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Genetic diversity within the geobiosphere encompasses

enormous sensing capabilities and many non-model bacteria

are of biotechnological interest. Biosensing, or more generally

inducible, systems are a vital component of metabolic

engineering, as they allow tight control of gene expression as

well as the basis for high-throughput screens on non-growth-

related phenotypes. While these inducible systems, primarily

transcription factor/promoter pairs, have been utilized

extensively in Escherichia coli, progress in other bacteria is

limited because of differences in transcription machinery,

physiological compatibility of parts and proteins, and other

nuances. Here, we provide an overview of the available

genetic biosensing elements in non-model organisms and

state-of-the-art efforts to engineer them, and then discuss

challenges preventing these methods from common use in

non-model bacteria.
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Introduction
The geobiosphere’s genetic diversity encompasses enor-

mous catalytic and sensing capabilities. Despite this,

testing and utilization of these abilities have been

disproportionately focused on a choice group of model

organisms, primarily Escherichia coli. For many industrial

and other biotechnology applications, non-model bacteria

have been historically used (e.g. acetone from Clostridium
acetobutylicum, antibiotics from Streptomyces) and continue

to have promising applications.
www.sciencedirect.com 
Biosensing, or more generally inducible systems, are vital

in the context of genetic engineering. Inducible systems

allow tight control of native and heterologous genes and

biosynthetic pathways and enable the use of genetic

engineering tools that require distinct on/off states.

Biosensors are also used as the basis for performing

high-throughput experiments on non-growth-related

phenotypes by making the phenotype selectable or

screenable with the aid of reporter genes.

While inducible systems, primarily transcription factor (TF)/

promoterpairs, have been utilized extensively in E. coli, use in

other bacteria is limited when appropriating existing biosen-

sing systems because of differences in transcription machin-

ery, physiological compatibility, and other nuances.

Here, we briefly provide an overview of the available

genetic biosensing elements in non-model bacteria and

current engineering efforts, and then discuss high-through-

put and advanced methods to engineer biosensors with the

main challenges and limitations that preventing these

methods from common use in non-model bacteria. We call

for the expansion of genetic parts, particularly biosensing

elements, that operate across a spectrum of bacteria in order

to improve the speed and ease of engineering less devel-

oped but situationally advantageous bacteria.

Current state of the art of inducible systems in
non-model organisms
Non-model bacteria are an untapped reservoir of regula-

tory elements. Many manifest as allosteric TF/promoter

pairs and have been repurposed as heterologous inducible

systems and biosensors (listed in Table 1). Chemical

inducers such as carbon sources, metabolites, and anti-

biotics, environmental signals such as light, pH, oxygen,

or temperature, and autoregulatory quorum-sensing

molecules can all be sensed by TFs (Figure 1).

Chemical induction is the most commonly used type of

inducible system due to the natural abundance of small

molecule-sensing TFs. Many bacterial strains rely on

only one or a small handful of inducible systems

due to the difficulty in expanding the availability of

TF/promoter pairs [1,2]. Emerging industrial hosts like

Rhodococcus opacus and Halomonas spp. have relied on

one inducible promoter each, an antibiotic thiostrepton-

inducible TipA promoter and an IPTG-inducible pro-

moter (Ptrc), respectively [3�,4��].
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Table 1

Transcription factor-based inducible systems used in non-model bacteria

Genus Inducer; TF; Source Species Operating range Dynamic range Reporter Ref.

Bacillus IPTG; LacI

E. coli

B. subtilis

10–1000 mM 11 000-fold sfGFP [21]

Green Light (535 nm);

CcaS/R

Synechocystis PCC 6803

0.1–10 mmol/m2s1

(526 nm)

70-fold sfGFP [16�]

Xylose; XylRa

Native

B. megaterium 0–0.4 mM GFP [38��]

Caldicellulosiruptor Xylose; XylR

Native

C. bescii 1–33.3 mM 32-fold ldh [19]

Clostridium Anhydrotetracycline; TetR

E. coli

C. aceto-

butylicum

25–200 ng/mL 41-fold gusA [27]

Arabinose; AraR

C. acetobutylicum

C. cellulolyticum 0.001–about 1 g/L 800-fold gusA [9]

Laminaribiose; GlyR3

Native

C. thermocellum 2–10 mM 40-fold spo0A [10]

Tetracycline; TetR

E. coli
C. difficile

20–500 ng/mL gusA [1;45]

Xylose; XylR

Native

0.03–3% (w/v) 100-fold mCherry [2]

Corynebacterium p-Coumaric Acid; PadR

B. subtilis
C. glutamicum

1–5 mM YFP [37]

Shikimic acid; ShiR

Native

about 1–500 mM EGFP [14]

Cupriavidus 3-hydroxypropionic acid;

HpdR Pseudomonas

putida

KT2440

C. necator H16

about 0.1–10 mM 517-fold RFP [6]

L-arabinose AraC;

E. coli

1200-fold RFP [6]

Itaconic acid; ItcR

Yersinia

pseudotuberculosis

105-fold RFP [30]

Cyanobacteria Ammonium Sulfate; GlnR

Lactococcus lactis ATCC

19435

Synechocystis

spp. PCC 6803

0.3–3 mM 1.6-fold eYFP [13]

IPTG; LacI

E. coli

Synechocystis

spp. PCC 7942

0.01–10 mM 24-fold eYFP [25]

Oxygen; FNR

E. coli Synechocystis

spp. PCC 6803

�3-fold FbFP F37T [18]

Rhamnose; RhaS

E. coli

0.25–1 mg/mL YFP [7]

Pseudomonas 3-hydroxypropionic

acid; MmsR

Native

P. denitrificans

ATCC 13867

0.01–100 mM 100-fold GFP

RFP

[28]

4-hydroxybenzoate;

PobR-DM

Actinetobacter baylyi

ADP1

P. putida KT2440 about 30 mM–30 mM 12-fold sfGFP fused

with ubiC

(E. coli)

[15]

Ammonium Sulphate; GlnR

L. lactis ATCC 19435

P. putida NRRL

B14683

2 mM–about 10 mM 10-fold RFP [13]

IPTG; pTrc

E. coli

P. putida

KT2440

80-fold [8]

Protocatechuate; PcaU

A. baylyi ADP1

P. putida KT2440 About 3 mM–10 mM 12-fold sfGFP [29]

Rhodococcus Acetamide; AceT

Mycobacterium smegmatis

R. opacus PD630

0.01–10 nM 5-fold GFP+ [3�]

Anhydrotetracycline; TetR

E. coli

0.05–100 ng/mL 67-fold mCherry [3�]

Arabinose; AraC

E. coli

0.1–100 mM 59-fold EYFP [3�]

Tetramethylpyrazine; TpdR

Native

R. jostii TMP1 1–5 mM EGFP [52]
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Table 1 (Continued )

Genus Inducer; TF; Source Species Operating range Dynamic range Reporter Ref.

Shewanella 3-oxo-C12-HSL; LasR

P. aeruginosa

S. oneidensis

MR1

1 nM–1 mM Gas ratio of

methyl bromide/

ethylene

[53]

Streptomyces Cumate; CymR

P. putida F1

S. albus J1074 about 2.5–5 nM 66-fold indC [12]

Oxytetracycline; OtrR

Streptomyces rimosus

S. venezuelae 0.01–4 mM GFP [20]

Paramycins; PamR

Streptomyces alboniger

S. alboniger

DSM-40043

0.1–5 mg/L gusA [31]

Anhydrotetracycline; TetRa

E. coli

S. venezuelae 1–about 10 mM sfGFP [40]

ldh, lactose dehydrogenase; gusA, b-glucuronidase; FbFP, Flavin mononucleotide-binding fluorescent proteins; ubiC, chorismate pyruvate-lyase;

Bxb1, serine-integrase; indC, indigoidine synthetase.
a Cell-free system.
To overcome the limited number of inducible systems

available within non-model strains, a common strategy is to

appropriate a handful of well-characterized E. coli-derived
inducible systems (e.g. pBAD, pTET, pLac) that can

function in non-model bacteria [5–7]. This strategy, most

often simply adjusting expression levels of the TF to

improve fold induction in non-model organisms, has vary-

ing degrees of success. Reducing TetR expression by

mutating the �10 box of the promoter led to an increase

in dynamic range by 67-fold upon induction of anyhydro-

tetracycline-inducible system (pTET) in R. opacus PD630

[3�]. Likewise, controlling LacI repressor concentration
Figure 1
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with a weak promoter increased the overall change in

expression by 80-fold of IPTG-inducible E. coli (pTrc)

promoter in Pseudomonas putida [8]. While useful in the lab,

these systems are often limited industrially due to the

expense, varying half-lives of inducers or complications

from serving a dual role as inducer and carbon source.

Sugar-based inducers are simultaneously utilized as carbon

sources in hosts, and thus depleted over time and are

complicated by carbon catabolite repression [9,10]. While

IPTG is often used as a substitute for lactose, certain

transcription factors like BgaR in C. acetobutylicum, only

respond to lactose [11].
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Beyond exogenously introduced chemicals, dynamic

gene regulation can also occur in response to the host’s

metabolic state, potentially alleviating toxic product accu-

mulation and optimizing production pathways. Dynamic

sensor-regulator systems enable dynamic control of

metabolic imbalances that often occur in engineering

cellular factories. Modulation of actinorhodin metabolite

concentrations from becoming toxic in Streptomyces by

cumate-inducible regulatory system improved its produc-

tion by 60% [12]. Biosensors independent of the host’s

native nitrogen regulatory system can be used to enhance

production of metabolites produced under low or high

nitrogen conditions [5]. An ammonium biosensor was

developed to enhance biosynthesis of a nitrogen-rich

polymer in E. coli, P. putida, and Synechocystis spp. [13].

Nitrogen-responsive biosensors, identified through part

mining, have enabled dynamic regulation of heterologous

genes in lipid biosynthesis to improve biodiesel precursor

production in R. opacus [3�].

Biosensing intracellular concentrations of metabolites can

provide an efficient high-throughput screen of hyperpro-

ducing strains. A biosensor monitoring intracellular

shikimate (central to phenolic amino acid biosynthesis)

in Corynebacterium glutamicum allowed for RBS library

screenings via fluorescence-activating cell sorting (FACS)

[14]. To alleviate product inhibition of the pathway,

sensor-enabled positive feedback-control mediated

by the product can be used to increase production.

The 4-hydroxybenzoate-responsive biosensor in P. putida
enabled an enzyme library screening and selecting for

enzyme ubiC from E. coli that converts chorismite to

4-hydroxybenzoate with 60% higher catalytic efficiency

compared to the wild-type [15].

The ability to control gene expression with physical or

environmental cues (e.g. light, pH), is attractive for many

engineering applications. Green light-activated CcaS/red

light-deactivated CcaR TF pair (CcaSR) derived from

Cyanobacteria is the most commonly used light-inducible

system. Green light phosphorylates a chromophore group

covalently bound to CcaS, activating CcaR to initiate

transcription. While light-based sensors naturally have

a limited detection range, a 70-fold activation and rapid

dynamic response were achieved via promoter and

protein engineering in Bacillus subtilis [16�].

A particular problem with many cyanobacterial promoters

is their relation to daily light-dark cycles; they are com-

monly more active when exposed to light, thus making

their functionality context-dependent. Further compli-

cating matters, otherwise ideal inducible promoters, like

the anhydrotetracycline-responsive promoter yielding a

230-fold induction in Cyanobacteria, are limited by the

inducer’s light sensitivity [17]. To expand the Cyanobac-
teria toolkit, low oxygen-responsive FNR (fumarate and

nitrate reduction) TF from E. coli that was engineered for
Current Opinion in Biotechnology 2020, 64:39–46 
use in Synechocystis spp. PCC 6803 has been applied for

expressing oxygen-sensitive enzymes or at low oxygen

conditions [18].

Optimizations of inducible systems are often species-specific

due to the knowledge gap concerning the dependences of

genetic circuits on the host organism. Thermophiles

pose special challenges in constructing inducible systems, as

common mesophilic-derived systems are not physiologically

compatible, requiring identification of host-specific inducible

elements (e.g. part mining of xylose-inducible promoter in

thermophile Caldicellulosiruptor bescii [19]) to obtain function

at high temperatures. Antibiotic-inducible promoters lack

potential orthogonality due to their limitation to hosts with

native antibiotic resistance (commonly Streptomyces) [20]. A

bacitracin-inducible promoter has been applied in a few

bacitracin-resistantB. subtilis strains,buteventhen expression

decreases after two hours likely due to a bacitracin stress

response [21].

Current methods to engineer inducible
systems in non-model organisms
Metabolic engineering strategies to improve titer of target

products in specific non-model organisms have often relied

on trial-and-error optimization based on the host’s machin-

ery to control gene expression leading to laborious and

organism-specific design-build-test cycles, mirroring previ-

ousmethodsdemonstrated in E. coli.As seenabove, themost

commonmethodinvolvesengineeringtheparts inE.coliand
then transferring them into the strain of interest.

T7 bacteriophage expression systems, as well as homolo-

gues of TetR and LacI, are the most commonly used tool

to build host-independent orthogonal systems in both

Gram-negative and Gram-positive bacteria [21–25]. How-

ever, high T7 RNAP levels can quickly exhaust cellular

resources [22,26]. Some have used protein degradation

tags or engineered negative feedback-controlled genetic

circuits mediated by TetR to control T7 RNAP levels in

Synechocystis spp. PCC 6803 [22], andalso in E. coli, P. putida,
and B. subtilis [26]. Interestingly, failure due to T7 RNAP

mRNA degradation was observed in halophile Halomonas
spp. TD01 [4��]. Instead, an orthogonal, broad-host

inducible system was engineered using part-mined

T7-like RNAPs in industrial strains E. coli S17-1,

Halomonas spp. TD01, and Pseudomonas entomophila
LAC31. This T7-like/lacO system was used to control cell

morphology and polyhydroxybutrate production pathway

in Halomonas spp. TD01, resulting in a 100-fold increase

in cell length and 36% increase in polyhydroxybutrate

production [4��].

Engineering inducible systems based on viewing pro-

moter elements (i.e. �10 and �35 boxes, TF binding

site) as modular is a common strategy for non-model

organisms [12]. Proper placement of the TF binding

site on a strong native constitutive promoter or phage
www.sciencedirect.com
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promoter blocks RNAP from binding to the promoter

[4��,23]. Optimization to achieve a ‘true off’ state can be

tuned by the number, location, and sequence of TF

binding sites. The insertion of two TetR binding sites,

for example, surrounding or within the �35 and �10

boxes of native constitutive C. acetobutylicum thiolase

promoter resulted in threefold improved repression than

with one operator [27]. Similar architectural strategies are

also applicable for activators. Addition of two TF binding

sites in pBAD promoter lowered basal expression and

increased induction levels by twofold compared to one

binding site in Synechocystis [5]. Alternatively, multi-input

hybrid promoters built using a repressor and an inducible

system provide a high signal-to-noise ratio by lowering

basal activity while retaining expression strength in

the presence of both inducers [28]. Altering DNA

sequence of promoter elements, as well as the TF itself,

can further fine-tune the biosensor performance to

respond with the appropriate sensitivity and signal output

according to the growth conditions to increase metabolite

productivity [29–31].
Figure 2
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Emerging high-throughput discovery and
engineering methods for inducible systems
Predictable behavior of a biosensor in a different cellular

context is crucial, but current engineering methods that

rapidly engineer inducible systems in E. coli often have

unpredictable outputs when transferring the system into

another species. The dependence on host resources,

machinery, and environmental factors (e.g. temperature,

pH) greatly affects the output. Therefore, conducting the

development and engineering within the target host can

improve predictability in designing inducible systems.

Massively Parallel Reporter Assays (MPRAs) provide a

high-throughput interrogation of genotype-to-phenotype

relationships through sorting and deep DNA sequencing

(Figure 2a). In the sort-seq method, mutagenized promoter

or5’-UTR libraries, including TFbinding sites, are coupled

to a fluorescent reporter and sorted into activity-based bins

with subsequent sequencing analysis revealing important

features not obvious a priori. Minor changes in the TF

binding site, promoter, or 5’-UTR (including secondary
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structures) can have drastic effects on translation efficiency

[32]. Screening a >10 000 member library comprising E. coli
and Vibrio cholerae sigma54-like promoters showed that

short, CT-rich sequence motifs complementing the

AG-rich Shine-Dalgarno sequence causes an inhibitory

translation mechanism across sigma54 promoters [33�],
highlighting how systematic surveying of the sequence

space can reveal poorly understood mechanisms.

Sort-seq experiments can also enable high-throughput

screening and assembly of genetic parts in non-model

organisms when genome annotation is lacking [34].

FACS-seq and metagenomic approaches have been used

to identify and characterize regulatory sequences from

prokaryotic genomes both at transcriptional and transla-

tional levels to create universal and orthogonal host-specific

genetic circuits [35��,36]. Analysis of �30 000 putative

regulatory sequences from 184 prokaryotic genomes, via

combinations of RNA-seq, DNA-seq, and FACS-seq,

found a positive correlation between transcriptional activ-

ity and sigma70 binding affinity, while translation rates

varied across Pseudomonas aeruginosa, E. coli, and B. subtilis
[35��]. Alternatively, high-throughput screening using

droplet microfluidics-based cell sorting techniques where

the production strain and an E. coli biosensing strain are

co-encapsulated avoids challenges associated with engi-

neering cross-species TF-based biosensors [37].

Cell-free transcription/translation (TXTL) systems applied

as an in vitro tool show promise in the rapid development and

characterization of regulatory sequencesand proteins in non-

model organisms (Figure 2b). To overcome constraints

working within the organism, cell-free extracts of the giant

Gram-positive Bacillus megaterium were used to characterize

a native xylose-inducible promoter both at the transcription

and translation level [38��]. While primarily used with model

bacteria, the successes of optimizing protein yields and

expression in cell-free TXTL platforms indicate the poten-

tial thismethodhas foremergingnon-model systems[39,40].

Genetic reporters for varying cellular contexts
Biosensors require an observable proxy for the inducing

chemical or condition. While the preferred genetic repor-

ters for high-throughput applications, gfp and related

fluorescent proteins, have been used successfully in a

range of aerotolerant bacteria (Table 1) [3�,4��,15], many

genera cannot use such proteins due to the oxygen

requirement of common fluorescent proteins or thermo-

stability. Therefore, many alternative reporter systems

ranging from colorimetric (e.g. lacZ, gusA) to anaerobic

fluorescent proteins (e.g. iLOV, Y-FAST) have been

developed.

The wide variety of fluorescent proteins available have

enabled high-throughput analysis via flow cytometry of

specific aerotolerant bacteria. Split-GFP reporter system

enables high-throughput analysis of libraries to study
Current Opinion in Biotechnology 2020, 64:39–46 
secretion mechanism of B. subtilis [41], while a pH-sensitive

fluorescent protein, pHIuorin2, offers a non-invasive method

to assess cytoplasmic pH in Pseudomonas spp. [42]. Red

fluorescent protein (RFP) and its variants have been shown

to outperform GFP in acidic conditions in Pseudomonas
denitrificans [28]. Furthermore, RFP has a longer excitation

and stronger emission wavelength over GFP that led to

higher signal-to-noise ratio in Cupriavidus necator [43].

Obligate anaerobes and metabolic pathways under low

oxygen requirements (e.g. in Cyanobacteria) pose a challenge

due to the requirement for molecular oxygen for the

proteins’ fluorophore to mature. Flavin-based fluorescent

proteins (FbFPs) overcome the oxygen requirement and

instead the maturation requires flavin co-factors such as

flavin mononucleotide or flavin adenine dinucleotide [44].

Light, Oxygen, Voltage (LOV)-based FbFPs such as

phiLOV2.1 and iLOV are small anaerobic fluorescent pro-

teins (�14-kDa) with fast folding kinetics that have success-

fully been used in Clostridium spp. for confocal microscopy

[45]. Compared to GFP, however, the fluorescence of

FbFPs is often masked by cellular autofluorescence (due

to NADPH, flavins, siderophores), interfering with the

signal-to-noise ratio measured by flow cytometry, pushing

researchers toward low-throughput enzymatic colorimetric

reporters (e.g. gusA) [46]. Alternatively, fluorescence-activat-

ing and absorption-shifting tag (FAST) strongly fluoresce

upon binding to commercially available fluorogenic ligands

in oxygen-limited environments. Function of FAST and

fluorogenic ligands under both aerobic and anaerobic

conditions enable analysis via flow cytometry and confocal

microscopy [47��], and may enable high-throughput meth-

ods with FACS or plate-based assays for Clostridium.

Fluorescent proteins from mesophiles are not functional in

thermophiles, requiring thermostable reporters (commonly

the enzymatic pheB and BgaB isolated from Geobacillus
stearothermophilus [48]). While mCherry fluoresces up

to �50�C, increased thermostability of superfolder GFP

(sfGFP) and species-specific codon-optimization have

been demonstrated in aerobic extreme thermophiles

[49,50]. Thermostable FbFPs have been developed

for aerobic and anaerobic thermophiles; however, FbFP

variants such as codon-optimized hotLOV from Thermosy-
nechococcus elongatus and YtvALOV from B. subtilis were

non-functional in Geobacter spp. [49]. More thermostable

LOV-based reporters, including MrFbFP and YN3FbFP

Y116F from Thermus thermophilus isolated from Yellowstone

National Park hot springs [44] and CagFbFP from thermo-

philic anaerobic bacterium Chloroflexus aggregans [51] are

becoming available through genome mining approaches.

Conclusion
Research and engineering of non-model microorganisms

have expanded greatly in recent years due to the expand-

ing capabilities and methods of genetic editing. However,

progress is still hampered by the lack of genetic parts,
www.sciencedirect.com
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specifically biosensors and inducible promoters. While

numerous inducible promoters have been published

recently (Table 1), many bacteria still rely on only one

or a few each. Current methods of engineering such

systems happens primarily in E. coli, requiring another

cycle of engineering to adapt the genetic parts to comply

with the host expression machinery. We propose that

high-throughput screening methods, now enabled

through novel genetic reporters functional in a broad

range of bacteria, can and should be used in future

engineering of genetic parts for non-model organisms.

These methods will enable rapid development of

advanced genome engineering methods and open the

emerging synthetic biology field to new frontiers.
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