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Abstract— recently a new class of security problem in a power
system state estimation was defined by false data injection
(cyber-attack). The deliberate injection by an adversary would
not be expected to follow the same patterns as random bad data.
False data injection can be launched in measurements set,
topology and parameters network data. Identify clearly its
injection point is very important to provide a suitable correction
of the output states. In this paper is presented an identification
strategy for false data injection in power system state estimation
input data based on a deep learning. Evaluation of the presented
solution is done through Monte Carlo simulation considering
different test scenarios in the IEEE 14-bus test system. The
results confirm that the proposed algorithm is a potential tool to
identify accurately the false data injection point in power system
state estimation.

Index Terms— False data injection identification, power
system state estimation, deep learning.

[. INTRODUCTION

Data communication through the internet has lot of
advantages, but inherently it increases the risk of exposure to
cyber threats. . Cyber-attacks are a reality in smart grids. Most
recently a cyber-attack in a power grid in Ukraine left about
225,000 customers without electricity [1]. Therefore, cyber
security becomes a crucial resource to ensure the integrity and
resilience of smart grid operations. In [2] is shown that a
malicious attack in measurements set data is able to bypass
classical bad data detection algorithms. In [3], similar result is
obtained to malicious attacks in network data. Based on these
considerations many studies have been made to analyze the
power system vulnerabilities and countermeasures to cyber-
attacks [2]-[7]. Power systems state estimation (SE) has three
inputs data type: measurements, power system topology and
transmission line parameters data. The false data injection
(FDI) can be launched in any one of them. Naturally, the more
information one has about the cyber-attack the more efficient
the countermeasures will be. In this context, it is essential to
identify clearly the FDI point for analysis and correction. In the
literature, this theme is usually not highlighted and it is
considered that the state estimator input data type where the
cyber-attack occurred is known in advance. This assumption is
not realistic because usually this information is not available.
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In the classical bad data detection, topological errors
identification is usually based on the generalized state
estimator [8]. The correction is performed modifying the status
of the closest breaker/switch (on/off) from the branch identified
with topological error. Therefore, the status of breaker/switch
is considered as the source of the possible power system
topological error. On the other hand, when a cyber-attack is
launched on power system topology, an
exclusion/insertion/transference of a branch occurs directly on
the line data of the branch instead on breaker/switches status.
In this case, only the changing of status on breaker/switch will
not correct the power system topology (Fig. 1).
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Fig. 1. (a) Original network data (b) network data with gross error (c)
Original network data (d) network data under cyber-attack.

A classical technique to estimate the states variables is the
Weighted Least Square formulation (WLS), which looks for
the state vector that minimizes the objective function based on
the residual vector. The chi-square and normalized residual
tests are the common post estimation procedures used for
detection and identification, respectively, of gross error in SE
[9TH12]. In these studies, the measurement residual is treated
as the measurement error, but they are completely different
quantities [13]-[14]. The measurement residuals pertain to the
residual sub-space, with number-of-measurements minus
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number-of-state-variables degrees of freedom, that is, a
correlated space. On the other hand, the measurement errors
pertain to the measurement sub-spaces, then with number-of-
measurements degrees of freedom, that is, a not correlated
space. More recently, using topological and geometrical
approaches, [7], [13]-[14] proposed solutions to compose the
measurement error and replace the measurement residual in
bad data detection. The simulations reported in these papers
have shown many situations where the classical state
estimation fails in the gross error detection and identification
test, while the composed measurement error proposal provides
an accurately response.

The composed measurements error in connection with a
deep learning approach are used in this paper to identify
accurately the false data injection point (Fig 2). The main
contributions of this work are: (i) the raw data is seen as a
snapshot of a particular output of the power system state
estimator and treated as an image by deep learning approach;
(i1) this paper focuses on the application of Convolutional
Neural Networks (CNN) to image classification tasks, that has
demonstrated to be a powerful algorithm in the recent state-of-
the-art deep learning systems [15]; (iii) many different methods
have been used for intrusion detection, but the proposed
algorithm is one of the few works that studies specifically the
cyber-attack injection point identification on state estimator
input data; (iv) composed measurements error has shown to be
a better parameter to analyze FDI than measurements residue
the. This new paradigm increases accuracy of the proposed
method in cases where the established method has failed.

The performance of the proposed algorithm is evaluated for
many different measurements plans using Monte Carlo
Simulation (MCS) procedure ensuring the experimental
accuracy and proficiency.
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Fig. 2. State estimator under a cyber-attack

II. INNOVATION CONCEPT

In classical weighted least squared (WLS) estimator,
considering the power system modeled as a set of non-linear

equations with b buses and m measurements, there are N=2*b-
1 unknown state variables to be estimated. The cost function
J(x) is minimized to find the best estimative for the state vector
x (N,1):
z=h(x)+e 1)
J(@) = [z = h(O)]"W[z — h(x)] )
where z € RY is the measurement vector, h: R¥Y - R™ is a
continuous nonlinear differentiable function, e is the error
vector assumed with zero mean and Gaussian probability
distribution and ¥ is the weighting matrix (m,m).
The solution of the afore-mentioned minimization problem
is obtained through the linearization of (2). At a certain
operation point, yields,

Az =HAx+e 3)

being H the matrix of first derivatives of the nonlinear

functions of vector A4(x), known as the Jacobian, calculated at

the point represented by the vector of estimated state variables.
Therefore, the solution can be obtained by:

Axk = [HTWH] *HTWAz* (4)

The iterative process starts from an initial state vector and,
at each iteration k; the corrections in the state variables Ax* are
obtained using (4). The vector of state variables update until a
stopping criterion is satisfied.

This work is based on Innovation concept introduced by
[7], [13]-[14]. This method is just briefly brought the concept
and the formulation here. If the system described by (1) and (2)
is observable, then the vector space of measurements R™ can be
decomposed into a direct sum of two vector subspaces,

R™ = R(H)®R(H)* 5)

in which the range space of H is an N-dimensional vector
subspace into R™and R(H)* is its orthogonal complement.

In the linear state estimation formulation, the solution of (3)
can be understood as a projection of the measurement vector
mismatch Az onto R(H). In [17] is defined the linear operator P
that performs this projection, as follows:

P = H[HTWH]'H™W . (6)

Based on (5) and (6), the linear formulation of the state
estimation can be used to decompose the measurement error
vector e into two parts: the detectable and the undetectable
components. The detectable component is the residual
measurement vector and undetectable component is orthogonal
the detectable component and calculated as follow:

ep = (I — P)e. @)
ey = Pe. (®)
lle:llfy = llepillfy + lleu:ll, ©)

In order to find the undetectable component and compose
the measurement’s total error for i measurement, it is used 1I:

I, = llepillw (10)

lleyillw

Consequently, even when those measurements have gross
errors, their residuals will be relatively small. Based on (9) and
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(10) is possible to estimate the composed measurement error of
the measurement i based on its standard deviation, as follow:

2
epi

el = llepglfy + ||
13

1

1
ledlhy = CME, = llepdhy 1+ 755 =7 [1+ 75

Iiz

CME; _ 1 ’ 1
CME"N:J—L_U_L 1+W (11)

where 7; is the residue of measurement i and o; is the standard
deviation of the measurement .

In [7] is shown that Cyber-attack detection can be made
through a Chi-square (x?) Hypothesis Testing (HT) applied to
the composed measurement error, where bad data will be
suspect if:

[CMEMT[CMEM] = xZ, (12)

where p is the detection confidence probability and m are
the degrees of freedom.

In [14] is considered that in the detection stage it does not
matter how reliable a measurement is because it is assumed
that all them may contain errors. Therefore, it is attributed
weights to the measurements as described by (13):

Wy =1/(0.1z)* (13)

III. PROPOSED ALGORITHM

The proposed algorithm is shown in the following. More
details are shown in next subsections.

(1) Collect input data: real time measurements,
transmission line parameters and power system
topology data;

(2) Perform WLS to calculate CME";

(3) Build graph bars based on CME" vector;

(4) Classify the incoming set using CNN approach in,

a.  no cyber-attack detected;

b.  cyber-attack detected in real-time measurements data;
c.  cyber-attack detected in line parameters data;

d.  cyber-attack detected in power system topology data.
(5) Finish the algorithm.

A. Data Model

The measurement plan (MP) used is generated by a set of
measurements formed by two groups: default set of
measurements (DSM) defined as measurements are already
present in the substations and probabilistic set (PSM), defined
as measurements chosen by Monte Carlo simulation (MCS) to
complete the measurement plan. The Monte Carlo sampling is
done to determine randomly various measurement plans.

Every MP has an associated random noise, so that they vary
from +2c of its original values, so, not characterizing
measurements with gross errors. The data base generated for

simulations is divided in four groups with the same size
divided in: (a) set of samples without data anomaly; (b) set of
samples with an associated random multiple measurement
cyber-attack ranging from 3o to 5o applied in up to 10
measurements chosen randomly. Critical measurements or
critical sets of measurements are not considered; (c) set of
samples with an associated random parameter cyber-attack that
vary the magnitudes of the transmission line series parameters
from 20% to 80% applied in up to 3 transmission lines (chosen
randomly) and (d) set of samples considering an associated
random exclusion/transference topological cyber-attack, where
a line was excluded or transferred.

B. Input Parameters

The CMEN vector is represented for a bar graph where the
height of bar is proportional to their values. Considering that
the CMEN values can have a large range, the logarithmic scales
in Napierian base is used. CME" vector values are always
positives (11), but in Napierian base, they can assume negative
values. In order to easy the graph representation, only the
absolute value is considered and the real positive values are
plotted in blue and negative ones in red. In Figs. 3-6 are shown
some bar graphs generated from a measurement plan with 95
measurements. In Fig 3, the CME" vector is from a set of
measurements without FDI, in Fig 4, from a set of
measurements with FDI in measurements, in Fig 5, from a set
of measurements with FDI in parameters and, in Fig 6, from a
set of measurements with FDI in topology. These results show
that the bar graphs present different trends for each input data
under cyber-attack, showing potential to be used as parameters
to identify the state estimator input data corrupted.

No anomaly

LniCME")

Set of 95 measurements from [EEE 14 bus system

Fig. 3. Graph of CMEN vector without anomaly.

GE in Measurements
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Fig. 4. Graph of CME" vector with GE in measurements.
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GE in Parameters
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Fig. 5. Graph of CMEN vector with GE in parameters.

GE in Topology
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Fig. 6. Graph of CME" vector with GE in topology.

C. Deep Convolutional Neural Networks

In deep convolutional neural networks (CNN) architecture,
an image is input directly to the network, which allows
encoding certain properties into the architecture [15]-[16]. The
image is represented by its volume: Width x Height resolution
and depth (3 for RGB image or 1 for Black and White one).
The basic idea of the CNN was inspired by a concept in
biology called the receptive field [17]. Receptive fields are a
feature of the animal visual cortex [18]. They act as detectors
that are sensitive to certain types of stimulus, for example,
edges. They are found across the visual field and overlap each
other. This biological function can be approximated in
computers using the convolution operation [19]. In image
processing, images can be filtered using convolution to produce
different visible effects. CNN architectures come in several
variations; however, in general, they are followed by several
stages of convolution and pooling (or subsampling) layers,
which are grouped into modules.

The convolutional layers serve as feature extractors, and
thus they learn the feature representations of their input images.
Usually, in CNN classifier, the rectified linear units (ReLUs) is
adopted as an activation function [15]. Inputs are convolved
with the learned weights in order to compute a new feature
map. The size of the Feature Map is controlled by three
parameters: number and size (width and height) of filters, stride
and zero-padding. Stride is the number of pixels by which the
filter is slide over the input matrix.

The pooling layers progressively reduce the spatial
resolution of the feature maps and thus achieve spatial
invariance to input distortions and translations. It operates
independently on every depth slice of the input and resizes it
spatially, using the MAX operation (the most common form).

Formally, max pooling selects the largest element within a
single depth slice produced by the convolution layer.

In CNN classifier, the output of the last full-connection
layer is fed to a C-way softmax function which produces a
distribution C class labels. The Fully Connected layer is a
multi-layer perceptron that uses a softmax activation function
in the output layer. Neurons in a fully connected layer have full
connections to all activations in the previous layer, as seen in
regular Neural Networks. The output from the convolutional
and pooling layers represent high-level features of the input
image. The purpose of the Fully Connected layer is to use these
features for classifying the input image into various classes
based on the training dataset.

The configuration parameters of CNN have a great
influence on the accuracy of classification. In this study, the
configuration parameters of CNN were analyzed through tens
of simulations and the most appropriate configuration founded
in relation to the algorithm performance is depicted below.

e INPUT: 25x34 RGB image.

e CONV layer: 20 10x19 filters (stride =1 and

padding=0), obtained :an output matrix [16x16x20].

e The elementwise activation will be applied with

RELU layer function.

e  Max-Pooling layer: 4x4 (stride =1 and padding=0),

obtained an output matrix [13x13x20].

e CONV layer: 20 5x5 filters (stride =1 and

padding=0), obtained :an output matrix [9x9x20].

e  Max-Pooling layer: 3x3 (stride =1 and padding=0),

obtained an output matrix [7x7x20].

e  Full-connection layer: multi-layer perceptron using a

softmax function for 4 class labels.

In terms of the learning rate, it was observed that the epoch
numbers 20 was appropriated, considering that increasing it
more than 20, the accuracy and loss remain approximately the
same. The training speed was around 44 images/s for a Dell
laptop test machine with an Intel i7 CPU clocked at 2.4 GHz, 8
GB of RAM, and a GPU NVIDIA GeForce 920M.

IV. NUMERIC TESTS

The IEEE-14 bus system is used for numeric tests. The
means aggregated from MCS obtained by proposed algorithm
is reported in Table I. Maximum standard deviation obtained
for MCS is 2.34%. The network is trained considering
measurement plans with 95 measurements (DSM: active and
reactive power injection and voltage magnitude in bus 1; PSM:
92 measurements defined by MCS considering a normal
distribution function of active and reactive power injection and
power flow). 20000 samples are generated to test the trained
network (5000 samples for each FDI class). Possible losses of
meters for malfunction or maintenance is considered. It is
considered up to 5 meters out of service.

In order to evaluate the proposed algorithm under cyber-
attack just after a system reconfiguration is performed but
before updating the trained network, the new topology shown
in Table II is considered. The results show that the proposed
algorithm continues accurately detecting and identifying the
false data injection point.
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The proposed algorithm is also trained and tested
considering as parameter the normalized residual index (NRI),
in order to compare with the parameter input proposed in this
work. The detection accuracy obtained using CME™ is 99.93%
and 93.7% using NRI. The results show that the CME" reflects
the features of the false data injection in a more appropriate
way than NRI.

TABLE I. ACCURACY CONSIDERING POSSIBLE LOSSES OF METERS.

Set of Identification of the input data status (%)
available No Cyber_attack | Cyber_attack | Cyber _attack
measur. anomaly | measurement | parameters topology
95 100.00 99.83 99.97 99.86
93 100.00 99.72 99.76 99.76
90 100.00 99.63 99.56 99.69

TABLEII. Acc

URACY CONSIDERING RECONFIGURATION.

Identification of the input data status (%)

Reconfig. No Cyber_attack | Cyber_attack | Cyber_attack
anomaly | measurement parameters topology
No one 100.00 99.83 99.97 99.86
IL;“&:IT‘;S& 100.00 99.37 99.76 99.67
Elim. ine | 0 99.45 99.37 96.42
10-14

V. CONCLUSIONS

Based on the tests presented, the proposed algorithm got
close to 100% of correct identification of the state estimator
input data base corrupted. Monte Carlo simulation application
ensures the robustness of the method and its training time is
small enough to be used in real time applications. The graph
bars from data set obtained through the innovation index
presented an excellent adherence in the solution of the
proposed problem. Comparative tests demonstrate the
increased accuracy of the proposed method in cases where the
established method has failed. Exploring others machine
learning algorithms and to propose a bad data correction
remains a promising subject for future investigations.
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