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A SLICE THEOREM FOR SINGULAR RIEMANNIAN
FOLIATIONS, WITH APPLICATIONS

RICARDO A. E. MENDES AND MARCO RADESCHI

ABSTRACT. We prove a slice theorem around closed leaves in a singular Rie-
mannian foliation, and we use it to study the C'°°-algebra of smooth basic
functions, generalizing to the inhomogeneous setting a number of results by
G. Schwarz. In particular, in the infinitesimal case we show that this algebra
is generated by a finite number of polynomials.

1. INTRODUCTION

We consider certain partitions F of Riemannian manifolds M called singular
Riemannian foliations. These are partitions into smooth connected equidistant
submanifolds of possibly varying dimension called leaves (see section [2] for the pre-
cise definition and some basic facts).

Singular Riemannian foliations generalize several classes of objects that have
been traditionally studied in Riemannian geometry. One example is the decompo-
sition into orbits under an action of a connected group by isometries, which we will
also refer to as a homogeneous singular Riemannian foliation, studied in the theory
of differentiable transformation groups (see for example [Bre72]). Another class is
that of isoparametric foliations, whose study goes back to Levi-Civita and E. Car-
tan in the 1930’s, but whose origins can be traced back even further to the 1910’s.
Nevertheless, it remains an important object of current research; see [Tho00] for a
survey. Finally, one of course has (regular) Riemannian foliations, which date back
to the 1950’s [Reib9,[Haeb8]. Certain singular Riemannian foliations arise naturally
in this context by taking leaf closures of an arbitrary regular Riemannian foliation;
see [Mol8§].

An important special case is when the singular Riemannian foliation is infinites-
tmal. This means that the ambient Riemannian manifold M is a FEuclidean vector
space V and the origin is a leaf (cf. section [2]). Infinitesimal foliations generalize
the orbit decompositions of orthogonal representations, and this is a true general-
ization, because there exist many inhomogeneous infinitesimal foliations. In fact,
there is a construction that associates to each infinitesimal foliation an infinite fam-
ily of (higher dimensional) inhomogeneous infinitesimal foliations. These are called
composed foliations; they are related to Clifford systems and include classical ex-
amples such as the octonionic Hopf fibration of R'® and the isoparametric foliations
in [FKMS8I] (see [Rad14l[GRTH]).

The celebrated slice theorem, first proved by Kozsul [Kos53|, is a fundamental
tool in the theory of transformation groups. Given an action of a Lie group G on a
manifold M, it describes a tubular neighbourhood around any orbit G - p in terms
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of a linear representation, namely the slice representation of the isotropy group G,
on the normal space to the orbit at p. Analogously, given a singular Riemannian
foliation (M, F) and a point p € M, the normal space at p of the leaf through p
carries a natural infinitesimal foliation FJ, called the slice foliation; cf. section 2
Our main result is a slice theorem for singular Riemannian foliations.

Theorem A (Slice Theorem). Let (M,F) be a singular Riemannian foliation, and
let L be a closed leaf with slice foliation (V,FL) at a point p € L. Then there is a
group K C O(V)) of foliated isometries of (V, F{) and a principal K-bundle P over
L, such that for small enough € > 0, the e-tube U around L is foliated diffeomorphic
to (P XK VG,P XK]:g).

The group K above consists of all transformations which send each leaf of the
disconnected slice foliation FP to itself; see section [3] for more details.

A previous version of the Slice Theorem [Mol88 Theorem 6.1] describes a neigh-
bourhood of a plaque (cf. section ). Since a plaque is a neighbourhood of a point
inside a leaf, this can be seen as a local version of our Theorem [Al The main in-
gredient in our proof of Theorem [Alis linearized vector fields [Mol88], which allow
us to reduce the structure of the normal bundle of the leaf to K (see Lemma [I7).

In the second part of this paper we apply Theorem [Al to the study of smooth
basic functions, that is, smooth functions on a manifold M that are constant on
the leaves of a singular Riemannian foliation F.

Start with an infinitesimal foliation (V, F). When the leaves are compact, they
are given as the common level sets of a finite number of basic polynomials. This
is called the Algebraicity Theorem [LR15]; see Theorem [1l Generalizing the main
result of [Sch75] about representations of compact Lie groups, we show the following.

Theorem B. Let F be an infinitesimal singular Riemannian foliation of the Eu-
clidean space V' with compact leaves, and let p, ..., pr be generators for the algebra
of basic polynomials. Then the image of the pull-back map p* : C=(R¥) — C>=(V)
equals the space C> (V)T of all smooth basic functions.

The proof of Theorem [Bluses the averaging operator of [LRI5] (cf. section2land
Lemma 2T]), together with a result about composite differentiable functions due to
Tougeron [Tou80] and later generalized by Bierstone-Milman [BM82].

Next consider a singular Riemannian foliation (M, F) of a complete manifold
M. As an application of Theorems [A] and [B] we have Theorem C.

Theorem C. Let (M,F) be a singular Riemannian foliation with closed leaves
in the complete manifold M. Assume the (disconnected) slice foliations of M fall
nto a finite number of isomorphism types. Then there are smooth basic functions
fiye o fN [0 which generate C>=(M)” as a C*-algebra.

Theorem [C] was established in the homogeneous case in [Sch75], using the equi-
variant embedding theorem [Mos57l[Pal57]. In contrast, we use a result from dimen-
sion theory due to Ostrand [Ost65]. We also observe that the literal generalization
of the Equivariant Embedding Theorem to inhomogeneous foliations cannot hold,
because not every (compact) manifold is a leaf of some singular Riemannian folia-
tion of some simply-connected compact ambient manifold. Indeed, the fundamental
group of such a leaf needs to be wvirtually Abelian (Proposition 22]). This is proved
as a simple application of [GGRI5, Theorem A], together with Theorem [Al

1See section @l for an explicit upper bound for N.
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As another application of Theorem [Bl we have Theorem D.

Theorem D (Inverse Function Theorem). Let (M;, F;), i = 1,2, be singular Rie-
mannian foliations with closed leaves, and let f : My/Fy — Ms/Fa be a smooth
strata-preserving map such that d, f is an isomorphism for some x € My /Fy. Then
f is a diffeomorphism in a neighbourhood of x.

The present article is organized as follows. In section [2lwe collect definitions and
some basic facts about singular Riemannian foliations and fix notation. In section
[Bl we define disconnected infinitesimal foliations and prove Theorem [Al the Slice
Theorem. Section Hl concerns smooth basic functions and is devoted to proving
Theorems [B] and In section B] we study smooth maps between leaf spaces and
prove Theorem [D] the Inverse Function Theorem.

2. PRELIMINARIES

We collect in this section the definitions and basic facts that will be used in the
rest of this paper.

Definition 1. Let M be a smooth manifold.

o A generalized distribution is an assignment x — D, of a linear subspace
D, C T, M to each x € M. It is smooth if every Xy € D, extends to a
smooth vector field X on M, such that X (y) € D, for every y € M.

e A smooth generalized distribution D is integrable if, for every x € M, there
is a connected, smooth, immersed submanifold L C M containing x, such
that T,L = D, for all y € L. Such a submanifold L is called an integral
mamnifold of D.

o A singular foliation is the partition of M into the maximal integral mani-
folds (called leaves) of a smooth integrable distribution.

The celebrated Stefan-Sussmann Theorem [Ste74)[Sus73] gives a sufficient and
necessary condition for a smooth generalized distribution to be integrable.

Following [Mol88| p. 189], we define the main objects of the present paper by
combining singular foliations with the notion of a transnormal system due to Bolton
[Bol73].

Definition 2. A singular Riemannian foliation of a Riemannian manifold M is a
singular foliation F such that every geodesic that is normal to a leaf is normal to
every other leaf it meets.

We will also use the notation (M, F) when we want to emphasize the ambient
manifold M. The tangent space to the leaf L, through p will be called the vertical
space at p and its orthogonal complement the horizontal space. Vector fields tangent
to all leaves will be called vertical vector fields. The orbit decomposition under the
isometric action of a connected Lie group forms a singular Riemannian foliation,
and these will be referred to as homogeneous singular Riemannian foliations.

Any two leaves Lq, Lo of a singular Riemannian foliation F are equidistant in
the sense that d(Li,q) is independent of ¢ € Lo. In fact, a singular foliation is
Riemannian if and only if leaves are locally equidistant. To make this precise and
also to state Molino’s Homothetic Transformation Lemma, we need the following
definitions from [Mol88| p. 192].
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Definition 3. Let M be a Riemannian manifold, and let F be a singular foliation of
M. A plague is an open subset P C L of a leaf L such that the inclusion of P in M
is an embedding. Denote by v P the normal bundle of P and by exp : vP — M the
normal exponential map. If e > 0 is such that exp restricted to {v € vP | ||v|| < €}
is a diffeomorphism onto its image O.(P), then O.(P) is called a distinguished
tubular neighbourhood of P. Denote by Fp the partition of O into the connected
components of the intersections of O, with the leaves of F.

In the notation above, a singular foliation F is Riemannian if and only if every
p € M is contained in a distinguished tubular neighbourhood O, such that the
leaves of Fp are equidistant (see [Mol88, p. 193]).

Lemma 4 (Homothetic Transformation Lemma [Mol88| p. 193]). Let F be a sin-
gular Riemannian foliation of a Riemannian manifold M, and fix a distinguished
tubular neighbourhood Oc. Then, for any A > 1, the homothetic transformation
hy : Oc/x — Oc given by exp(z) — exp(Ax) takes leaves of Fo to leaves of Fo.

We will need the following fact; see Proposition 4.3 in [LT10] or Theorem 2.9 in
[AlelQ] for a proof.

Proposition 5 (Equifocality). Let F be a singular Riemannian foliation of a Rie-
mannian manifold M, and let L be a leaf. If v,w € vL are two normal vectors (at
possibly different points) such that exp(tv) and exp(tw) belong to the same leaf for
all small t > 0, then they belong to the same leaf for all t € R for which exp(tv)
and exp(tw) are defined.

Definition 6. An infinitesimal foliation is a singular Riemannian foliation of a
Euclidean vector space V such that the origin is a leaf.

Given an infinitesimal foliation (V,F), the unit sphere S(V) centered at the
origin is a union of leaves (by equidistance from the origin), and the resulting
partition F|g(y) of S(V) is in fact a singular Riemannian foliation. Moreover, by
the Homothetic Transformation Lemma, F|g(yy completely determines F. This
construction defines a one-to-one correspondence between infinitesimal foliations
and singular Riemannian foliations of (round) spheres.

Infinitesimal foliations appear naturally: Given a singular Riemannian foliation
(M, F), let L be the leaf through p € M, and define the slice at p by V = v, L,
with its natural Euclidean metric. For small € > 0, let V< = {v € V | |v| < €},
and consider the partition FP of V¢ defined by intersecting the leaves of F with
exp,(V¢) =~ V€. Define the (connected) slice foliation F{ by taking connected
components of FP and then extending this foliation by homotheties to all of V.
This is well-defined by the Homothetic Transformation Lemma, and (V, F§) is an
infinitesimal foliation by [Mol88, Theorem 6.1 and Proposition 6.5]. When F is
homogeneous, the slice foliation (V, F§) coincides with the (orbit decomposition
under the) slice representation of the connected component of the isotropy group
at p.

A recently established [LR15] fundamental property of infinitesimal foliations
with compact leaves is their algebraic nature. More precisely:

Theorem 7 (Algebraicity). Let (V,F) be an infinitesimal foliation with compact
leaves. Denote by R[V]” the algebra of basic polynomials, that is, polynomials
on V that are constant on the leaves of F. Then R[V]” is finitely generated and
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separates leaves. In particular, given a set of generators pi,...pk, any leaf is the
inverse image of a point under the map p = (p1,...,pr) : V — R¥. Moreover, the
map p induces a homeomorphism between the leaf space V/F and a semi-algebraic
subset of R¥.

The Algebraicity Theorem reduces to Hilbert’s Theorem in the homogeneous
case and to [Miin80, Satz 2] and [Ter85, Theorem D] in the isoparametric case (see
also [Tho91]).

Key in the proof of the Algebraicity Theorem is the averaging operator Av.
Given f € C°°(V), one defines the value of Av(f):V — R at p € V as the average
of f|r, with respect to the standard volume form of L,. The main property of the
averaging operator is that Av(f) is actually smooth, so that in particular Av takes
polynomials to polynomials.

3. THE SLICE THEOREM

The goal of this section is to prove Theorem [A] the Slice Theorem, which will in
turn be used in the remainder of this article.

In subsection Bl we give the definition of (possibly) disconnected infinitesimal
foliationsE which is a generalization of representations by (possibly) disconnected
groups, and of infinitesimal singular Riemannian foliations. This notion is impor-
tant in the proof of Theorem [A] because, for a leaf L with slice V, the intersections
of nearby leaves with V' naturally form a disconnected infinitesimal foliation in this
sense, which moreover may fail to have connected leaves, even though the leaves
of F are connected (as is already the case for group actions). We show that the
Algebraicity Theorem [LR15, Theorem 1.1] carries over to disconnected infinitesi-
mal foliations. We also show that Theorem [Bl holds for disconnected infinitesimal
foliations, provided it holds for infinitesimal foliations (with connected leaves).

We continue in subsection with a definition and properties of linearized vec-
tor fields. The definition is somewhat different but equivalent to the one given
in [Mol88| section 6.4]. Basic properties of linearized vector fields together with
equifocality (see Proposition [l or [LT10, Proposition 4.3] or [Alel0, Theorem 2.9])
allow one (Corollary [IH)) to “push” or “slide” a normal geodesic along a path in
a leaf without changing its image in the leaf space. This is a basic tool that can
be used, in particular, to prove (Proposition [I@) that closed leaves admit a tubu-
lar neighbourhood of constant radius, a fact that is well-known by experts but for
which the authors could not find a detailed proof. In case all leaves of a singular
Riemannian foliation F are closed, Proposition can be interpreted as follows:
every point z in the leaf space M/F has a neighbourhood where d(z, -)? is smooth.
This in particular yields smooth partitions of unity; see subsection

Finally, in subsection [3.3] we prove Theorem [A] (the Slice Theorem), which de-
scribes a small tubular neighbourhood of a closed leaf up to foliated diffeomorphism.
This is accomplished by reducing the structure group of the normal bundle of the
leaf with the help of linearized vector fields. We also present a converse to the Slice
Theorem.

3.1. Disconnected infinitesimal foliations. We define a generalization of infin-
itesimal singular Riemannian foliations where the leaves are allowed to be discon-
nected.

2The definition here is slightly different from the one given in [ARIH].
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Let (V, Fp) be an infinitesimal foliation, that is, a singular Riemannian foliation
on a Euclidean space V' with {0} a leaf of Fy (cf. section ). Let O(V, Fy) denote
the group of isometries of V' sending leaves of Fy to (possibly different) leaves of
Fo, and let O(Fy) C O(V, Fy) denote the normal subgroup of isometries sending
each leaf to itself. Note that O(V, Fy)/O(Fp) is the group of bijections of the leaf
space V/Fy which lift to maps in O(V).

Definition 8 (Disconnected foliation). A disconnected infinitesimal foliation is a
partition F of a Euclidean vector space V into smooth submanifolds, satisfying
two properties. First, the partition Fy obtained from F by taking path-connected
components of leaves is an infinitesimal singular Riemannian foliation, and second,
there is a subgroup I' C O(V, Fy)/O(Fo) whose action on the leaf space V/Fy is
transitive on the connected components of each leaf of F.

When the leaves of (V| Fy) are compact, V/Fy is a Hausdorff metric space, and
I is a subgroup of its isometry group. When moreover the leaves of F are compact,
I' has finite orbits, hence must be finite. In this case, the finite group I' is uniquely
determined by F.

Note also that the leaves of a disconnected infinitesimal foliation (V, F) are con-
tained in spheres centered at the origin and that the conclusion of the Homothetic
Transformation Lemma (see Lemma M) holds. In particular (V,F) is completely
determined by its restriction to the unit sphere S C V.

We mention two natural examples of disconnected infinitesimal foliation. First,
homogeneous disconnected infinitesimal foliations are given by K-orbits, where
K C O(V) is an arbitrary Lie subgroup. Here Fy is given by the orbits of the
path-connected component Ky of K. The group K/Kj acts on V/Fy, and T is
isomorphic to the quotient of K/K, by the ineffective kernel. Second, if F is a
singular Riemannian foliation in a complete manifold M and L is a closed leaf,
the partition FP of the slice V,, at a point p € L into the intersections of leaves
of F with V), constitutes a disconnected infinitesimal foliation. Here 7 (L) acts on
V/FE and T is isomorphic to the quotient of 7 (L) by the ineffective kernel; see
subsection

Remark 9. On the other hand, there are naturally occurring “foliations” with dis-
connected leaves that are not disconnected infinitesimal foliations in the sense of
Definition B One source of such “non-examples” are infinitesimal singular Rie-
mannian foliations Fy with closed leaves, whose leaf space V/Fy admits isometries
that do not lift to O(V). If T' is a (say finite) group containing such non-liftable
isometries, then one may define the leaves of F to be the inverse images of I'-orbits
under the quotient map V' — V/Fy. Some concrete homogeneous examples of
such Fy may be extracted from the classification of orbit spaces of cohomogene-
ity 3 representations; see [Str94, Lemma 6.1]. They include polar representations
with generalized Weyl group of the form Z/2 x Dy or Z/2 x Dg, where Dy de-
notes the dihedral group with 2k elements. Other such Fj include the quaternionic
Hopf foliation of R®, the (inhomogeneous) octonionic Hopf foliation of R6, and,
more generally, the Clifford foliation associated to any Clifford system C), , with
m =0 (mod 4) and k odd; see [Radl4].

A different class of non-examples is the level sets in round spheres of some ho-
mogeneous polynomial F such that |[VF|*(z) is a power of ||x||?. These were
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classified in [Tkal4] and define a partition F into equidistant possibly disconnected
submanifolds, such that Fy is isoparametric with codimension one regular leaves.

Next we extend the Algebraicity Theorem (see Theorem [7 or [LR15, Theorem
1.1]) to disconnected infinitesimal foliations.

Lemma 10 (Algebraicity). Let (V, F) be a disconnected infinitesimal foliation with
compact leaves. Then there are homogeneous polynomials 1, ..., € R[V] such
that the leaves of F are precisely the preimages of points under ¥ = (Y1, ...,1;) :
V — R Moreover v induces a homeomorphism between V/F and the semi-
algebraic subset (V) C RL.

Proof. Let p1, ..., pr be homogeneous generators for the algebra A of basic polyno-
mials of Fy. By [LRI5, Theorem 1.1}, the map p = (p1,...,px) : V — R¥ induces a
homeomorphism from V/Fy to p(V) C RF. We claim that pi, ..., pr may be chosen
so that the induced action of I on p(V') = V/Fj extends to a linear action of I on
R,

Indeed, the action of T' on V/Fy defines a natural action of I on A by graded
algebra automorphisms. This action preserves the natural inner product on each
graded part A; C Sym'V induced by the one on V. Denoting by I the ideal in
A generated by all homogeneous elements of positive degree, we take pi,..., pg
to be any set of homogeneous polynomials which form a basis for the orthogonal
complement of I? inside I. Thus the action of I' on A induces a linear action on
R* = span(py, .. ., pi), which extends the given action on p(V) = V/F.

By Hilbert’s Theorem, the algebra of polynomials on R* invariant under the
I"-action is finitely generated by say 71, ..., 7, and separates orbits. Therefore the
polynomials 7; o p generate the subalgebra B C A consisting of basic polynomials
for F and separate leaves.

Finally, B is a graded algebra by the Homothetic Transformation Lemma. Thus
B is generated by a finite number of homogeneous polynomials, and any such
generating set makes up the desired ¥, ..., ;. O

The lemma below says that if the conclusion of Theorem [B] holds for (V,Fy),
then it also holds for (V, F), where F is a disconnected infinitesimal foliation.

Lemma 11. With the same notation as in Lemma [I0Q,
Co(V)70 = p*(CZ(R")) = CX(V)” =¢*(C*(R")).

Proof. Let f € C*(V)7, that is, a smooth function constant on the leaves of F.
Since the leaves of F are unions of leaves of Fy, the hypothesis says that there is
g € C(RF) such that f = gop. Then g|,) is I-invariant, so that defining § to
be the result of averaging g over I', we have f = gop.

By Schwarz’s Theorem [Sch75], there is h € C°°(R™) such that § = h o, and
therefore f = h ono p. Finally, each 7; o p is a polynomial in ;, and thus f is a
smooth function of v;. |

3.2. Linearized vector fields. Let M be a complete Riemannian manifold, let
L C M be a closed submanifold, and let X be a vector field on M which is tangent to
L. Denoting by vL the normal bundle of L, there exists a neighbourhood W of the
zero section in vL and a neighbourhood U of L in M such that expt |y : W — U
is a diffeomorphism. The preimage (exp); ' X|y, which we also denote by X, is a
smooth vector field on W.
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Definition 12. Given a vector field X on W C v L, we define the linearization of
X around L as
X* = lim (ry ) (X
lim (1) (X o73),

where ry : vL — vL is the rescaling (p,v) — (p, Av). We say X is linearized if it
coincides with its linearization.

Proposition 13 (Linearization). Let X be a smooth vector field on W. Then its
linearization X* is a well-defined, smooth vector field defined on the whole of VL,
invariant under rescalings. In particular, X* is basic for the foot point projection
ro:vL — L.

Proof. The proposition is local in nature, so we can restrict our attention to a
trivializing open set B, with trivialization ¢ : B x R¥ — vL|p, where k = codim L.

Fix coordinates (z1,...,2,,) on B and let (y1,...,yx) be the standard coordi-
nates of R¥. The vector field X can be written as

m 9 k
X = Zai(x,y)% + sz(%y)a—
i=1 =1 v

Since X|r, is tangent to L, it follows that b;(z,0) = 0 for every ¢ = 1,...,k and
every x € B. It is easy to check that
k
(X i(z, Ay) —_
( ory) Za T, y@xz+; \ B
Taking the limit,

- 0
(1) XK — Zai(l" +Z ZC” y] ?,
i=1 g

=1 =1 Y

where Cjj(x) = (w 0). From this formula it is clear that X* is well-defined and
smooth in W and 1nvar1ant under homothetic transformations. In particular, there

exists a unique extension of X* to the whole of vL. In fact, given (p,v) in vL,

define X! (r;l)*X(Zp o) Where X is small enough that Av € W. O

Now we specialize the discussion above to the case where the closed submanifold
L C M is a leaf of a singular Riemannian foliation F. Recall that using the
Homothetic Transformation Lemma (see Lemma [ or [Mol88, Lemma 6.2]), there
is a unique singular foliation on the normal bundle v L that is scaling invariant and
which corresponds to F|y via the normal exponential map, where U is any small
enough tubular neighbourhood around L (see also [LT10, section 4.3]).

(p,v) —

Proposition 14 (Linear flows). Let (M, F) be a singular Riemannian foliation, L
a closed leaf, and X a vector field tangent to the leaves. Then the linearization X°
around L and its flow ®* : vL — vL, t € R, satisfy:
(a) X* is tangent to the leaves of (UL vF); in particular ®' preserves leaves.
(b) For any p € L, the restriction ® lu,L is a linear orthogonal transformation
Jrom v, L onto ve: ) L.

Proof. (a) Since X is tangent to the leaves, so is (13 ').X o7y by the Homothetic
Transformation Lemma (Lemma H). By taking the limit A — 0, X* is tangent to
the leaves.
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(b) By Proposition M3, X* is basic with respect to the foot point projection,
and therefore ®' takes fibers of vL — L to fibers. By equation (I)) the restriction
<I>t|,,p L is a linear map. Since F is a singular Riemannian foliation, the leaves are
contained in distance tubes around L. By the previous item, ®' preserves leaves, so
that the restriction <I>t|l,p 1 preserves the norm. In other words, it is an orthogonal
transformation. O

Corollary 15. Let L be a closed leaf of a singular Riemannian foliation (M, F),
and let v : [0,1] — L be a piecewise smooth curve with v(0) = p. Then there exists
a continuous map G : [0,1] x v,L — v L such that
(a) G(t,v) € vy L for every (t,v) € [0,1] x v, L.
(b) For every t € [0,1], the restriction G| xv,L : VpL — vyl is a linear
isometry preserving the leaves of vL.
(c) For every s € R, exp., ) sG(t,v) belongs to the same leaf as exp, sv.

Proof. Let 0 =ty <t; < --- <ty = 1 be a partition such that foreachi =1,... N,
Yi = V[t:_1,t;) 18 an embedding and thus the integral curve of some smooth vector
field X; on L. Since F is a singular foliation, X; may be extended to a vector field
on M that is tangent to all leaves, which we again call X;. Let Xf denote the
linearization of X; around L, and let ®! be its flow. For (¢,v) € [t;—1,t:] X v, L,
define

G(t,v) = @Z_t'i’l o fI)Zl:ll_t'i’2 0. 0®2 M o dl(v).
Parts (a) and (b) follow from Proposition [

Since v and G(t,v) belong to the same leaf in vL, part (c) follows directly
from equifocality (see Proposition [l or Proposition 4.3 in [LT10] or Theorem 2.9 in

[Alel0]). O

As an application we can recover the following result, which is well-known to the
experts.

Proposition 16 (Tube with constant radius). Let (M, F) be a singular Riemann-
ian foliation with M complete, and let L be a closed leaf. Then there is € > 0
such that the normal exponential map exp : v°L — M is a diffeomorphism onto its
mage.

Proof. Fix any point p € L and let € > 0 such that, for every = € v, L, the geodesic
segment, expp(tac), 0 <t <1, is the unique path of minimal length between L and
exp,(z) in M.

It is enough to show that exp : v°L — M is injective. Suppose not. Then there
are distinct horizontal geodesic segments c1, co of lengths /1 < {5 < € joining points
q1,92 € L to the same point r. Parametrize these segments by arc length so that
c1(0) = e2(0) = 7.

Let v : [0,1] — L be a piecewise smooth curve joining ¢ to p, and take a lift
G :[0,1]xvg, L — vL as in Corollary[[5l Let v € v,L be given by v = G(1, —c5(¢2)),
so that exp, sv belongs to the same leaf as cz(f2 — s) for every s. In particular for
s = {5, the point ' = exp,, {2v belongs to L,. Analogously, taking a curve in L,
from 7 to 7/, we can move ¢} (0), c5(0) to distinct unit normal vectors wy, wy € v, Ly
such that exp,., £;w; belong to L, i =1,2.

Therefore, by the choice of € and I; < I3, the three paths exp, sv, exp,, swi,
and exp,, swe, for 0 < s < 1, must coincide. But this contradicts the fact that
w1 75 wsa. O
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F1GURE 1. Proof of Proposition

3.3. Local models and the Slice Theorem. Let (M, g) be a complete Riemann-
ian manifold, and let F be a singular Riemannian foliation of M. Fix a closed leaf
L and a point p € L. Denote by vL the normal bundle. There is a unique singular
foliation on v L which is scaling invariant and corresponds to F|y via the normal
exponential map, where U is a small enough neighbourhood of L.

Define the slice V =V, at pby V = v, L and the disconnected slice foliation FP of
V by first intersecting the leaves of 7|y with exp, (V) >~ V' and then extending this
foliation by homotheties on the whole of V. Define the (connected) slice foliation
F& by taking connected components of the leaves of F?. We claim that F? is a
disconnected infinitesimal foliation in the sense of subsection Bl Indeed, F{ is an
infinitesimal singular Riemannian foliation by [Mol88, Theorem 6.1 and Proposition
6.5]. Moreover, there is a homomorphism (L) — O(V, F})/O(F}) sending a loop
v to alift G(1,-) € O(V, FJ) of v in the sense of Corollary By construction, the
image I' of this homomorphism acts transitively on the connected components of
each leaf of FP. Indeed, two points ¢, g2 in the same leaf of FP are, by definition,
contained in a common leaf L' of F. Since L’ is connected, one can join ¢; and ¢
via a path in L’ whose projection to L is the desired loop 7.

The main step in our proof of the Slice Theorem is the following lemma, which
in turn is proved using linearized vector fields (see subsection [3.2]).

Lemma 17. With the notation above, the structure group of the normal bundle vL
reduces to O(FP).

Proof. We construct explicit local trivializations. Let ¢ € L and let B be a small
ball in L centered at ¢q. Fix a coordinate system zi,...,x, on B such that
(21,...,2n)(q) = (0,...,0) and a piecewise smooth curve + joining p to ¢q. By
Corollary [I5] there is G : [0,1] x V' — vL such that G(1, ) is an isometry V' — v, L
that preserves the leaves of F. In a way similar to the proof of Corollary [I5] we
construct

GEtrtn) Vel = Vi, a) Ly
a linear isometry preserving leaves of F that depends smoothly on (z1,...,2,).

Namely, we choose linearized vertical vector fields X; extending %, denote their
flows by ®;, and let

(T15Tn) — HTn o ... x1
G =PIno---0®T".
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Then G@1:+%n) o G(1,-) defines a trivialization of vL over B, and repeating the
same procedure for a collection of small balls covering L yields the desired reduction
of structure group. (I

We are now ready to prove the Slice Theorem.

Proof of Theorem [Al. By Proposition [I6] there is € > 0 such that the normal expo-
nential map is a diffeomorphism from v¢L to an open tube U C M. Take P as the
principal O(FP?)-bundle associated to the local trivializations given by Lemma [T

Consider the singular foliation P x F} of P x V whose leaves are P x L', where
L' runs through the leaves of F{. Since O(FP) preserves the leaves of F{, there is
a well-defined induced foliation F = P Xo(Fr) Fo of the quotient P Xoz») V.

By construction of the local trivializations, it is clear that the image of a leaf of
F under the diffeomorphism P Xo(Fry V¢ — U is contained in one leaf of F|y. On
the other hand, since the leaves of F|y are connected, such image must coincide
with a leaf. O

In particular, we have the following description of smooth basic functions on a
tube around a closed leaf.

Corollary 18. Let (M, F) be a singular Riemannian foliation of the complete
manifold M, and let L be a closed leaf through p € M. Then the restriction to the
slice exp, (V) = V<,

ve 1 C2(U)YTIv — o=V,

is an isomorphism between the spaces of smooth basic functions, where U is an
e-tube around L, and FP is the slice foliation.

Proof. The restriction map is injective because the slice V¢ meets all leaves of
Flu. This in turn follows from the existence of smooth vertical vector fields which
generate F, as in Corollary

Turning to surjectivity, let f € C°(V)*". We construct a smooth basic exten-
sion of f to U. Start with the function P x V¢ — R given by (z,y) — f(y). It is
O(FP)-invariant and hence defines a smooth basic function f : P xoFry Ve = R.
By Theorem [Al f corresponds to a smooth basic function on U, which restricts
to f. |

Finally, we present a converse to Theorem [Al for the sake of completeness. Con-
sider a 4-tuple (L,V,F, P) such that L is a connected manifold, (V,F) is a dis-
connected infinitesimal foliation, and P is a principal O(F) bundle over L, subject
to the following condition: letting H C mo(O(F)) denote the image of the map
a : m (L) = 7o(O(F)) induced by P, H acts transitively on mo(L’) for every leaf
L' of F.

Given any such tuple one can define (P xo(r) V, P Xo(r) Fo) as in the proof
of Theorem [A] and the condition above ensures that the leaves of P XoF) Fo are
connected.

Proposition 19 (Converse of Slice Theorem). Given any 4-tuple (L,V,F,P) as
above, there exists a metric on Px o)V such that (P xor)V, Pxor)Fo) becomes
a singular Riemannian foliation, and the metric projection onto L = P xo(r) {0}
is a Riemannian submersion.
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Proof. The inclusion O(F) C O(V) induces an inclusion P C P’ for some principal
O(V) bundle over L. The bundle P’ admits an O(V)-invariant metric gp/, and the
restriction gp of gps to P is then O(FP)-invariant. The metric gp then induces a
Riemannian metric on L that makes the projection P — L a Riemannian submer-
sion. Moreover, the foliation P x Fy is a singular Riemannian foliation on P x V
with respect to the product metric gp + gy, O(F) acts on P x V by foliated isome-
tries, and the metric projection of P x V' — P x {0} = P, which coincides with the
projection on the second factor, is an O(F)-equivariant Riemannian submersion.
Taking the quotient by the free O(F) action, there is then an induced metric on
P xo(F)V such that P xoF)Fo is a singular Riemannian foliation, and the induced
metric projection P xo(r) V — P xXo(r) {0} = L is a Riemannian submersion. [

Remark 20. Given a 4-tuple (L,V,F, P), by Proposition [[9 we can produce a
singular Riemannian foliation (P xo(r) V, P Xo#) Fo) which, by Theorem [A] in-
duces a 4-tuple (ﬁ, V,F, P) It is not hard to prove that the two 4-tuples are
in fact isomorphic, in the sense that there exists a triple (¢r,¢v,¢p) such that
¢r, : L — L is a diffeomorphism, ¢y : (V, F) — (V, F) is a foliated isometry induc-
ing an isomorphism (¢y ), : O(F) = O(F), and ¢p : P — P is a (¢y ).-equivariant
diffeomorphism over ¢ry,.

4. SMOOTH BASIC FUNCTIONS

The goal of this section is to prove Theorems [B] and

Subsection EIconcerns Theorem[Bl One ingredient in this proof is the continuity
of the averaging operator (see section[2]), which we establish in Lemma[2]] and which
is clear in the homogeneous case. The other ingredient is a result about composite
differentiable functions from [BMS82] (see also [Tou80]).

Subsection presents the proof of Theorem [Cl We start with a small digres-
sion (Proposition 22)) which serves to point out that the strategy used in [Sch75] to
prove the homogeneous case of Theorem [C] does not apply in the general (inhomo-
geneous) case. Indeed, a simple application of [GGR15, Theorem A] shows that the
fundamental groups of leaves need to be virtually Abelian, provided the ambient
manifold is compact and simply-connected. Then we prove the existence (Lemma
23) of smooth partitions of unity for the leaf space, and together with a result from
dimension theory due to Ostrand, they are used to prove Theorem

4.1. Basic functions on round spheres. One key fact needed in the proof of
the Algebraicity Theorem (see Theorem [ or [LRI5, Theorem 1.1]) is that the
averaging operator takes smooth functions to smooth functions. This is proved via
a bootstrapping argument involving elliptic regularity. Using these same tools we
prove the following stronger statement, which is needed in the proof of Theorem [Bl

Lemma 21 (Continuity of averaging). Let (V,F) be an infinitesimal singular Rie-
mannian foliation with compact leaves. Then the averaging operator Av : C>* (V) —
C>(V)* is continuous with respect to the C™-topology.

Proof. Recall that if U C V is an open set whose closure U is compact and m
is a non-negative integer, the Sobolev Embedding Theorem (see [Eval(, §5.6.3,
Theorem 6]) implies that the identity map is a continuous inclusion

H2m(U) N Cv?vn—[n/2]—1([7)7
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where H?™(U) = W?m2(U) denotes the Sobolev space of functions on U with
square-integrable derivatives up to order 2m. Therefore it is enough to show that
for every m, U, and sequence {f;} of smooth functions on V which converge to zero
in the C°°-topology, the sequence {Av(f;)|v} converges to zero in H*™(U).

We use induction on m. For m = 0, the conclusion follows from the estimate

1AV (fi)llZ2(ry < volU)(IAV(fi)llcoqir))? < vol(U) (Il fillco(r.0))?,

where F - U C V denotes the (compact) union of all leaves that meet U.

Now take m > 1. We use the fact that averaging commutes with the Laplace
operator [LRI5]: A(Av(f;)) = Av(Af;). By elliptic regularity (see [Eval(l, §6.3.1,
Theorem 2]), for any relatively compact U’ containing U, we have

IAV(fi)llgzm )y < C (IAV(A ) || zrzm—2ry + AV(fi) lL2wr)) 5

where C' is a constant depending only on U and U’.
Applying the inductive hypothesis to m — 1, U’, and the sequence {Af;}, we
conclude that

HAV(AfZ) ||H2mf2(U/) — 0.

Since [|Av(fi)l|z2w) — 0 as in the base case, we have |[Av(f;)| g2m @) — 0, thus
finishing the proof.

Proof of Theorem [Bl. Since R[V]is dense in C*°(V) (in the C*°-topology), it follows
from Lemma 1] that R[V]” is dense in C>°(V)”. In particular, p*(C*(RF)) D
R[V]” is dense in C>°(V)”. It remains to argue that p*(C°(R¥)) is closed in
Cc>(V).

Since p is a polynomial map, its image is semi-algebraic by the Tarski-Seidenberg
Theorem and in particular Nash subanalytic. The map p is also proper, because
x € V — ||z||? is a basic polynomial. Therefore we may apply [BMS82, Theorem
0.2] to conclude that p*(C°°(R¥)) is closed in C>=(V). O

4.2. Basic functions on manifolds. Let (M, F) be a singular Riemannian fo-
liation on the complete manifold M, and assume the leaves are closed. As usual
we say a function f defined on M/F (or on an open subset) is smooth if f o7 is
smooth, where 7 : M — M/F is the natural projection onto the leaf space.

Note that if M is compact, Theorem [B] and Corollary I8 imply that C>°(M)*
is generated, as a C*°-algebra, by a finite number of basic functions. Theorem
asserts that the same conclusion holds under the weaker assumption that the
disconnected slice foliations F? of (M, F) fall into a finite set of isomorphism types
(see subsections Bl and B3]). Here by an isomorphism between disconnected slice
foliations (V,,, FP) and (V;, F9) we mean a linear isometry V,, — V, which takes
leaves of FP to leaves of F1.

The proof of Theorem [Clgiven below differs from the analogous result in [Sch75]:
we use Ostrand’s Theorem (Theorem 1 in [Ost65]) instead of Palais’ Theorem about
equivariant embeddings into Euclidean space [Pal57]. In fact, Palais’ Theorem
cannot generalize to singular Riemannian foliations, because not every manifold L
is a leaf of some infinitesimal singular Riemannian foliation (V, F). Indeed, such a
leaf must be contained in a sphere, and we may apply the following consequence of
[GGR15, Theorem A].
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Proposition 22 (Virtually Abelian). Let M be a compact, simply-connected Rie-
mannian manifold, let F be a singular Riemannian foliation of M with closed leaves,
and let L be a leaf. Then the fundamental group m (L) is virtually Abelian.

Proof. Let L' be a nearby regular leaf, and fix some p € L, with slice V}, = v, L. By
Theorem [A] the metric projection L' — L is a fiber bundle with fiber L” = L' NV),.
Since L” is compact, the set mg(L"”) is finite. Since F has closed leaves, Theorem
A from [GGRI5| implies that m(L') is virtually Abelian. From the long exact
sequence of homotopy groups

e 4 7T1(L/) — 7T1(L) — 7T0(LH) — Wo(L/) =0
it follows that 71 (L) is also virtually Abelian. O

We will need the following lemma in the proof of Theorem|[Cl Recall that a family
of subsets of a topological space is called discrete if every point has a neighbourhood
which intersects at most one of the subsets in the family.

Lemma 23 (Partition of unity). Let (M,F) be a singular Riemannian foliation
on the complete manifold M, and assume the leaves are closed.

(a) There is a partition of unity by smooth functions subordinate to any open
covering of the leaf space M/ F.

(b) LetU = {W1,Ws, ...} be a discrete family of open sets in M /F. Then there
exists a smooth function f on M/F such that flw, has constant value i.

(a) By Proposition [ for each z € M/F, there is € > 0 such that d(z,-)? is
smooth on the ball of radius € around x. Composing this function with
appropriate smooth functions on R yields “bump” functions and hence
partitions of unity subordinate to any open cover.

(b) By the definition of discrete family, there is an open cover {U;},c; of M/F
with the property that for every j € J, either there is a unique index ¢(j)
such that W,y NU; # () or U; does not intersect any W;. In the latter case,
set ¢(j) = 0. By part (a), there is a partition of unity {¢;} subordinate to
{U;}. Then the smooth function f =3, ; c(j)¢; clearly satisfies f|w, = .

O

Proof of Theorem [Cl Consider the cover C of the leaf space M/F consisting of the
open balls B(z,r(z)), for all x € M/F, where r(z) denotes the focal radius of
7~ 1(x) inside M. It follows from Proposition [[€] that r(z) > 0. By Theorem 1 in
[Ost65], there are at most 1+ dim(M/F) discrete families of open sets whose union
covers M /F and refines C.

Let [ be the number of distinct isomorphism types of slice foliations of F. By par-
titioning the discrete families produced by Ostrand’s Theorem, we obtain discrete
families Uy, ..., U,, and disconnected infinitesimal foliations of FEuclidean spaces
V1, F1), o, (Vin, Fm), where m < (1 4 dim(M/F)), with the following property:
Every open set in U; is contained in some ball B(z, r(x)) such that the slice foliation
of the leaf m=1(z) is isomorphic to (V;, F;).

Using a partition of unity of M/F by smooth functions subordinate to {U,},
where U; = Uy, ¢y, W, it is enough to show that each C>(U;)” is finitely generated
as a C'*°-algebra.
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Fix i, let U; = {W1,Ws,.. .}, so that U; = (J; W, and let [ € C>(W)7 such
that flw, = 4. Such f exists by Lemma 23l Choose generators pi,...,px for
R[V;]7.

By Theorem [Bland Lemmal[lTl p1, ..., p, generate C°°(V;)”+, which by Corollary
[ is isomorphic to C°(W;)” for every j. Let pi,...,pr € C(U;)” such that
[)m\Wj corresponds to p,, under this isomorphism.

We claim {f,p1,...,pr} generate C°(U;)” as a C-algebra. Indeed, given
g € C>®(U;)”, there are Q; € C*°(R") such that g|lw, = Q;(p1,. .., k), and hence
we may find Q € C>°(R*¥*1) such that Qlyyxrr = Qj for j =1,2,..., and therefore

g:Q(faﬁlv"'aﬁk)~ (]
Note that, using the notation in the proof above, if k denotes the maximum num-
ber of generators for R[V;]7# over i = 1,...,m, then the total number of generators

for C°°(M)” is bounded above by (1 + dim(M/F))(1 + k).

5. SMOOTH MAPS BETWEEN LEAF SPACES

The goal of this section is to establish an Inverse Function Theorem for leaf
spaces (Theorem [D]). We follow closely the results in [Sch80] leading to his Inverse
Function Theorem for orbit spaces (Theorem 1.11). Indeed, we start with the
definition of tangent spaces and differential of smooth maps, Lemmas 24 and 25 and
in particular relate them to the algebras of basic polynomials in the correponding
slices. After using these to prove Theorem [Dl we point out (Remark B6) that
the main result in [ARI3] can be generalized from homogeneous to inhomogeneous
singular Riemannian foliations using Theorem In other words, every flow by
isometries of the leaf space is smooth.

5.1. Tangent spaces and differentials. Let (M, F) be a singular Riemannian
foliation with closed leaves, and let M/F denote the leaf space.

Recall that a map f : My/Fy — Ms/F, between leaf spaces is called smooth if
f*C>®(My/Fe) C C°°(My/Fy1), and it is a diffeomorphism is there exists a smooth
inverse f~1: My/F; — My/F>.

Given a point * € M/F, let M, (or sometimes M, (M/F) if there is a risk
of confusion) denote the ideal of germs of smooth functions in C*°(M/F) which
vanish at z, and define the tangent space of M/F at x to be

To(M/F) = (M /MZ)",
where M2 denotes the ideal generated by products of pairs of elements in
M, and (M,/M?2)* denotes the dual of M,/M?2. Moreover, given a smooth
map f : My/Fi1 — My/Fy and a point © € My /Fy, there is an induced map
5 Mgy — M, such that f~ (M?c(x)) C M2, and therefore there is an induced
linear map

dof : TeMy [ Fy = (Mo /MZ)* = (M) /M3 )* = Tya)Ma/ Fo

which we call the differential of f at x.
If (M;,F;), i = 1,2, are foliated by points, it is clear that the definitions above
coincide with the usual definitions of tangent space and differential.

Lemma 24. Let (V,F) be a (possibly) disconnected infinitesimal foliation, let
{t1,..., U1} denote a minimal set of generators for the algebra of basic polyno-
mials, and let v : V/F — Rl denote the map induced by 1 = (Y1, ..., 1) : V — RL
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Then .
dotp : ToV/F — ToR! ~ R!
is an isomorphism.

Proof. Let x1,...,x; denote the standard coordinate functions on R!. It is enough
to prove that

0 s Mo(R)MGRY) = Mo(V/F)/MG(VIF),  [ei] =[]

is an isomorphism. By Theorem [B] ¢* Mo(R') = Mo (V/F), and this shows surjec-
tivity. On the other hand, 1[)* must be injective; otherwise there would be a linear
combination Y a;; = ¢ € MZ(V/F). Without loss of generality, suppose that
a1 # 0. By taking the Taylor series of Y a;¢; = ¢ at 0 € V and restricting it to the
homogeneous terms of degree deg;, we would have that v¢; can be written as a
polynomial in s, ..., 4;, which would contradict the minimality of ¢1,...,¢;. O

Given a point © € M/F and p € M mapping to x via the projection M — M/F,
by Theorem C' a neighbourhood of x € M/F is diffeomorphic to V,/FP, where
(Vp, FP) is the disconnected slice foliation at p. In particular T, M /F ~ TV, /FP =
R!, where [ denotes the number of generators of the ring of basic polynomials for
(V,., 7).

Lemma 25. Let (V;, F;), i = 1,2, be disconnected infinitesimal foliations, with
minimal sets of generators (%,. .. ,1/);1) and induced maps )" : Vi/F; — Rb. If

f:Vi/F1 = Va/Fy is a smooth map, then there is a smooth map ¢ : Rh — Rz
such that the following diagram commutes:

Vi/F —L o /R

@ o &

Rll (b 3 RlQ
Proof. Since 1?0 f : Vi /F1 — R is smooth, then in particular )20 f € C>(V;/Fy)
for every i = 1,...,ly and, by Theorem B, there exists some ¢; € C>°(R!) such

that 1&12 o f = ¢; o', By construction, the function ¢ = (¢1,...,¢1,) then makes
the diagram commute. ([l

It follows from Lemmas 24] and that the differential of a smooth map f :
Vi/F1 — Va/Fs between leaf spaces of infinitesimal foliations can be identified
with the differential of a smooth map ¢ : Ri* — R’ in the usual sense.

5.2. Inverse Function Theorem. Finally we turn to the proof of the Inverse
Function Theorem, which follows closely the proof of [Sch80l Theorem 1.11]. Recall
that given a singular Riemannian foliation (M, F), M has a natural stratification
by dimension of leaves. The top stratum, consisting of leaves of maximal dimension,
is the complement of a closed set of codimension at least two, and is therefore open,
dense, and connected [Mol88|, p. 197].

Proof of Theorem [Dl. By the Slice Theorem, there are neighbourhoods of z € M; / Fy
and f(z) € My/F, diffeomorphic respectively to leaf spaces Vi /Fy and Vo /Fy of
(possibly disconnected) infinitesimal foliations. Therefore f restricts to a smooth
strata-preserving map f : V1 /F1, — Vo/Fs, and, by Lemma 25 there is an induced
smooth map ¢ : R" — R’ which makes the diagram in (2)) commute. Because now
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dof is an isomorphism, by Lemma [24] the differential dy¢ is an isomorphism as well,
and by the standard Inverse Function Theorem ¢ is a diffeomorphism near 0 € R%.

Let U; ¢ RY, 4 =1,2, be open neighbourhoods of 0 such that ¢|y, : Uy — Us
is a diffeomorphism, and let S; C U; denote the image of V;/F;, with S¥'" denoting
the image of the principal part and S§ = S;\ S?" denoting the image of the singular
part. Because f is strata-preserving, f(ST") € S¥" and f(S5) C S5. In particular,
fF(St") is open and closed in S5", and, by choosing Us so that S3" is connected (for
example taking Us a distance ball around the origin), it follows that f(S7") = S5".
Because S; is the closure of S?" in U;, i = 1,2, it follows that f(S;) = S as well.
Therefore, it makes sense to define

Fl=WY o (dls,) L odh?: Vo) Fo — Vi) F,

which is smooth because it induces the map ¢~! between the smooth functions. [

Remark 26. The Inverse Function Theorem above could be applied for example
to prove that, given a complete manifold M and a singular Riemannian foliation
(M, F) with closed leaves, any one-parameter group of isometries

¢: M/FxR— M/F

is smooth. Indeed, this was proved in [AR13] in the homogeneous setting. The
proof is divided into three major steps (reducing the proof to a simpler situation:
proving the smoothness on a codimension one set of M/F xR and finally extending
the smoothness to the whole of M/F xR), where the first two steps hold for general
singular Riemannian foliations, and the third is a simple application of Schwarz’s
Inverse Function Theorem for orbit spaces [Sch80, Theorem 1.11]. As Theorem
generalizes Schwarz’s Inverse Function Theorem to the case of leaf spaces, this
could be applied to extend the main result in [AR13] to general singular Riemannian
foliations with closed leaves.
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