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A SLICE THEOREM FOR SINGULAR RIEMANNIAN

FOLIATIONS, WITH APPLICATIONS

RICARDO A. E. MENDES AND MARCO RADESCHI

Abstract. We prove a slice theorem around closed leaves in a singular Rie-
mannian foliation, and we use it to study the C∞-algebra of smooth basic
functions, generalizing to the inhomogeneous setting a number of results by
G. Schwarz. In particular, in the infinitesimal case we show that this algebra
is generated by a finite number of polynomials.

1. Introduction

We consider certain partitions F of Riemannian manifolds M called singular
Riemannian foliations. These are partitions into smooth connected equidistant
submanifolds of possibly varying dimension called leaves (see section 2 for the pre-
cise definition and some basic facts).

Singular Riemannian foliations generalize several classes of objects that have
been traditionally studied in Riemannian geometry. One example is the decompo-
sition into orbits under an action of a connected group by isometries, which we will
also refer to as a homogeneous singular Riemannian foliation, studied in the theory
of differentiable transformation groups (see for example [Bre72]). Another class is

that of isoparametric foliations, whose study goes back to Levi-Civita and É. Car-
tan in the 1930’s, but whose origins can be traced back even further to the 1910’s.
Nevertheless, it remains an important object of current research; see [Tho00] for a
survey. Finally, one of course has (regular) Riemannian foliations, which date back
to the 1950’s [Rei59,Hae58]. Certain singular Riemannian foliations arise naturally
in this context by taking leaf closures of an arbitrary regular Riemannian foliation;
see [Mol88].

An important special case is when the singular Riemannian foliation is infinites-
imal. This means that the ambient Riemannian manifold M is a Euclidean vector
space V and the origin is a leaf (cf. section 2). Infinitesimal foliations generalize
the orbit decompositions of orthogonal representations, and this is a true general-
ization, because there exist many inhomogeneous infinitesimal foliations. In fact,
there is a construction that associates to each infinitesimal foliation an infinite fam-
ily of (higher dimensional) inhomogeneous infinitesimal foliations. These are called
composed foliations; they are related to Clifford systems and include classical ex-
amples such as the octonionic Hopf fibration of R16 and the isoparametric foliations
in [FKM81] (see [Rad14,GR15]).

The celebrated slice theorem, first proved by Kozsul [Kos53], is a fundamental
tool in the theory of transformation groups. Given an action of a Lie group G on a
manifold M , it describes a tubular neighbourhood around any orbit G · p in terms
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4932 RICARDO A. E. MENDES AND MARCO RADESCHI

of a linear representation, namely the slice representation of the isotropy group Gp

on the normal space to the orbit at p. Analogously, given a singular Riemannian
foliation (M,F) and a point p ∈ M , the normal space at p of the leaf through p
carries a natural infinitesimal foliation Fp

0 , called the slice foliation; cf. section 2.
Our main result is a slice theorem for singular Riemannian foliations.

Theorem A (Slice Theorem). Let (M,F) be a singular Riemannian foliation, and
let L be a closed leaf with slice foliation (V,Fp

0 ) at a point p ∈ L. Then there is a
group K ⊂ O(V ) of foliated isometries of (V,Fp

0 ) and a principal K-bundle P over
L, such that for small enough ε > 0, the ε-tube U around L is foliated diffeomorphic
to (P ×K V ε, P ×K Fp

0 ).

The group K above consists of all transformations which send each leaf of the
disconnected slice foliation Fp to itself; see section 3 for more details.

A previous version of the Slice Theorem [Mol88, Theorem 6.1] describes a neigh-
bourhood of a plaque (cf. section 2). Since a plaque is a neighbourhood of a point
inside a leaf, this can be seen as a local version of our Theorem A. The main in-
gredient in our proof of Theorem A is linearized vector fields [Mol88], which allow
us to reduce the structure of the normal bundle of the leaf to K (see Lemma 17).

In the second part of this paper we apply Theorem A to the study of smooth
basic functions, that is, smooth functions on a manifold M that are constant on
the leaves of a singular Riemannian foliation F .

Start with an infinitesimal foliation (V,F). When the leaves are compact, they
are given as the common level sets of a finite number of basic polynomials. This
is called the Algebraicity Theorem [LR15]; see Theorem 7. Generalizing the main
result of [Sch75] about representations of compact Lie groups, we show the following.

Theorem B. Let F be an infinitesimal singular Riemannian foliation of the Eu-
clidean space V with compact leaves, and let ρ1, . . . , ρk be generators for the algebra
of basic polynomials. Then the image of the pull-back map ρ∗ : C∞(Rk) → C∞(V )
equals the space C∞(V )F of all smooth basic functions.

The proof of Theorem B uses the averaging operator of [LR15] (cf. section 2 and
Lemma 21), together with a result about composite differentiable functions due to
Tougeron [Tou80] and later generalized by Bierstone-Milman [BM82].

Next consider a singular Riemannian foliation (M,F) of a complete manifold
M . As an application of Theorems A and B, we have Theorem C.

Theorem C. Let (M,F) be a singular Riemannian foliation with closed leaves
in the complete manifold M . Assume the (disconnected) slice foliations of M fall
into a finite number of isomorphism types. Then there are smooth basic functions
f1, . . . , fN

1 which generate C∞(M)F as a C∞-algebra.

Theorem C was established in the homogeneous case in [Sch75], using the equi-
variant embedding theorem [Mos57,Pal57]. In contrast, we use a result from dimen-
sion theory due to Ostrand [Ost65]. We also observe that the literal generalization
of the Equivariant Embedding Theorem to inhomogeneous foliations cannot hold,
because not every (compact) manifold is a leaf of some singular Riemannian folia-
tion of some simply-connected compact ambient manifold. Indeed, the fundamental
group of such a leaf needs to be virtually Abelian (Proposition 22). This is proved
as a simple application of [GGR15, Theorem A], together with Theorem A.

1See section 4 for an explicit upper bound for N .
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As another application of Theorem B, we have Theorem D.

Theorem D (Inverse Function Theorem). Let (Mi,Fi), i = 1, 2, be singular Rie-
mannian foliations with closed leaves, and let f : M1/F1 → M2/F2 be a smooth
strata-preserving map such that dxf is an isomorphism for some x ∈ M1/F1. Then
f is a diffeomorphism in a neighbourhood of x.

The present article is organized as follows. In section 2 we collect definitions and
some basic facts about singular Riemannian foliations and fix notation. In section
3 we define disconnected infinitesimal foliations and prove Theorem A, the Slice
Theorem. Section 4 concerns smooth basic functions and is devoted to proving
Theorems B and C. In section 5 we study smooth maps between leaf spaces and
prove Theorem D, the Inverse Function Theorem.

2. Preliminaries

We collect in this section the definitions and basic facts that will be used in the
rest of this paper.

Definition 1. Let M be a smooth manifold.

• A generalized distribution is an assignment x �→ Dx of a linear subspace
Dx ⊂ TxM to each x ∈ M . It is smooth if every X0 ∈ Dx extends to a
smooth vector field X on M , such that X(y) ∈ Dy for every y ∈ M .

• A smooth generalized distribution D is integrable if, for every x ∈ M , there
is a connected, smooth, immersed submanifold L ⊂ M containing x, such
that TyL = Dy for all y ∈ L. Such a submanifold L is called an integral
manifold of D.

• A singular foliation is the partition of M into the maximal integral mani-
folds (called leaves) of a smooth integrable distribution.

The celebrated Stefan-Sussmann Theorem [Ste74, Sus73] gives a sufficient and
necessary condition for a smooth generalized distribution to be integrable.

Following [Mol88, p. 189], we define the main objects of the present paper by
combining singular foliations with the notion of a transnormal system due to Bolton
[Bol73].

Definition 2. A singular Riemannian foliation of a Riemannian manifold M is a
singular foliation F such that every geodesic that is normal to a leaf is normal to
every other leaf it meets.

We will also use the notation (M,F) when we want to emphasize the ambient
manifold M . The tangent space to the leaf Lp through p will be called the vertical
space at p and its orthogonal complement the horizontal space. Vector fields tangent
to all leaves will be called vertical vector fields. The orbit decomposition under the
isometric action of a connected Lie group forms a singular Riemannian foliation,
and these will be referred to as homogeneous singular Riemannian foliations.

Any two leaves L1, L2 of a singular Riemannian foliation F are equidistant in
the sense that d(L1, q) is independent of q ∈ L2. In fact, a singular foliation is
Riemannian if and only if leaves are locally equidistant. To make this precise and
also to state Molino’s Homothetic Transformation Lemma, we need the following
definitions from [Mol88, p. 192].

Licensed to Univ of Notre Dame. Prepared on Mon May 18 15:26:03 EDT 2020 for download from IP 129.74.47.164.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4934 RICARDO A. E. MENDES AND MARCO RADESCHI

Definition 3. LetM be a Riemannian manifold, and let F be a singular foliation of
M . A plaque is an open subset P ⊂ L of a leaf L such that the inclusion of P in M
is an embedding. Denote by νP the normal bundle of P and by exp : νP → M the
normal exponential map. If ε > 0 is such that exp restricted to {v ∈ νP | ‖v‖ < ε}
is a diffeomorphism onto its image Oε(P ), then Oε(P ) is called a distinguished
tubular neighbourhood of P . Denote by FO the partition of Oε into the connected
components of the intersections of Oε with the leaves of F .

In the notation above, a singular foliation F is Riemannian if and only if every
p ∈ M is contained in a distinguished tubular neighbourhood Oε, such that the
leaves of FO are equidistant (see [Mol88, p. 193]).

Lemma 4 (Homothetic Transformation Lemma [Mol88, p. 193]). Let F be a sin-
gular Riemannian foliation of a Riemannian manifold M , and fix a distinguished
tubular neighbourhood Oε. Then, for any λ > 1, the homothetic transformation
hλ : Oε/λ → Oε given by exp(x) �→ exp(λx) takes leaves of FO to leaves of FO.

We will need the following fact; see Proposition 4.3 in [LT10] or Theorem 2.9 in
[Ale10] for a proof.

Proposition 5 (Equifocality). Let F be a singular Riemannian foliation of a Rie-
mannian manifold M , and let L be a leaf. If v, w ∈ νL are two normal vectors (at
possibly different points) such that exp(tv) and exp(tw) belong to the same leaf for
all small t > 0, then they belong to the same leaf for all t ∈ R for which exp(tv)
and exp(tw) are defined.

Definition 6. An infinitesimal foliation is a singular Riemannian foliation of a
Euclidean vector space V such that the origin is a leaf.

Given an infinitesimal foliation (V,F), the unit sphere S(V ) centered at the
origin is a union of leaves (by equidistance from the origin), and the resulting
partition F|S(V ) of S(V ) is in fact a singular Riemannian foliation. Moreover, by
the Homothetic Transformation Lemma, F|S(V ) completely determines F . This
construction defines a one-to-one correspondence between infinitesimal foliations
and singular Riemannian foliations of (round) spheres.

Infinitesimal foliations appear naturally: Given a singular Riemannian foliation
(M,F), let L be the leaf through p ∈ M , and define the slice at p by V = νpL,
with its natural Euclidean metric. For small ε > 0, let V ε = {v ∈ V | ‖v‖ < ε},
and consider the partition Fp of V ε defined by intersecting the leaves of F with
expp(V

ε) � V ε. Define the (connected) slice foliation Fp
0 by taking connected

components of Fp and then extending this foliation by homotheties to all of V .
This is well-defined by the Homothetic Transformation Lemma, and (V,Fp

0 ) is an
infinitesimal foliation by [Mol88, Theorem 6.1 and Proposition 6.5]. When F is
homogeneous, the slice foliation (V,Fp

0 ) coincides with the (orbit decomposition
under the) slice representation of the connected component of the isotropy group
at p.

A recently established [LR15] fundamental property of infinitesimal foliations
with compact leaves is their algebraic nature. More precisely:

Theorem 7 (Algebraicity). Let (V,F) be an infinitesimal foliation with compact
leaves. Denote by R[V ]F the algebra of basic polynomials, that is, polynomials
on V that are constant on the leaves of F . Then R[V ]F is finitely generated and
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separates leaves. In particular, given a set of generators ρ1, . . . ρk, any leaf is the
inverse image of a point under the map ρ = (ρ1, . . . , ρk) : V → R

k. Moreover, the
map ρ induces a homeomorphism between the leaf space V/F and a semi-algebraic
subset of Rk.

The Algebraicity Theorem reduces to Hilbert’s Theorem in the homogeneous
case and to [Mün80, Satz 2] and [Ter85, Theorem D] in the isoparametric case (see
also [Tho91]).

Key in the proof of the Algebraicity Theorem is the averaging operator Av.
Given f ∈ C∞(V ), one defines the value of Av(f) : V → R at p ∈ V as the average
of f |Lp

with respect to the standard volume form of Lp. The main property of the
averaging operator is that Av(f) is actually smooth, so that in particular Av takes
polynomials to polynomials.

3. The Slice Theorem

The goal of this section is to prove Theorem A, the Slice Theorem, which will in
turn be used in the remainder of this article.

In subsection 3.1 we give the definition of (possibly) disconnected infinitesimal
foliations,2 which is a generalization of representations by (possibly) disconnected
groups, and of infinitesimal singular Riemannian foliations. This notion is impor-
tant in the proof of Theorem A because, for a leaf L with slice V , the intersections
of nearby leaves with V naturally form a disconnected infinitesimal foliation in this
sense, which moreover may fail to have connected leaves, even though the leaves
of F are connected (as is already the case for group actions). We show that the
Algebraicity Theorem [LR15, Theorem 1.1] carries over to disconnected infinitesi-
mal foliations. We also show that Theorem B holds for disconnected infinitesimal
foliations, provided it holds for infinitesimal foliations (with connected leaves).

We continue in subsection 3.2 with a definition and properties of linearized vec-
tor fields. The definition is somewhat different but equivalent to the one given
in [Mol88, section 6.4]. Basic properties of linearized vector fields together with
equifocality (see Proposition 5 or [LT10, Proposition 4.3] or [Ale10, Theorem 2.9])
allow one (Corollary 15) to “push” or “slide” a normal geodesic along a path in
a leaf without changing its image in the leaf space. This is a basic tool that can
be used, in particular, to prove (Proposition 16) that closed leaves admit a tubu-
lar neighbourhood of constant radius, a fact that is well-known by experts but for
which the authors could not find a detailed proof. In case all leaves of a singular
Riemannian foliation F are closed, Proposition 16 can be interpreted as follows:
every point x in the leaf space M/F has a neighbourhood where d(x, ·)2 is smooth.
This in particular yields smooth partitions of unity; see subsection 4.2.

Finally, in subsection 3.3 we prove Theorem A (the Slice Theorem), which de-
scribes a small tubular neighbourhood of a closed leaf up to foliated diffeomorphism.
This is accomplished by reducing the structure group of the normal bundle of the
leaf with the help of linearized vector fields. We also present a converse to the Slice
Theorem.

3.1. Disconnected infinitesimal foliations. We define a generalization of infin-
itesimal singular Riemannian foliations where the leaves are allowed to be discon-
nected.

2The definition here is slightly different from the one given in [AR15].
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4936 RICARDO A. E. MENDES AND MARCO RADESCHI

Let (V,F0) be an infinitesimal foliation, that is, a singular Riemannian foliation
on a Euclidean space V with {0} a leaf of F0 (cf. section 2). Let O(V,F0) denote
the group of isometries of V sending leaves of F0 to (possibly different) leaves of
F0, and let O(F0) ⊂ O(V,F0) denote the normal subgroup of isometries sending
each leaf to itself. Note that O(V,F0)/O(F0) is the group of bijections of the leaf
space V/F0 which lift to maps in O(V ).

Definition 8 (Disconnected foliation). A disconnected infinitesimal foliation is a
partition F of a Euclidean vector space V into smooth submanifolds, satisfying
two properties. First, the partition F0 obtained from F by taking path-connected
components of leaves is an infinitesimal singular Riemannian foliation, and second,
there is a subgroup Γ ⊂ O(V,F0)/O(F0) whose action on the leaf space V/F0 is
transitive on the connected components of each leaf of F .

When the leaves of (V,F0) are compact, V/F0 is a Hausdorff metric space, and
Γ is a subgroup of its isometry group. When moreover the leaves of F are compact,
Γ has finite orbits, hence must be finite. In this case, the finite group Γ is uniquely
determined by F .

Note also that the leaves of a disconnected infinitesimal foliation (V,F) are con-
tained in spheres centered at the origin and that the conclusion of the Homothetic
Transformation Lemma (see Lemma 4) holds. In particular (V,F) is completely
determined by its restriction to the unit sphere S ⊂ V .

We mention two natural examples of disconnected infinitesimal foliation. First,
homogeneous disconnected infinitesimal foliations are given by K-orbits, where
K ⊂ O(V ) is an arbitrary Lie subgroup. Here F0 is given by the orbits of the
path-connected component K0 of K. The group K/K0 acts on V/F0, and Γ is
isomorphic to the quotient of K/K0 by the ineffective kernel. Second, if F is a
singular Riemannian foliation in a complete manifold M and L is a closed leaf,
the partition Fp of the slice Vp at a point p ∈ L into the intersections of leaves
of F with Vp constitutes a disconnected infinitesimal foliation. Here π1(L) acts on
V/Fp

0 and Γ is isomorphic to the quotient of π1(L) by the ineffective kernel; see
subsection 3.3.

Remark 9. On the other hand, there are naturally occurring “foliations” with dis-
connected leaves that are not disconnected infinitesimal foliations in the sense of
Definition 8. One source of such “non-examples” are infinitesimal singular Rie-
mannian foliations F0 with closed leaves, whose leaf space V/F0 admits isometries
that do not lift to O(V ). If Γ is a (say finite) group containing such non-liftable
isometries, then one may define the leaves of F to be the inverse images of Γ-orbits
under the quotient map V → V/F0. Some concrete homogeneous examples of
such F0 may be extracted from the classification of orbit spaces of cohomogene-
ity 3 representations; see [Str94, Lemma 6.1]. They include polar representations
with generalized Weyl group of the form Z/2 × D4 or Z/2 × D6, where Dk de-
notes the dihedral group with 2k elements. Other such F0 include the quaternionic
Hopf foliation of R8, the (inhomogeneous) octonionic Hopf foliation of R16, and,
more generally, the Clifford foliation associated to any Clifford system Cm,k with
m ≡ 0 (mod 4) and k odd; see [Rad14].

A different class of non-examples is the level sets in round spheres of some ho-
mogeneous polynomial F such that ‖∇F‖2(x) is a power of ‖x‖2. These were

Licensed to Univ of Notre Dame. Prepared on Mon May 18 15:26:03 EDT 2020 for download from IP 129.74.47.164.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A SLICE THEOREM FOR SINGULAR RIEMANNIAN FOLIATIONS 4937

classified in [Tka14] and define a partition F into equidistant possibly disconnected
submanifolds, such that F0 is isoparametric with codimension one regular leaves.

Next we extend the Algebraicity Theorem (see Theorem 7, or [LR15, Theorem
1.1]) to disconnected infinitesimal foliations.

Lemma 10 (Algebraicity). Let (V,F) be a disconnected infinitesimal foliation with
compact leaves. Then there are homogeneous polynomials ψ1, . . . , ψl ∈ R[V ] such
that the leaves of F are precisely the preimages of points under ψ = (ψ1, . . . , ψl) :
V → R

l. Moreover ψ induces a homeomorphism between V/F and the semi-
algebraic subset ψ(V ) ⊂ R

l.

Proof. Let ρ1, . . . , ρk be homogeneous generators for the algebra A of basic polyno-
mials of F0. By [LR15, Theorem 1.1], the map ρ = (ρ1, . . . , ρk) : V → R

k induces a
homeomorphism from V/F0 to ρ(V ) ⊂ R

k. We claim that ρ1, . . . , ρk may be chosen
so that the induced action of Γ on ρ(V ) = V/F0 extends to a linear action of Γ on
R

k.
Indeed, the action of Γ on V/F0 defines a natural action of Γ on A by graded

algebra automorphisms. This action preserves the natural inner product on each
graded part Ai ⊂ SymiV induced by the one on V . Denoting by I the ideal in
A generated by all homogeneous elements of positive degree, we take ρ1, . . . , ρk
to be any set of homogeneous polynomials which form a basis for the orthogonal
complement of I2 inside I. Thus the action of Γ on A induces a linear action on
R

k = span(ρ1, . . . , ρk), which extends the given action on ρ(V ) = V/F0.
By Hilbert’s Theorem, the algebra of polynomials on R

k invariant under the
Γ-action is finitely generated by say η1, . . . , ηm and separates orbits. Therefore the
polynomials ηi ◦ ρ generate the subalgebra B ⊂ A consisting of basic polynomials
for F and separate leaves.

Finally, B is a graded algebra by the Homothetic Transformation Lemma. Thus
B is generated by a finite number of homogeneous polynomials, and any such
generating set makes up the desired ψ1, . . . , ψl. �

The lemma below says that if the conclusion of Theorem B holds for (V,F0),
then it also holds for (V,F), where F is a disconnected infinitesimal foliation.

Lemma 11. With the same notation as in Lemma 10,

C∞(V )F0 = ρ∗(C∞(Rk)) =⇒ C∞(V )F = ψ∗(C∞(Rl)).

Proof. Let f ∈ C∞(V )F , that is, a smooth function constant on the leaves of F .
Since the leaves of F are unions of leaves of F0, the hypothesis says that there is
g ∈ C∞(Rk) such that f = g ◦ ρ. Then g|ρ(V ) is Γ-invariant, so that defining g̃ to
be the result of averaging g over Γ, we have f = g̃ ◦ ρ.

By Schwarz’s Theorem [Sch75], there is h ∈ C∞(Rm) such that g̃ = h ◦ η, and
therefore f = h ◦ η ◦ ρ. Finally, each ηi ◦ ρ is a polynomial in ψj , and thus f is a
smooth function of ψj . �
3.2. Linearized vector fields. Let M be a complete Riemannian manifold, let
L ⊂ M be a closed submanifold, and letX be a vector field onM which is tangent to
L. Denoting by νL the normal bundle of L, there exists a neighbourhood W of the
zero section in νL and a neighbourhood U of L in M such that exp⊥ |W : W → U
is a diffeomorphism. The preimage (exp⊥)−1

∗ X|U , which we also denote by X, is a
smooth vector field on W .
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4938 RICARDO A. E. MENDES AND MARCO RADESCHI

Definition 12. Given a vector field X on W ⊂ νL, we define the linearization of
X around L as

X� = lim
λ→0

(r−1
λ )∗(X ◦ rλ),

where rλ : νL → νL is the rescaling (p, v) → (p, λv). We say X is linearized if it
coincides with its linearization.

Proposition 13 (Linearization). Let X be a smooth vector field on W . Then its
linearization X� is a well-defined, smooth vector field defined on the whole of νL,
invariant under rescalings. In particular, X� is basic for the foot point projection
r0 : νL → L.

Proof. The proposition is local in nature, so we can restrict our attention to a
trivializing open set B, with trivialization φ : B ×R

k → νL|B, where k = codimL.
Fix coordinates (x1, . . . , xm) on B and let (y1, . . . , yk) be the standard coordi-

nates of Rk. The vector field X can be written as

X =

m∑
i=1

ai(x, y)
∂

∂xi
+

k∑
i=1

bi(x, y)
∂

∂yi
.

Since X|L is tangent to L, it follows that bi(x, 0) = 0 for every i = 1, . . . , k and
every x ∈ B. It is easy to check that

(r−1
λ )∗(X ◦ rλ) =

m∑
i=1

ai(x, λy)
∂

∂xi
+

k∑
i=1

bi(x, λy)

λ

∂

∂yi
.

Taking the limit,

(1) X� =

m∑
i=1

ai(x, 0)
∂

∂xi
+

k∑
i=1

⎛
⎝

k∑
j=1

Cij(x)yj

⎞
⎠ ∂

∂yi
,

where Cij(x) =
∂bi
∂yj

(x, 0). From this formula it is clear that X� is well-defined and

smooth in W and invariant under homothetic transformations. In particular, there
exists a unique extension of X� to the whole of νL. In fact, given (p, v) in νL,
define X�

(p,v) = (r−1
λ )∗X

�
(p,λv) where λ is small enough that λv ∈ W . �

Now we specialize the discussion above to the case where the closed submanifold
L ⊂ M is a leaf of a singular Riemannian foliation F . Recall that using the
Homothetic Transformation Lemma (see Lemma 4 or [Mol88, Lemma 6.2]), there
is a unique singular foliation on the normal bundle νL that is scaling invariant and
which corresponds to F|U via the normal exponential map, where U is any small
enough tubular neighbourhood around L (see also [LT10, section 4.3]).

Proposition 14 (Linear flows). Let (M,F) be a singular Riemannian foliation, L
a closed leaf, and X a vector field tangent to the leaves. Then the linearization X�

around L and its flow Φt : νL → νL, t ∈ R, satisfy:

(a) X� is tangent to the leaves of (νL, νF); in particular Φt preserves leaves.
(b) For any p ∈ L, the restriction Φt|νpL is a linear orthogonal transformation

from νpL onto νΦt(p)L.

Proof. (a) Since X is tangent to the leaves, so is (r−1
λ )∗X ◦ rλ by the Homothetic

Transformation Lemma (Lemma 4). By taking the limit λ → 0, X� is tangent to
the leaves.
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(b) By Proposition 13, X� is basic with respect to the foot point projection,
and therefore Φt takes fibers of νL → L to fibers. By equation (1) the restriction
Φt|νpL is a linear map. Since F is a singular Riemannian foliation, the leaves are
contained in distance tubes around L. By the previous item, Φt preserves leaves, so
that the restriction Φt|νpL preserves the norm. In other words, it is an orthogonal
transformation. �
Corollary 15. Let L be a closed leaf of a singular Riemannian foliation (M,F),
and let γ : [0, 1] → L be a piecewise smooth curve with γ(0) = p. Then there exists
a continuous map G : [0, 1]× νpL → νL such that

(a) G(t, v) ∈ νγ(t)L for every (t, v) ∈ [0, 1]× νpL.
(b) For every t ∈ [0, 1], the restriction G|{t}×νpL : νpL → νγ(t)L is a linear

isometry preserving the leaves of νL.
(c) For every s ∈ R, expγ(t) sG(t, v) belongs to the same leaf as expp sv.

Proof. Let 0 = t0 < t1 < · · · < tN = 1 be a partition such that for each i = 1, . . . , N ,
γi = γ|[ti−1,ti] is an embedding and thus the integral curve of some smooth vector
field Xi on L. Since F is a singular foliation, Xi may be extended to a vector field
on M that is tangent to all leaves, which we again call Xi. Let X�

i denote the
linearization of Xi around L, and let Φt

i be its flow. For (t, v) ∈ [ti−1, ti] × νpL,
define

G(t, v) = Φ
t−ti−1

i ◦ Φti−1−ti−2

i−1 ◦ · · · ◦ Φt2−t1
2 ◦ Φt1

1 (v).

Parts (a) and (b) follow from Proposition 14.
Since v and G(t, v) belong to the same leaf in νL, part (c) follows directly

from equifocality (see Proposition 5 or Proposition 4.3 in [LT10] or Theorem 2.9 in
[Ale10]). �

As an application we can recover the following result, which is well-known to the
experts.

Proposition 16 (Tube with constant radius). Let (M,F) be a singular Riemann-
ian foliation with M complete, and let L be a closed leaf. Then there is ε > 0
such that the normal exponential map exp : νεL → M is a diffeomorphism onto its
image.

Proof. Fix any point p ∈ L and let ε > 0 such that, for every x ∈ νεpL, the geodesic
segment expp(tx), 0 ≤ t ≤ 1, is the unique path of minimal length between L and
expp(x) in M .

It is enough to show that exp : νεL → M is injective. Suppose not. Then there
are distinct horizontal geodesic segments c1, c2 of lengths �1 ≤ �2 < ε joining points
q1, q2 ∈ L to the same point r. Parametrize these segments by arc length so that
c1(0) = c2(0) = r.

Let γ : [0, 1] → L be a piecewise smooth curve joining q2 to p, and take a lift
G : [0, 1]×νq2L → νL as in Corollary 15. Let v ∈ νpL be given by v = G(1,−c′2(�2)),
so that expp sv belongs to the same leaf as c2(�2 − s) for every s. In particular for
s = �2, the point r′ = expp �2v belongs to Lr. Analogously, taking a curve in Lr

from r to r′, we can move c′1(0), c
′
2(0) to distinct unit normal vectors w1, w2 ∈ νr′Lr

such that expr′ �iwi belong to L, i = 1, 2.
Therefore, by the choice of ε and l1 ≤ l2, the three paths expp sv, expr′ sw1,

and expr′ sw2, for 0 ≤ s ≤ 1, must coincide. But this contradicts the fact that
w1 
= w2. �
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Figure 1. Proof of Proposition 16

3.3. Local models and the Slice Theorem. Let (M, g) be a complete Riemann-
ian manifold, and let F be a singular Riemannian foliation of M . Fix a closed leaf
L and a point p ∈ L. Denote by νL the normal bundle. There is a unique singular
foliation on νL which is scaling invariant and corresponds to F|U via the normal
exponential map, where U is a small enough neighbourhood of L.

Define the slice V = Vp at p by V = νpL and the disconnected slice foliation Fp of
V by first intersecting the leaves of F|U with expp(V

ε) � V ε and then extending this
foliation by homotheties on the whole of V . Define the (connected) slice foliation
Fp

0 by taking connected components of the leaves of Fp. We claim that Fp is a
disconnected infinitesimal foliation in the sense of subsection 3.1. Indeed, Fp

0 is an
infinitesimal singular Riemannian foliation by [Mol88, Theorem 6.1 and Proposition
6.5]. Moreover, there is a homomorphism π1(L) → O(V,Fp

0 )/O(Fp
0 ) sending a loop

γ to a lift G(1, ·) ∈ O(V,Fp
0 ) of γ in the sense of Corollary 15. By construction, the

image Γ of this homomorphism acts transitively on the connected components of
each leaf of Fp. Indeed, two points q1, q2 in the same leaf of Fp are, by definition,
contained in a common leaf L′ of F . Since L′ is connected, one can join q1 and q2
via a path in L′ whose projection to L is the desired loop γ.

The main step in our proof of the Slice Theorem is the following lemma, which
in turn is proved using linearized vector fields (see subsection 3.2).

Lemma 17. With the notation above, the structure group of the normal bundle νL
reduces to O(Fp).

Proof. We construct explicit local trivializations. Let q ∈ L and let B be a small
ball in L centered at q. Fix a coordinate system x1, . . . , xn on B such that
(x1, . . . , xn)(q) = (0, . . . , 0) and a piecewise smooth curve γ joining p to q. By
Corollary 15, there is G : [0, 1]×V → νL such that G(1, ·) is an isometry V → νqL
that preserves the leaves of F . In a way similar to the proof of Corollary 15, we
construct

G(x1,...,xn) : νqL → ν(x1,...,xn)L,

a linear isometry preserving leaves of F that depends smoothly on (x1, . . . , xn).
Namely, we choose linearized vertical vector fields Xi extending

∂
∂xi

, denote their
flows by Φi, and let

G(x1,...,xn) = Φxn
n ◦ · · · ◦ Φx1

1 .
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Then G(x1,...,xn) ◦ G(1, ·) defines a trivialization of νL over B, and repeating the
same procedure for a collection of small balls covering L yields the desired reduction
of structure group. �

We are now ready to prove the Slice Theorem.

Proof of Theorem A. By Proposition 16, there is ε > 0 such that the normal expo-
nential map is a diffeomorphism from νεL to an open tube U ⊂ M . Take P as the
principal O(Fp)-bundle associated to the local trivializations given by Lemma 17.

Consider the singular foliation P ×Fp
0 of P × V whose leaves are P ×L′, where

L′ runs through the leaves of Fp
0 . Since O(Fp) preserves the leaves of Fp

0 , there is
a well-defined induced foliation F̄ = P ×O(Fp) F0 of the quotient P ×O(Fp) V .

By construction of the local trivializations, it is clear that the image of a leaf of
F̄ under the diffeomorphism P ×O(Fp) V

ε → U is contained in one leaf of F|U . On
the other hand, since the leaves of F|U are connected, such image must coincide
with a leaf. �

In particular, we have the following description of smooth basic functions on a
tube around a closed leaf.

Corollary 18. Let (M,F) be a singular Riemannian foliation of the complete
manifold M , and let L be a closed leaf through p ∈ M . Then the restriction to the
slice expp(V

ε) � V ε,

|V ε : C∞(U)F|U → C∞(V ε)F
p

,

is an isomorphism between the spaces of smooth basic functions, where U is an
ε-tube around L, and Fp is the slice foliation.

Proof. The restriction map is injective because the slice V ε meets all leaves of
F|U . This in turn follows from the existence of smooth vertical vector fields which
generate F , as in Corollary 15.

Turning to surjectivity, let f ∈ C∞(V ε)F
p

. We construct a smooth basic exten-
sion of f to U . Start with the function P × V ε → R given by (x, y) �→ f(y). It is
O(Fp)-invariant and hence defines a smooth basic function f̄ : P ×O(Fp) V

ε → R.

By Theorem A, f̄ corresponds to a smooth basic function on U , which restricts
to f . �

Finally, we present a converse to Theorem A for the sake of completeness. Con-
sider a 4-tuple (L, V,F , P ) such that L is a connected manifold, (V,F) is a dis-
connected infinitesimal foliation, and P is a principal O(F) bundle over L, subject
to the following condition: letting H ⊂ π0(O(F)) denote the image of the map
α : π1(L) → π0(O(F)) induced by P , H acts transitively on π0(L

′) for every leaf
L′ of F .

Given any such tuple one can define (P ×O(F) V, P ×O(F) F0) as in the proof
of Theorem A, and the condition above ensures that the leaves of P ×O(F) F0 are
connected.

Proposition 19 (Converse of Slice Theorem). Given any 4-tuple (L, V,F , P ) as
above, there exists a metric on P×O(F)V such that (P×O(F)V, P×O(F)F0) becomes
a singular Riemannian foliation, and the metric projection onto L = P ×O(F) {0}
is a Riemannian submersion.
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Proof. The inclusion O(F) ⊂ O(V ) induces an inclusion P ⊂ P ′ for some principal
O(V ) bundle over L. The bundle P ′ admits an O(V )-invariant metric gP ′ , and the
restriction gP of gP ′ to P is then O(Fp)-invariant. The metric gP then induces a
Riemannian metric on L that makes the projection P → L a Riemannian submer-
sion. Moreover, the foliation P × F0 is a singular Riemannian foliation on P × V
with respect to the product metric gP + gV , O(F) acts on P ×V by foliated isome-
tries, and the metric projection of P ×V → P ×{0} = P , which coincides with the
projection on the second factor, is an O(F)-equivariant Riemannian submersion.

Taking the quotient by the free O(F) action, there is then an induced metric on
P×O(F)V such that P×O(F)F0 is a singular Riemannian foliation, and the induced
metric projection P ×O(F) V → P ×O(F) {0} = L is a Riemannian submersion. �

Remark 20. Given a 4-tuple (L, V,F , P ), by Proposition 19 we can produce a
singular Riemannian foliation (P ×O(F) V, P ×O(F) F0) which, by Theorem A, in-

duces a 4-tuple (L̂, V̂ , F̂ , P̂ ). It is not hard to prove that the two 4-tuples are
in fact isomorphic, in the sense that there exists a triple (φL, φV , φP ) such that

φL : L → L̂ is a diffeomorphism, φV : (V,F) → (V̂ , F̂) is a foliated isometry induc-

ing an isomorphism (φV )∗ : O(F) → O(F̂), and φP : P → P̂ is a (φV )∗-equivariant
diffeomorphism over φL.

4. Smooth basic functions

The goal of this section is to prove Theorems B and C.
Subsection 4.1 concerns Theorem B. One ingredient in this proof is the continuity

of the averaging operator (see section 2), which we establish in Lemma 21, and which
is clear in the homogeneous case. The other ingredient is a result about composite
differentiable functions from [BM82] (see also [Tou80]).

Subsection 4.2 presents the proof of Theorem C. We start with a small digres-
sion (Proposition 22) which serves to point out that the strategy used in [Sch75] to
prove the homogeneous case of Theorem C does not apply in the general (inhomo-
geneous) case. Indeed, a simple application of [GGR15, Theorem A] shows that the
fundamental groups of leaves need to be virtually Abelian, provided the ambient
manifold is compact and simply-connected. Then we prove the existence (Lemma
23) of smooth partitions of unity for the leaf space, and together with a result from
dimension theory due to Ostrand, they are used to prove Theorem C.

4.1. Basic functions on round spheres. One key fact needed in the proof of
the Algebraicity Theorem (see Theorem 7 or [LR15, Theorem 1.1]) is that the
averaging operator takes smooth functions to smooth functions. This is proved via
a bootstrapping argument involving elliptic regularity. Using these same tools we
prove the following stronger statement, which is needed in the proof of Theorem B.

Lemma 21 (Continuity of averaging). Let (V,F) be an infinitesimal singular Rie-
mannian foliation with compact leaves. Then the averaging operator Av : C∞(V ) →
C∞(V )F is continuous with respect to the C∞-topology.

Proof. Recall that if U ⊂ V is an open set whose closure Ū is compact and m
is a non-negative integer, the Sobolev Embedding Theorem (see [Eva10, §5.6.3,
Theorem 6]) implies that the identity map is a continuous inclusion

H2m(U) → C2m−[n/2]−1(Ū),
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where H2m(U) = W 2m,2(U) denotes the Sobolev space of functions on U with
square-integrable derivatives up to order 2m. Therefore it is enough to show that
for every m, U , and sequence {fi} of smooth functions on V which converge to zero
in the C∞-topology, the sequence {Av(fi)|U} converges to zero in H2m(U).

We use induction on m. For m = 0, the conclusion follows from the estimate

‖Av(fi)‖2L2(U) ≤ vol(U)(‖Av(fi)‖C0(Ū))
2 ≤ vol(U)(‖fi‖C0(F·Ū))

2,

where F · Ū ⊂ V denotes the (compact) union of all leaves that meet Ū .
Now take m ≥ 1. We use the fact that averaging commutes with the Laplace

operator [LR15]: Δ(Av(fi)) = Av(Δfi). By elliptic regularity (see [Eva10, §6.3.1,
Theorem 2]), for any relatively compact U ′ containing Ū , we have

‖Av(fi)‖H2m(U) ≤ C
(
‖Av(Δfi)‖H2m−2(U ′) + ‖Av(fi)‖L2(U ′)

)
,

where C is a constant depending only on U and U ′.
Applying the inductive hypothesis to m − 1, U ′, and the sequence {Δfi}, we

conclude that

‖Av(Δfi)‖H2m−2(U ′) → 0.

Since ‖Av(fi)‖L2(U ′) → 0 as in the base case, we have ‖Av(fi)‖H2m(U) → 0, thus
finishing the proof. �

Proof of Theorem B. Since R[V ] is dense in C∞(V ) (in the C∞-topology), it follows
from Lemma 21 that R[V ]F is dense in C∞(V )F . In particular, ρ∗(C∞(Rk)) ⊃
R[V ]F is dense in C∞(V )F . It remains to argue that ρ∗(C∞(Rk)) is closed in
C∞(V ).

Since ρ is a polynomial map, its image is semi-algebraic by the Tarski-Seidenberg
Theorem and in particular Nash subanalytic. The map ρ is also proper, because
x ∈ V �→ ‖x‖2 is a basic polynomial. Therefore we may apply [BM82, Theorem
0.2] to conclude that ρ∗(C∞(Rk)) is closed in C∞(V ). �

4.2. Basic functions on manifolds. Let (M,F) be a singular Riemannian fo-
liation on the complete manifold M , and assume the leaves are closed. As usual
we say a function f defined on M/F (or on an open subset) is smooth if f ◦ π is
smooth, where π : M → M/F is the natural projection onto the leaf space.

Note that if M is compact, Theorem B and Corollary 18 imply that C∞(M)F

is generated, as a C∞-algebra, by a finite number of basic functions. Theorem
C asserts that the same conclusion holds under the weaker assumption that the
disconnected slice foliations Fp of (M,F) fall into a finite set of isomorphism types
(see subsections 3.1 and 3.3). Here by an isomorphism between disconnected slice
foliations (Vp,Fp) and (Vq,Fq) we mean a linear isometry Vp → Vq which takes
leaves of Fp to leaves of Fq.

The proof of Theorem C given below differs from the analogous result in [Sch75]:
we use Ostrand’s Theorem (Theorem 1 in [Ost65]) instead of Palais’ Theorem about
equivariant embeddings into Euclidean space [Pal57]. In fact, Palais’ Theorem
cannot generalize to singular Riemannian foliations, because not every manifold L
is a leaf of some infinitesimal singular Riemannian foliation (V,F). Indeed, such a
leaf must be contained in a sphere, and we may apply the following consequence of
[GGR15, Theorem A].
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Proposition 22 (Virtually Abelian). Let M be a compact, simply-connected Rie-
mannian manifold, let F be a singular Riemannian foliation of M with closed leaves,
and let L be a leaf. Then the fundamental group π1(L) is virtually Abelian.

Proof. Let L′ be a nearby regular leaf, and fix some p ∈ L, with slice Vp = νpL. By
Theorem A, the metric projection L′ → L is a fiber bundle with fiber L′′ = L′∩Vp.
Since L′′ is compact, the set π0(L

′′) is finite. Since F has closed leaves, Theorem
A from [GGR15] implies that π1(L

′) is virtually Abelian. From the long exact
sequence of homotopy groups

· · · → π1(L
′) → π1(L) → π0(L

′′) → π0(L
′) = 0

it follows that π1(L) is also virtually Abelian. �

We will need the following lemma in the proof of Theorem C. Recall that a family
of subsets of a topological space is called discrete if every point has a neighbourhood
which intersects at most one of the subsets in the family.

Lemma 23 (Partition of unity). Let (M,F) be a singular Riemannian foliation
on the complete manifold M , and assume the leaves are closed.

(a) There is a partition of unity by smooth functions subordinate to any open
covering of the leaf space M/F .

(b) Let U = {W1,W2, . . .} be a discrete family of open sets in M/F . Then there
exists a smooth function f on M/F such that f |Wi

has constant value i.

Proof.

(a) By Proposition 16, for each x ∈ M/F , there is ε > 0 such that d(x, ·)2 is
smooth on the ball of radius ε around x. Composing this function with
appropriate smooth functions on R yields “bump” functions and hence
partitions of unity subordinate to any open cover.

(b) By the definition of discrete family, there is an open cover {Uj}j∈J of M/F
with the property that for every j ∈ J , either there is a unique index c(j)
such that Wc(j)∩Uj 
= ∅ or Uj does not intersect any Wi. In the latter case,
set c(j) = 0. By part (a), there is a partition of unity {φj} subordinate to
{Uj}. Then the smooth function f =

∑
j∈J c(j)φj clearly satisfies f |Wi

≡ i.

�

Proof of Theorem C. Consider the cover C of the leaf space M/F consisting of the
open balls B(x, r(x)), for all x ∈ M/F , where r(x) denotes the focal radius of
π−1(x) inside M . It follows from Proposition 16 that r(x) > 0. By Theorem 1 in
[Ost65], there are at most 1+dim(M/F) discrete families of open sets whose union
covers M/F and refines C.

Let l be the number of distinct isomorphism types of slice foliations of F . By par-
titioning the discrete families produced by Ostrand’s Theorem, we obtain discrete
families U1, . . . ,Um and disconnected infinitesimal foliations of Euclidean spaces
(V1,F1), . . . , (Vm,Fm), where m ≤ l(1 + dim(M/F)), with the following property:
Every open set in Ui is contained in some ball B(x, r(x)) such that the slice foliation
of the leaf π−1(x) is isomorphic to (Vi,Fi).

Using a partition of unity of M/F by smooth functions subordinate to {Ui},
where Ui =

⋃
W∈Ui

W , it is enough to show that each C∞(Ui)
F is finitely generated

as a C∞-algebra.
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Fix i, let Ui = {W1,W2, . . .}, so that Ui =
⋃

j Wj , and let f ∈ C∞(W )F such

that f |Wj
≡ i. Such f exists by Lemma 23. Choose generators ρ1, . . . , ρk for

R[Vi]
Fi .

By Theorem B and Lemma 11, ρ1, . . . , ρk generate C∞(Vi)
Fi , which by Corollary

18 is isomorphic to C∞(Wj)
F for every j. Let ρ̃1, . . . , ρ̃k ∈ C∞(Ui)

F such that
ρ̃m|Wj

corresponds to ρm under this isomorphism.

We claim {f, ρ̃1, . . . , ρ̃k} generate C∞(Ui)
F as a C∞-algebra. Indeed, given

g ∈ C∞(Ui)
F , there are Qj ∈ C∞(Rk) such that g|Wj

= Qj(ρ̃1, . . . , ρ̃k), and hence

we may find Q ∈ C∞(Rk+1) such that Q|{j}×Rk = Qj for j = 1, 2, . . . , and therefore
g = Q(f, ρ̃1, . . . , ρ̃k). �

Note that, using the notation in the proof above, if k denotes the maximum num-
ber of generators for R[Vi]

Fi over i = 1, . . . ,m, then the total number of generators
for C∞(M)F is bounded above by l(1 + dim(M/F))(1 + k).

5. Smooth maps between leaf spaces

The goal of this section is to establish an Inverse Function Theorem for leaf
spaces (Theorem D). We follow closely the results in [Sch80] leading to his Inverse
Function Theorem for orbit spaces (Theorem 1.11). Indeed, we start with the
definition of tangent spaces and differential of smooth maps, Lemmas 24 and 25, and
in particular relate them to the algebras of basic polynomials in the correponding
slices. After using these to prove Theorem D, we point out (Remark 26) that
the main result in [AR13] can be generalized from homogeneous to inhomogeneous
singular Riemannian foliations using Theorem D. In other words, every flow by
isometries of the leaf space is smooth.

5.1. Tangent spaces and differentials. Let (M,F) be a singular Riemannian
foliation with closed leaves, and let M/F denote the leaf space.

Recall that a map f : M1/F1 → M2/F2 between leaf spaces is called smooth if
f∗C∞(M2/F2) ⊂ C∞(M1/F1), and it is a diffeomorphism is there exists a smooth
inverse f−1 : M1/F1 → M2/F2.

Given a point x ∈ M/F , let Mx (or sometimes Mx(M/F) if there is a risk
of confusion) denote the ideal of germs of smooth functions in C∞(M/F) which
vanish at x, and define the tangent space of M/F at x to be

Tx(M/F) = (Mx/M2
x)

∗,

where M2
x denotes the ideal generated by products of pairs of elements in

Mx, and (Mx/M2
x)

∗ denotes the dual of Mx/M2
x. Moreover, given a smooth

map f : M1/F1 → M2/F2 and a point x ∈ M1/F1, there is an induced map
f∗ : Mf(x) → Mx such that f∗(M2

f(x)) ⊂ M2
x, and therefore there is an induced

linear map

dxf : TxM1/F1 = (Mx/M2
x)

∗ → (Mf(x)/M2
f(x))

∗ = Tf(x)M2/F2

which we call the differential of f at x.
If (Mi,Fi), i = 1, 2, are foliated by points, it is clear that the definitions above

coincide with the usual definitions of tangent space and differential.

Lemma 24. Let (V,F) be a (possibly) disconnected infinitesimal foliation, let
{ψ1, . . . , ψl} denote a minimal set of generators for the algebra of basic polyno-

mials, and let ψ̂ : V/F → R
l denote the map induced by ψ = (ψ1, . . . , ψl) : V → R

l.
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Then
d0ψ̂ : T0V/F → T0R

l � R
l

is an isomorphism.

Proof. Let x1, . . . , xl denote the standard coordinate functions on R
l. It is enough

to prove that

ψ̂∗ : M0(R
l)/M2

0(R
l) → M0(V/F)/M2

0(V/F), [xi] → [ψi]

is an isomorphism. By Theorem B, ψ̂∗M0(R
l) = M0(V/F), and this shows surjec-

tivity. On the other hand, ψ̂∗ must be injective; otherwise there would be a linear
combination

∑
aiψi = φ ∈ M2

0(V/F). Without loss of generality, suppose that
a1 
= 0. By taking the Taylor series of

∑
aiψi = φ at 0 ∈ V and restricting it to the

homogeneous terms of degree degψ1, we would have that ψ1 can be written as a
polynomial in ψ2, . . . , ψl, which would contradict the minimality of ψ1, . . . , ψl. �

Given a point x ∈ M/F and p ∈ M mapping to x via the projection M → M/F ,
by Theorem C a neighbourhood of x ∈ M/F is diffeomorphic to Vp/Fp, where
(Vp,Fp) is the disconnected slice foliation at p. In particular TxM/F � T0Vp/Fp =
R

l, where l denotes the number of generators of the ring of basic polynomials for
(Vp,Fp).

Lemma 25. Let (Vi,Fi), i = 1, 2, be disconnected infinitesimal foliations, with

minimal sets of generators (ψi
1, . . . , ψ

i
li
) and induced maps ψ̂i : Vi/Fi → R

li . If

f : V1/F1 → V2/F2 is a smooth map, then there is a smooth map φ : Rl1 → R
l2

such that the following diagram commutes:

(2)

V1/F1
f−−−−→ V2/F2⏐⏐�ψ̂1

⏐⏐�ψ̂2

R
l1

φ−−−−→ R
l2

Proof. Since ψ̂2◦f : V1/F1 → R
l2 is smooth, then in particular ψ̂2

i ◦f ∈ C∞(V1/F1)
for every i = 1, . . . , l2 and, by Theorem B, there exists some φi ∈ C∞(Rl1) such

that ψ̂2
i ◦ f = φi ◦ ψ̂1. By construction, the function φ = (φ1, . . . , φl2) then makes

the diagram commute. �
It follows from Lemmas 24 and 25 that the differential of a smooth map f :

V1/F1 → V2/F2 between leaf spaces of infinitesimal foliations can be identified
with the differential of a smooth map φ : Rl1 → R

l2 in the usual sense.

5.2. Inverse Function Theorem. Finally we turn to the proof of the Inverse
Function Theorem, which follows closely the proof of [Sch80, Theorem 1.11]. Recall
that given a singular Riemannian foliation (M,F), M has a natural stratification
by dimension of leaves. The top stratum, consisting of leaves of maximal dimension,
is the complement of a closed set of codimension at least two, and is therefore open,
dense, and connected [Mol88, p. 197].

Proof of Theorem D. By the Slice Theorem, there are neighbourhoods of x∈M1/F1

and f(x) ∈ M2/F2 diffeomorphic respectively to leaf spaces V1/F1 and V2/F2 of
(possibly disconnected) infinitesimal foliations. Therefore f restricts to a smooth
strata-preserving map f : V1/F1 → V2/F2, and, by Lemma 25, there is an induced
smooth map φ : Rl1 → R

l2 which makes the diagram in (2) commute. Because now
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d0f is an isomorphism, by Lemma 24 the differential d0φ is an isomorphism as well,
and by the standard Inverse Function Theorem φ is a diffeomorphism near 0 ∈ R

l1 .
Let Ui ⊂ R

li , i = 1, 2, be open neighbourhoods of 0 such that φ|U1
: U1 → U2

is a diffeomorphism, and let Si ⊂ Ui denote the image of Vi/Fi, with Spr
i denoting

the image of the principal part and Ss
i = Si \Spr

i denoting the image of the singular
part. Because f is strata-preserving, f(Spr

1 ) ⊂ Spr
2 and f(Ss

1) ⊂ Ss
2 . In particular,

f(Spr
1 ) is open and closed in Spr

2 , and, by choosing U2 so that Spr
2 is connected (for

example taking U2 a distance ball around the origin), it follows that f(Spr
1 ) = Spr

2 .
Because Si is the closure of Spr

i in Ui, i = 1, 2, it follows that f(S1) = S2 as well.
Therefore, it makes sense to define

f−1 = (ψ̂1)−1 ◦ (φ|S1
)−1 ◦ ψ̂2 : V2/F2 → V1/F1,

which is smooth because it induces the map φ−1 between the smooth functions. �

Remark 26. The Inverse Function Theorem above could be applied for example
to prove that, given a complete manifold M and a singular Riemannian foliation
(M,F) with closed leaves, any one-parameter group of isometries

φ : M/F × R → M/F

is smooth. Indeed, this was proved in [AR13] in the homogeneous setting. The
proof is divided into three major steps (reducing the proof to a simpler situation:
proving the smoothness on a codimension one set of M/F×R and finally extending
the smoothness to the whole of M/F×R), where the first two steps hold for general
singular Riemannian foliations, and the third is a simple application of Schwarz’s
Inverse Function Theorem for orbit spaces [Sch80, Theorem 1.11]. As Theorem
D generalizes Schwarz’s Inverse Function Theorem to the case of leaf spaces, this
could be applied to extend the main result in [AR13] to general singular Riemannian
foliations with closed leaves.
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