in accommodating the plasticity-stability in the new 
model and it is appropriate for on-line applications considering 
its low CPU time. The ILSVM is divided in two processes: off-
line and on-line.  

In the off-line process, large-scale data (thousands of 
samples) is used to train a multiclass SVM and generates the 
support vectors SV. The multiclass SVM approach is based on: 
one-versus-one coding design that defines k(k – 1)/2 SVM, where 
k is the number of unique class labels. In this work they are used 
five identification error classes: 0 - cyber-attack no detected, 1 - 
cyber-attack launched in measurement input data, 2 - cyber-
attack launched in parameter input data and 3 - cyber-attack 
launched in topology input data and 4 - cyber-attack launched in 
simultaneous input data; Error-correcting output codes (ECOC) 
model that reduces the problem of classification with three or 
more classes to a set of binary classifiers [22]. In this case is 
defined a coding matrix M ∈ {−1, 0, 1} where the zero value 
indicates that a particular class is not considered in the training 
phase of a particular classifier. This fact provides a higher 
number of possible dichotomies that create different decision 
boundaries, allowing more accurate results. This characteristic of 
ECOC is very important in cyber- attack detection because if a 

new class of attack arrives, then the algorithm is able to adjust its 
SVM model to classify it; and binary loss function decoding 
scheme that determines how the predictions of the binary 
classifiers are aggregated. When a new data is to be classified, 
that function aggregates the binary losses for all k(k – 1)/2 binary 
SVM, producing an average binary loss (ABL) per class. 
Therefore, an average binary loss vector (ABLV) is defined. The 
class with minimum average binary loss (MABL) is assigned to 
the new data. Using a result of ILSVM as an example, one 
sample with a cyber-attack launched in parameter input data 
(class error 2) produced  ABLV=[class 0: 1.5, class 1: 0.83, class 
2: 0.0, class 3: 1.0]. As expected, ILSVM assigned correctly the 
class error 2 (value zero).  

The on-line process tracks if the incoming set is suspicious of 
being a New Knowledge (NK) for current SVM model. This 
tracking is made based on ABLV. As mentioned above, MABL 
defines the class of the incoming set. If another value of ABLV is 
too close of MABL, implies in a high uncertain about which class 
the incoming set actually pertains. In this case, this incoming set 
is considered as suspicious of being a NK. To evaluate this issue 
is defined three variables: 

௫ܮܤܣ݀  = ௫ܮܤܣ| − ௬ܮܤܣ݀ |ܮܤܣܯ = หܮܤܣ௬ ௭ܮܤܣ݀ หܮܤܣܯ− = ௭ܮܤܣ| −  (14) |ܮܤܣܯ

where MABL is the smallest average binary loss, and ABLx, ABLy, 
and ABLz are the values of ABLV for the other classes.  

If any dABL < γ, the incoming set is considered suspicious of 
being a NK and it participates of the re-training with its 
identification output exchange. For instance, if an incoming set 
produces an output identification in class 1 (MABL) and dABL3< 
γ, the incoming set participates of the SVM re-training with its 
class exchanged to 3. The new SVM model and new SVs 
obtained after re-training replaces the current SVM model and 
SVs respectively. Considering that ILSVM re-trains the SVM 
model using only the current SVs and NK, it is possible that one 
class presents more NK candidates than other one. This situation 
can increment more one class than other one, conducting the 
SVM model for a catastrophic forgetting [22]. In order to avoid 
this issue, a minimum training set is generated in the off-line 
process to participate in re-training process. The large-scale data 
used in the off-line process is divided in n data sets and every 
data set is trained in the SVM. The union of SVs obtained in 
every training form the minimum training set. The size of 
minimum training set range of 3 a 5% of the size of the large-
scale data, depending of the number n of data sets chosen. The 
smaller the value of γ the rarer is the incoming set event. 
According to the experiments developing in this work, γ was 
defined as 0.02.  
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IV. NUMERIC TESTS 

1000 samples of each cyber-attack group (G0-G7) are used as 
train data. All results reported are based on the expected value 
(mean) of each variable aggregated from MCS. The proposed 
algorithm is tested for 160000 cyber-attack samples with 20000 
samples for each cyber-attack group. A Multilayer perceptron 
(MLP) is used as a benchmark. The IEEE-14 bus system is 
trained considering measurement plans with 95 measurements 
(DSM: active and reactive power injection and voltage 
magnitude in bus 1; PSM: 92 measurements defined by MCS 
considering a normal distribution function of active and reactive 
power injection and power flow). In Table I is reported the 
accuracy of the cyber-attack detection proposed in this work 
compared with classical largest normalized residual test detection 
(LNRT) and the detection proposed in [10]. Table I also reports 
the number of false positives and false negatives in the set of 
incorrectly classified cases The results reported in Table I show 
that the proposed cyber-attack detection identifies the features of 
the false data injection in a more appropriate way than the other 
methods. 

TABLE I.   ACCURACY OF THE CYBER-ATTACK DETECTION. 

Cyber-attack 
detection 

Accuracy of 
detection  

False 
positive 

False 
Negative 

Proposed algorithm 97.4% 14,7% 85,7%
Proposed in [10] 89.7 % 11,5% 88,5%
Classical LNRT 77.3% 6,7% 92,3%

 

The accuracy of the proposed algorithm even with loss of at 
least 10% of meters along the power system is verified in Table 
II. These meters are chosen randomly among ones that do not 
undermine the observability of the system. The accuracy of 
proposed algorithm considering a power system reconfiguration 
is verified in Table III. In this case, the trained network is based 
on the former configuration. The results show that the proposed 
algorithm continues accurately detecting and identifying the false 
data injection. In relation to machine learning algorithm applied, 
the results show that SVM algorithm has higher generalization 
and better nonlinear modelling capability than MLP algorithm. 
Besides that, the MLP depends strongly on its initial weight and 
bias values. Therefore, to ensure that a neural network of good 
accuracy has been found, it is necessary to retrain several times. 

TABLE II.  ILSVM X MLP CONSIDERING POSSIBLE LOSS OF METERS. 

Meters 
available 

ILSVM accuracy MLP accuracy 

M (%) P (%) T (%) M (%) P (%) T (%) 
95 100.00 99.75 100.00 100.00 99.242 99.948 
93 100.00 99.73 100.00 100.00 99.272 99.762 

91 100.00 99.67 100.00 100.00 99.372 99.938 
89 100.00 99.62 100.00 100.00 99.45 99.832 
87 100.00 99.72 100.00 100.00 99.24 99.498 

85 100.00 99.67 100.00 100.00 99.326 99.228 

M- Measurements data; P- Parameter data; T- Topology data 

In [10] an analytical method to identify the cyber-attack 
injection on state estimator input data is presented. This method 
assumes that at least one power injection of all buses and at least 
one power flow of all branches of the power system compose the 
measurement plan, but such a scenario cannot be granted. 
ILSVM algorithm identification does not depend of the location 
of the meters, but the measurement errors. Comparing the 
analytical method proposed in [10] for cyber-attack identification 
with the proposed algorithm, on average, the analytical method 
identified accurately just 22.3% the input data corrupted by a 
cyber-attack, against 99.6 % obtained by the proposed algorithm. 
The analytical method has a low accuracy because all 
measurements plans used in this work are generated randomly by 
MCS, therefore, they do not guarantee a favorable scenario for it.  

To analyze the effectiveness of ILSVM, the experiment was 
designed for two situations: (i) the SVM model without 
incremental learning and (ii) the SVM model with incremental 
learning (ILSVM). The SVM model is the same in both 
situations. The same incoming sets with and without SEID under 
cyber-attacks was used in both cases and the results are shown in 
Fig. 3. The rate of prediction accuracy in ILSVM increased at 
least in 10% per class. These results show that the incremental 
update ensure more robust classification performance.  

TABLE III.  ILSVM X MLP CONSIDERING RECONFIGURATION. 

Reconfiguration ILSVM accuracy (%) MLP accuracy (%) 
M  P  T M P  T  

No one 100 99.8 100 100 99.3 99.9 

L Trans 13–14 → 11-14 100 99.8 100 100 99.5 99.4 

L Elim 10-14 100 99.8 100 100 99.5 99.2 

L Trans 4–5 → 3-5  100 99.7 100 100 99.5 99.1 

L Elim 2-5 100 99.8 100 100 99.3 99.3 

M- Measurements data; P- Parameter data; T- Topology data 

 

 

Figure 3.  Number of incorrect identification obtained by SVM and ILSVM. 
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V. CONCLUSIONS 

This research presents a cyber-attack FDI diagnostic system 
based on an innovation index and an incremental learning 
support vector machine. Descriptive statistics mean and standard 
deviation from variables derived of the innovation index were 
used as incoming sets to train the ILSVM. The method is able to 
detect, identify and correct malicious data attacks in smart grids. 
ILSVM considers potential cyber-attacks on measurements, 
parameters, topology or combination. In order to illustrate the 
performance of the algorithm, several experiments using IEEE-
14-bus system were conducted. Results showed that the 
innovation index is a better parameter to evaluate the gross error 
than residual measurements. The paper simulations have shown 
the robustness of ILSVM even when there is loss of meters or 
system reconfiguration. Comparative tests demonstrated the 
increased accuracy of the proposed method in cases where the 
established method had failed. The incremental learning 
algorithm proposed demonstrated to be effective in 
accommodating the plasticity, stability and low CPU time in 
SVM model being appropriate for on-line applications. The 
results confirmed that the incremental update ensure more robust 
identification performance. Monte Carlo simulation application 
ensured the robustness of the method. 
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