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ARTICLE INFO ABSTRACT

This paper presents a hybrid data-driven physics model-based framework for distribution networks nontechnical
power loss estimation. Nontechnical power loss is defined as energy delivered to the consumers but not billed by
the utility. These losses, unlike technical losses, are not inherent to the process of transportation of electricity.
State-of-the-art solutions for nontechnical power loss estimation are either data-driven or physics model-based.
However, due to the evolving nature of nontechnical power losses, data-driven solutions by themselves are not
sufficient. Physics model-based analytical solutions, otherwise, which consider a quasi-static system model, rely
solely on physics phenomena observation, however it is virtually impossible to model all grid dynamics. In this
case, the nexus of data-driven physics model-based analytic models enable the solution of the problem. The
hybrid framework is composed of three interdependent processes. First, an unbalanced load flow analysis is
performed to obtain an initial estimate of the operating system state. Second, a data-driven method for consumer
classification is applied. Third, synthetic measurements are created considering the measurement's innovation
and n-tuple of critical measurements aiming to improve gross error analysis. Solution validation is made con-
sidering the IEEE 4-bus, 13-bus and 123-bus unbalance test feeders. Comparative test results highlight decreased
nontechnical power loss estimation errors. Simplicity of implementation, with easy-to-obtain parameters, built
on the classical weighted least squares state estimator, indicate potential aspects for real-life applications.
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NTL through machine learning and anomaly detection techniques [2-
4]. These solutions are referred in this work as consumer classification
methods (CCM). CCM are data-driven based, such as support vector

1. Introduction

Power system losses are defined as the difference between the

electric energy injected into the system and the energy billed to con-
sumers. Energy losses can be classified as technical and nontechnical.
Technical losses (TL) are inherent to the process of transportation of
electricity. Nontechnical losses (NTL), otherwise, correspond to energy
delivered but not computed due to measurement errors, fraud or theft.
Energy losses are most significant in distribution systems (DS), affecting
the revenue of utilities, power quality and electricity rates [1].

NTL are currently mitigated through prevention, identification and
correction of irregular consumption. State-of-the-art solutions detect
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machines [5,6], extreme learning machines [7], fuzzy classification [8],
rule induction models [9], optimum-path forest [10,11], game-theore-
tical inference-based models [12], statistical based methods [13,14],
Markov chains [15], Petri Nets [16], unsupervised and supervised
learning [17,18], wavelet-packet transform based [19] and A-star al-
gorithms [20]. As unsupervised learning methods, it is also highlighted
the use of unsupervised optimum-path forest [21], short-lived patterns
[22] and a data-driven framework that combines methods as the
maximum information coefficient, the fast search and the find of
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Nomenclature

Acronyms

CCM Consumer classification method

DS Distribution system

FN False negatives

FP False positives

GE Gross error

GMR Global measurement redundancy

I Innovation index

LF Load flow

MV Medium voltage

NRA Normalized residual analysis-based method
NTL Nontechnical losses

pdf Probability density function

PR Precision index

PSSE Power system state estimation

RC Recall index

RV Reference value

SE State estimation

TL Technical losses

TP True positives

WLS Weighted least squares

Variables and functions

c(x) Vector of equality constraints

C Jacobian matrix of ¢(x)

d Number of dimensions

e Vector of measurement errors

E Complex bus voltage vector

eNTL Percental estimation error of nontechnical losses
eTL Percental estimation error of technical losses

Fp False positives

FN False negatives

h(x) Measurement function

H Jacobian matrix of h(x)

I Complex bus current injection vector

L k-th bus current injections for phases a,b and ¢

I Innovation index of k-th measurement

J(x) Objective function of WLS

K Hat matrix of WLS state estimator

n Number of buses in the system

nrc Number of consumers classified as regular

nsc Number of consumers classified as suspect

NT. L}‘ Estimate of nontechnical losses at bus k and phase f

Pry Reference value of injected power

P}‘ Estimate of real bus power injection in bus k and phase f

I_’}‘ Measurement or pseudo measurement of bus power in-
jection in bus k and phase f

Pj’f’" Real branch power flow from bus k to bus m in phase f

S}? Apparent bus power injection in bus k and phase f

TL}"” Technical losses on branch between buses k and m in
phase f

P True positives

w Weight matrix

X Vector of states

y Feature vector of each consumer

Yius Complex bus admittance matrix

z Vector of measurements

A Vector of Lagrange multipliers

1l Sample distribution mean

v Number of degrees of freedom of the x? distribution

g Standard deviation of i-th measurement error

Oyp Updated value of the standard deviation

x Sample covariance matrix

Qi Set of buses connected to bus k

density peaks [23].

NTL can be further estimated through physics model-based solu-
tions [24,25], as by power system state estimation (PSSE) solutions
[13,14,26]. Considering such approach, NTL are estimated by the dif-
ference between measured and estimated power injections at each bus
[14,26]. NTL can be further modeled as measurements with gross error
(GE), which are defined as measurements with statistically large errors,
and estimated during the PSSE process [27].

As Smart Grid technologies become more accessible, electro-
mechanical meters are gradually being replaced by smart meters
[20,28]. The increasing number of measurements in DS allows the
precise estimation of system states while data provided by smart meters
can be additional information to CCM. On the other hand, cyber-at-
tacks, such as false data injections, can be launched on smart meters
[29].

It is clear that while data-driven solutions are able to model tem-
poral features of the grid, quasi-static physics based models are able to
model spatial features [30]. PSSE and CCM are key complementary
tools in smart grid operation and can compose a more robust NTL es-
timation framework. Physics model-based power system state estima-
tion has been already used to ameliorate CCM [11,30].

Regarding hybrid data-driven physics model-based solutions for
NTL estimation, recently strategies have been presented. In [13], first
NTL are detected through physics model-based analytical tests, then,
suspect consumers are identified by a CCM. In [14,26], authors’ pre-
vious work, physics model-based analytical tests are used to detect,
identify and estimate NTL. Since not all NTL are detected by the ana-
lytical tests, due to potential low measurement redundancy system
areas, a subsequent CCM analysis is applied to improve NTL detection.

In previously presented hybrid solutions though, measurements are
assumed to be installed in medium voltage (MV) buses. However, in
real-life applications, smart meters are being allocated mainly on low
voltage consumers [31]. Further, no model is presented to improve GE
analysis in system areas with low measurement redundancy [14,26],
which hinder real-life applications.

In this work, a hybrid data-driven physics model-based framework
for DS NTL estimation is presented. NTL are modeled as GE. NTL are
detected, identified and estimated. The presented framework is com-
posed of three interdependent processes. First, an unbalanced load flow
analysis is performed to obtain an initial estimate of the system oper-
ating state. Second, a data-driven based method for consumer classifi-
cation is applied. Third, synthetic measurements are created in low
redundancy areas considering measurement's innovation and n-tuple of
critical measurements.

The specific contributions of this work towards the state-of-the-art
are:

o Identification of vulnerable NTL system areas based on concepts of
measurement's innovation and n-tuple of critical measurements;

o Synthetic measurement model for GE analysis enhancement;

e Framework for NTL estimation in unbalanced distribution networks.

Previous work does not correlate system measurements with NTL
estimation. In this work, through the concepts of measurement's in-
novation and n-tuple of critical measurements, synthetics measure-
ments are created towards NTL estimation. According to the Central
Limit Theorem, the sum of a large number of random variables that
follow any distribution with bunded variance approximates a normal
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distribution. Synthetic measurements increase model degrees of
freedom, thus the chi-squared distribution also tends to a normal dis-
tribution. A framework for NTL estimation is presented considering
unbalanced distribution network characteristics. The remainder of the
paper is as follows. Section II presents the NTL estimation framework.
Comparative case study is presented in section III. Section IV presents
the conclusions of this work.

2. NTL estimation framework

Fig. 1 illustrates the data flow chart of the NTL estimation frame-
work, named PSSE CCM. Fig. 2 illustrates one of the three framework's
processes, the CCM-enhanced weighted least squares (WLS) PSSE.

Consider Fig. 1. Input data are system elements parameters, analog
and status measurements. The CCM considers power injection mea-
surements, provided by smart meters, to initially classify consumers as
regular or suspect. This is just an initial guess, which estimates the ratio
between the number of suspect and regular consumers in each bus. This
estimate is used later in the process of creating synthetic measurements.
Synthetic measurements are measurements created artificially, with the
goal of to increase system measurement redundancy level. These are
not to be mistaken with pseudo measurements, which are obtained
from historical data [32]. An unbalanced load flow (LF) is then used to
initially estimate the system state, which is then considered in a un-
balanced WLS PSSE [27]. The goal is to have an initial system state
estimation for the next process.

Consider Fig. 2. The CCM-enhanced WLS PSSE process runs a WLS
PSSE twice. First, the WLS PSSE is performed with updated weights,
estimated by the CCM, and without GE analysis. This first estimation
aims to create synthetic measurements in all segments without real
measurements, avoiding thus low values of II [33,34] and subset of
critical measurements [35]. The second estimation, otherwise, con-
siders real, synthetic and pseudo measurements and performs WLS
PSSE with GE analysis [27]. NTL are modeled as GE. In this process,
NTL are detected, identified and estimated through extended physics
model-based analytical tests. The second WLS PSSE is performed
though considering values of weights as a percentage of measurements
[36], which are then used to compose the WLS weight matrix (W).

Fig. 3 presents an illustrative example of the framework's data flow,
considering an illustrative 7-bus system.

In the step 1, smart meters power injection measurements, at buses
2 and 6, are considered by a CCM to initially classify consumers as
regular or suspect, and compute updated standard deviations.
Estimated standard deviations are used to compose the updated weight
matrix W, to be used in the first WLS PSSE. Also, in step 1, a LF analysis
is performed to estimate the system state, the updated bus admittance
matrix Y and the pseudo measurements of power injection in the buses
2 and 6, PQ, and PQg respectively. In step 2, considering the updated
W, a WLS PSSE is performed to obtain power flow synthetic measure-
ments in MV segments without real measurements, PQ23, PQ34, PQsg
and PQ67'

In step 2, GE analysis is not performed. In step 3, otherwise, a WLS
PSSE considering now values of weights as a percentage of measure-
ments is performed. In this step, GE analysis is performed, while con-
sidering synthetic measurements created previously. After, with esti-
mated states, NTL, as well as TL are estimated. NTL estimation is
performed in the MV system, given the lack of power flow measure-
ments in the low voltage network.

Sections II.A, IL.B and II.C describe the CCM, LF and the WLS PSSE,
respectively. Synthetic measurements creation is presented in IL.D.

2.1. CCM
The used CCM is a unsupervised statistics-based parametric

anomaly detection method that considers a multivariate Gaussian dis-
tribution to model consumers load [14]. In this aspect, for each
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consumer in a given class, the probability density function (pdf) is
computed by (1).

o, 1 Z )= 3 0-mT S o-w

1
NeZaSb @

The number of dimensions (d) in (1) is related to the number of
measurements of each consumer considered to compute the pdf. The
CCM's hypothesis is that, for the same type and class of consumer, most
of them are regular and have a similar pattern of consumption.
Therefore, the consumers which y values are similar to u have a high
pdf, and are considered as regular. It is also assumed that irregular
consumers occur much less frequently than regular ones, and they have
an anomalous consumption pattern, thus having a low pdf value. In this
case, the inverse of the probability density function is an anomaly score
[37], and the consumers with lower values are more likely to have an
irregular consumption.

Usually, DS companies know with some precision the system NTL
percentage related to injected power, without knowing where they
occur [25]. Considering that the percentage of NTL corresponds to the
percentage of irregular consumers, consumers with lowest pdf can be
classified as suspect. Thus, in a DS with total NTL percentage of 5.6%
and having 1000 consumers, 56 consumers with lowest pdf can be
classified as suspect. Other approaches of establishing a pdf threshold
value between suspect and regular consumers are discussed in [14].
Alternatively, other CCM, as those presented in the section I, can be
considered in the presented framework.

Considering that inspections have high financial costs, one goal of
NTL identification is having a high percentage of success through field
evaluations. This performance is measured by the precision (PR) index,
which indicates the percentage of clients correctly classified as suspects.
On the other hand, another goal is to detect the largest number of ir-
regular consumers to reduce the amount of NTL. This performance is
measured by the recall (RC) index. The performance evaluation of a
CCM is then given by PR and RC indexes, respectively computed by (2)
and (3) [11].

PR = 100 x TP/(TP + FP) (2
RC = 100 x TP/(TP + FN). 3)

In the previous equations, TP stands for true positives, FP are the
false positives and FN means false negatives. The relationship between
the number of consumers classified as suspect and as regular in each bus
are considered in the weights of WLS PSSE for synthetic measurements
creation, as presented in IL.D. The information added by the CCM result
is most important for the synthetic measurements creation, and en-
hances GE analysis.

This work does not contribute towards the state-of-art of CCM.
Highlights that any CCM can be used in the framework. The framework
considers the estimated number of suspect and regular consumers in
each bus to update WLS PSSE weights. As a limitation, the presented

Database
Smart meters power|| System Power flow and
measurements data | |voltage measurements
; 1 v
CCM LF
| Updated Initial |[Updated || Bus power
W states Y, |measurements
I I

A 4

| CCM-enhanced WLS-PSSE |

Fig. 1. PSSE CCM framework.
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Input data in CCM- enhanced WLS-PSSE

Updated | (Tnitial Update power | Power flow
W value Y, measurements) and voltage

measurements

'

Innovation-based WLS-PSSE with original W
[ TL and NTL estimation]

Fig. 2. CCM-enhanced WLS-PSSE.

CCM does not consider distributed storage and generation elements, as
prosumers, batteries and vehicle-to-grid.

2.2. Extended physics model-based analytical tests

2.2.1. System elements model

The system model is composed by segment and bus data. Segments
are composed by lines, transformers and voltage regulators and can be
modeled as a primitive admittance matrix. This matrix can be re-
presented by the submatrices related to each bus and the interaction
between them.

The primitive admittance matrix of segments relates the bus phase
voltages (E) with the lines currents (I), as shown in (4)

|:L1bc:| Y. I:E];bc:l _ [anm —km anm km:|[E§bc:|

prim_km m k m
Iabc abce anm_ km Yprim_km Eabc (4)

The values of the submatrices depend on the type and character-
istics of each segment [38,39]. For a line, the submatrices are composed
by the series impedance and shunt admittance matrices calculated by
Carson equations and Kron reduction. For transformers and voltage
regulators, the submatrices depend on transformers characteristics, as
impedance of windings and connection type. The values of voltage
regulator submatrices depend on tap position (tap) that affect the ef-
fective regulator ratio: ag = 1 + 0.00625tap. The variable sign depends
of the regulator type. The value of tap is changed by a regulator control
circuit that considers the voltages and currents measured and a set
value for the line drop compensator. Bus data is composed by shunt
admittance matrices (Y] Cap) that are connected in a single bus r and are
related to capacitor banks. The admittance matrix of a capacitor bank
depends on its nominal power, voltage and connection type.

Considering the segment and bus matrices, the system can be
modeled as a bus admittance matrix that relates all bus phase voltages
(E) and bus injected currents (I), given by (5). Diagonal submatrices are
computed by (6), and the off diagonal submatrices by Y}, anm m>
where k and m are system buses and € the set of buses connected to
bus k.

I=YwE %)

bus Ycap Zmeﬂk Yll)cflm_ km (6)

2.2.2. Load flow model

Considering that we have a smart grid, active and reactive power of
consumers are measured and can be modeled by a constant power
model [38]. Considering a flat start, the vector of injected current in
each bus can be computed by (7), where S]’f and E}‘ are the complex
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Step 1: LF and CCM

3

Al by ik ks

Apply CCM and obtain 6. and ous (updated W)

Step 2: WLS-PSSE without GE analysis and updated W

Apply WLSS-PSSE and obtain PQ:s, PQ:s, PQs
(synthetic measurements)

Step 3: Innovation based WLS-PSSE with original W

,, and PQs

Apply innovation based WLSS-PSSE with GE analysis
and obtain the estimated states
Step 4: Estimate TL in all medium voltage segments and NTL
in all medium voltag,e buses

A

Nll

Substation © Measurement of power injection in MV bus
§§ distribution u MV bus V Load @ Measurement of power injection in smart meters
transformer O Pseudomeasurement of power injection in MV bus
Measurement of voltage <> Measurement of power flow in MV segment
magnitude in MV bus <@ Svnthetic measurement of power flow in MV seement

Fig. 3. Steps of PSSE CCM framework in an illustrative 7 bus system.

power and the voltage phasor in phase f of bus k. If the complex power
represents a load, the value has a negative sign. If the power is mea-
sured between phases, the delta currents can be computed and trans-
formed in injected currents [27].

. = [(SY/ED* (SHED* (SHED' %)

(5) can be rewritten as (8), where the subscripts sw and Id are re-
lated to substation bus and consumer buses, respectively. Given that the
voltage at the substation bus and the calculated injected currents in
consumers are known, the voltages at load buses can be estimated by

9).
Lo | _ | Yowsw Yowid || Eqw
Lo | ™ | Yo Yiau || Eu 8

Ew = [Yigal " [Lig — Yig,swEsw] )
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Estimated voltages are then compared to their previous values. If
the differences are lower than a defined tolerance, the method con-
verged, otherwise, the injected currents and voltages are updated by (7)
and (9). These updates are iteratively performed until convergence is
achieved. In each iteration, the tap values of voltage regulators are
updated and, as consequence, Y, is updated. After convergence, the
currents injected in both sides of the element are calculated by (4). The
bus power injection in each phase is computed by S}‘ =@ }»‘)*E]’f and the
branch power flow in each phase is calculated by Sf™ = (If")*Ef. The
active (Pf™ and Pf) and reactive (Qf™ and Qf) power flows and injec-
tions can be obtained by separating real and imaginary parts. In a
system model with both primary and secondary networks, the power
flowing through a transformer connected in a bus k can be represented
as the power injected in this bus k. In this way, LF process provides
power injection measurements in MV buses for the WLS PSSE in addi-
tion to the initial states and updated Yj,;. The power flow analysis is
performed only once, before the WLS PSSE.

2.3. WLS PSSE

WLS PSSE is performed in the MV system considering real power
flow and power injection measurements, provided by the load flow
analysis, as described in section II-B. The power flow also provides the
updated Yj,s and the initial states for the WLS PSSE, improving the
converge process.

WLS PSSE is obtained through the solution of z = h(x) + e, where z
is an nm dimensional vector of measurements and h(x) is an nm di-
mensional vector of equations that relate the ns dimensional vector of
states x with the measured quantities. The measurement errors are
given by nm dimensional vector e. States variables are the bus voltages
magnitudes (V) and angles (6). The ratio between the number of
measurements (nm) and the number of states to estimate (ns) is the
global measurement redundancy: GMR = nm/ns. Power and voltage
magnitude measurements are provided by substation and feeder
equipment, by smart meters installed in MV consumers and by the re-
sult of LF in buses that feed low voltage consumers. The equations h(x)
are given by the states and the elements of Y, as described in [27].

In the WLS PSSE approach, the problem consists in solving (12),
where the vector of constraints c(x) is composed of measurement
functions of zero power injections and W is a diagonal weight matrix
composed by the inverse of the squared values of measurement stan-
dard deviations (0): W = diag ([0, 2...0,2]"). Considering an initial value
for x, the states in each iteration v are updated by solving (13) and
updating the states as x’*! = X’ + Ax". H and C are the Jacobian ma-
trices of h(x) and ¢(x) and A is the vector of Lagrange multipliers. The
method converges when Ax is lower than a defined tolerance.

min J(x) = [z — hX)]"W[z — h(x)]
s.t c(x)=0 12)

[HTWH c] [ Ax] _ [HTW[Z - h(X)]]

C ol|l—4 —c(x) 13)

After convergence, it is possible to perform GE analysis. A com-
monly performed error analysis is based on the chi-squared and the
largest normalized residual tests [35], which are applied to detect and
identify NTL in DS [13]. On the other hand, innovation-based analysis
is a more robust approach to perform GE analysis [27,29,40]. The
presented framework considers a modification of the innovation-based
GE analysis described in [27]. First, characteristics of real-life DS not
modeled in [27] are considered, such as single and two-phase lines,
voltage regulators and zero power injection buses. Second, the use of LF
as the initial state, the update of Y, and the synthetic measurement
generation are as well considered, which are not in [27].

After the WLS PSSE, TL in each phase f of segment km is calculated
by (14). NTL in each phase f of bus k is computed by (15), where P j’f
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correspond to the measured value of active power injection. Total bus
NTL can be obtained by the sum of NTL in each phase.

TLf" = " + P a4
k _ pk Dk
NTL; = Py — Py (15)

To assess the performance of the presented framework, TL and NTL
percentage estimation errors are calculated by (16) and (17), respec-
tively. Where RV subscript is reference values. Given that there are
buses without NTL, to avoid a division by zero, the difference is divided
by the reference value of injected power (Pgy).

eTL = |(TL — TLgy)/TLgy| (16)

eNTL = |(NTL — NTLgy)/Prv| a7

2.4. Synthetic measurements

WLS PSSE considers a normal distribution model of the measure-
ment error. In view of the Central Limit Theorem [32], the sum of a
large number of random variables that follow any distribution with
bounded variance approximates a normal distribution. Thus, as the
number of degrees of freedom v increases, the y? distribution also tends
to a normal distribution. If, however, the number of degrees of freedom
of the measurement model is not large, the opposite would occur, and
the hypothesis testing would not hold. The degrees of freedom of the
measurement model is of course dependent on the resources available
for the system operator to monitor accurately the power grid. The
concepts of II and n-tuple of critical measurements are thus considered
in this work for synthetic measurements generation. The core idea is to
create, artificially, synthetic measurements on areas where the hy-
pothesis test might fail. As described in [33,41], the II of a measurement
k is obtained by (18), where K the WLS-PSSE hat matrix:
K = H[H'WH]|'H'W. The inverse of II is defined as the undetect-
ability index and provides the distance of a measurement from the
range space of the H. In measurements with low II, the GE is less re-
flected in the residual and is masked in GE analysis. According to nu-
merical simulation in transmissions systems [33], values of II lower
than 0.75 can significantly mask GE.

I = 1 — K /K a8

According to [35], an n-tuple of critical measurements correspond
to a subset of n measurements that when eliminated from the mea-
surement set, make the system unobservable. Numerical observability
can be verified by the rank of H. If the rank is lower than the ns, the
system is unobservable. In a n-tuple of critical measurements, n—2 GE
are detectable and identifiable, however, n—1 and n GE are detectable,
but not identifiable by the largest normalized residual method. For
example, let's consider a subset of the system measurements set con-
taining four measurements. If the system became unobservable with the
elimination of all four measurements, this subset is a 4-tuple of critical
measurements. In this case, if one or two (n-2=2) of these measure-
ments have GE, the system is able to detect and indentify them. With GE
in three (n-1 = 3) or four (n=4) of these measeurements, the system can
detect the GE, but will not be able to correctly identify how many and
which measurements contain GE. The lower the n value, the less mea-
surements are detectable and identifiable. For n equal to one, which
corresponds to a critical measurement, a GE in this measurement is not
detected.

The detection of gross errors and estimation of losses based in the
WLS PSSE with largest normalized residual analysis, as applied in [13],
is named in this work as normalized residual analysis-based method
(NRA).

To illustrate the concept of areas with low measurement re-
dundancy, consider the modified balanced 4-bus IEEE test feeder
(Fig. 4) [42]. Loads in buses 2, 3 and 4 are, respectively 600 + j250
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O—"—k——1s-

<> O: Power flow and power injection measurements
[J: Voltage magnitude measurements
4@ : Synthetic power flow measurements

Fig. 4. 4-bus feeder: measurement framework and buses with NTL.

TABLE 1
NTL and TL in balanced 4 bus feeder.

Bus (NTL in kW) Segment (TL in kW)

2 3 4 1-2 2-3 3-4
RV 0.0 90.0 63.0 9.6 10.1 28.9
NRA 0.0 0.0 148.7 9.6 10.1 33.1
PSSE CCM 0.0 90.0 63.0 9.6 10.1 28.9

TABLE 2
Bus peak load and NTL in each phase (a, b and ¢) of unbalanced 4-bus system.

f Bus 2: load Bus 3: load (NTL) Bus 4: load (NTL)

kw kvar kw kvar kw kvar
a 590 246 289 (86) 145 (43) 897 448
b 563 230 253 127 845 (247) 423 (124)
c 639 271 345 (111) 172 (56) 964 482
250  |Reference values ™ i
PSSE CCM
NRA
200
150
5 +
= L &
= 100
Z 2| =
50
0r '% =ﬁ= é-i -l = % L %‘ 1
+
2a. 2b 2¢ 3a 3b 3¢ 4a 4b 4c
Buses and phases
Fig. 5. NTL (kW) estimation in unbalanced 4 bus test system.
TABLE 3

NTL and TL percental estimation error in unbalanced 4-bus feeder.

Average error: mean (0) Maximum error: mean (0)

eNTL (%) eTL (%) eNTL (%) eTL (%)
NRA 10.3 (13.3) 9.4 (4.8) 100.0 (30.6) 53.1 (14.3)
PSSE CCM 0.7 (0.5) 0.6 (0.3) 5.4 (1.2) 4.3 (0.9)

kVA, 300 + j150 kVA and 900 + j400 kVA. The standard deviation
considered for the substation measurements is 0.1% and for all other
measurements 1% is adopted. The same setup is considered in the case
studies.

Disregarding synthetic measurements, the GMR is equal to 1.71 and
due to the lack of a power flow measurement between buses 3 and 4,
the power injections in these buses (P3, P4, Q3 and Q) form a 4-tuple of
critical measurements. In this case, the NRA can detect and identify
only two of these measurements, if they have GE. Thus, the GE detec-
tion test is prone to fail in this area. Further, the values of II for mea-
surments P and P, are respectively 0.28 and 1.53, indicating that GE in
P3 will be dificult to detect by NRA.
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Fig. 7. 24-hour NTL estimation in 4-bus test system — phases with NTL.

Fig. 8. 13-bus test feeder: measurement framework and buses with NTL

For example, considering that buses 3 and 4 have NTL with values of
90 + j45 kVA and 60 + j48 kVA, respectively. This results in GE in the
measurements P3, P4, Q3 and Q. If it is considered that, for illustrative
purposes, no measurement noise is present, NRA can identify GE in P,
and Qs, resulting in the TL and NTL estimation presented in Table 1.
Only the active power values are presented. The estimation errors of TL
are related to the incorrect estimation of NTL. In this case, the
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Fig. 9. NTL (sum of kW in all phases) estimation in unbalanced 13 bus system.

TABLE 4
NTL and TL percental estimation error in unbalanced 13-bus feeder.

Average error: mean (0) Maximum error: mean (0)

eNTL (%) eTL (%) eNTL (%) eTL (%)
NRA 7.5 (0.7) 3.8 (0.2) 26.8 (1.4) 23.4 (0.6)
PSSE CCM 0.3 (0.1) 0.5(0.1) 2.8 (0.5) 4.4 (0.7)
TABLE 5

123-bus feeder: segments and buses with measurements and buses with NTL.

Power flow measurements 150-149; 13-18; 18-35; 54-57; 67-72; 67-97; 13-52;
23-25; 44-47; 60-62; 76-86; 101-105

Voltage measurements 150; 13; 18; 54; 67; 13; 23; 44; 60; 76; 101

NTL 4; 20; 30; 151; 43; 59; 52; 62; 106; 98; 73; 90
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Fig. 10. NTL estimation in unbalanced 123 bus system — buses with NTL.
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TABLE 6
NTL and TL percentual estimation error in unbalanced 123 bus feeder.

Average error: mean (0) Maximum error: mean (0)

eNTL (%) eTL (%) eNTL (%) eTL (%)
NRA 7.9 (0.8) 9.7 (1.0) 100.2 (9.6) 161.6 (33.0)
PSSE CCM 0.8 (0.1) 1.4 (0.1) 25 (3.1) 43.0 (4.5)

estimated power flows do not significantly change with the wrong es-
timation of NTL, therefore, the TL estimation difference from RV are
less expressive than those for NTL. In the following tables and figures,
the term PSSE CCM is used for the presented framework.

By adding a synthetic power flow measurement from bus 3 to bus 4,
the subset formed by the synthetic measurement and the injected power
measurements of bus 3 and 4 form a 6-tuple of critical measurements
(P3, Py, P34 Qs Q4 and Qsy,), which is easily verified by inspecting
matrix H. The addition of the synthetic measurement increases the
measurement redundancy in this area. Being a 6-tuple of critical mea-
surements, it is now possible to detect and identify GE in four of these
measurements. Additionally, the values of II for measurements related
to P3 and P, increased to 0.55 and 1.77. The GMR is artificially in-
creased from 1.71 to 2.

In the presented framework, synthetic measurements are created by
performing first a WLS PSSE with weigths updated with the CCM result.
Authors previous work [14,26] demonstrate that this approach im-
proves the estimation accuracy in DS with NTL. However, in the pre-
sented framework, this approach is considered to obtain synthetic
measurements values and not to obtain the estimation results as in
[14,26]. To obtain a relationship between CCM result and standard
deviations that define the weights, first suppose that the NTL values in
all buses are known. The o of each measurement reflects the expected
accuracy of the corresponding meter. Given that 99.7% of measurement
data are within =+ 30 of the mean, considering a normal pdf, the
maximum acceptable error of a meter can be approximated by 30. A
power injection measurement with NTL will have then the measure-
ment error plus the value of NTL, therefore, the maximum error is equal
to 30 added to the NTL value. Thus, an updated value of standard de-
viation (0y,) can be considered as (19).

G = (NTL + 30)/3 (19)

In buses without NTL, o,, will be equal to o, whereas buses with
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large NTL values, 0., will be approximately NTL/3. The higher the NTL
in a bus, the lesser accurate measurements are considered in this bus.
The updated weight is then computed by W,, = cru‘pz. This model can be
applied for both active and reactive power injections. As a limitation,
this weighting approach is defined for distribution systems without
distributed storage and generation elements. A change in this model is
necessary for MV buses that contain these elements. However, the
presented framework remains unchanged.

Considering (19) as updated standard deviation of all power injec-
tion measurements, the weight matrix is updated and WLS PSSE is
performed without gross error analysis, as illustrated in Fig. 2. The
obtained values of active and reactive power flow from bus 3 to bus 4
are then added to the measurement set as synthetic measurements.
Considering this new set of measurements, the WLS PSSE is performed
again with innovation-based GE analysis [27], considering the original
values of standard deviations, as illustrated in Fig. 2.

Considering the modified balanced 4-bus IEEE test feeder, applying
the PSSE CCM, all measurements with GE are detected and identified,
while the TL and NTL are correctly estimated, as presented in Table 1.

However, NTL values in system buses are previously unknown. To
solve this problem, first a CCM should be applied to classify all con-
sumers, obtaining the number of consumers classified as regulars (nrc)
and suspect (nsc) in each phase of each bus. Consider that the mean
power consumption (ijf) for a same group of consumers is similar, and
that the consumption of suspect consumers it is not computed. Then,
the mean consumption can be approximated by (20) and the NTL by
(21). For example, for a bus with power injection of 90 kW for a given
instant having 360 consumers classified as regular and 40 as suspect,
the estimated NTL is 10 kW. The approximation of NTL obtained for
each bus by (21), can be used in (19), and considered in the first WLS
PSSE to obtain the synthetic measurements. For reactive power, the
approach is the same. Note that this is not the final estimation of NTL,
just a rough initial guess to update the weight matrix.

Pm}‘ ~ F}‘/nrc (20)
NTL}‘ ~ Pm}‘nsc ~ F}‘(nsc/nrc) [©1))

Even in smart DS scenarios with large measurement redundancy, it
is unusual to have real-time measurements in all segments. Considering
that the lack of power flow measurements is related to power injection
measurements with low IT values and with n-tuple of critical measure-
ments, the PSSE CCM considers the values of power flow estimated by
the first WLS PSSE in all segments without real-time measurements as
synthetic measurements for the second WLS PSSE.

3. Case Study

Power measurements were created based on the most typical con-
sumption range of Brazilian consumers, 101-200 kWh per month, and a
typical daily load curve for this range of consumption, presented in
[43]. Considering a log-normal distribution, several types of consumer
patterns were created. The aggregated consumption corresponds to the
peak demand values (10 p.m.), which was set equal to IEEE test feeders
loads. NTL was created by multiplying consumer load curves by a re-
ducing factor, randomly set between 0 and 0.7. Since the IEEE test
feeders considered do not present the low voltage network, bus power
injections in each bus were obtained by adding the measured power of
the consumers of each spot load. In this case, delta loads were trans-
formed to wye phase power injections in LF to provide the initial values
of voltages and the updated bus admittance matrix. In IEEE 13-bus and
123-bus feeders there are voltages regulators, zero injection power
buses and two-phase and single-phase lines. The CCM was applied
considering the consumer mean power as data input and that the per-
centage of total NTL is known with some error( = 1%). The estimation
is presented only for NTL, given that TL are direct related to the NTL
estimation. Estimation errors are presented for both TL and NTL.
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Simulations were performed in a personal computer Intel Core i7-
6500U CPU @ 2.50 GHz with 8.00 GB of installed memory (RAM) using
MATLAB software. The computation time to run the PSSE CCM in the
123-bus test system was less than 1 min.

3.1. Unbalanced 4-bus test feeder

Consider the IEEE 4-bus test system (Fig. 4), with changes only in
the loads. The load and NTL (total of 8.3%) for the peak demand are
presented in Table 2. They correspond to a total of 11450 consumers,
1497 of which with NTL. The CCM obtained the values of 82.4% and
53.7% for PR and RC indexes.

Before adding synthetic measurements, the II of bus 3 active power
injection measurements are 0.27, 0.25 and 0.30, and of bus 4 are 1.56,
1.54 and 1.53, phases a, b and c, respectively. Applying the NRA in 100
simulations with a gaussian noise of zero mean and standard deviation
of 0.33% of measured value in all measurements, the results of NTL and
TL estimation are presented in Fig. 5 and Table 3.

The NRA incorrectly identifies and estimates the power injection of
phase c of bus 4, instead of bus 3, in all simulations, and the power
injection of phase b of bus 3, instead of bus 4, in some simulations.
Applying the PSSE CCM framework, power flow synthetic measure-
ments are created from bus 3 to bus 4, active and reactive in all phases.
The II of active power injection measurements of bus 3 increase to 0.52,
0.48 and 0.57, phase a, b and c, respectively. All measurements with
NTL are detected and identified, and NTL average estimation errors are
lower than 1%. The results of PSSE CCM are also shown in Fig. 5 and
Table 3. Table 3 shows a reduction in estimation error when using PSSE
CCM. By analyzed Fig. 5, it is also highlighted that NRA identifies and
attributes NTL to buses without NTL.

Considering that the previous results were only obtained for the
peak demand, a 24-hour simulation was performed to analyze the fra-
mework's performance under time-varying load conditions. Note that
the CCM is performance once, therefore, the nrc and nsc remain the
same for all simulation hours, on the other hand, synthetic measure-
ments are created for each hour. The Fig. 6 shows the 24-hour reference
values of injected power in each phase of the 4-bus system and fig. 7
presents the NTL reference values (RV) and NTL estimations by PSSE-
CCM and NRA. It is only presented the phases and buses with NTL. The
results show that PSSE-CCM correctly estimates the NTL in all phases at
all hours. The NRA approach fails to estimate NTL in phase c of bus 3
(dotted line) at all hours. NRA identifies NTL at some hours for phase b
of bus 4 (continuous line), and at all hours for phase a of bus 3 (dashed
line). When both methods identify the NTL, it is possible to graphically
analyze that the PSSE-CCM presents lower estimation errors than NRA
(black lines closer to the green lines than the red lines). The results of
Fig. 7 are in accordance with Fig. 5, demonstrating that the NRA is not
able to identify NTL in phase c¢ of bus 3 and is not robust for NTL
identification in phase b of bus 4. The PSSE-CCM remains robust in NTL
estimation under load variation. These results were expected given that
the synthetic measurements of power flow avoid small sets of critical
measurements and increase the II. Given that the 24-hour simulation
provided the same conclusions of the previous analysis, this simulation
was not performed for other test systems.

3.2. Unbalanced 13-bus test feeder

The tests in IEEE 13-bus feeder aims to simulate a smart grid mea-
surement condition with a GMR of 1.92, similar as those considered in
[13]. The feeder measurement set and buses with NTL (total of 8.2%)
are shown in Fig. 8. The total number of consumers is 7014, and the
number with NTL is 852. The CCM obtained the values of 83.4% and
54.2% for PR and RC indexes.

Synthetic measurements were created in the segments without flow
measurements, increasing the GMR from 1.92 to 2.15, and improving
the local measurement redundancy in the neighborhood of buses 611,
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646 and 652. The local measurement redundancy for buses 675 and 634
is less critical, since there is a flow measurement in the direction of 675
and, in the case of 634, although there is no flow measurement, 634 is
preceded by a bus with zero power injection, 633, treated as an equality
constraint. It is expected that NTL estimation by NRA perform better for
buses 634 and 675, when considering other buses with NTL. The NTL
estimation results are presented in Fig. 9. The estimation errors are in
presented in Table 4.

NRA fails to identify NTL in bus 646 and 611, wrongly indicating
NTL at buses 645 and 684, but correctly estimating the NTL of buses
652, 634 and 675. PSSE CCM correctly identifies all buses with NTL,
with values of errors significantly smaller than the NRA. It is important
to note that the PSSE CCM also does not incorrectly identifies NTL in
buses where it does not exist.

3.3. Unbalanced 123-bus test feeder

The IEEE 123-bus test feeder was considered with a GMR of 1.72.
Buses with power flow and voltage magnitude measurements and buses
with NTL (total of 5.6%) are described in Table 5. Power injection
measurements are provided by the LF in all load buses [42]. The total
number of consumers is 8052, and 685 consumers with NTL. The CCM
obtained the values of 82.0% and 53.3% for PR and RC indexes.

Synthetic measurements were created in all segments without flow
measurements, increasing the GMR from 1.72 to 2.53. Considering the
NRA, NTL were correctly identified in buses 20, 43, 151, 98, 30, 62,
while NTL were not identified in buses 4, 52, 59, 73, 90 and 106, and
NTL were wrongly attributed to buses 31, 49, 55, 66, 71, 86, 85, 107
and 610. The PSSE CCM identify all buses with NTL in all simulations.
Estimations results are presented in Figs. 10 and 11.

Estimation errors are presented in Table 6. Estimation errors in-
creased in this test system due to the low initial GMR, however, PSSE
CCM continues to present significantly better results than the NRA.
Additionally, the NRA attributed NTL in buses without NTL, while PSSE
CCM identified only buses with NTL. The larger estimation errors in
PSSE CCM are related to buses with lower NTL and the TL estimation in
segments connected to these buses.

For all test systems, the vulnerable areas of NTL non-identification
were identified through the low values of II and the formation of sets of
n-tuples of critical measurements. These subsets are composed by bus
injection measurements connected by segments without flow mea-
surements, as presented in section II.D. The addition of synthetic flow
measurements, as proposed in this work, increased the local measure-
ment redundancy of these vulnerable areas, avoiding low subset of
critical measurements and increasing the II of these measurements. The
presented model for creating synthetic measurements for the PSSE with
information provided by the CCM resulted in a GE analysis improve-
ment. This is highlighted by the results for all study cases, which de-
monstrate that the GE were correctly estimated by the PSSE-CCM, while
NRA performed less well, even assigning NTL in buses without NTL.
Similar results were also obtained in 24-hour simulation under load
variation. Overall, the presented framework was able to estimate NTL
in unbalanced DS with lower estimation errors than NRA.

4. Conclusions

In this work a hybrid data-driven physics model-based framework
for NTL estimation is presented. Test results show that system segments
without power flow measurements tends to form power injection
measurements with low II and n-tuple of critical measurements, making
it most difficult to identify NTL. To increase the local measurement
redundancy, the presented framework artificially creates power flow
synthetic measurements in all segments without real-time measure-
ments. Synthetic measurements are created by a WLS PSSE weighted by
the result of a CCM. Additionally, a LF is considered to obtain power
injection measurements in MV buses, the initial states and the updated
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bus admittance matrix for WLS PSSE. Solution validation is made in
three IEEE test feeders with realistic DS characteristics. Comparative
test results highlight decreased average NTL estimation errors. With
some modifications in the framework processes, it is possible to con-
sider distributed storage and generation elements. Additionally, NRA
incorrectly attributed NTL in buses without NTL for all test systems,
which did not occur for the presented framework. This is most im-
portant, since consumer inspections are guided by loss estimation re-
sults. Finally, the presented framework is easy-to-implement, built on
the classical WLS PSSE, without hard-to-derive parameters, which
highlight potential aspects for real-life applications.
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