

1 **Title:** Rainfall intensification increases nitrate leaching from tilled but not no-till cropping
2 systems in the U.S. Midwest

3

4 **Authors and Affiliations:** Laura J.T. Hess^{a,b*}, Eve-Lyn S. Hinckley^{c,d}, G. Philip Robertson^{e,f},
5 Pamela A. Matson^a

6 ^aDepartment of Earth System Science, 473 Via Ortega, Stanford University, Stanford, CA 94305,
7 USA

8 ^bPresent address: The Climate Corporation, 201 3rd street #1100, San Francisco, CA 94103, USA

9 ^cInstitute of Arctic and Alpine Research, University of Colorado Boulder, Campus Box 450,
10 Boulder, CO 80309, USA

11 ^dEnvironmental Studies Program, 397 UCB, Boulder, CO 80309, USA

12 ^eW.K. Kellogg Biological Station, 3700 E. Gull Lake Drive, Hickory Corners, MI, USA

13 ^fDepartment of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing,
14 MI, USA

15 *Author for correspondence: lhess@alumni.stanford.edu

16

17

18 **Abstract**

19 As global surface temperatures rise, the percentage of total precipitation that falls in extreme
20 events is increasing in many areas (“rainfall intensification”), including the U.S. Midwest, a
21 major agricultural region. While it is well known that losses of nitrogen (N) fertilizers applied in
22 excess of crop N demand have consequences for non-agricultural ecosystems, the effects of
23 rainfall intensification on N losses from agricultural fields are uncertain. We conducted a 234-
24 day field experiment in which we evaluated the effects of rainfall intensification on N leaching,
25 soil inorganic N pools, soil N transformations, and crop N content in replicated tilled and no-till
26 row crop systems of the upper Midwest. Under rainfall exclusion shelters we exposed 5 x 5 m
27 plots to a control rainfall treatment with relatively small, frequent rainfall events historically
28 typical of the region, and an intensified rainfall treatment with the same total rainfall added in
29 larger, less frequent events. Although rainfall intensification increased modeled water
30 percolation to 1.2 m in both tilled and no-till systems, as reported previously, it increased nitrate
31 leaching only in tilled systems. Extractable soil nitrate concentrations throughout the experiment
32 were on average 32% higher in surface soils exposed to intensified rainfall compared to control
33 rainfall regardless of tillage management. In-situ net N mineralization and nitrification rates
34 measured during a two-week period in summer showed no significant differences between
35 rainfall or tillage treatments. Inorganic N pools (0 - 1.2 m depth) were 43% greater in no-till soils
36 compared to tilled soils and were unaffected by rainfall intensification; crop N concentrations
37 and total N were likewise unaffected. Our results suggest that rainfall intensification in tilled
38 cropping systems will increase N leaching to groundwater, with consequent economic and
39 environmental harm. No-till management, however, may buffer systems against the effects of
40 intensification on nitrate loss.

41

42 **Keywords**

43 nitrate leaching, nitrogen, agriculture, tillage, climate change, precipitation

44

45 **Declarations of interest:** none

46

47 **1. Introduction**

48 Leaching of N, particularly nitrate-N, is one of the most important N loss pathways from
49 cropping systems (Robertson and Vitousek, 2009; Fowler et al., 2013). Leached nitrate can
50 contaminate groundwater, cause eutrophication in estuaries and coastal ecosystems (Howarth
51 and Marino, 2006), and generate increased emissions of nitrous oxide, an important greenhouse
52 gas. Nutrient export from agricultural production in the Mississippi River basin in the U.S., for
53 example, has famously led to the formation of a massive “dead zone” in the Gulf of Mexico
54 (Rabalais et al., 2002). In addition, leached N represents an economic loss to farmers, for whom
55 N fertilizer is often one of the highest direct production costs (Matson et al., 1998).

56 Anthropogenic emissions of greenhouse gases are changing the climate in ways that could
57 potentially exacerbate N leaching from cropping systems. Increases in atmospheric moisture and
58 changes in circulation patterns resulting from warming global temperatures are leading to rainfall
59 intensification - that is, precipitation patterns with an increased percentage of rainfall occurring
60 in extreme events (IPCC 2013). Heavy precipitation events have already increased over many
61 parts of North America (Melillo et al., 2014): in the U.S. Midwest, the quantity of precipitation

62 occurring in the largest one percent of all daily events has increased by almost 40% over the last
63 60 years (Pryor et al., 2014). Climate model simulations indicate that in many regions, the
64 percentage of total precipitation that falls in extreme events will continue rising in the future
65 (IPCC 2013).

66 The effects of pulsed precipitation events on soil N transformations and decomposition rates
67 have been studied for decades (e.g. Birch 1958) and especially in soils of arid and semi-arid
68 ecosystems (e.g. Fierer and Schimel, 2002; Austin et al., 2004). However, comparatively little is
69 known about how pulsed precipitation affects N cycling in situ and especially in mesic climates,
70 where rainfall is more frequent and evenly distributed throughout the growing season. In arid and
71 semi-arid ecosystems, inorganic N accumulates in soil during prolonged dry periods, and rapid
72 rewetting often generates a pulse of decomposition and net N mineralization (Fierer and Schimel,
73 2002; Austin et al., 2004; Borken and Matzner, 2009). Presumably, similar patterns occur in
74 more mesic ecosystems following periodic droughts, which could, particularly in agricultural
75 ecosystems, lead to elevated N losses by further exaggerating the asynchrony between N supply
76 and demand (Robertson 1997).

77 Hess et al. (2018) showed that rainfall intensification altered soil moisture patterns and increased
78 deep percolation in an upper Midwest cropping system. Such changes have the potential to alter
79 N cycling and losses in these systems through effects on N transport as well as on plant and
80 microbial dynamics (Lohse et al., 2009; McCulley et al., 2009). For example, increased
81 percolation below the rooting zone may directly increase nitrate losses if hydrologic flow
82 mobilizes soil nitrate. Additionally, changes in soil moisture could affect microbial N dynamics
83 such as mineralization as well as plant N dynamics, such as N uptake and productivity, all of

84 which may affect soil N availability for loss. While these effects are plausible, the extent to
85 which they will actually occur remains largely unknown.

86 In the annual grain cropping systems that dominate agriculture in the U.S. Midwest, tillage
87 practices affect a range of soil properties that in turn could affect the response of N cycling in
88 these systems to rainfall intensification. No-till management, whereby crop residue is left on the
89 soil surface, typically increases soil organic matter relative to conventional tillage management,
90 especially in surface layers (West and Post, 2002; Syswerda et al., 2011). No-till management
91 may also alter soil structure by creating more stable soil aggregates (Six et al., 2000; Grandy and
92 Robertson, 2007) as well as increasing macropore connectivity and preferential (i.e. rapid,
93 vertical) flow (Strudley et al., 2008).

94 While several modeling studies have evaluated the effects of rainfall intensification on N
95 leaching (e.g. Gu and Riley, 2010; Congreves et al., 2016), we are unaware of analogous field
96 experiments. Here we report the first documented test of (1) how changes in rainfall event
97 frequency and size, but not total rainfall amount, affect N leaching in a Midwestern cropping
98 system; and (2) how responses are affected by interactions with tillage. We leveraged the Main
99 Cropping System Experiment (MCSE) of the Kellogg Biological Station (KBS) Long-term
100 Ecological Research (LTER) site to conduct this work. There, long term rates of N leaching have
101 been characterized previously, demonstrating greater N leaching from tilled compared to no-till
102 cropping systems (Syswerda et al., 2011); our objective was to understand the response of N
103 leaching from these systems to rainfall intensification. We conducted a 234-day field experiment
104 in which we manipulated rainfall patterns and measured N leaching, soil inorganic N pools, soil
105 N transformations, and crop N in both tilled and no-till cropping systems. We exposed cropping
106 systems to a control rainfall treatment with relatively small, frequent rainfall events historically

107 typical of the region, and an intensified rainfall treatment with the same total amount of rainfall
108 but added in larger, less frequent events. Because rainfall intensification increased percolation at
109 1.2 m soil depth in these cropping systems (Hess et al., 2018), we hypothesized that it would also
110 increase N leaching.

111

112 **2. Methods**

113 *2.1 Study site*

114 KBS is in southwest Michigan in the northern U.S. corn belt ($85^{\circ} 24' W$, $42^{\circ} 24' N$). The site is
115 at 288 m elevation and receives 100 cm of mean annual precipitation, with roughly 17% falling
116 in winter and the rest equally divided among spring, summer, and fall (Robertson and Hamilton,
117 2015). Annual temperature is on average $10.1^{\circ} C$ (Robertson and Hamilton, 2015). The soil
118 series at the site are Kalamazoo, which is fine loamy, and Oshtemo, which is coarse loamy
119 (Crum and Collins, 1995; Table 1). These are mixed, active, mesic Typic Hapludalfs which
120 developed on glacial till and outwash. Because the soils are well-drained and the site is relatively
121 flat (<6% slope), there is little to no runoff.

122 *2.2 Experimental design*

123 The Main Cropping System Experiment (MCSE) is made up of plots approximately one hectare
124 in size (81 x 105 m) assigned to different cropping system types in a complete randomized block
125 design (n = 6 replicate blocks) (Figure 1). In this experiment, we utilized the conventional and
126 no-till cropping systems, which were established in 1988 and are planted in annual rotations of
127 soybean (*Glycine max* L.), winter wheat (*Triticum aestivum* L.), and corn (*Zea mays* L.). The

128 conventional plots (hereafter referred to as “tilled”) receive conventional inputs (fertilizer and
129 pesticides) and tillage. The no-till plots also receive conventional inputs, but since 1988 they
130 have been managed without tillage. More information about plot establishment and crop
131 management can be found in Robertson and Hamilton (2015).

132 The experiment was conducted during the 2015 soybean year, preceded by corn and followed by
133 winter wheat, and followed a rainfall intensification experiment that was in place from July to
134 November 2014. Experimental design and other site details have been previously described in
135 Hess et al (2018). Details of relevant management events can be found in Table 2. From 14 April
136 through early December 2015 (the experimental period), we installed paired 5 m x 5 m rainout
137 shelters in 4 tilled and 4 no-till plots, for a total of 2 tillage treatments x 2 rainfall treatments x 4
138 replicate blocks = 16 shelters (Figure 1). At least 5 m was left between shelters, and between
139 shelters and MCSE plot edges. Shelters were constructed with PVC pipe to be relatively
140 lightweight to allow temporary removal for agronomic activities (e.g., planting, pesticide
141 application, harvest). Roofs were constructed out of clear, corrugated polycarbonate panels that
142 permitted transmittance of 90-95% photosynthetically active radiation (PAR). Rainwater
143 draining from roof panels was carried by gutters to tanks, where water was held until later
144 application. Shelters were 150 cm tall along the midline and 110 cm tall at the edges, allowing
145 ample room between roofs and soybeans at their tallest height.

146 Rainfall plots (covered by paired rainout shelters) in each MCSE plot were designated to one of
147 two rainfall treatments: control or intensified. All rainfall conditions, including event size, dry
148 intervals, and intensity, were generated using historical weather data for KBS since 1988
149 (<http://lter.kbs.msu.edu/datatables>). Between 14 April and 12 June 2015, rainfall was applied to
150 all rainfall plots at a rate of 80 mm month⁻¹. In control plots, we applied three 6.7 mm rainfall

151 events weekly, on the first, third, and seventh days of the week. This rainfall regime
152 approximated median precipitation on wet days (6 mm) and the length of dry intervals between
153 wet days (3 days) between March and November at KBS, with wet days defined as any day with
154 more than 1 mm precipitation. In plots exposed to the intensified rainfall treatment, we applied
155 one 40 mm rainfall event (97th percentile of precipitation event size) once every approximately 2
156 weeks (97th percentile of dry period length). Water from a nearby surface reservoir (< 0.03 mg N
157 L⁻¹) was used to make up any shortfalls between ambient and scheduled rainfall amounts, with
158 the same quantity added to both control and intensified plots (following the appropriate rainfall
159 schedule). Water was applied to rainfall plots at a rate of 13 mm hour⁻¹ with overhead sprinklers
160 supplied by small bilge pumps. This rate was the maximum at which water could be applied
161 without generating runoff and has a recurrence interval of less than one year (NOAA 2017). At
162 KBS, runoff does not frequently occur at the landscape scale, and as such we removed it from
163 our experimental design. Instead, we tried to reflect the landscape-scale site conditions at the plot
164 scale.

165 On 13 June 2015, rainout shelters were demolished by a storm with wind speeds > 96 km hr⁻¹.
166 Shelters were reconstructed and re-installed in rainfall plots on 6 July. For the three weeks
167 between 13 June and 6 July, all rainfall plots received ambient precipitation. We only replaced
168 shelters in plots exposed to the intensified rainfall treatment, while control plots were left
169 uncovered and exposed to ambient rainfall. New roofs included slits to allow for air flow and to
170 diminish wind resistance, reducing rain exclusion to approximately 90%. From 6 July through
171 the end of the experiment, rainwater excluded from intensified plots was collected and applied at
172 approximately 14-day intervals. Rain events (6.7 mm) were applied to control plots using
173 reservoir water during naturally-occurring prolonged dry periods to prevent extended periods of

174 reduced soil moisture. The same quantity of supplemental water was applied to the intensified
175 rainfall treatment during the next scheduled rainfall application. Rainfall variability was
176 calculated as the coefficient of variation (CV) of daily rainfall for the periods before 13 June and
177 after 6 July.

178 Precipitation during the experimental period totaled 891 mm, with 230 mm of that falling as
179 ambient rainfall that all rainfall plots received between 13 June and 6 July when shelters were
180 absent. All precipitation during the experiment was rainfall except for one snowfall on 21
181 November (11 mm snow water equivalent).

182 *2.3 Estimation of nitrate leaching*

183 2.3.1 Soil water sampling

184 Soil water at the lower boundary of the rooting zone was sampled during the experimental period
185 using quartz/PTFE tension lysimeters (Prenart, Frederiksberg, Denmark) installed in May 2014
186 (11 months prior to the experiment start). We installed one lysimeter in the middle of each
187 rainfall plot, leaving at least 2 m between it and any rainout shelter edge (Figure 1). Lysimeters
188 were installed at 1.2 m depth, approximately 0.2 m into the unconsolidated sand of the 2Bt2 and
189 2E/Bt horizons. Preferential flow in these horizons is minimal due to the high sand content
190 especially below 40 cm (Table 1), so sampled water should be representative of water
191 percolating at this depth. Lysimeters were installed in 2.5 cm diameter diagonal boreholes,
192 encased in silica slurry, and backfilled with soil. From March to December 2015, we sampled
193 soil water approximately weekly by applying 50 kPa of vacuum for 24 hrs, during which soil
194 water was collected in clean Nalgene bottles. During the experimental period before 13 June, soil
195 water was sampled during rainfall applications to both control and intensified plots. After 6 July,

196 soil water was sampled during rainfall applications to intensified plots but not during ambient
197 rainfall events. We filtered samples in the field through 0.45 μm Supor membrane syringe filters
198 (Acrodisc) and refrigerated them until analysis. Combined nitrate + nitrite and ammonium
199 concentrations in soil water were measured using a QuikChem 8500 Series 2 Flow Injection
200 Analysis System (Lachat Instruments, Loveland, Colorado; detection limit $< 0.01 \text{ mg L}^{-1}$ for all
201 N species). Nitrite generally does not accumulate in soils; as such, we refer to measured nitrate +
202 nitrite as simply nitrate throughout the remainder of this paper. Total N was measured with a
203 Shimadzu TOC-L (Shimadzu, Kyoto, Japan; detection limit $5 \mu\text{g L}^{-1}$), and dissolved organic N
204 (DON) was calculated as the difference between total N and inorganic N.

205 Initial soil water nitrate concentrations varied among treatments, so for each sampling point,
206 percent change in concentration relative to initial values was calculated as:

$$207 C_{\text{relative}} = (C_t - C_0)/C_0 * 100 \quad (\text{Eq. 1})$$

208 where C_{relative} is the relative concentration, C_t is the soil water nitrate concentration at any given
209 time point, and C_0 is the initial concentration.

210 2.3.2 Modeling of water percolation

211 Nitrogen concentrations in soil water were combined with modeled water percolation at 1.2 m
212 depth to estimate N leaching from the soil profile during the experimental period. Modeling of
213 water percolation is described in detail in Hess et al (2018). Briefly, one-dimensional subsurface
214 flow was simulated using Hydrus-1D. In each rainfall plot, water flow and root uptake were
215 modeled daily using two soil layers: a top layer of 0 to ~ 0.2 m and a bottom layer of ~ 0.2 to 1.2
216 m. Exact layer depths depended on the specific rainfall plot. Inputs consisted of meteorological
217 conditions, root depth, and LAI on a daily timestep, as well as soil hydraulic parameters for each

218 soil layer estimated from pedotransfer functions based on soil texture and bulk density (Schaap et
219 al., 2001). Model performance was evaluated by comparing simulated and measured volumetric
220 soil water content at 0.1 and 1 m. Volumetric water content (VWC) was measured continuously
221 (every 15 minutes) with soil moisture sensors (EC-5, Decagon Devices) installed in the center of
222 each plot during the experimental period (Hess et al., 2018). Soil hydraulic parameters were then
223 further refined through inverse modeling, which involved minimization of an objective function
224 expressing the discrepancy between observed and predicted values. VWC data were split into
225 training and testing sets for a 10-fold cross validation to assess model error; the RMSE for
226 testing datasets was on average $0.038 \text{ m}^3 \text{ m}^{-3}$.

227 To estimate N leaching, we multiplied soil water N concentrations by modeled percolation at 1.2
228 m soil depth on a daily timestep. We linearly interpolated nitrogen concentrations between time
229 points when concentrations were measured. To allow rough comparisons to other published
230 studies, we annualized N leaching rates by multiplying the total N leaching amount we estimated
231 during the 234-day experimental period by $^{365}/_{234}$.

232 *2.4 Surface soil N dynamics*

233 In all rainfall plots in 2015, surface soils (0 - 0.2 m) were sampled every two weeks, one day
234 prior to application of extreme rain events. One soil sample was collected with a 2.5 cm diameter
235 push probe in each rainfall plot and passed through a 4 mm sieve. A 10 g subsample was then
236 extracted in 50 mL 2M KCl, shaken for one hour, and filtered through pre-leached Whatman 44
237 filters. Inorganic N concentrations were measured as described in Section 2.3.1.

238 Rates of net N mineralization and nitrification were measured in late July/early August 2015
239 with resin cores (DiStefano and Gholz, 1986). Resin cores consist of an undisturbed soil core

240 enclosed in a plastic tube, capped on both ends with resin bags, and incubated in-situ. The upper
241 resin bag captures inorganic N from deposition, while the lower resin bag captures inorganic N
242 leached from the soil core. One day after a simulated extreme rainfall event, one soil core 0.04 m
243 diameter and 0.1 m deep was collected from each rainfall plot with plastic tubes. Approximately
244 5 mm soil was removed from the bottom of the core to create space to insert a resin bag. Resin
245 bags were made with nylon stocking material and a polyethylene washer to maintain shape, filled
246 with 6 g Dowex Marathon Mr-3 mixed bed ion-exchange resin, and closed with a plastic zip tie.
247 Soil cores were replaced, a resin bag was placed on the top of the core, and cores were incubated
248 for 14 days to capture one full rainfall cycle during which both rainfall treatments received the
249 same total amount of water. At the end of 14 days, soil in cores and the resin bags were extracted
250 in 2M KCl, and extracts were analyzed for inorganic N concentrations. Net N mineralization was
251 calculated as the change in soil inorganic N concentrations, plus inorganic N in the lower resin
252 bag after field incubation, over the incubation period. Net nitrification was calculated as the
253 change in soil nitrate concentration, plus nitrate in the lower resin bag after field incubation, over
254 the incubation period.

255 *2.5 Soil inorganic N pools*

256 In November 2014, soil horizons in each rainfall plot were characterized to 1.2 m depth. Intact
257 cores of 0.06 m diameter were taken to 1.2 m depth with a hydraulic sampler (Geoprobe, Salina,
258 KS). Soils were processed within several hours of collection. First, we separated each core into 5
259 taxonomic horizons based on color, texture, structure, and moisture. We calculated bulk density
260 for each horizon and corrected for any compaction during sampling; compaction was on average
261 0.07 m per core. One 10 g subsample from the middle of each horizon, in addition to all the soil
262 from that horizon, were analyzed for inorganic N and total C and N. Results were then compared

263 to determine whether these 10 g subsamples could accurately represent entire horizons. Soils
264 were analyzed for inorganic N concentrations as described in Section 2.4. For total C and N,
265 sieved soils were dried at 65° C for 48 hours, pulverized, packed in tin capsules, and analyzed
266 with a Carlo-Erba NA 1500 Elemental Analyzer (detection limit 0.01%).

267 Soils (0-1.2 m) were sampled four times in each rainfall plot during the experimental period in
268 2015 to characterize inorganic N in the entire soil profile: on 30 April – 1 May (after 2 weeks of
269 rainfall manipulation), 8-9 July, 2-3 September, and 1-2 December. Because inorganic N and
270 total C and N were not significantly different between entire horizons and their subsamples in
271 soils collected in November 2014, we relied on subsamples from the middle of each horizon for
272 the 2015 soil sampling (except for the last sampling date, when we used the hydraulic sampler).
273 For these samplings, we used a 2.5 cm diameter push probe to collect a 0.1 m soil core from the
274 middle of each soil horizon. To access deeper sample locations, we used a flighted auger, 2.7 cm
275 in diameter, attached to a gas drill to remove soil down to the top of the sample location, at
276 which point the push probe was inserted to remove the sample. Soils were sampled at two
277 locations in each rainfall plot, leaving at least 1.5 m between a sample and plot borders, 1 m
278 between a sample and the lysimeter, and 1 m between a sample and any previous soil samples.
279 Samples were composited by depth and analyzed for inorganic N as described above. Total
280 inorganic N in each horizon was calculated using inorganic N concentrations and bulk density
281 data from 2014, and horizons were summed to calculate total inorganic N in the soil core (0-1.2
282 m).

283 *2.6 Nitrogen in crop tissues*

284 Aboveground biomass was collected in two 1 m x 1 m quadrats in each rainfall plot one day
285 prior to soybean harvest. Biomass was dried at 65° C for 48 hours, weighed, and threshed to
286 separate grain and stover. Grain was weighed, and stover weight was calculated as the difference
287 between total weight and grain weight. Grain and stover were ground and analyzed separately for
288 C and N concentrations as for soils. Total N in grain and total N in stover were summed to
289 calculate total N in biomass.

290 *2.7 Statistical analysis*

291 Statistical analyses were performed using R 3.0.2 (R Core Team, 2013). Linear mixed models
292 with a nested design were used to determine the effects of rainfall intensification and tillage on
293 soil water N concentrations, percent change in soil water N concentrations, cumulative N
294 leached, soil inorganic N, net N mineralization and nitrification, and crop tissue N. Fixed effects
295 were rainfall treatment, tillage, and their interaction; random effects were the KBS LTER MCSE
296 blocks and plots, with plot nested within block. Because we were mainly interested in treatment
297 effects and not in changes over time, soil water nitrate, percent change in soil water nitrate,
298 surface soil inorganic N concentrations, and inorganic N in 1.2 m soil cores were averaged
299 across all time points for each rainfall plot before analysis, so as to avoid violations of the
300 independence assumption caused by use of time series data. All data were log or box-cox
301 transformed when necessary to fulfill assumptions of normality and homoscedasticity.
302 Likelihood ratio tests were used to determine factor significance. When interactions between
303 fixed effects were significant, pairwise comparisons were conducted and individual factors were
304 not tested for significance. For all analyses, $\alpha = 0.05$.

305

306 **3. Results**307 *3.1 Rainfall manipulation*

308 Rainfall variability was higher in the intensified rainfall treatment compared to the control
309 rainfall treatment both for the period of time prior to 13 June ($CV_{control} = 1.24$, $CV_{intensified} = 3.77$)
310 and that after 6 July ($CV_{control} = 2.67$, $CV_{intensified} = 4.33$).

311 *3.2 Soil water N concentrations*

312 Nearly all N in soil water was in the form of nitrate; ammonium was less than 1% and DON was
313 undetectable. Initial soil water nitrate concentrations were significantly different between rainfall
314 treatments (Table 3, Figure S1). Averaged over the entire experimental period, nitrate
315 concentrations were higher in intensified (range: 2.8 mg NO_3^- -N L⁻¹ min to 11.0 mg NO_3^- -N L⁻¹
316 max) versus control (1.5 mg NO_3^- -N L⁻¹ min to 5.4 mg NO_3^- -N L⁻¹ max) plots in tilled cropping
317 systems. No-till cropping systems exhibited the opposite pattern: soil water nitrate concentrations
318 were higher in control (6.5 mg NO_3^- -N L⁻¹ min to 12.7 mg NO_3^- -N L⁻¹ max) compared with
319 intensified (2.9 mg NO_3^- -N L⁻¹ min to 8.2 mg NO_3^- -N L⁻¹ max) plots throughout the experimental
320 period.

321 Relative soil water nitrate concentrations (percent change in concentration relative to initial
322 values, Eq. 1) increased in tilled plots, while they increased and then decreased in the intensified
323 treatment (Figure 2). In no-till plots, relative soil water nitrate concentrations followed similar
324 patterns in both control and intensified treatments, increasing and then decreasing back down to
325 initial levels. However, there were no statistically significant differences among treatments in
326 relative concentrations averaged over the experimental period (Table 3).

327 *3.3 Nitrate leaching*

328 Rainfall treatment and tillage had interacting effects on nitrate leaching (Figures 3, S2; Table 3).
329 In tilled cropping systems, nitrate leaching was higher in intensified than control plots. In no-till
330 cropping systems, there was no statistical difference between the rainfall treatments, although
331 nitrate leaching was slightly higher in the intensified compared with control plots. These patterns
332 were consistent regardless of whether the period between 13 June and 6 July was included in the
333 analysis (Table 3; Figures 3, S2).

334 *3.4 Surface soil N dynamics*

335 Surface soil nitrate concentrations were higher in the intensified compared with control plots by
336 an average of 32%, and in no-till compared with tilled plots (Figure 4, Table 3). Surface soil
337 ammonium concentrations were low compared to nitrate concentrations and were not
338 significantly affected by either rainfall treatment or tillage.

339 Rates of net N mineralization and nitrification in surface soils measured with in-situ resin cores
340 were not significantly different between rainfall treatments or tillage treatments (Tables 3 and 4).

341 *3.5 Soil inorganic N pools*

342 Total inorganic N in soil cores sampled to 1.2 m was on average 43% higher in no-till compared
343 to tilled plots (Figure 5, Table 3), with differences apparent early on in the experiment (after two
344 weeks of exposure to rainfall treatments). Total inorganic N was not affected by rainfall
345 treatment. Most soil inorganic N was in the form of nitrate (75%) rather than ammonium,
346 especially in layers below the surface (0 – ~20 cm) layer (79%). While no statistical analysis was

347 performed to determine the effect of time on soil inorganic N to 1.2 m, a generally decreasing
348 trend was observed (from 22 to 9 kg N ha⁻¹ averaged across all treatments).

349 *3.6 Nitrogen in crop tissues*

350 Crop N concentrations in grain and stover, and total N in aboveground crop biomass, were not
351 significantly affected by rainfall treatment or tillage (Tables 3 and 4).

352

353 **4. Discussion**

354 We subjected tilled and no-till cropping systems to two rainfall regimes: one with relatively
355 small, frequent events similar to historical patterns (control), and the other with a higher
356 percentage of precipitation occurring in extreme events (intensified), with no difference in total
357 rainfall amount. In the tilled cropping system, we found that rainfall intensification significantly
358 increased nitrate leaching relative to control rainfall conditions. However, in the no-till system,
359 nitrate leaching was not statistically different between intensified and control treatments. This
360 interaction was not evident for percolation to depth (Hess et al., 2018).

361 *4.1 Effects of rainfall intensification on nitrate leaching in tilled and no-till cropping systems*

362 In the surface soils of both tilled and no-till plots, rainfall intensification increased nitrate
363 concentrations relative to soils under control conditions (Figure 4). There seem to be two likely
364 explanations for greater nitrate accumulation in the intensified rainfall treatment: greater N
365 mineralization and lower plant N uptake. However, lower plant N uptake seems unlikely.
366 Different from patterns in arid and semi-arid systems, soil moisture in our intensified rainfall
367 treatment never decreased below the lower limit of plant-extractable soil water (Hess et al.,

368 2018) thereby inhibiting plant uptake before inhibiting microbial activity. Moreover, crop N
369 pools were not different between treatments (Tables 3 and 4), nor, in a separate ^{15}N natural
370 abundance study, was biological N fixation (BNF; K. Glanville and G.P. Robertson, personal
371 communication). Lastly, differences in surface soil nitrate concentrations were highest in spring,
372 when crops were either absent or when soybean biomass and thus N demand would have been
373 minimal. Thus, depressed N uptake in the intensified plots is unlikely to explain the greater
374 nitrate pools.

375 More likely are differences in N mineralization following rainfall exclusion, as has been found
376 for soils from arid and semi-arid systems following rainfall onset (Birch 1958; Fierer and
377 Schimel, 2002; Austin et al., 2004; Borken and Matzner 2009). Although we did not document
378 differences in mineralization between rainfall treatments in our incubation assays, these assays
379 are likely to have been insufficiently sensitive to detect appropriate treatment differences.
380 Indeed, short-term patterns of net N mineralization and nitrification are notoriously difficult to
381 detect in simple incubations, and the data in our relatively small sample size were particularly
382 variable. Furthermore, as noted in the previous paragraph, differences in surface soil nitrate were
383 largest in spring and early fall, when mineralization rates tend to be high due to relatively high
384 soil moisture as well as crop senescence (in fall only).

385 The increase in surface soil nitrate concentrations driven by rainfall intensification was
386 associated with an increase in N leaching in tilled cropping systems. In tilled plots exposed to the
387 control rainfall treatment, low cumulative nitrate leaching (Figure 4) is consistent with data from
388 a bromide tracer experiment suggesting little deep percolation in the control rainfall treatment
389 (Hess et al., 2018). Within tilled plots subjected to the intensified rainfall treatment, in contrast,
390 higher rates of deep percolation (Hess et al., 2018), higher surface soil nitrate concentrations

391 (Figure 4), and interaction of water with the soil matrix appear to have led to the mobilization
392 and leaching of much greater amounts of nitrate.

393 In no-till cropping systems, on the other hand, no difference was observed in nitrate leaching
394 between the intensified and control rainfall treatments in spite of greater deep percolation (Hess
395 et al., 2018) and more surface soil nitrate (Figure 4) in the intensified treatment. Our data suggest
396 that this difference in the response of N leaching between tilled and no-till cropping systems may
397 be attributable to differences in soil structure and flow paths (Figure 6). In soils under no-till
398 management, macropores may develop from decaying roots and soil fauna, and increased macro-
399 aggregation (Grandy and Robertson, 2007) may also facilitate flow in the spaces between
400 aggregates. Previously reported data suggest that in the particular no-till soils in this study, rapid
401 macropore flow may have been a larger component of percolation than matrix flow relative to
402 the tilled soils (Hess et al., 2018). In addition, extensive previous research has shown that
403 macropore connectivity increases under no-till management compared to management with
404 tillage in general, with corresponding increases in macropore flow and hydraulic conductivity
405 (e.g. Ogden et al., 1999; Strudley et al., 2008).

406 It seems likely, then, that excess percolating water from extreme events “bypassed” inorganic N
407 in the soil matrix in the no-till system. Other researchers have found that the contribution of
408 macropore flow to total flow increases with rainfall event size (Vidon and Cuadra, 2010). Also
409 consistent with rapid macropore flow in no-till cropping systems, patterns in soil water nitrate
410 concentrations over the year were similar between rainfall treatments, and to patterns in surface
411 soil nitrate (Figures 2, 4, S1). This suggests that soil water at depth reflected surface soil
412 processes on relatively short timescales in the no-till system, regardless of rainfall treatment. All
413 that said, it is also possible that nitrate in no-till soils under the intensified rainfall treatment was

414 lost through other pathways besides leaching: denitrification, crop uptake, or some other pathway
415 that we did not directly measure.

416 Our estimates of nitrate leaching from the control rainfall treatment (9.4 and 22.2 kg N ha⁻¹
417 during the experiment duration for tilled and no-till cropping systems, respectively, or
418 extrapolated to 14.1 and 33.3 kg N ha⁻¹ year⁻¹) are within the range of rates of nitrate leaching
419 reported by Syswerda et al. (2012) at the KBS LTER. Syswerda et al. (2012) estimated that 62.3
420 and 41.6 kg N ha⁻¹ year⁻¹ were leached on average from the tilled and no-till cropping systems
421 from 1995-2006. However, they estimated that only 5.9 and 3.9 kg N ha⁻¹ year⁻¹ were leached on
422 average from tilled and no-till cropping systems, respectively, during soybean seasons (from
423 soybean planting until planting of the subsequent winter wheat crop), the lowest leaching rate of
424 the three crops in the corn-soybean-winter wheat rotation. Our experiment spanned a full
425 soybean season as well as part of the prior corn off-season (before soybean planting) and
426 following winter wheat season (after winter wheat planting) as defined by Syswerda et al.
427 (2012), which is likely why our estimates fall in between those for soybean seasons and those
428 averaged across all years.

429 Our estimates also fall within the range of previous estimates of N leaching and losses from
430 cropping systems elsewhere in the Midwest region. Donner et al. (2004) estimated mean annual
431 N leaching rates from fertilized soybeans in the Mississippi River Basin in the early 1990s as
432 35.6 - 45.8 kg N ha⁻¹ year⁻¹. However, nutrient imbalances in agriculture within the region have
433 declined over the last several decades, and a slightly more recent estimate (from 1997 – 2006)
434 places total N excess from corn-soybean rotations at approximately 10 kg N ha⁻¹ year⁻¹ (Vitousek
435 et al 2009). Our estimate of N leaching under control rainfall patterns from the tilled cropping

436 systems – which are more representative of agricultural practices in the region than the no-till
437 systems – falls very close to this number.

438 Syswerda et al (2012) found lower rates of nitrate leaching in the no-till cropping systems
439 compared to tilled cropping systems, while we found no statistical differences. There are several
440 possible reasons for this discrepancy. First, Syswerda and colleagues estimated nitrate leaching
441 over 11 years, while our experiment lasted less than a year. We also did not measure nitrate
442 leaching during snowmelt (early spring) or immediately after N fertilizer application (which did
443 not occur during our study period), times when nitrate leaching can be substantial. Our
444 annualized estimates are extrapolations and thus are uncertain by definition.

445 Our finding of increased nitrate leaching under rainfall intensification in tilled cropping systems
446 is consistent with findings of similar rainfall intensification experiments in other ecosystem
447 types. In an arid steppe, Yahdjian and Sala (2010) found that fewer, less frequent rainfall events
448 increased nitrate leaching measured with resin bags at 0.1 m soil depth. In a semi-arid
449 Mediterranean woodland, Jongen et al (2013) also concluded that fewer, less frequent rainfall
450 events increased nitrate leaching, estimated by multiplying soil water nitrate concentrations by
451 water infiltration in the top 35 cm soil 24 hrs after rainfall events. However, it is worth noting
452 that not all infiltrated water in that study may have drained below the rooting zone, given the
453 presence of deep-rooted shrubs and trees.

454 *4.2 Uncertainty in nitrate leaching estimations*

455 There are several sources of uncertainty in our estimates of nitrate leaching. First, there is
456 uncertainty associated with the modeled estimates of deep percolation, as discussed in Hess et al.
457 (2018). Specifically, calibrated parameter estimates in addition to lack of information about

458 macropore flow in our study site soils contribute uncertainty to percolation estimates (Hess et al.,
459 2018). Secondly, the period of time between 13 June and 6 July, during which all rainfall plots
460 received ambient rainfall, introduced error into our experiment and may have caused us to
461 underestimate the effect of rainfall intensification on nitrate leaching. In the control rainfall
462 treatment, more than half of the total deep percolation during the experiment occurred during this
463 period (Hess et al., 2018). This percolation likely leached N that may have otherwise remained in
464 the soil profile given relatively little deep percolation during the rest of the experiment. Our
465 results (Figure 3) thus likely overestimate nitrate leaching in control plots. We also calculated
466 nitrate leaching without the time period between 13 June and 6 July (Figure S2), in an attempt to
467 remove the nitrate leaching contribution from this unplanned event. However, even with this
468 alternative analysis, it is impossible to remove the influence of this time period from our results.
469 For example, in the intensified rainfall treatment, nitrate leached during this time period would
470 likely have been leached later on in the experiment, given relatively high rates of deep
471 percolation (Hess et al., 2018). These alternative results (Figure S2) thus likely underestimate
472 nitrate leaching under intensified rainfall conditions. It is possible that had this event not
473 occurred, we would have measured elevated nitrate leaching in intensified relative to control
474 conditions within no-till plots, similar to tilled plots, although relative differences in the response
475 of tilled and no-till systems to rainfall intensification would likely have been similar to what we
476 observed.

477 Finally, differences in antecedent soil water nitrate concentrations among treatments (Figure S1)
478 may have affected our comparative estimates of nitrate leaching. Our experiment in 2015
479 followed a rainfall intensification experiment the previous year, which may have affected the

480 distribution of nitrate in the soil profile. Ultimately, however, we do not know the reason for pre-
481 existing differences, only that they were present.

482

483 **5. Conclusion**

484 The frequency of extreme daily precipitation is forecast to increase by the end of the century
485 everywhere in the U.S., including the Midwest (Melillo et al., 2014). Our results show that
486 rainfall intensification may exacerbate leaching losses of reactive N from cropping systems, and
487 that no-till management may buffer against these losses.

488 Variation in soil type and structure, climate, and agronomic practices across larger spatial scales
489 may influence the way that cropping systems respond to rainfall intensification. For example, in
490 places with less well-drained soils than ours, rainfall intensification could reduce infiltration and
491 increase overland flow (Zhang and Nearing, 2005), decreasing deep percolation and thus N
492 leaching. In such places, rainfall intensification may generate other negative consequences for
493 agricultural productivity and water quality, such as increased soil erosion (Zhang and Nearing,
494 2005) and loss of nutrients in particulate form (e.g. phosphorus). Also, fertilizer application and
495 the large pulses of soil inorganic N that accompany it during the cultivation of crops like corn
496 may make cropping systems even more vulnerable to rainfall intensification, particularly if
497 extreme events occur shortly after fertilizer application.

498 Evaluating the effects of rainfall intensification on nutrient leaching from cropping systems is in
499 its infancy. Modeling studies have explored this topic and found increased nitrate leaching
500 associated with rainfall intensification (Gu and Riley, 2010; Congreves et al., 2016);
501 experimental field studies, however, are scarce. While much can be learned from modeling

502 studies, models are also limited to the extent that they accurately represent ecosystem processes.
503 Macropore flow, for example, is rarely represented in models (Beven and Germann, 2013), and
504 results from our study suggest that macropore flow may be responsible for the difference in the
505 response of tilled and no-till cropping systems to rainfall intensification. Further research is
506 needed over longer time scales and in more locations to develop a more robust framework for
507 understanding how rainfall intensification may affect nutrient losses from agriculture in general.

508

509 **Acknowledgements**

510 This study was possible thanks to the incredible work in the field and lab by many individuals:
511 K. Kahmark, S. VanderWulp, J. Simmons, KBS LTER field technicians, E. Fisher, J. Gold, S.
512 Hamilton, D. Weed, C. McMinn, S. Bohm, S. Sippel, S. Evans, K. Dougherty, K. Glanville, J.
513 Bateman, A. Zajdband, and many others. K. Kahmark's contribution to the design, construction,
514 and maintenance of rainout shelters and instrumentation was invaluable. S. Hamilton provided
515 key advice about lysimeter installation and design. L.J.T.H. was funded by a NSF Graduate
516 Research Fellowship. This work was supported by the NSF [grant number 1501133], the NSF
517 LTER program [DEB 1027253] at KBS, and Michigan State University AgBioResearch. It was
518 also supported by a NSF Doctoral Dissertation Improvement Grant, a Stanford University
519 McGee/Levorsen grant, and Matson Lab discretionary research funds. Finally, we would like to
520 thank two reviewers whose feedback greatly improved this manuscript, particularly the
521 interpretation of results.

522

523 **References**

524 Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A.,
525 Schaeffer, S.M. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems.
526 *Oecologia*, 141, 221–235.

527 Beven, K., Germann, P. 2013. Macropores and water flow in soils revisited. *Water Resources*
528 *Research*, 49(6), 3071-3092.

529 Birch, H.F. 1958. The effect of soil drying on humus decomposition and nitrogen availability.
530 *Plant and Soil*, 10, 9-31.

531 Congreves, K.A., Dutta, B., Grant, B.B., Smith, W.N., Desjardins, R.L. and Wagner-Riddle, C.,
532 2016. How does climate variability influence nitrogen loss in temperate agroecosystems under
533 contrasting management systems?. *Agriculture, Ecosystems & Environment*, 227, 33-41.

534 Crum, J.R., Collins, H.P. 1995. KBS Soils [Online]. W. K. Kellogg Biological Station Long-
535 Term Ecological Research Project, Michigan State University, Hickory Corners, MI. Available
536 at <http://www.lter.kbs.msu.edu/soil/characterization>.

537 DiStefano, J.F., Gholz, H.L. 1986. A proposed use of ion exchange resins to measure nitrogen
538 mineralization and nitrification in intact soil cores. *Communications in Soil Science and Plant*
539 *Analysis*, 17, 989–998.

540 Donner, S.D., Kucharik, C.J., Foley, J.A. 2004. Impact of changing land use practices on nitrate
541 export by the Mississippi River. *Global Biogeochemical Cycles*, 18 (GB1028), 1–21.

542 Fierer, N., Schimel, J.P. 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen
543 transformations. *Soil Biology and Biochemistry*, 34, 777-787.

544 Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S., Sheppard, L.J., Jenkins, A.,
545 Grizzetti, B., Galloway, J.N., Vitousek, P., 2013. The global nitrogen cycle in the twenty-first
546 century. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 368(1621),
547 20130164.

548 Grandy, A.S., Robertson, G.P. 2007. Land-use intensity effects on soil organic carbon
549 accumulation rates and mechanisms. *Ecosystems*, 10, 58–73.

550 Gu, C., Riley, W.J. 2010. Combined effects of short term rainfall patterns and soil texture on soil
551 nitrogen cycling – A modeling analysis. *Journal of Contaminant Hydrology*, 112, 141–154.

552 Hamilton, S.K., Hussain, M.Z., Bhardwaj, A.K., Basso, B., Robertson, G.P. 2015. Comparative
553 water use by maize, perennial crops, restored prairie, and poplar trees in the U.S. Midwest.
554 *Environmental Research Letters*, 10, doi:10.1088/1748-9326/10/6/064015.

555 Hess, L.J.T., Hinckley, E.-L.S., Robertson, G.P., Hamilton, S.K., Matson, P.A. 2018. Rainfall
556 intensification enhances deep percolation and soil water content in tilled and no-till cropping
557 systems of the US Midwest. *Vadose Zone Journal*, 17(1).

558 Howarth, R.W., Marino, R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal
559 marine ecosystems: Evolving views over three decades. *Limnology and Oceanography*, 51, 364–
560 376.

561 IPCC. 2013. *Climate Change 2013: The Physical Science Basis. Contribution of Working Group
562 I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (eds Stocker
563 TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley
564 PM), Cambridge University Press, Cambridge and New York.

565 Jongen, M., Unger, S., Fangueiro, D., Cerasoli, S., Silva, J.M.N., Pereira, J.S. 2013. Resilience
566 of montado understorey to experimental precipitation variability fails under severe natural
567 drought. *Agriculture, Ecosystems and Environment*, 178, 18–30.

568 Lohse, K.A., Brooks, P.D., McIntosh, J.C., Meixner, T., Huxman, T.E. 2009. Interactions
569 between biogeochemistry and hydrologic systems. *Annual Review of Environment and*
570 *Resources*, 34, 65–96.

571 Matson, P.A., Naylor, R., Ortiz-Monasterio, I. 1998. Integration of environmental, agronomic,
572 and economic aspects of fertilizer management. *Science*, 280, 112–15.

573 McCulley, R.L., Burke, I.C., Lauenroth, W.K. 2009. Conservation of nitrogen increases with
574 precipitation across a major grassland gradient in the Central Great Plains of North America.
575 *Oecologia*, 159, 571–581.

576 Melillo, J.M., Richmond, T.C., Yohe, G.W. (eds) 2014. *Climate Change Impacts in the United*
577 *States: The Third National Climate Assessment*. U.S. Global Change Research Program.

578 NOAA. 2017. *Precipitation Frequency Data Server, NOAA Atlas 14, Volume 8, Version 2*
579 GULL LK BIOLOGICAL STN. Available <http://hdsc.nws.noaa.gov/hdsc/pfds/>. Accessed online
580 25 January 2017.

581 Ogden, C.B., Van Es, H.M., Wagenet, R.J., Steenhuis, T.S. 1999. Spatial-temporal variability of
582 preferential flow in a clay soil under no-till and plow-till. *Journal of Environmental Quality*, 28,
583 1264–1273.

584 Pryor, S.C., Scavia, D., Downer, C., Gaden, M., Iverson, L., Nordstrom, R. 2014. Midwest. In:
585 Melillo, J.M. , editors, *Climate change impacts in the United States: The Third National Climate*

586 Assessment. US Global Change Research Program, Washington, DC. p.418–
587 440. doi:10.7930/J0J1012N

588 R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for
589 Statistical Computing, Vienna, Austria. URL <http://www.R-project.org/>.

590 Rabalais, N.N., Turner, R.E., Wiseman, W.J. 2002. Gulf of Mexico hypoxia, aka “the dead
591 zone.” Annual Review of Ecology and Systematics, 33, 235–63.

592 Robertson, G.P. 1997. Nitrogen use efficiency in row-crop agriculture: crop nitrogen use and soil
593 nitrogen loss. In: Ecology in agriculture (ed Jackson L), pp. 347-365, Academic Press, New
594 York.

595 Robertson, G.P., Bruulsema, T.W., Gehl, R.J., Kanter, D., Mauzerall, D.L., Rotz, C.A.,
596 Williams, C.O., 2013. Nitrogen–climate interactions in US agriculture. Biogeochemistry, 114(1-
597 3), 41-70.

598 Robertson, G.P., Hamilton, S.K. 2015. Long-term ecological research in agricultural landscapes
599 at the Kellogg Biological Station LTER site: conceptual and experimental framework. In: The
600 Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability (eds
601 Hamilton SK, Doll JE, Robertson GP), pp. 1-32, Oxford University Press, New York, New York.

602 Robertson, G.P., Vitousek, P. 2009. Nitrogen in agriculture: balancing the cost of an essential
603 resource. Annual Review of Environment and Resources, 34, 97–125.

604 Schaap, M.G., Leij, F.J., van Genuchten, M.T. 2001. Rosetta: A computer program for
605 estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of
606 Hydrology, 251, 163–176.

607 Six, J., Elliott, E.T., Paustian, K. 2000. Soil macroaggregate turnover and microaggregate
608 formation: a mechanism for C sequestration under no-tillage agriculture. *Soil Biology and*
609 *Biochemistry* 32, 2099-2103.

610 Strudley, M.W., Green, T.R., Ascough, J.C. 2008. Tillage effects on soil hydraulic properties in
611 space and time: state of the science. *Soil and Tillage Research*, 99, 4-48.

612 Syswerda, S.P., Basso, B., Hamilton, S.K., Taugis, J.B., Robertson, G.P. 2012. Long-term nitrate
613 loss along an agricultural gradient in the Upper Midwest USA. *Agriculture, Ecosystems and the*
614 *Environment*, 149, 10-19.

615 Syswerda, S.P., Corbin, A.T., Mokma, D.L., Kravchenko, A.N., Robertson, G.P. 2011.
616 Agricultural management and soil carbon storage in surface vs. deep layers. *Soil Science Society*
617 *of America Journal*, 75, 92-101.

618 Vidon, P., Cuadra, P.E. 2010. Impact of precipitation characteristics on soil hydrology in tile-
619 drained landscapes, *Hydrological Processes*, 24, 1821-1833.

620 West, T.O., Post, W.M. 2002. Soil organic carbon sequestration rates by tillage and crop
621 rotation: A global data analysis. *Soil Science Society of America Journal*, 66, 1930-1946.

622 Yahdjian, L., Sala, O.E. 2010. Size of precipitation pulses controls nitrogen transformation and
623 losses in an arid Patagonian ecosystem. *Ecosystems*, 13, 575-585.

624

625 **Tables**

626 **Table 1.** Soil profile characteristics at the KBS LTER (from Crum and Collins, 1995, unless
 627 otherwise indicated). All information except soil carbon and nitrogen is reproduced from Hess et
 628 al (2018).

629

Horizon	Depth	Sand	Silt	Clay	Texture classification	Soil carbon	Soil nitrogen	Bulk density
	cm	- % -				g C kg soil ⁻¹	g N kg soil ⁻¹	g cm ⁻³
<u>Kalamazoo series</u>								
Ap	0-30	43	38	19	loam	12.85	1.31	1.6
E	30-41	39	41	20	loam	3.25	0.53	1.7
Bt1	41-69	48	23	29	sandy clay loam	2.25	0.42	1.8
2Bt2	69-88	79	4	17	sandy loam	0.67	0.42	1.6*
2E/Bt	88-152	93	0	7	sand	0.2	0.18	1.6*
<u>Oshtemo series</u>								
Ap	0-25	59	27	14	sandy loam	9.67	1.04	1.6
E	25-41	64	22	14	sandy loam	2.52	0.43	1.7
Bt1	41-57	67	13	20	sandy clay loam	1.99	0.4	1.8
2Bt2	57-97	83	4	13	sandy loam	1.28	0.53	1.6*
2E/Bt	97-152	92	0	8	sand	0.25	0.18	1.6*

630

631 * data from Syswerda et al (2011)

632 **Table 2.** Details of relevant management events (planting, harvest, tillage, and N fertilizer
633 application) before and during the rainfall manipulation experiment.

634
635

crop	date	management event
corn	5/20/14	33 kg N/ha applied
corn	6/19/14	133 kg N/ha applied
	5/2/15	Tillage with chisel plow
	5/18/15	Tillage with cultimulcher to remove large soil clumps
soybeans	5/19 – 5/20/15	Soybeans planted
soybeans	9/30/15	Soybeans harvested
	10/3/15	Tillage with chisel plow
	10/6/15	Tillage with cultimulcher to remove large soil clumps
wheat	10/2/15	Wheat planted in no-till plots
wheat	10/6/15	Wheat planted in tilled plots

636

637 **Table 3.** Significance of factors in linear mixed models as estimated through likelihood ratio
 638 tests. When interactions between fixed effects were significant, individual factors were not
 639 tested. Significant p values are in bold.

640

	Tillage	Rainfall	Tillage x rainfall
Soil water NO_3^- -N concentrations	-	-	<0.001
Percent change in soil water NO_3^- -N concentrations	0.12	0.19	0.32
Cumulative NO_3^- -N leached (13 June – 6 July included)	-	-	0.001
Cumulative NO_3^- -N leached (13 June – 6 July excluded)	-	-	0.006
Inorganic N in deep soil cores	0.02	0.10	0.12
Surface soil NO_3^- -N concentrations	0.01	<0.001	0.34
Surface soil NH_4^+ -N concentrations	0.18	0.88	0.72
Net N mineralization	0.87	0.49	0.20
Net nitrification	0.54	0.82	0.39
%N in grain	0.80	0.27	0.22
%N in stover	0.27	1.00	0.33
Total N in aboveground biomass	0.38	0.78	0.20

641

642 **Table 4.** Net N mineralization, net nitrification, crop N concentrations, and total crop N. Values
 643 shown are averaged by rainfall and tillage treatments, ± 1 SE (n = 4 replicate plots).

644

	Tilled, control	Tilled, intensified	No-till, control	No-till, intensified
Net N mineralization ($\mu\text{g NH}_4^+ \text{-N} + \text{NO}_3^- \text{-N g soil}^{-1} \text{ day}^{-1}$)	0.28 ± 0.12	0.20 ± 0.12	0.17 ± 0.04	0.32 ± 0.04
Net nitrification ($\mu\text{g NO}_3^- \text{-N g soil}^{-1} \text{ day}^{-1}$)	0.28 ± 0.12	0.22 ± 0.03	0.19 ± 0.05	0.31 ± 0.10
N in grain (%)	5.57 ± 0.08	5.66 ± 0.06	5.63 ± 0.07	5.63 ± 0.07
N in stover (%)	0.69 ± 0.03	0.71 ± 0.05	0.66 ± 0.04	0.63 ± 0.05
Total N in aboveground biomass (kg N ha^{-1})	218 ± 24	226 ± 18	244 ± 5	226 ± 6

645

646 **Figure captions**

647 **Figure 1.** Study location and rainout shelter design. a) Diagram of the Main Cropping System
648 Experiment (MCSE) at the Kellogg Biological Station (KBS) Long Term Ecological Research
649 (LTER) site; b) Rainout shelters and other instrumentation installed in each rainfall plot. Tension
650 lysimeters were installed in the middle of each rainfall plot at 1.2 m soil depth. Tubing connected
651 to lysimeters was buried in trenches running north from the rainfall plot to the MCSE plot
652 border. Reproduced from Hess et al. (2018).

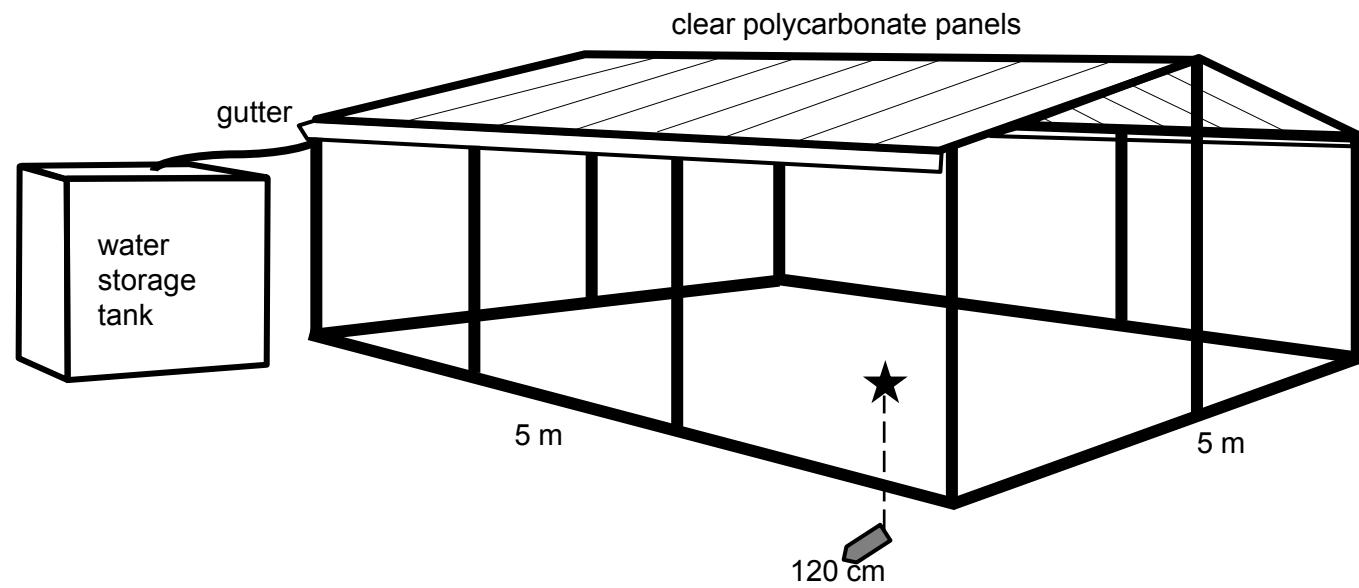
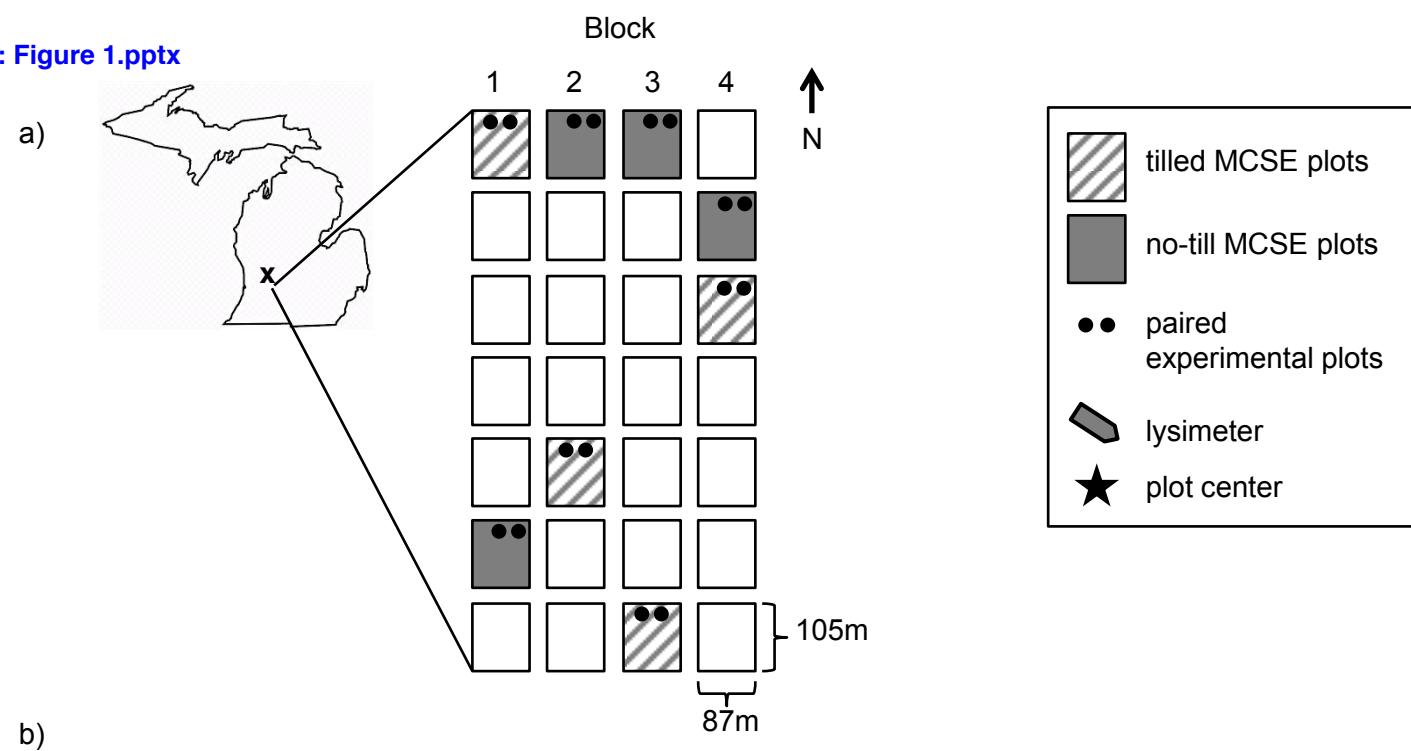
653 **Figure 2.** Percent change in soil water nitrate concentrations relative to initial values at 1.2 m
654 depth in tilled (a) and no-till (b) plots. The period of time between 13 June and 6 July 2015,
655 when all rainfall plots received ambient rainfall, is indicated by gray shading. Black arrows
656 indicate the date when rainout shelters were installed in plots. There were no significant
657 differences among treatments for values averaged over the entire experimental period. Error bars
658 represent standard error ($n = 4$ replicate plots).

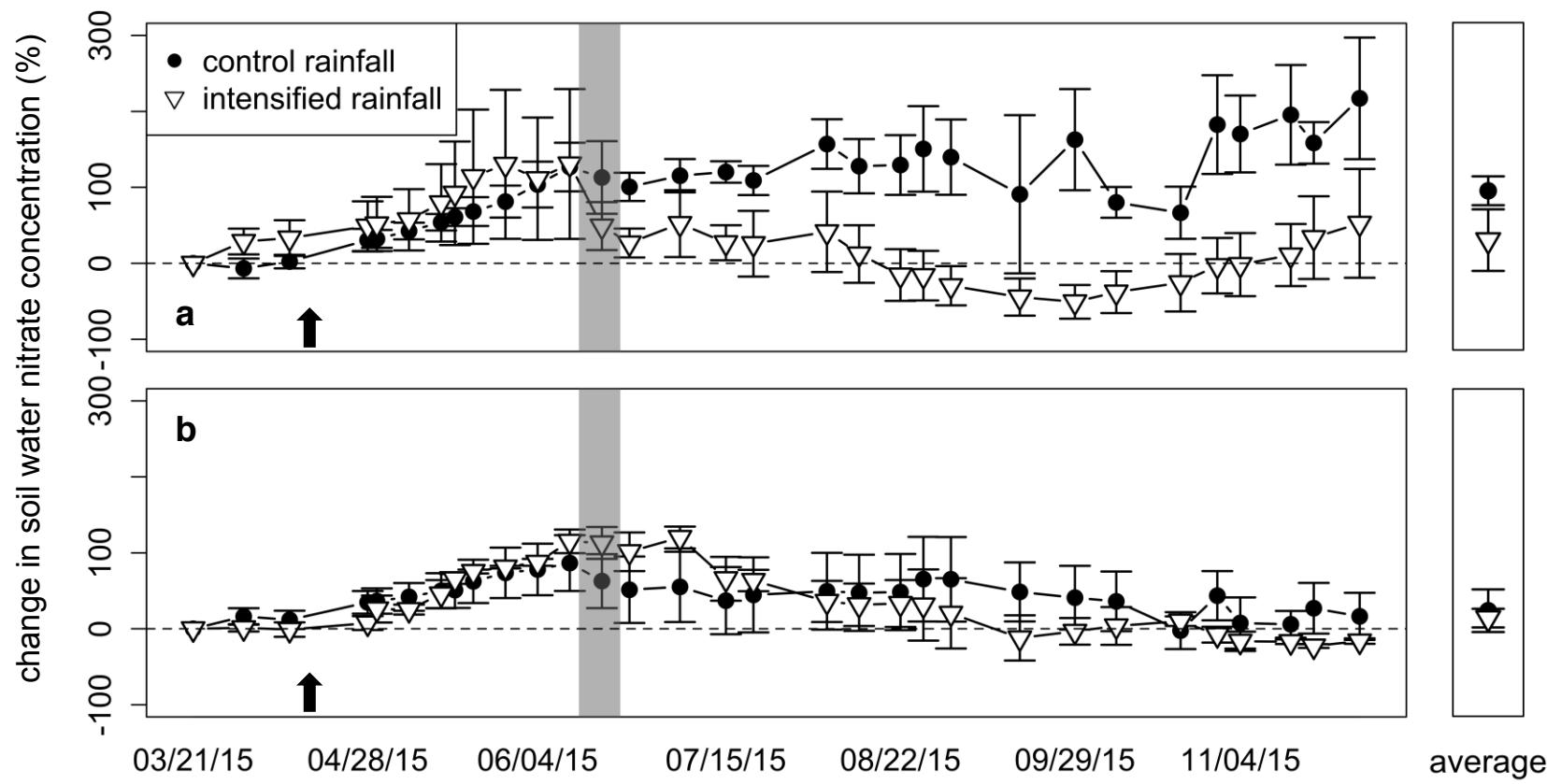
659 **Figure 3.** Cumulative estimated nitrate leached during the experiment, by rainfall and tillage
660 treatments. Blue lines show mean cumulative nitrate leached, with shaded envelopes
661 representing ± 1 SE ($n = 4$ replicate plots). The period of time between 13 June and 6 July 2015,
662 when all rainfall plots received ambient rainfall, is indicated by gray shading. Letters indicate
663 significant differences in total nitrate leached between rainfall treatments in tilled cropping
664 systems only ($p = 0.002$).

665 **Figure 4.** Exchangeable inorganic N concentrations in surface soils (0 – 0.2 m) in tilled (a and c)
666 and no-till (b and d) cropping systems in 2015, measured one day prior to applied extreme
667 rainfall events in the intensified plots. a) Nitrate concentrations in tilled cropping systems; b)

668 nitrate concentrations in no-till cropping systems; c) ammonium concentrations in tilled cropping
669 systems; d) ammonium concentrations in no-till cropping systems. Averages represent averages
670 over the entire experimental period, and error bars represent ± 1 SE ($n = 4$ replicate plots).

671 Average nitrate concentrations over the experimental period were higher in soils exposed to the
672 intensified rainfall treatment compared to the control rainfall treatment ($p < 0.001$), and in no-till
673 soils compared to tilled soils ($p = 0.01$). Ammonium concentrations were not significantly
674 different between rainfall or tillage treatments. In panels c and d, average points for the control
675 plots are behind average points for the intensified plots.



676 **Figure 5.** Total inorganic N in soils (0-1.2 m) during the experimental period. Points shown are
677 averages for each tillage treatment, with error bars representing ± 1 SE ($n = 8$ replicate plots).


678 **Figure 6.** Conceptual diagram of the effects of rainfall intensification on nitrate leaching in tilled
679 and no-till cropping systems in mesic climates. In tilled soils (top panels), soil water flux is
680 dominated by matrix flow. In the control rainfall treatment (top left panel), very low deep
681 percolation and surface soil nitrate concentrations result in very low nitrate leaching. In the
682 intensified rainfall treatment (top right panel), increased deep percolation mobilizes elevated soil
683 nitrate, resulting in high nitrate leaching. In no-till soils (bottom panels), more percolation is
684 through macropores than in tilled soils. In the control rainfall treatment (bottom left panel), low
685 deep percolation and moderate surface soil nitrate concentrations results in moderate nitrate
686 leaching. In the intensified rainfall treatment, high percolation and surface soil nitrate
687 concentrations also result in only moderate nitrate leaching, as percolating water bypasses
688 inorganic soil N to a greater extent than in tilled soils. Evapotranspiration is abbreviated as ETA.

689

Figure 1

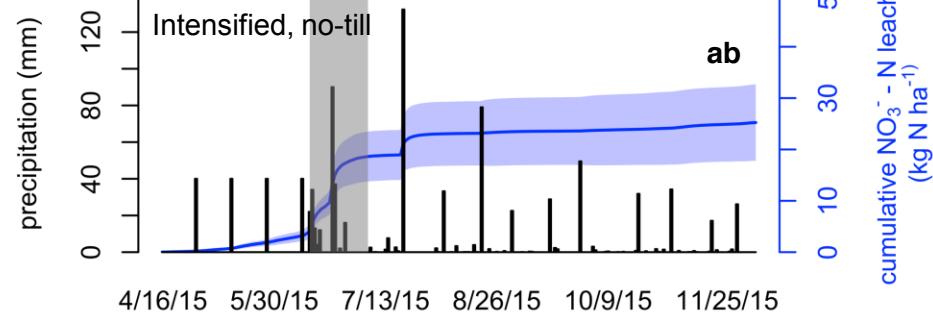
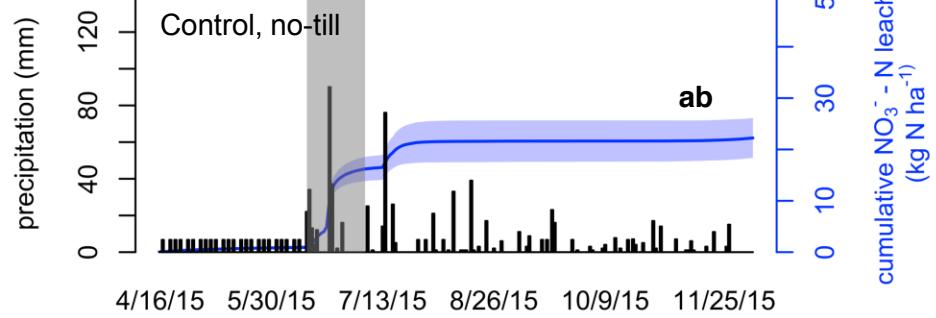
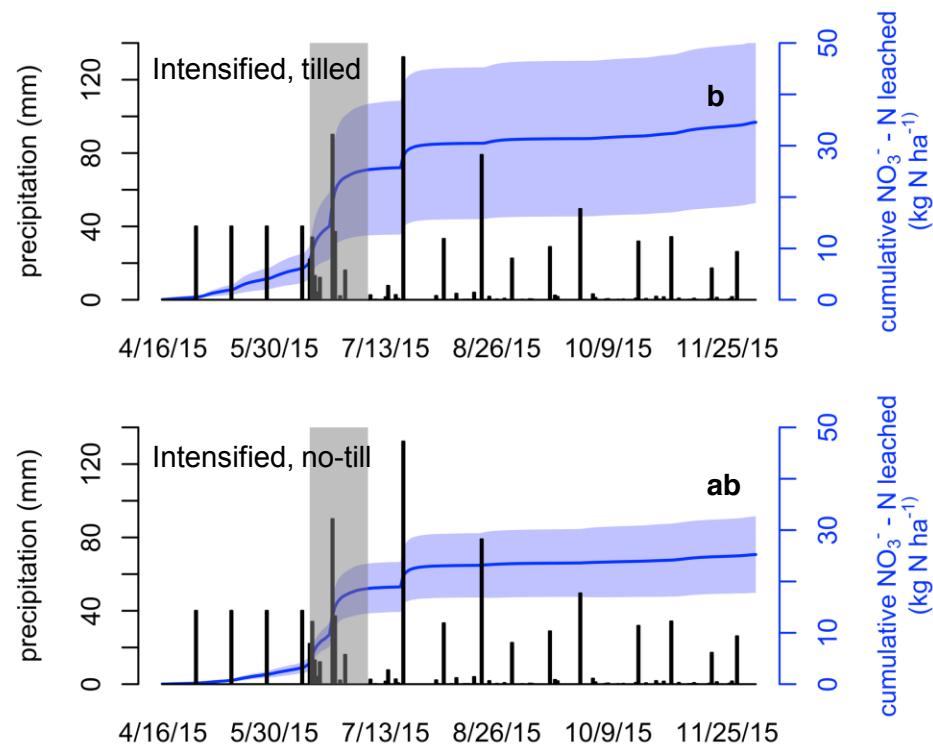
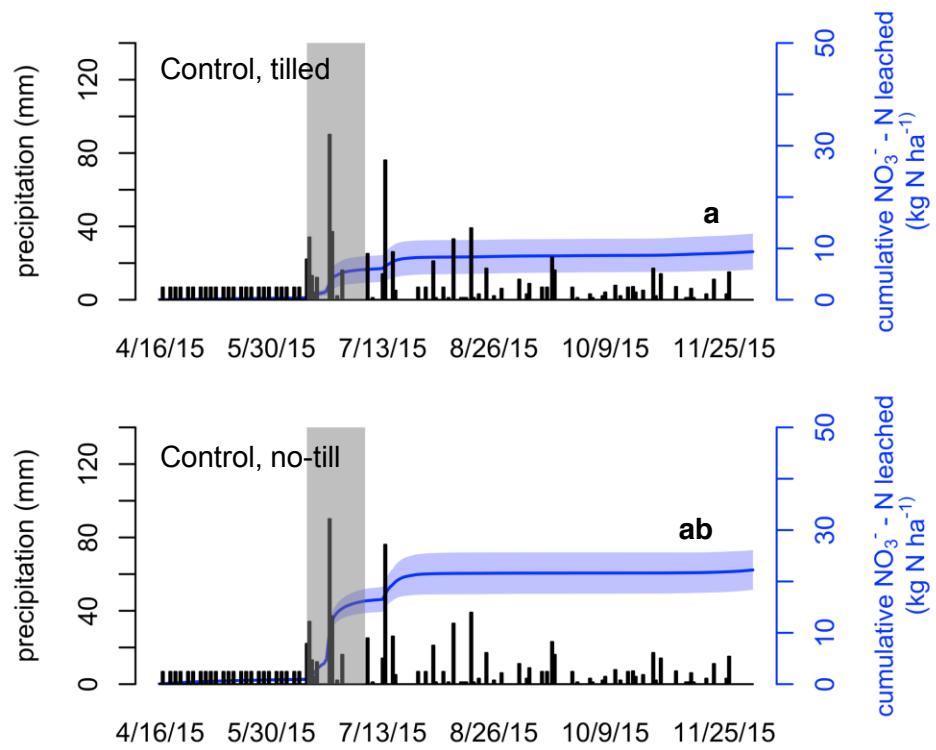




[Click here to download Figure: Figure 1.pptx](#)

Figure 2[Click here to download Figure: Figure 2.pptx](#)

Figure 3

[Click here to download Figure: Figure 3.pptx](#)

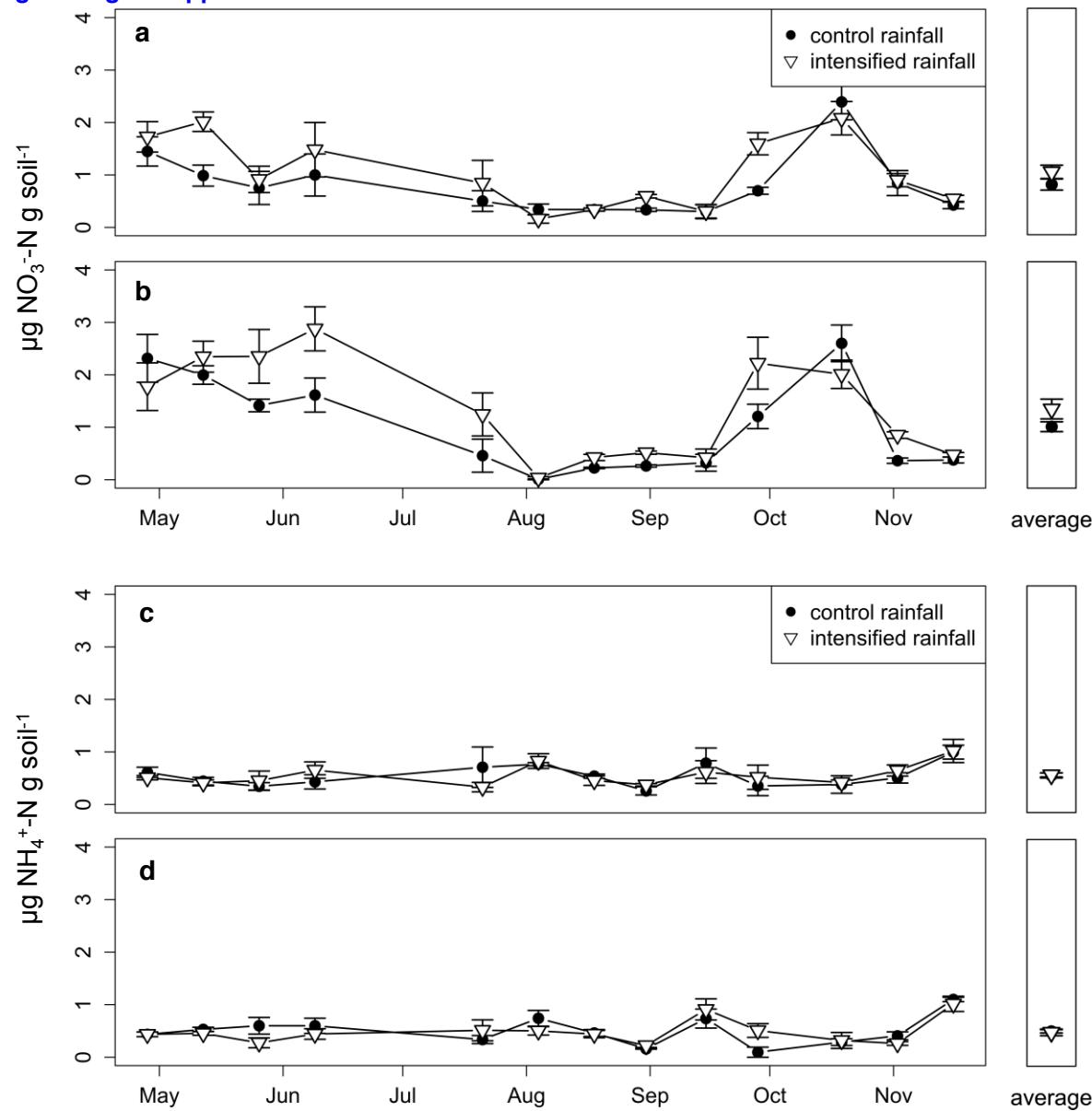

Figure 4[Click here to download Figure: Figure 4.pptx](#)

Figure 5

[Click here to download Figure: Figure 5.pptx](#)

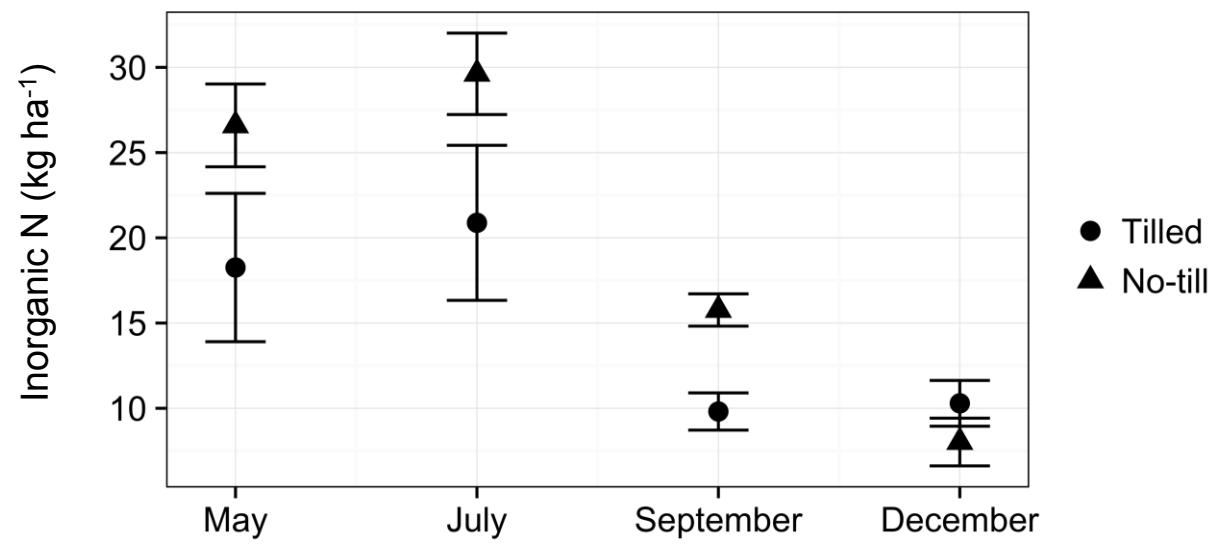
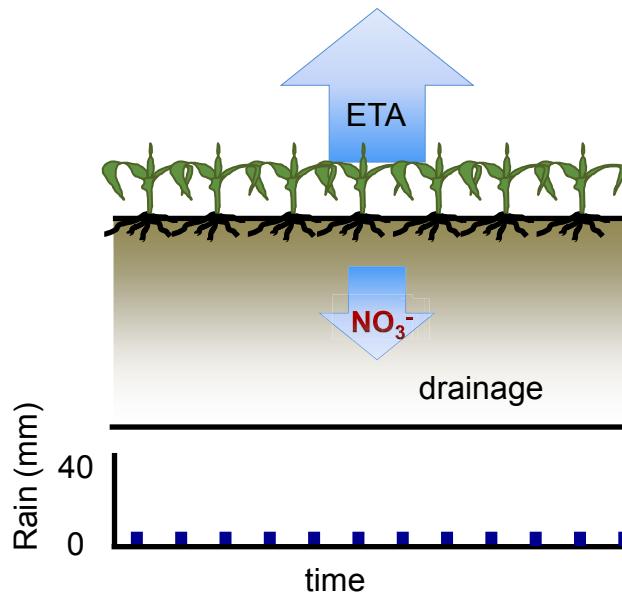
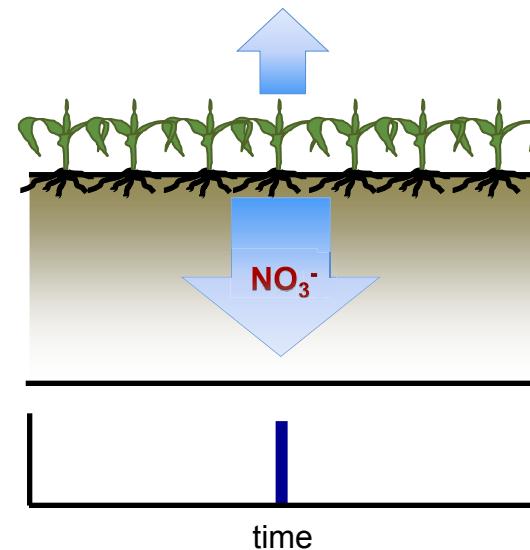
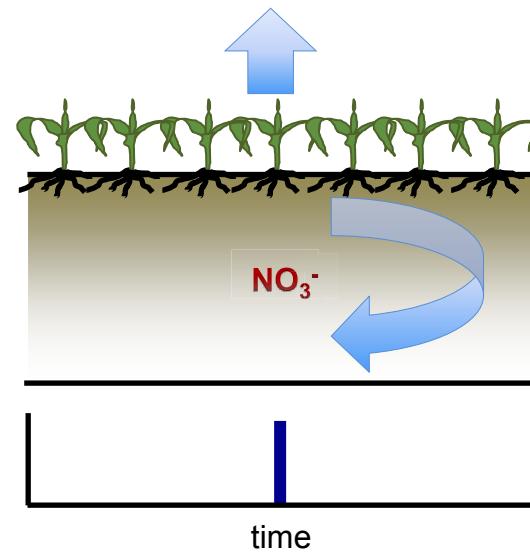
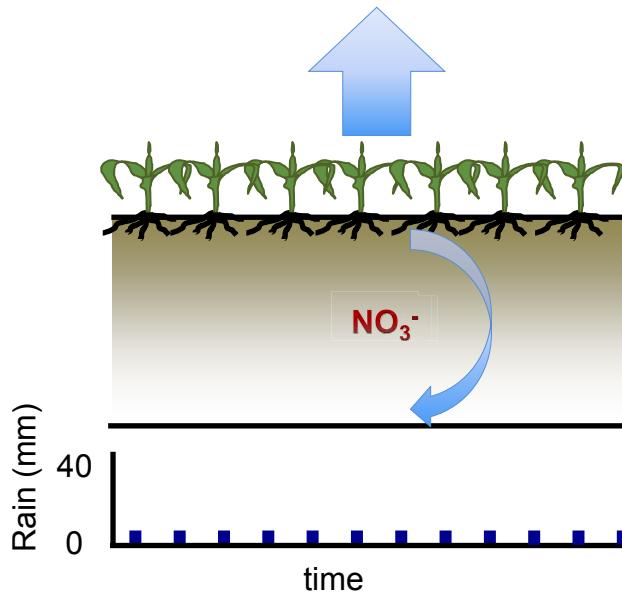
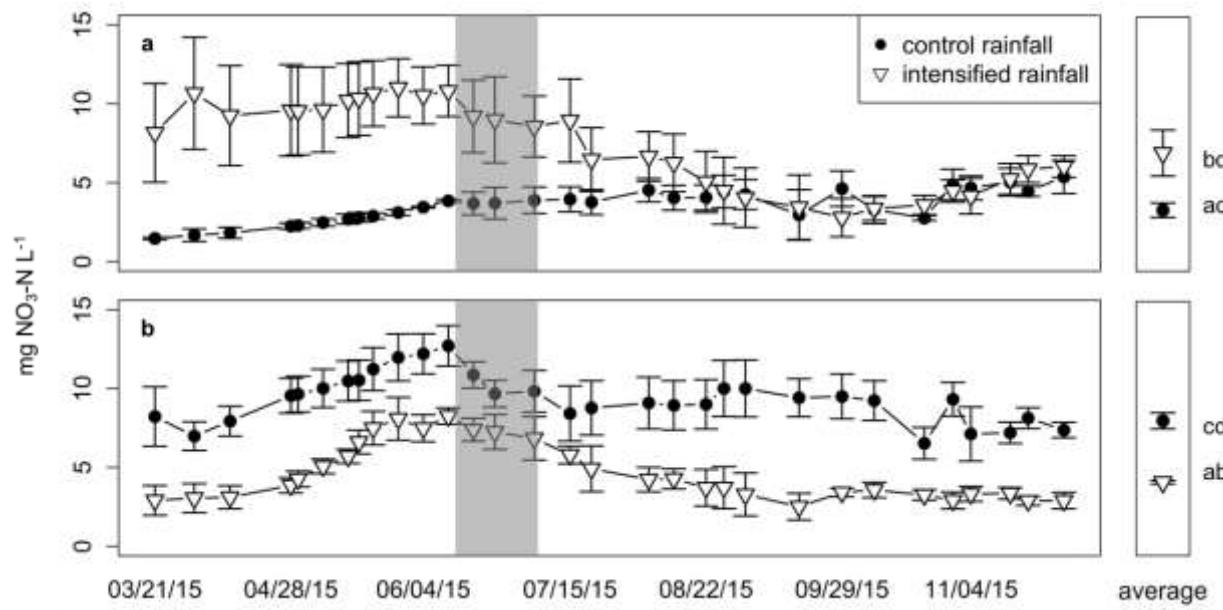



Figure 6


[Click here to download Figure: Figure 6.pptx](#)

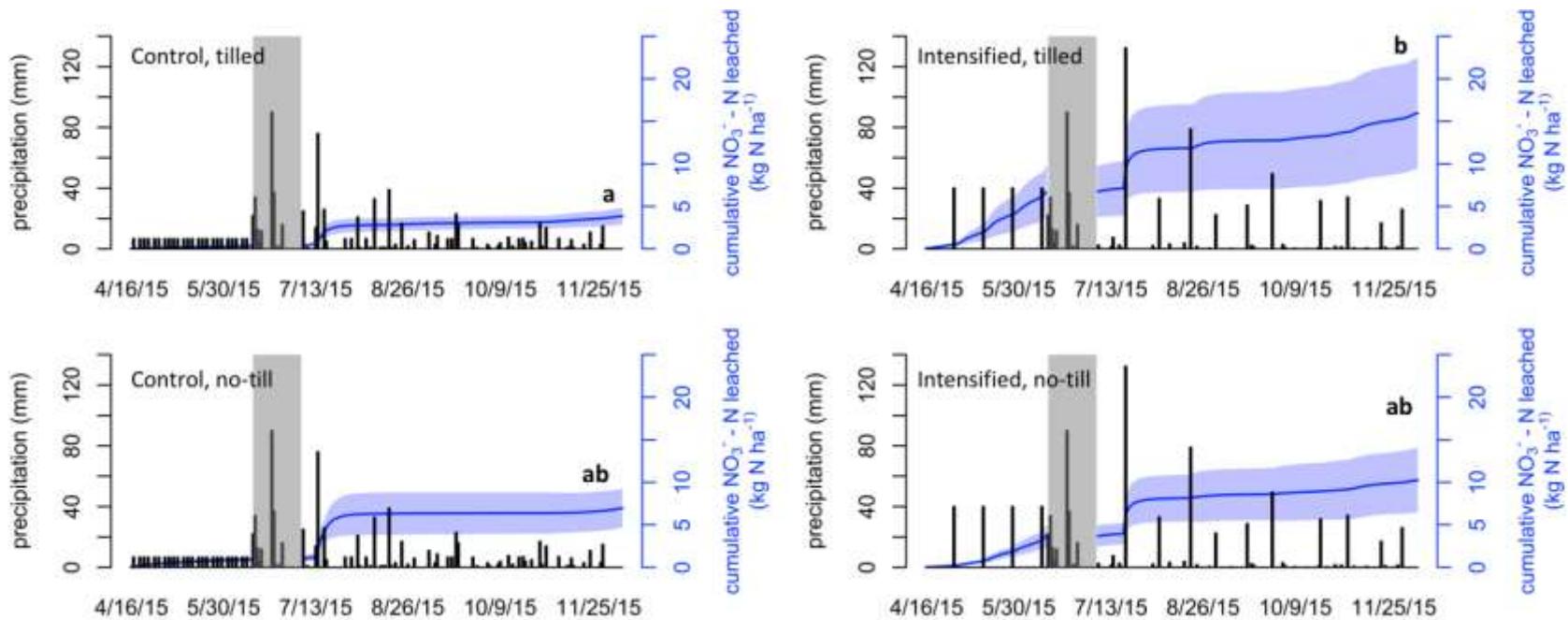
Control rainfall



Tilled cropping systems



Rainfall intensification

No-till cropping systems



690 **Supplementary Material**

691

692 **Figure S1.** Soil water nitrate concentrations at 1.2 m depth in tilled (a) and no-till (b) plots. The
 693 period of time between 13 June and 6 July 2015, when all rainfall plots received ambient rainfall,
 694 is indicated by gray shading. Letters indicate significant differences ($p < 0.001$) for values
 695 averaged over the entire year. Error bars represent standard error ($n = 4$ replicate plots). Initial
 696 values differed between rainfall treatments in both tilled and no-till plots, possibly reflecting
 697 prior site use. Changes in soil water nitrate concentrations relative to initial values appear in
 698 Figure 2 in the main text.

699

Figure S2. Cumulative estimated nitrate leached during the experimental period, by rainfall and tillage treatment. Blue lines (right hand axis) show mean cumulative nitrate leached, with shaded envelopes representing ± 1 SE ($n = 4$ replicate plots). The period of time between 13 June and 6 July 2015, when all rainfall plots received ambient rainfall, is indicated by gray shading and *excluded* from the calculation of cumulative nitrate leached. Letters indicate significant differences ($p = 0.01$).