
Smart Grids False Data Injection Identification: a 
Deep Learning Approach 

Helton do Nascimento Alves 
Instituto Federal do Maranhão, Electrical Engineering Dep. 

São Luis, Brazil  
helton@ifma.edu.br 
Arturo S. Bretas 

University of Florida, Electrical Engineering Department,  
Gainesville, FL, USA 

arturo@ece.ufl.edu 

Newton G. Bretas 
University of São Paulo, Electrical Engineering Dep. 

São Paulo, Brazil 
ngbretas@sc.usp.br 

Ben-Hur Matthews 
Instituto Federal do Maranhão, Electrical Engineering 

São Luis, Brazil  
benhurmatthews@hotmail.com 

Abstract— recently a new class of security problem in a power 
system state estimation was defined by false data injection 
(cyber-attack). The deliberate injection by an adversary would 
not be expected to follow the same patterns as random bad data. 
False data injection can be launched in measurements set, 
topology and parameters network data. Identify clearly its 
injection point is very important to provide a suitable correction 
of the output states. In this paper is presented an identification 
strategy for false data injection in power system state estimation 
input data based on a deep learning. Evaluation of the presented 
solution is done through Monte Carlo simulation considering 
different test scenarios in the IEEE 14-bus test system. The 
results confirm that the proposed algorithm is a potential tool to 
identify accurately the false data injection point in power system 
state estimation. 

Index Terms— False data injection identification, power 
system state estimation, deep learning. 

I. INTRODUCTION

Data communication through the internet has lot of 
advantages, but inherently it increases the risk of exposure to 
cyber threats. . Cyber-attacks are a reality in smart grids. Most 
recently a cyber-attack in a power grid in Ukraine left about 
225,000 customers without electricity [1]. Therefore, cyber 
security becomes a crucial resource to ensure the integrity and 
resilience of smart grid operations. In [2] is shown that a 
malicious attack in measurements set data is able to bypass 
classical bad data detection algorithms. In [3], similar result is 
obtained to malicious attacks in network data. Based on these 
considerations many studies have been made to analyze the 
power system vulnerabilities and countermeasures to cyber-
attacks [2]-[7]. Power systems state estimation (SE) has three 
inputs data type: measurements, power system topology and 
transmission line parameters data. The false data injection 
(FDI) can be launched in any one of them. Naturally, the more 
information one has about the cyber-attack the more efficient 
the countermeasures will be. In this context, it is essential to 
identify clearly the FDI point for analysis and correction. In the 
literature, this theme is usually not highlighted and it is 
considered that the state estimator input data type where the 
cyber-attack occurred is known in advance. This assumption is 
not realistic because usually this information is not available. 

In the classical bad data detection, topological errors 
identification is usually based on the generalized state 
estimator [8]. The correction is performed modifying the status 
of the closest breaker/switch (on/off) from the branch identified 
with topological error. Therefore, the status of breaker/switch 
is considered as the source of the possible power system 
topological error. On the other hand, when a cyber-attack is 
launched on power system topology, an 
exclusion/insertion/transference of a branch occurs directly on 
the line data of the branch instead on breaker/switches status. 
In this case, only the changing of status on breaker/switch will 
not correct the power system topology (Fig. 1).  

Fig. 1.  (a) Original network data (b) network data with gross error (c) 
Original network data (d) network data under cyber-attack. 

A classical technique to estimate the states variables is the 
Weighted Least Square formulation (WLS), which looks for 
the state vector that minimizes the objective function based on 
the residual vector. The chi-square and normalized residual 
tests are the common post estimation procedures used for 
detection and identification, respectively, of gross error in SE 
[9]–[12]. In these studies, the measurement residual is treated 
as the measurement error, but they are completely different 
quantities [13]-[14]. The measurement residuals pertain to the 
residual sub-space, with number-of-measurements minus 
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The proposed algorithm is also trained and tested 
considering as parameter the normalized residual index (NRI), 
in order to compare with the parameter input proposed in this 
work. The detection accuracy obtained using CMEN is 99.93% 
and 93.7% using NRI. The results show that the CMEN reflects 
the features of the false data injection in a more appropriate 
way than NRI. 

TABLE I.  ACCURACY CONSIDERING POSSIBLE LOSSES OF METERS. 

Set of 
available 
measur. 

Identification of the input data status (%) 

No 
anomaly 

Cyber_attack 
measurement 

Cyber_attack 
parameters 

Cyber_attack 
topology 

95 100.00 99.83 99.97 99.86 

93 100.00 99.72 99.76 99.76 

90 100.00 99.63 99.56 99.69 

TABLE II.  ACCURACY CONSIDERING RECONFIGURATION. 

Reconfig. 

Identification of the input data status (%) 

No 
anomaly 

Cyber_attack  
measurement 

Cyber_attack  
parameters 

Cyber_attack 
topology 

No one 100.00 99.83 99.97 99.86 

Line transf. 
13–1411-14 

100.00 99.37 99.76 99.67 

Elim. line 
10-14 

100.0  99.45  99.37  96.42 

 

V. CONCLUSIONS 

Based on the tests presented, the proposed algorithm got 
close to 100% of correct identification of the state estimator 
input data base corrupted. Monte Carlo simulation application 
ensures the robustness of the method and its training time is 
small enough to be used in real time applications. The graph 
bars from data set obtained through the innovation index 
presented an excellent adherence in the solution of the 
proposed problem. Comparative tests demonstrate the 
increased accuracy of the proposed method in cases where the 
established method has failed. Exploring others machine 
learning algorithms and to propose a bad data correction 
remains a promising subject for future investigations.  
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