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Genetic diversity within the geobiosphere encompasses
enormous sensing capabilities and many non-model bacteria
are of biotechnological interest. Biosensing, or more generally
inducible, systems are a vital component of metabolic
engineering, as they allow tight control of gene expression as
well as the basis for high-throughput screens on non-growth-
related phenotypes. While these inducible systems, primarily
transcription factor/promoter pairs, have been utilized
extensively in Escherichia coli, progress in other bacteria is
limited because of differences in transcription machinery,
physiological compatibility of parts and proteins, and other
nuances. Here, we provide an overview of the available
genetic biosensing elements in non-model organisms and
state-of-the-art efforts to engineer them, and then discuss
challenges preventing these methods from common use in
non-model bacteria.
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Introduction

The geobiosphere’s genetic diversity encompasses enor-
mous catalytic and sensing capabilities. Despite this,
testing and utilization of these abilities have been
disproportionately focused on a choice group of model
organisms, primarily Escherichia coli. For many industrial
and other biotechnology applications, non-model bacteria
have been historically used (e.g. acetone from Clostridium
acetobutylicum, antibiotics from Strepromyces) and continue
to have promising applications.

Biosensing, or more generally inducible systems, are vital
in the context of genetic engineering. Inducible systems
allow tight control of native and heterologous genes and
biosynthetic pathways and enable the use of genetic
engineering tools that require distinct on/off states.
Biosensors are also used as the basis for performing
high-throughput experiments on non-growth-related
phenotypes by making the phenotype selectable or
screenable with the aid of reporter genes.

While inducible systems, primarily transcription factor (TF)/
promoter pairs, have been utilized extensively in E. co/i, use in
other bacteria is limited when appropriating existing biosen-
sing systems because of differences in transcription machin-
ery, physiological compatibility, and other nuances.

Here, we briefly provide an overview of the available
genetic biosensing elements in non-model bacteria and
current engineering efforts, and then discuss high-through-
put and advanced methods to engineer biosensors with the
main challenges and limitations that preventing these
methods from common use in non-model bacteria. We call
for the expansion of genetic parts, particularly biosensing
elements, thatoperate across a spectrum of bacteria in order
to improve the speed and ease of engineering less devel-
oped but situationally advantageous bacteria.

Current state of the art of inducible systems in
non-model organisms

Non-model bacteria are an untapped reservoir of regula-
tory elements. Many manifest as allosteric TF/promoter
pairs and have been repurposed as heterologous inducible
systems and biosensors (listed in Table 1). Chemical
inducers such as carbon sources, metabolites, and anti-
biotics, environmental signals such as light, pH, oxygen,
or temperature, and autoregulatory quorum-sensing
molecules can all be sensed by TFs (Figure 1).

Chemical induction is the most commonly used type of
inducible system due to the natural abundance of small
molecule-sensing TFs. Many bacterial strains rely on
only one or a small handful of inducible systems
due to the difficulty in expanding the availability of
T'F/promoter pairs [1,2]. Emerging industrial hosts like
Rhodococcus opacus and Halomonas spp. have relied on
one inducible promoter each, an antibiotic thiostrepton-
inducible 77pA promoter and an IPTG-inducible pro-
moter (Ptrc), respectively [3°,4°°].
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Table 1

Transcription factor-based inducible systems used in non-model bacteria

Genus Inducer; TF; Source Species Operating range Dynamic range Reporter Ref.

Bacillus IPTG; Lacl 10-1000 pM 11 000-fold sfGFP [21]
E. coli
Green Light (535 nm); B. subtilis 0.1-10 pmol/m?s’ 70-fold sfGFP [16°]
CcaS/R (526 nm)
Synechocystis PCC 6803
Xylose; XyIR* B. megaterium 0-0.4 mM GFP [38°7]
Native

Caldicellulosiruptor ~ Xylose; XyIR C. bescii 1-33.3 mM 32-fold ldh [19]
Native

Clostridium Anhydrotetracycline; TetR  C. aceto- 25-200 ng/mL 41-fold gusA [27]
E. coli butylicum
Arabinose; AraR C. cellulolyticum 0.001-about 1 g/L 800-fold gusA [9]
C. acetobutylicum
Laminaribiose; GlyR3 C. thermocellum 2-10 mM 40-fold spoOA [10]
Native
Tetracycline; TetR 20-500 ng/mL gusA [1;45]
E. coli o
Xylose; XyIR C. difiicile 0.03-3% (W/v) 100-fold mCherry 2]
Native

Corynebacterium p-Coumaric Acid; PadR 1-56mM YFP [37]
B. subtilis .
Shikimic acid; ShiR C. glutamicum about 1-500 mM EGFP [14]
Native

Cupriavidus 3-hydroxypropionic acid; about 0.1-10 mM 517-fold RFP [6]
HpdR Pseudomonas
putida
KT2440
L-arabinose AraC; C. necator H16 1200-fold RFP [6]
E. coli
Itaconic acid; ItcR 105-fold RFP [30]
Yersinia
pseudotuberculosis

Cyanobacteria Ammonium Sulfate; GInR Synechocystis 0.3-3mM 1.6-fold eYFP [13]
Lactococcus lactis ATCC spp. PCC 6803
19435
IPTG; Lacl Synechocystis 0.01-10 mM 24-fold eYFP [25]
E. coli spp. PCC 7942
Oxygen; FNR ~3-fold FbFP F37T [18]
E. coli Synechocystis
Rhamnose; RhaS spp. PCC 6803 0.25-1 mg/mL YFP [7]
E. coli

Pseudomonas 3-hydroxypropionic P. denitrificans 0.01-100 mM 100-fold GFP [28]
acid; MmsR ATCC 13867 RFP
Native
4-hydroxybenzoate; P. putida KT2440  about 30 uM-30 MM  12-fold sfGFP fused [15]
PobR-DM with ubiC
Actinetobacter baylyi (E. coli)
ADP1
Ammonium Sulphate; GInR  P. putida NRRL 2 mM-about 10 mM 10-fold RFP [13]
L. lactis ATCC 19435 B14683
IPTG; pTrc P. putida 80-fold [8]
E. coli KT2440
Protocatechuate; PcaU P. putida KT2440  About 3 puM-10 mM 12-fold sfGFP [29]
A. baylyi ADP1

Rhodococcus Acetamide; AceT 0.01-10 nM 5-fold GFP+ [3°]
Mycobacterium smegmatis
Anhydrotetracycline; TetR 0.05-100 ng/mL 67-fold mCherry [37]
E. coli R. opacus PD630
Arabinose; AraC 0.1-100 mM 59-fold EYFP [37]
E. coli
Tetramethylpyrazine; TpdR  R. jostii TMP1 1-6mM EGFP [52]

Native
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Table 1 (Continued)
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Genus Inducer; TF; Source Species Operating range Dynamic range Reporter Ref.
Shewanella 3-ox0-C12-HSL; LasR S. oneidensis 1 nM-1 uM Gas ratio of [53]
P. aeruginosa MR1 methyl bromide/
ethylene
Streptomyces Cumate; CymR S. albus J1074 about 2.5-5 nM 66-fold indC [12]
P. putida F1
Oxytetracycline; OtrR S. venezuelae 0.01-4 pM GFP [20]
Streptomyces rimosus
Paramycins; PamR S. alboniger 0.1-5 mg/L gusA [31]
Streptomyces alboniger DSM-40043
Anhydrotetracycline; TetR* S. venezuelae 1-about 10 uM sfGFP [40]

E. coli

Idh, lactose dehydrogenase; gusA, B-glucuronidase; FbFP, Flavin mononucleotide-binding fluorescent proteins; ubiC, chorismate pyruvate-lyase;

Bxb1, serine-integrase; indC, indigoidine synthetase.
2 Cell-free system.

To overcome the limited number of inducible systems
available within non-model strains, a common strategy is to
appropriate a handful of well-characterized E. co/i-derived
inducible systems (e.g. pBAD, pTET, pLac) that can
function in non-model bacteria [5-7]. This strategy, most
often simply adjusting expression levels of the TF to
improve fold induction in non-model organisms, has vary-
ing degrees of success. Reducing TetR expression by
mutating the —10 box of the promoter led to an increase
in dynamic range by 67-fold upon induction of anyhydro-
tetracycline-inducible system (p TET) in R. opacus PD630
[3°]. Likewise, controlling Lacl repressor concentration

Figure 1

with a weak promoter increased the overall change in
expression by 80-fold of IPTG-inducible E. co/i (pTrc)
promoter in Pseudomonas putida [8]. While useful in the lab,
these systems are often limited industrially due to the
expense, varying half-lives of inducers or complications
from serving a dual role as inducer and carbon source.
Sugar-based inducers are simultaneously utilized as carbon
sources in hosts, and thus depleted over time and are
complicated by carbon catabolite repression [9,10]. While
IPTG is often used as a substitute for lactose, certain
transcription factors like BgaR in C. acetobutylicum, only
respond to lactose [11].
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Context dependence of genetic circuits.

A wide range of chemical, physical, and environmental inducible systems have been engineered and tested in non-model organisms for
biotechnological applications. However, engineered inducible systems often lead to unpredicted behavior when transferred from one host to
another, due to various cellular resources and machinery (e.g. RNAP, ribosomes), thus requiring further engineering and optimization in the new

host chassis.
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Beyond exogenously introduced chemicals, dynamic
gene regulation can also occur in response to the host’s
metabolic state, potentially alleviating toxic product accu-
mulation and optimizing production pathways. Dynamic
sensor-regulator systems enable dynamic control of
metabolic imbalances that often occur in engineering
cellular factories. Modulation of actinorhodin metabolite
concentrations from becoming toxic in Strepfomyces by
cumate-inducible regulatory system improved its produc-
tion by 60% [12]. Biosensors independent of the host’s
native nitrogen regulatory system can be used to enhance
production of metabolites produced under low or high
nitrogen conditions [5]. An ammonium biosensor was
developed to enhance biosynthesis of a nitrogen-rich
polymer in K. coli, P. putida, and Synechocystis spp. [13].
Nitrogen-responsive biosensors, identified through part
mining, have enabled dynamic regulation of heterologous
genes in lipid biosynthesis to improve biodiesel precursor
production in R. opacus [3°].

Biosensing intracellular concentrations of metabolites can
provide an efficient high-throughput screen of hyperpro-
ducing strains. A biosensor monitoring intracellular
shikimate (central to phenolic amino acid biosynthesis)
in Corynebacterium glutamicum allowed for RBS library
screenings via fluorescence-activating cell sorting (FACS)
[14]. To alleviate product inhibition of the pathway,
sensor-ecnabled positive feedback-control mediated
by the product can be used to increase production.
The 4-hydroxybenzoate-responsive biosensor in P. putida
enabled an enzyme library screening and selecting for
enzyme u#biC from E. coli that converts chorismite to
4-hydroxybenzoate with 60% higher catalytic efficiency
compared to the wild-type [15].

The ability to control gene expression with physical or
environmental cues (e.g. light, pH), is attractive for many
engineering applications. Green light-activated CcaS/red
light-deactivated CcaR TF pair (CcaSR) derived from
Cyanobacteria is the most commonly used light-inducible
system. Green light phosphorylates a chromophore group
covalently bound to CcaS, activating CcaR to initiate
transcription. While light-based sensors naturally have
a limited detection range, a 70-fold activation and rapid
dynamic response were achieved via promoter and
protein engineering in Bacillus subtilis [16°].

A particular problem with many cyanobacterial promoters
is their relation to daily light-dark cycles; they are com-
monly more active when exposed to light, thus making
their functionality context-dependent. Further compli-
cating matters, otherwise ideal inducible promoters, like
the anhydrotetracycline-responsive promoter yielding a
230-fold induction in Cyanobacteria, are limited by the
inducer’s light sensitivity [17]. To expand the Cyanobac-
teria toolkit, low oxygen-responsive FNR (fumarate and
nitrate reduction) TF from E. co/i that was engineered for

use in Synechocystis spp. PCC 6803 has been applied for
expressing oxygen-sensitive enzymes or at low oxygen
conditions [18].

Optimizations of inducible systems are often species-specific
due to the knowledge gap concerning the dependences of
genetic circuits on the host organism. Thermophiles
pose special challenges in constructing inducible systems, as
common mesophilic-derived systems are not physiologically
compatible, requiring identification of host-specific inducible
elements (e.g. part mining of xylose-inducible promoter in
thermophile Caldicellulosiruptor bescii [19]) to obtain function
at high temperatures. Antibiotic-inducible promoters lack
potential orthogonality due to their limitation to hosts with
native antibiotic resistance (commonly Strepromyces) [20]. A
bacitracin-inducible promoter has been applied in a few
bacitracin-resistant B. sutilis strains, but even then expression
decreases after two hours likely due to a bacitracin stress
response [21].

Current methods to engineer inducible
systems in hon-model organisms

Metabolic engineering strategies to improve titer of target
products in specific non-model organisms have often relied
on trial-and-error optimization based on the host’s machin-
ery to control gene expression leading to laborious and
organism-specific design-build-test cycles, mirroring previ-
ous methods demonstrated in E. co/i. As seen above, the most
common method involves engineering the partsin E. co/ and
then transferring them into the strain of interest.

'T'7 bacteriophage expression systems, as well as homolo-
gues of TetR and Lacl, are the most commonly used tool
to build host-independent orthogonal systems in both
Gram-negative and Gram-positive bacteria [21-25]. How-
ever, high T'7 RNAP levels can quickly exhaust cellular
resources [22,26]. Some have used protein degradation
tags or enginecered negative feedback-controlled genetic
circuits mediated by TetR to control T7 RNAP levels in
Synechocystis spp. PCC 6803 [22], and also in E. coli, P. putida,
and B. subtilis [26]. Interestingly, failure due to T'7 RNAP
mRNA degradation was observed in halophile Halomonas
spp. TDO1 [4°°]. Instead, an orthogonal, broad-host
inducible system was engineered using part-mined
T'7-like  RNAPs in industrial strains E. coli S17-1,
Halomonas spp. 'TDO1, and Pseudomonas entomophila
LAC31. This T7-like/lacO system was used to control cell
morphology and polyhydroxybutrate production pathway
in Halomonas spp. TDOI1, resulting in a 100-fold increase
in cell length and 36% increase in polyhydroxybutrate
production [4°°].

Engineering inducible systems based on viewing pro-
moter elements (i.e. —10 and —35 boxes, TF binding
site) as modular is a common strategy for non-model
organisms [12]. Proper placement of the TF binding
site on a strong native constitutive promoter or phage
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promoter blocks RNAP from binding to the promoter
[4°°,23]. Optimization to achieve a ‘true off” state can be
tuned by the number, location, and sequence of TF
binding sites. The insertion of two TetR binding sites,
for example, surrounding or within the —35 and —10
boxes of native constitutive C. acetobutylicum thiolase
promoter resulted in threefold improved repression than
with one operator [27]. Similar architectural strategies are
also applicable for activators. Addition of two T'F binding
sites in pBAD promoter lowered basal expression and
increased induction levels by twofold compared to one
binding site in Synechocystis [5]. Alternatively, multi-input
hybrid promoters built using a repressor and an inducible
system provide a high signal-to-noise ratio by lowering
basal activity while retaining expression strength in
the presence of both inducers [28]. Altering DNA
sequence of promoter elements, as well as the TF itself,
can further fine-tune the biosensor performance to
respond with the appropriate sensitivity and signal output
according to the growth conditions to increase metabolite
productivity [29-31].

Figure 2
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Emerging high-throughput discovery and
engineering methods for inducible systems
Predictable behavior of a biosensor in a different cellular
context is crucial, but current engineering methods that
rapidly engineer inducible systems in K. ¢o/i often have
unpredictable outputs when transferring the system into
another species. The dependence on host resources,
machinery, and environmental factors (e.g. temperature,
pH) greatly affects the output. Therefore, conducting the
development and engineering within the target host can
improve predictability in designing inducible systems.

Massively Parallel Reporter Assays (MPRAs) provide a
high-throughput interrogation of genotype-to-phenotype
relationships through sorting and deep DNA sequencing
(Figure 2a). In the sort-seq method, mutagenized promoter
or5’-UTRIibraries, including TF binding sites, are coupled
to a fluorescent reporter and sorted into activity-based bins
with subsequent sequencing analysis revealing important
features not obvious « priori. Minor changes in the TF
binding site, promoter, or 5’-UTR (including secondary
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Emerging high-throughput engineering methods in non-model microorganisms.
(a) Sort-seq experiments enable high-throughput screening and assembly of genetic parts in non-model organisms with improved predictability in
a context-dependent manner. (b) Cell-free transcription/translation (TXTL) systems shows promise in rapid development and characterization of

inducible systems in an in vitro environment.
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structures) can have drastic effects on translation efficiency
[32]. Screeninga >10 000 member library comprising E. co/i
and Vibrio cholerae sigma54-like promoters showed that
short, CT-rich sequence motifs complementing the
AG-rich Shine-Dalgarno sequence causes an inhibitory
translation mechanism across sigma54 promoters [33°],
highlighting how systematic surveying of the sequence
space can reveal poorly understood mechanisms.

Sort-seq experiments can also enable high-throughput
screening and assembly of genetic parts in non-model
organisms when genome annotation is lacking [34].
FACS-seq and metagenomic approaches have been used
to identify and characterize regulatory sequences from
prokaryotic genomes both at transcriptional and transla-
tional levels to create universal and orthogonal host-specific
genetic circuits [35°°,36]. Analysis of ~30 000 putative
regulatory sequences from 184 prokaryotic genomes, via
combinations of RNA-seq, DNA-seq, and FACS-seq,
found a positive correlation between transcriptional activ-
ity and sigma70 binding affinity, while translation rates
varied across Pseudomonas aeruginosa, E. coli, and B. subtilis
[35°°]. Alternatively, high-throughput screening using
droplet microfluidics-based cell sorting techniques where
the production strain and an K. co/i biosensing strain are
co-encapsulated avoids challenges associated with engi-
neering cross-species T'F-based biosensors [37].

Cell-free transcription/translation (TXTL) systems applied
as an /z vitro tool show promise in the rapid developmentand
characterization of regulatory sequences and proteins in non-
model organisms (Figure 2b). To overcome constraints
working within the organism, cell-free extracts of the giant
Gram-positive Bacillus megaterium were used to characterize
a native xylose-inducible promoter both at the transcription
and translation level [38°°]. While primarily used with model
bacteria, the successes of optimizing protein yields and
expression in cell-free TXTL platforms indicate the poten-
tial this method has for emerging non-model systems [39,40].

Genetic reporters for varying cellular contexts
Biosensors require an observable proxy for the inducing
chemical or condition. While the preferred genetic repor-
ters for high-throughput applications, gfp and related
fluorescent proteins, have been used successfully in a
range of aerotolerant bacteria ('I'able 1) [3°,4°%,15], many
genera cannot use such proteins due to the oxygen
requirement of common fluorescent proteins or thermo-
stability. Therefore, many alternative reporter systems
ranging from colorimetric (e.g. /acZ, gusA) to anaerobic
fluorescent proteins (e.g. iLOV, Y-FAST) have been
developed.

The wide variety of fluorescent proteins available have
enabled high-throughput analysis via flow cytometry of
specific aerotolerant bacteria. Split-GFP reporter system
enables high-throughput analysis of libraries to study

secretion mechanism of B. subrilis [41], while a pH-sensitive
fluorescent protein, pHluorin2, offers a non-invasive method
to assess cytoplasmic pH in Pseudomonas spp. [42]. Red
fluorescent protein (RFP) and its variants have been shown
to outperform GFP in acidic conditions in Pseudomonas
denitrificans [28]. Furthermore, RFP has a longer excitation
and stronger emission wavelength over GFP that led to
higher signal-to-noise ratio in Cupriavidus necator [43].

Obligate anacrobes and metabolic pathways under low
oxygen requirements (e.g. in Cyanobacteria) pose a challenge
due to the requirement for molecular oxygen for the
proteins’ fluorophore to mature. Flavin-based fluorescent
proteins (FbFPs) overcome the oxygen requirement and
instead the maturation requires flavin co-factors such as
flavin mononucleotide or flavin adenine dinucleotide [44].
Light, Oxygen, Voltage (LOV)-based FbFPs such as
phLOV2.1 and 1OV are small anaerobic fluorescent pro-
teins (~14-kDa) with fast folding kinetics that have success-
fully been used in Clostridium spp. for confocal microscopy
[45]. Compared to GFP, however, the fluorescence of
FbFPs is often masked by cellular autofluorescence (due
to NADPH, flavins, siderophores), interfering with the
signal-to-noise ratio measured by flow cytometry, pushing
researchers toward low-throughput enzymatic colorimetric
reporters (e.g. gusA) [46]. Alternatively, fluorescence-activat-
ing and absorption-shifting tag (FAST) strongly fluoresce
upon binding to commercially available fluorogenic ligands
in oxygen-limited environments. Function of FAST and
fluorogenic ligands under both aerobic and anaerobic
conditions enable analysis via flow cytometry and confocal
microscopy [47°°], and may enable high-throughput meth-
ods with FACS or plate-based assays for Clostridium.

Fluorescent proteins from mesophiles are not functional in
thermophiles, requiring thermostable reporters (commonly
the enzymatic pheB and BgaB isolated from Geobacillus
stearothermophilus [48]). While mCherry fluoresces up
to ~50°C, increased thermostability of superfolder GFP
(sftGFP) and species-specific codon-optimization have
been demonstrated in aerobic extreme thermophiles
[49,50]. Thermostable FbFPs have been developed
for aerobic and anaerobic thermophiles; however, FbFP
variants such as codon-optimized 4oLOV from Thermosy-
nechococcus elongatus and YroALOV from B. subtilis were
non-functional in Geobacter spp. [49]. More thermostable
L.OV-based reporters, including MrFbFP and YN3FbFP
Y116F from Thermus thermophilus isolated from Yellowstone
National Park hot springs [44] and CagFbFP from thermo-
philic anaerobic bacterium Chloroflexus aggregans [51] are
becoming available through genome mining approaches.

Conclusion

Research and engineering of non-model microorganisms
have expanded greatly in recent years due to the expand-
ing capabilities and methods of genetic editing. However,
progress is still hampered by the lack of genetic parts,
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specifically biosensors and inducible promoters. While
numerous inducible promoters have been published
recently (Table 1), many bacteria still rely on only one
or a few each. Current methods of engineering such
systems happens primarily in E. ¢o/i, requiring another
cycle of engineering to adapt the genetic parts to comply
with the host expression machinery. We propose that
high-throughput screening methods, now enabled
through novel genetic reporters functional in a broad
range of bacteria, can and should be used in future
engineering of genetic parts for non-model organisms.
These methods will enable rapid development of
advanced genome engineering methods and open the
emerging synthetic biology field to new frontiers.
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