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Abstract Recently, it was found that there is a remarkable intuitive similarity between studies in theoretical
computer science dealing with large data sets on the one hand, and categorical methods of topology and geometry
in pure mathematics, on the other. In this article, we treat the key notion of persistency from computer science in
the algebraic geometric context involving Nori motivic constructions and related methods. We also discuss model
structures for persistent topology.
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Introduction and Summary

This paper is a contribution to the emerging research field in which computational mathematics dealing with large
data bases interacts with topology, homological algebra, and “brave new algebra” of homotopy theory.

As a remarkable result of such interaction, (various versions of) the notion of persistent homology appeared.
According to the informative survey presented in [12], the general notion of persistence in computational mathemat-
ics was informed by the topological data analysis. For a general introduction and overview of persistent homology
and topological data analysis, see [8,13,16,42].

Large data bases are first represented by a family of sampled data at various scales. Then each sample is structured
as a topological/algebraic object say, a simplicial space or its chain complex, which are interrelated by a nesting
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relation. Finally, the invariants of these objects at all scales are compared, so that those of them that are persistent
across a sufficiently large range of scales become encoded in a persistence diagram, or barcode. An intuitively
transparent picture of this kind, leading to a multidimensional bar-encoding of derived category of sheaves on a real
finite-dimensional vector space, was developed very recently in [27], while to our knowledge the earliest introduction
of persistence and bar code diagrams, in the topological/homotopical context, is due to S. Barannikov, [3].

Our starting point was the observation that conversely, some of the important and already well formalised tech-
nical tools of algebraic topology and algebraic geometry may be represented as the product of intuitive search
for “persistent” properties of topological spaces/ algebraic varieties/schemes “observed” at various scales or from
various distances.

In this paper, we focus on the formalism of Nori diagrams and Nori motives (see [24] and [2]) and show that
persistence philosophy presents them in a new light.

In mathematical community, existence of a rich ramification of persistency ideas is not as widely known as it
deserves. Hence we hope that our input might be fruitful.

0.1. Diagrams in Various Contexts. We work below in a fixed small universe as it was presented in [26], Ch. 1.
We do not mention the universe explicitly.

0.1.1. Definitions. ([24], Def. 7.1.1) A diagram D is a family, consisting of two disjoint sets V (D) (vertices), E(D)
(edges),and amap d : E(D) — V(D) x V(D), d(e) = (dpus (e), 0in(e)) (orientation of edges). An oriented edge
is sometimes called an arrow.

Morphism of diagrams D1 — D5 consists of two maps V(Dy) — V(D3), E(Dy) — E(D;), compatible with
orientations.
A diagram with identities is a diagram D in which for every vertex v, exactly one oriented edge from v to v is
given and called the identity edge id,. Morphism of diagrams with identities must map identities to identities.
For example, each category C defines a diagram with identities D(C) for which

V(D(C)) :=0bC, E(D(C)):=HomC,

andd(f: X > Y) :=(X,Y).

Given a diagram D and a category H, any morphism of diagrams D — D(H) is called a representation of D.
Of course, representations (perhaps, satisfying additional compatibility conditions) themselves are objects of a cat-
egory/ vertices of its diagram etc. This is the universe where various persistence intuitions reside and constructions
of persistence invariants develop.

We will start here with a brief description of persistence constructions developed in computer science, and then
give a short survey of Nori’s persistency.

0.2. Thin Categories and Diagrams. Let (S, <) be a poset that is, a set S with reflexive, transitive, and anti-
symmetric binary order relation ([26], Def. 1.1.3.) It defines a diagram D for which V(D) := S, E(D) := the set
of all pairs (s, s2) such that s; < s», oriented from s7 to s7.

0.2.1. Definition. A category C is called thin, if each set Hom(X, Y) consists of < 1 element.

Clearly, for such a category Ob C has the canonical structure of a poset: X < Y iff X # Y and Hom(X, Y) is non-
empty. Conversely, each poset defines in this way a thin category in which morphisms in Hom(X, Y') are equivalence
classes of oriented paths from X to Y. Hence, describing a thin category, one may restrict oneself to an explicit
description of only generating morphisms and keep in mind that each diagram in a thin category is automatically com-
mutative. Basic examples of posets/thin categories used in data mining are natural numbers N and real numbers R.

Let now 7 be a category. Then the functors C — Z from a fixed category C to Z form objects of a category
denoted Z€, with natural transformations as morphisms. If “the indexing category” Z is thin, then 7€ is also thin.
More precisely, a natural transformation F — G exists if and only if F(X) < G(X) forall X € Ob(, and this last
relation makes from Z€ a poset.

This remark allows one to define a general analog of the semigroup of oriented translations of the poset R:
X > x + a, for arbitrary thin category Z. Namely, it is the monoid Trans7 := Z7Z with respect to the composition.
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It acts on any A by the precomposition. According to [12], p. 1511, “we can think of Transz as a sort of ‘positive
cone’ in the monoid of all endomorphism (i. e., monotone functions) Z — Z.”

0.2.2. Example. Spectral Sequences. Our exposition below is based upon [18], pp. 200-218.
Letr > 1 be an integer. We will call the rth page of a spectral sequence the following thin indexing category &, :

Ob &, :=triples (p, q, r), where p,q € Z.
Besides identities, a system of generating morphisms of &, consists of the arrows
dP?’: (p.q.r) > (p+rg—r+1,r).

Moreover, the last page of a spectral sequence is the thin category £, whose objects are all pairs (p, ¢) € Z2,
and morphisms are generated by the arrows (p,g) — (p+ 1,9 — 1).
Let now A be an additive category, and F : £ — A be any functor, satisfying the additional condition

Fd’) o F@ ™" = 0 forall p, q.

Such functors form a thin subcategory of é’;‘ an object of which may be called the rth page of an A-valued spectral
sequence.

Similarly, for the last page we consider the A-valued functors £, — A transforming each morphism
(p,q) = (p+1,qg — 1) into the embedding

FilP*'A" — FilPA" forn = p +gq
where Fil* is family of filtrations on each object of a sequence of objects A", n € Z, in A.

0.3. Role of Thin Diagrams in Persistence Constructions. Chronologically early definition of persistence module
was a family of vector spaces Vs, indexed by s € Norby s € R, endowed with a family of morphisms fs; : Vs — V;
whose properties can be succinctly expressed by the statement that this family forms a functor from the indexing
category N or R to the target category of vector spaces. More generally, one can consider functors with values in
a thin category such as pages of a spectral sequence.

0.3.1. Example. Sublevelset Persistence Module. It is a real valued function (say, piecewise continuous) on a
topological space f : X — R considered as a functor F € TopR, F:t— f‘l(—oo, t] € X.

Sublevelset persistence homology of f is defined as a postcomposition of F and a homology theory. One can
consider points in the indexing diagram s € N or s € R at which persistence homology jumps up or down when
we increase t, say ¢ or ¢ ~. The resulting sequence of indexed numbers, together with some additional information
about appearing/vanishing homology spaces, is called the barcode of this persistent homology. For more details,
see Sect. 1.3 below.

We omit here an essential construction of interleaving distance. It was analysed in categorical terms in [12]. More
precisely, the authors have shown that an interleaving distance can be defined by comparing the monoid Transz with
the monoid [0, co] by a sublinear projection w : Trans7 — [0, oo]: or with the monoid [0, oo) by a superlinear
family Q2 : [0, co) — Trans7. Moreover, the authors observe that w and €2 are dual in a precise categorical sense.
From this observation, many of their properties follow easily. Then it becomes clear what is needed to replace
the monoids [0, oo] and [0, co) in order to obtain other ways of measuring interleavings. Comparing Transp with
[0, oo]™ and [0, c0)” the authors of [12] show that the resulting ‘vector persistence’ is stable.

0.4. Linear Representations of Diagrams and Nori’s Persistence: Basic Constructions. Start with the following
data:

(a) adiagram D;
(b) a noetherian commutative ring with unit R and the category of finitely generated R-modules R-Mod;
(c) arepresentation 7' of D in R-Mod.
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Let End(T) be defined as the ring

End(T) := { (¢v) 1_[ Endg(T (v)) | 9, (c) © T(e) = T(€) o ¢y, (c)» Ve € E(D)
veV (D)

An inclusion of diagrams D1 C D; such that 77 = T|p, determines a homomorphism End(T2) — End(T1), by
projecting the product [ ],y p,) Endr(T2(v)) onto the product [,y (p,) Endgr(T1(v)).

Produce from the data above the category C(D, T) defined in the following way:

(d1) If D is finite, then C(D, T) is the category End(T)-Mod of finitely generated R-modules equipped with an
R-linear action of End(T).
(d2) If D is infinite, first consider its all finite subdiagrams F'.

For each F construct C(F, T|r) as in d1). Then apply the following limiting procedure. Objects of C(D, T)
will be all objects of the categories C(F, T|r). If F C F’, then each object Xr of C(F,T|F) gives an
object of X of C(F’, T|f), via the map from End(Tr)-Mod to End(Tr/)-Mod determined by the morphism
End(Tg) — End(TF) as above. Morphisms from X to Y in C(D, T) will be defined as colimits over F of
morphisms from X r to Yr with respect to these extensions.

The result is called the diagram category C(D, T). Itis an R-linear abelian category which is endowed with R-linear
faithful exact forgetful functor

fr: C(D,T) - R— Mod.
For more details, see [24], pp. 140-144.

0.4.1. Universal Properties of Diagram Categories. Any representation 7 : D — R — Mod can be presented as
precomposition of the forgetful functor f7 with an appropriate representation 7 : D — C(D, T):

T:fToT.

with the following universal property:

Given any R-linear abelian category A with a representation F' : D — A and R-linear faithful exact functor
f:A— R—ModwithT = foF,itfactorises through a faithful exact functor L(F) : C(D, T) — A compatibly
with decomposition

T = fro T.
For proofs, cf. [24], pp. 140-141.

0.4.2. Persistence. The functor L (F') is actually unique up to unique isomorphism of exact additive functors ([24], p.
167). It is this functor, constructed for various diagrams of geometric origin in algebraic geometry/topology/...that
is an embodiment of persistency in our context. Below we give a sketch of relevant constructions; their development
in various geometric environments is the content of Sect. 1 of our paper.

0.5. Nori Geometric Diagrams. If we have a “geometric” category C of spaces/varieties/schemes, possibly endowed
with additional structures, in which one can define morphisms of closed embeddings ¥ < X (or Y C X) and
morphisms of complements to closed embeddings X \ ¥ — X, we can define the Nori diagram of effective pairs
D(C) in the following way (see [24], pp. 207-208).

(a) One vertex of D(C) is a triple (X, Y, i) where Y — X is a closed embedding, and i is an integer.
(b) Besides obvious identities, there are edges of two types.
(bl) Let (X, Y)and (X', Y’) be two pairs of closed embeddings. Every morphism f : X — X’ suchthat f(Y) C Y’
produces functoriality edges f* (or rather (f*,i)) going from (X', Y’, i) to (X, Y, i).
(b2) Let (Z C Y C X) be a stair of closed embeddings. Then it defines coboundary edges 9 from (Y, Z, i) to
X, Y, i+1).
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0.5.1. (Co)homological Representations of Nori Geometric Diagrams. If we start not just from the initial category
of spaces C, but rather from a pair (C, H) where H is a cohomology theory, then assuming reasonable properties of
this pair, we can define the respective representation Ty of D(C) that we will call a (co)homological representation
of D(C).

For a survey of such pairs (C, H) that were studied in the context of Grothendieck’s motives, see [24], pp. 31-133.
The relevant cohomology theories include, in particular, singular cohomology, and algebraic and holomorphic de
Rham cohomologies.

Below we will consider the basic example of cohomological representations of Nori diagrams that leads to Nori
motives.

0.6. Effective Nori Motives ([24], pp. 207-208.) Take as a category C, starting object in Sect. 2.11 above, the
category of varieties X defined over a subfield k C C.

We can then define the Nori diagram D(C) as above. This diagram will be denoted Pairs¢// from now on.

The category of effective mixed Nori motives is the diagram category C(Pairs, H*) where H' (X, Z) is the
respective singular cohomology of the analytic space X" (cf. [24], pp. 31-34 and further on).

Define the diagram of effective pairs Pairs¢/f exactly as in the general case .

It turns out ([24], Proposition 9.1.2. p. 208) that the map

H*: Pairs®f — 7. — Mod

sending (X, Y, i) to the relative singular cohomology H' (X (C), Y (C); Z), naturally extends to a representation of
the respective Nori diagram in the category of finitely generated abelian groups Z-Mod.

1. Nori Geometric Diagrams

We start with a detailed exposition of Nori’s construction briefly sketched in 0.5. We extend it by the additional data
(f, A) below following D. Arapura’s construction of motivic sheaves [2], but tracing his steps in wider categories
of topological spaces.

1.1. Definition. The Persistence Diagram D of an appropriate category of topological spaces has vertices of the
form (f : X — R, Y, i, \) where

(i) j:Y < X is a continuous embedding of topological spaces.

(i1) f : X — Ris a piecewise continuous map with finitely many “critical values” t € R. Criticality here means
that the homotopy types of Xy = f~V(—o0, s] for s < t and for s > t in a small neighbourhood of t are
different.

(iii) i € Z4 is a non-negative integer.

(iv) A € Ry is a non-negative real number.

There are three types of edges in D:

(1) Each continuous map ¢ : X — X' such that the diagrams

y -y ad x— %y
jl w \\ ///
x 2o x

commute, with ¢|y = ¢ o j the restriction, gives the corresponding edge
O (f:X—=RY, iD= (f:X = RY, M.

(2) Each pair of inclusions Z C Y C X, with compatible maps to R, produces corresponding edge
3:(f: X—>RY,i,N) = (fly:Y >R, Z,i —1,)).
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(3) Forany » < ), there is an edge
P (f: X —>RY,i,A)— (Lriof:X—>RY,i,)),
where £, : R — Ris the shift map t — t — A.

This notion of Persistence Diagram of a geometric category is not the same as what is usually called a persistence
diagram in the contemporary persistent topology literature (which is a multiset of increasing pairs of numbers in
R} U{o0}). As we will see in Lemma 1.2.1 below, our Persistence Diagrams are closely related to the (R, <)-indexed
diagrams of [11], hence it is also related to the usual persistence diagrams, as we will explain.

1.2. Linear Representations of Persistence Diagrams. The notion of (R, <)-indexed diagrams in the category of
finite dimensional real vector spaces Vec was considered in [11].

Objects of the category Vec®.2) of [11] are functors F : (R, <) — Vec from the thin category (R, <) to the
category of finite dimensional real vector spaces. Its morphisms are natural transformations of such functors. It is
shown in Section 4 of [11] that Vec® =) is an abelian category.

Below we will construct a representation Tg : D — Vec® ),

Start with the following preliminary notations. First, the inclusions * : X; C X,y of sublevel sets
X; = f (=00, t]and X,,; = f~'(—o0, t + A] induce maps of the relative homology groups

it Hi(Xe Y R) = Hj(Xps, Yeias R)

where ¥; = f |;1 (—00, t] are the induced sublevel sets on Y.
Second, an object V = (V;) of Vec®® =) is given by a thin diagram of vector spaces V = (V;),t € R.

1.2.1. Lemma-Definition. The following maps define a representation Tr : D — Vec®=) of the Persistence
Diagram D.

A. On objects:
IR(f: X >R Y, i,A); =V = Range(t’}(’i),.
B. On edges (using notations from Def. 1.1 above):
Tr(¢pi); := the map Range(z’}(’i), — Range(t’}(/,i)t.
Furthermore,
TR(Z CY C X) :=themap Range(L’}(’i)t — Range(tﬁ(/’i)l
induced by the inclusions of sublevel sets
He(X1, Yi R) = Hi(Xis3— Y25 R)
And finally, for the third type of edges we have morphisms in homology induced by the inclusions of sublevel sets
Hi (X1, Y5 R) = He(Xego—, Yipar—a; R).
and the corresponding maps
Daw - Range(té‘(’i), — Range(tﬁ(/’i)[_,\.

This Definition, motivated to a large degree by the algebraic—geometric constructions of [2], agrees also with
the one in [12], Section 2.2.4, where the spaces (V;) above appear as the persistent homology of (X, Y).

The following remark invokes the main example of persistent homology in the form usually applied to topological
data analysis, [13]. Recall that, for a finite set of points P embedded in a Euclidean space R (or in a more general
metric space) the Vietoris—Rips simplicial complex K (P); at scale ¢t > 0 has P as 0-skeleton and has a k-simplex
for each (k + 1)-tuple of points {po, ..., pr} C P such that dist(p, p’) <t for all pairs p, p’ € {po, ..., px}.

1.2.2. Example. Let P ¢ RM be a finite set of points embedded in a Euclidean space (a dataset in some high dimen-
sional ambient space). An (R, <)-diagram of topological spaces (simplicial sets), that is, a functor P : (R, <) —
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Top, is obtained by taking P () to be the Vietoris—Rips simplicial complex K (P); atscale € R’ (and empty for? <
0). In this case the persistent homology as defined above recovers the usual notion of persistent homology of datasets.

1.3. Barcode Diagrams. Now we consider the thin indexing category with objects n € Z and morphisms
Mor(z, <)(n, m) consisting of a single morphism for n < m and empty otherwise. We pass to the category Vec@=),
with objects that are functors F : (Z, <) — Vec from the category (Z, <) to the category of finite dimensional
real vector spaces and with morphisms given by natural transformations of these functors. The category Vec?=)
is equivalent to the category of modules over the ring R[x] (see Lemma 4.5 of [11]).

A finite type object in Vec®-=) is a functor F : (R, <) — Vec such that F = @jylezj where xz; (1) = R
for ¢t € Z; and zero otherwise and XZ; (t <t)=1idgrifa,b € Z; and zero otherwise (Definition 4.1 of [11]).
By property (ii) of the functions f : X — R in Definition 1.1, the sublevel sets X; = f~!(—oo0, ¢] have locally
constant homotopy type, so in particular the homology H. (X, ¥;; R) is locally constantin # € R. This implies that
the image 7' (D) in Vec® =) under the representation of Lemma 1.2.1 consists of finite type objects. In particular,
by Theorem 4.6 of [11] finite type objects in Vec® =) are also tame, that is, all but finitely many values ¢ € T are
regular values, for which there is an open interval Z > ¢ such that V; = F(¢) is constant on Z. The finitely many
points ¢ € R that are not regular values are called critical points.

The barcode diagram of a finite type object F in Vec®®=) is given by the multiset of pairs {(a j.b j)}j.\’: | with
aj,bj € RU{£oo} suchthata; < b; and {a;, b;} = d1L; for F = ®)xz;- The finite a;, b; are also the critical
points of the object F. Let —0o < ¢p < ¢1 < --- < cy < oo denote the ordered sequence of these critical points.

1.3.1. Lemma. The representation T : D — Vec®=) of Lemma 1.2.1. determines a representation Tz, : D —
Vec @2, Conversely, the datum of Tz, together with the map that assigns to each vertex of D the barcode diagram
of its persistent homology completely determine the representation T : D — Vec®),

Proof Let Fz : (Z,<) — Vec be the functor that assigns to n € Z the vector space Fz(n) given by F(t) for
t € (cp,cpy1) forn =0,..., M — 1, the vector space F(t) fort > ¢y for all n > M and the vector space F () for
t < coforalln < 0. Ton < m the functor Fz assigns the same morphism F'(n < m). This determines a finite type
object Fyz in the category Vec®=) associated to the finite type object F in Vec™®=)_ It is clear then that knowing
Fy, together with the multiset of points {(a;, b;)} ;-Vzl (the barcode diagram) uniquely determine F. O

1.4. Diagram Category. The representation Tz : D — Vec?=) is a representation of the diagram D in the cate-
gory of R-modules for R = R[x]. Thus, we can apply to this representation the construction of the Nori Diagram
Category, see [24], Section 7.1.2.

Given a representation 7 : D — R-Mod of a diagram D into the category of R-modules for a commutative ring
R, the Nori Diagram Category C(D, T) is defined in the following way (see 0.4 above and Section 7.1.2 of [24]).
It is the category End(7")-Mod of modules over the ring of endomorphisms

End(T) = {(¢v)vev(p) | v € Endr(T (v)) such that ¢y o T(e) = T (€) o ().
Ve € E(D), with source and target s(e),t(e) € V(D)}.
The category C(D, T) is an R-linear abelian category. We denote by ® : C(D, T) — R-Mod the forgetful functor.

1.4.1. Lemma. By identifying as above the category VecZ=) with R[x]-Mod, we obtain the Nori Diagram Category
C(D, Tz) associated to the representation Tz : D — Vec =) of Lemma 1.3.1, with C(D, Tz) = End(Tz)-Mod.

1.5. Persistent Homology on the Nori Diagram Category. We show here that the persistent homology, constructed
as in Lemma 1.2.1, determines a faithful exact functor C(D, Tz) — Vec® =) on the Nori Diagram Category.

1.5.1. Lemma. Let Vec(fR’S) denote the full subcategory of Vec®=) with objects that are of finite type. Then

(H Vec(fR’f) is an abelian subcategory of Vec®=).

(2) There is an R[x]-linear faithful exact functor W : Vec;R’S) — Vec®3 constructed as in Lemma 1.3.1.
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<)

Proof We have to show that VecgcR’
to showing that Vec(fR’f) is closed under taking kernels and cokernels. Let o : F — F’ be a natural transformation
of functors F, F' : A(R, <) — Vec that are of the form F = ea,ivzlxzk and F/ = eaﬁ”zle}. On objects ¢ € R the
transformation « acts as an R-linear map o, : @ x7, (t) — @ Xz, (#). Then there is a finite collection of points ¢y <

isitself an abelian category and the inclusion functor is exact. This is equivalent

-++ < ¢ in R, given by the union of the critical points of F and F’ such that, forall 7 € (c;, ¢;+1), wWithc_| = —o0
and ¢,,41 = +00, the map «; is a linear map o, : RN — RM:_ Since on morphisms the functor F is determined
by xz,(t < t"y =idif r, ¢ € Iy and zero otherwise, and similarly for F’, the natural transformation diagrams

Fay LU= ps

lat las
F'(t<s)

F'(t) —== F'(s)

imply that «; is locally constant. Thus, the kernel and cokernel of «; also determine a finite type object in Vec ;R’ 9 o

Now, consider a functor F : (R, <) — Vec which is a finite type object in VecScR’S). Proceeding as above, denote

by rg < --- < ry the critical points of F, so that F(¢) is locally constant with F (t) = RYi forall ¢ € (r;, rit1), with
r—1 = —oo and r¢+1 = +00. We can then assign to F a functor Fz : (Z, <) — Vec with Fz(n) = F(t) witht €
(rnytng1) forn =0, ..., £—1and Fz(n) = F(t) witht < roforalln < Oand Fz(n) = F(t) witht > ry forn > £.
We also define on morphisms Fz(n < m) = F(t < t')fort € (ry, ry+1) (orrespectively r < rgort > ry depending
on the value of n) and t’ € (r,y,, rip+1) (or respectively ¢ < rg ort’ > ry depending on the value of m). Leta : F —
F’ be anatural transformation of functors F, F' : (R, <) — Vec. We obtain a corresponding natural transformation
az : Fz — F,byassigningaz,, : Fz(n) — F,(n)tobethesamemapa; : F(t) — F'(t)fort € (ry, rpp1) (ort <
ro or t > ry depending on n). The transformation «z, , : Fz(n) — Fi(n) is trivial if and only if a; : F () — F'(¢)
for ¢ in the corresponding interval is also trivial, so that «z is trivial iff « is, hence the functor F +— Fy is faithful.

Let fn denote the intervals (—oo, rg) forn < 0, I, = (rnytpy1) forn =0,...,€ — 1 and (r¢, 00) forn > £.
We have an R[x]-linear structure on Vec;R’S) where x acts on F(t) as F(t < t') fort € Z,, and and any ¢’ € Z,,1.
With respect to this R[x]-linear structure the functor F + Fz is R[x]-linear. Moreover, by an argument similar to
the one used above to check faithfulness, if we have an exact sequence

B

0 F—2%sF F” 0

in Vec(fR’S) we also obtain a corresponding exact sequence

Bz
Fi Fi’ 0.

Hence the functor ¥ mapping F' +— Fz and « — «az is a faithful exact R[x]-linear functor VecE‘R’f) — Vec@.2),

1.5.2. Proposition. Persistent homology determines a faithful exact functor

PH, :C(D, Ty) — Vec®=.
Proof The Nori Diagram Category C(D, T') of a representation T : D — R-Mod of a diagram D satisfies the
following universal property: given any R-linear abelian category A, a representation 74 : D — A, and an R-
linear faithful exact functor ¥ : A — R-Mod such that W o T4 = T, then there exists a faithful exact functor
® 4 :C(D,T) — Asuch that the following diagram commutes:
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C(D,T)
T @
P a \
T
D R-Mod
A

As we mentioned in Sect. 0.4 above, the category C(D, T) is in fact completely characterized by this property up
to unique equivalence of categories. (see Section 7.1.3 of [24], Section 7.1.3.) O

Now, apply this universal property of the Nori Diagram Category to the following case: D is the Persistence
Diagram of Definition 1.1; 7z : D — R[x]-Mod is the representation of Lemma 1.5.1; A = Vec}R’S), with the

representation 7 : D — Vec®= of Lemma 1.2.1, and the functor ¥ : Vec(fR’S) — R[x]-Mod is the one of Lemma
1.5.1. To this purpose it suffices to check that the functors W, T, Tz satisfy the composition property W o T' = Tz,
which is true by construction (compare Lemma 1.5.1 with Lemma 1.4.1). We then obtain a faithful exact functor

PH, :C(D, Tz) — Vec(fR’S) that completes the commutative diagram

C(D, Ty)

/ H,

Vec

R,=)
f

1.6. The Product Structure. We will show here that the Persistence Diagram D of Definition 1.1 has the structure
of a graded diagram with a commutative product with unit, in the sense of Definition 8.1.3 of [24]. Recall from
this definition that a graded diagram D is a diagram endowed with a map deg : V(D) — Z/2Z extended to
deg : E(D) — Z/2Z by deg(e) = deg(s(e)) —deg(t(e)). The product D x D is the diagram with vertices the pairs
(v, w) € V(D) x V(D') and edges of the form (e, id) or (id, ¢’). A product structure on D is a map of graded
diagrams (a degree preserving map of directed graphs) D x D — D together with a choice of edges

Uy :VXW—wxv, Yvo,we V(D)

Bowu VX (wxu)— (vxw)xu,

Bowu: (WX W) Xu—vx(wxu),.
forall v, w,u € V(D). A unit is a vertex 1 with deg(1) = 0 and edges u, : v — 1 x v forall v € V(D).
1.6.1. Lemma. The Persistence Diagram D of Definition 1.1 is a graded diagram with commutative product and unit.

Proof Define the Z,-grading by deg(f : X — R, Y, k, A) = k mod 2. The product D x D — D is given by

(f:X—>RYENDx(f: X ->RY KN :=
(X xR X > R XxpY UY xg X', k+Kk,L+1),

where X xgr X' is the fibered product:
X xg X —=X

L

X ———=R

!
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This product satisfies the identities
X xr X ={(x,x)e X x X' : f(x) = f'(x)) <t} =X, xr X].

The unit vertex is given by (id : R — R, #, 0, 0). The edges oy, v, Bv,w,u and ﬁ;’w’u are the natural homeomorphisms
of topological spaces compatible with the maps. This finishes the proof. O

We recall now that in the situation of Lemma 1.6.1 one can define a subclass of representations of D that are com-
patible with grading and commutative product. Namely, according to the Definition 8.1.3 of [24], the compatibility
conditions for a representation T — R-Proj of a graded diagram D are given by the existence of isomorphisms

Tow : T(0 X w) — T (v) @ T(w)
for all v, w € V (D), with the following properties:

TTIL Qy,w Tw,v
T(W)QT(w) —2> T x w) Teny) T(w xv) —=T(w) ®Tv)

is equal to multiplication by (—1)de8(®) degw)- the B-maps satisfy T (By wx) "' = T(B. ., ), and moreover
q P y P y W,

Tywol(l,e)=1dRT(e)otyuw: Twxw) = TW) T W),
TywoTl(e,1)=(T(e)Qid)otyy: T(wxw)— TO)®T(w),

T x (w xu))MT((v X W) X u)

lfof l‘[of

T(W) @ (T(w) ® T ) — (T(v) @ T(w) @ T (u))

and similarly for the inverse T'(8, , ,)-

1.7. Good Persistence Vertices. In order to define a tensor structure on the Nori Diagram Category C(D, Tz) of
the Persistence Diagram we need to proceed in a way similar to that adopted in the construction of the category of
Nori motives, see [24], Section 9. Indeed, because of the Kiinneth product formula

Hi((X xR X1, (X xR YUY xg X)i; R) = @y = Hi (X;, Y; R) @ Hj (X, Y/; R)

where (X xr X'); = X; xg X, and (X xg YUY xg X); = X; xgr ¥/ UY, xgr X/, this relative homology
is compatible with the product structure on D in the case where these homology groups are supported in a single
degree. As in the case of Nori motives, we can introduce a class of “good objects” for which the persistent homology
is concentrated in a single degree.

1.7.1. Definition. A vertex (f : X — R, Y, k, L) of the Persistence Diagram D is a “good persistence vertex” if
the persistent homology

HP;i(f:X — R, Y, k, 1), =Range(H;(X;, Y;; R) = H;(X; 45, Yi+2; R))

satisfies HP;(f : X — R, Y, k,1); =0 forall j # k.
Simple examples of good persistence vertices can be constructed as follows. Let X be a smooth n-dimensional

compact manifold and let f : X — R be a Morse function, which has finitely many critical points x, ..., x,, in
X with critical values ¢; < --- < ¢, in R. The sublevel sets X; = f~!(—o0, ] have homotopy type that remains
constant when ¢ varies in each of the intervals (—oo, c1), (¢, ck+1) Withk = 1, ..., m—1, and (¢;,, 00) and changes

across the critical values by a handle attachment. Let B be an open n-ball in X that does not contain any critical point
and such that the sublevel sets B, = f |El (—o0, t] are either empty or a contractible set that is open in the induced
topology on X, or all of B. Let Y = X ~ B. Then the relative homology Hy(X;, ¥;; R) = Hy(X;, X; ~ B;; R) is
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a local homology and is trivial for k£ # 0 and is either trivial or a single copy of R for k = n. This gives an example
where the persistent homology is concentrated in degree k = n.

Indeed, if we assume all the topological spaces involved are CW complexes, it is always possible to compute
the homology via a cellular filtration by good spaces. Indeed we have the following result (Theorem 2.35 of [21]).

1.7.2. Lemma. Given a CW complex X with skeleta X™ , the homology Hy(X; Z) is computed as the homology of
a complex

o (XD, XUV Z) S H(xUD XU Z)

with the maps given by the boundary maps of the pair of inclusions XU =2 ¢ XU~V < XU The relative homology
H, (XD, xU=D: Z) is trivial for n # j and a free abelian group for n = j spanned by the j-cells of X.

1.7.3. Lemma. Under the assumption that all spaces considered are cellular with cellular maps, the representa-
tions T : D — Vec® and Tz : D — Vec;z’f) of Lemmas 1.2.1 and 1.3.1 are unital graded multiplicative
representations.

Proof Firstnotice that the image of Tz : D — Vec®=) = R[x]-Mod lies in the subcategory Vecgcz’f) of finite type.
This is in fact a subcategory of the category R[x ]-Proj of finite projective module over R[x]. Then observe that, under
the cellular assumption, Lemma 1.7.2 implies that, if we consider the Nori Diagram Category built on a subdiagram
of the Persistence Diagram where all the vertices are good persistence vertices, the resulting C (D2°°¢, T;7) contains
all the objects (X, XU=D i xyand (¥, YyU=D_ j X)forevery vertex (f : X — R, Y, j, A) of the Persistence
Diagram. Thus, there is an object in the Nori Diagram Category C (D, T7) whose image under the forgetful
functor to Vec”=) is the same as the image Tz(f : X — R, Y, j, 1). This implies that we can equivalently use the
categories C(D, Tz) and C (D2, Tz). Using the latter, we can define the product structure, finishing the proof. 0

Notice that essentially the same argument was used in [24], Section 9 in order to construct the product structure
on Nori effective motives. The argument is simplified here because we work in a topological setting, hence we can
directly use cellular homology as in Lemma 1.7.2, instead of having to use Beilinson’s fundamental lemma for the
cohomology of affine varieties and complexes of varieties to pass from affine to more general varieties.

The Tannakian Formalism. An advantage of reformulating the categorical construction of persistent homology
of [7,11,12], in terms of the formalism of Nori diagrams and Nori motives, as we did in the previous subsections,
is the fact that this formulation comes endowed with natural symmetries associated to persistent homology which
are not immediately visible otherwise, namely the associated Tannakian formalism.

In the category of Nori motives, one passes from effective motives to the localization with respect to (G, {1}, 1)
(inverting the Lefschetz motive) to obtain a rigid abelian tensor category to which the Tannakian formalism can be
applied. In our setting we work with weaker properties, as we will discuss more in Section 4 where we present a more
general formalism based on Nori diagram for persistent phenomena. We do not assume that the category we con-
struct is a rigid tensor category, although we will assume that it has a tensor structure, obtained via approximations
using filtrations by good objects as explained above. Thus, instead of the group scheme that one expects to obtain as
Tannakian Galois group in the case of rigid tensor categories, we only have a monoid scheme, obtained as follows.

1.8.1. Proposition.The representation Tz : D — Vecch’S) induces an equivalence between the Nori Diagram
Category C(D, Tz) and the category of finitely generated comodules over a bialgebra A(D, Tz), which defines a
pro-algebraic monoid scheme Spec(A(D, Tgz)).

Proof As before, we view the representation 7z : D — VecZ=) as taking values in the category R[x]-Proj of
finitely generated projective modules over the Dedekind domain R[x]. We can then apply Theorem 7.1.12 of [24]
and we obtain that the Nori Diagram Category C(D, Tz) is equivalent to the category of finitely generated comodules
over the coalgebra A(D, Tz) given by the colimit

A(D, Tz) = colimp,End(Tz|p,)"

over finite sub-diagrams D with Vv the R[x]-dual.
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Indeed, as shown in Section 7.5.1 of [24], if R is a Dedeking domain, then for the R-algebra E = End(T'|p,) with
Dp a finite diagram and T a representation of a Nori diagram D, the R-dual EY = Homg (E, R) has the property
that the canonical map EY ®g EY — Hom (E, EY) >~ (E ®g E)" is an isomorphism. Thus, an E-module that is
finitely generated projective as an R-module carries the structure of an EY-comodule. The coalgebra A(D, Tz) also
carries an algebra structure induced by the monoidal structure of C(D, Tz), see Sections 7.1.4 and 8.1 of [24]. Thus,
A(D, Tz) determines a pro-algebraic monoid scheme Spec(A(D, Tz)) (see Section 7.1.4 of [24]). This completes
the proof. O

In the more general setting of Section 4 below we will only assume that the target category of our fiber functors
is an abelian tensor category, but not necessarily a category R-Proj with R a Dedekind domain as here above, with
the Tannakian formalism of Sections 7.1.2-7.1.4 of [24]. Indeed, the target category in general will be a category
Vec®:=) for some poset (S, <). This has a tensor structure obtained by identifying it with the category of covariant
functors F((S, <), Vec), endowed with the pointwise monoidal structure induced by the monoidal structure on Vec.

2. Thin Categories and Persistence

In this section, we describe a slightly more general framework for persistence constructions. It was sketched in the
Introduction and its various more precise versions will be given in the remaining Sections of the article.

We start with a category of geometric objects, and an indexing system for persistence which is given by a thin
category.

2.1. Geometric Poset Objects and Thin Categories. Let Cgeom be a category of geometric objects (topological
spaces, simplicial sets, smooth manifolds, algebraic varieties, etc.). Whenever it is fixed, we refer to its morphisms
as “geometric morphisms” etc.

2.1.1. Definition. A poset object in Coeom is an object S together with a subobject R C S x S with the following
properties:

e (s,5) € Rforalls € S,
o If (s,s') € Rand (s/,s”) € R, then (s, s”) € R;
o If (s,5') € Rand (s',s) € R,thens = 5.

The relation (s, s') € R we also denote by s < s’.
As was explained in Sect. 0.2 above, the notions of a poset and of a thin category essentially coincide.

2.1.2. Remark. The assumption that Cgeom 1S a category of geometric objects implies that points and subobjects are
defined in the usual geometric terms. In a more general setting, one needs to use a formulation that depends on a
categorical notion of points in terms of the functor of points. We will discuss this in the next section.

2.2. Persistence Modules. It is a general fact that the category of covariant functors F : B — A from a small
category B3 to an abelian category A is itself abelian (see for instance Proposition 44 of [34]). Thus, we can give
the following definition.

2.2.1. Definition. Given a poset (S, <) and an abelian category A, let A=) be the abelian category whose objects
are the covariant functors F : (S, <) — A and morphisms the natural transformations of such functors. Objects
of AS-2) will be referred to as the (S, <)-persistence modules in A. In the case where A = R-Mod, we refer to
objects in R-ModS-=) as (S, <)-persistence R-modules.

2.3. Sublevel Objects. As above let Coeom be a category of geometric objects and let (S, <) be a poset object in
Cgeom as in Definition 2.1.1.

2.3.1. Definition. Consider a pair (X, f : X — S) where X is an geometric object and f its morphism to the poset
object (S, <). For any s € S we define the sublevel objects X s C X as Xy :={x € X : f(x) <s € S}. They
define inclusion maps jx s : X ps <= Xy foralls <s"in S.
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2.4. Persistent Functors. Consider now a geometric object which is a poset (S, <) in its category, and let
H : Cgeom — A be a functor with values in an abelian category A.

Denote by C:geom the category of “geometric families over a base S”. More precisely, one of its object is a pair
consisting of a geometric object and geometric morphism (X, f : X — §). A morphism (X, f) — (X, f)isa
geometric morphism ¢ : X — X’ such that " o ¢ = f.

Any functor H : Cgeom — A as above determines the functor

S — A

geom

as follows. It sends each family (X, f) to the object
7:{(X, f:X—=> 8 =Fxyrs:s—> HXysy)
and each morphism ¢ : X — X' of families to the natural transformation of the functors Fx, rs — Fyx, s s givenby

H(p) :=H(ps) : H(X 55) = H(Xp ).

Here g5 : X5 — X/f,!s is the restriction 5 = ¢|x ,, which maps to X}’,s because of the compatibility f' op = f.
2.4.1. Definition. For . € S, the persistence functor PH,, : égeom — A8 of the functor H : Cgeom — Ais
defined as follows.

It sends each family f : X — S to

PHy(X, f: X — §) :=s — Range (H(jx,,))
for s < A and zero otherwise, where

JXeo P Xps = Xpa, fors < A

and the induced morphism in A

H(jx,,)  H(Xf,5) = H(X f0).

On morphisms ¢ : X — X' with ' o@ = f it is defined as the restriction of'/‘:[(q)) to Range(H(jx, ,)) which takes
values in Range(H(jX; x))'

2.5. Example: Persistent Topology of Graphs. Let H be a finite directed graph of a thin category. Consider
families of finite directed graphs (G, f : G — H) over H. Let G, with v € V(H) be the respective sublevel
graphs. The graph G, is the induced subgraph of G on the set of vertices w € V(G) such that there is a path of
directed edges in H between f(w) and v. The (H, <)-persistent topology of G is then specified by the persistent
connected components

Range (Ho(G f,v: Z) — Ho(G sy Z)) forv <v' e V(H),
and the persistent cycles
Range (H1(G fv: Z) — Hi(Gyy: Z)) for v <V € V(H).

2.6. Example: Persistent Orlik—Solomon Algebras. Let A be a hyperplane arrangement. Denote by L(A) the
associated intersection poset, ordered by reverse inclusion. We consider morphisms ¢ of hyperplane arrangements
given by linear maps of the ambient space that map one arrangement to the other and we write L(¢) for the induced
map of intersection posets. We fix one arrangement A and we consider pairs (B, ¢) of arrangements endowed with a
morphism ¢ to A. The intersection poset L (A) determines a structure of poset of topological spaces (equivalently, an
object in TopX(4):=) in the notation of [11,12]) on the hyperplane arrangement complement M (A), with inclusions
M(A)y — M(A)y fors < s'in L(A). Given a morphism of arrangements ¢ : B — A, defined as above, we obtain
similarly a structure of poset of topological spaces on the complement M (B) indexed by the poset L(A). The fam-
ilies M (B); with s € L(A) with the inclusions M (B)y < M (B)y for s < s’ in L(A) form the system of sublevel
objects described above. The cohomology H*(M (B)) (with coefficients in a field K) of a hyperplane arrangement
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complement is the Orlik-Solomon algebra O S(B) = H*(M (B)). We consider the cohomology H*(M (B),) with
the maps induced by the inclusions M (A); < M (A),. In order to have a covariant functor, we can consider the
homology OSY(B) := H,(M(B)) with its structure of module over the exterior algebra on H'(M(B)), [17]. The
associated persistent functor is given by

POSX(B) := Range (H,(M (B);) - H.(M(B),)), for s <i e L(A).

Notice that we could also consider the persistent homology of a hyperplane arrangement complement M (B)
with the persistence indexed by its own intersection poset L(B). The case considered above, where one considers
arrangements B endowed with maps to a fixed arrangement A and persistence with respect to the fixed L(A) pro-
vides a uniform choice of the poset indexing the persistence modules. Allowing the indexing poset to depend on
the arrangement, as in the case where one uses L(B) has advantages too, for example because there are in general
few linear maps of the ambient space that induce maps between two given arrangements.

2.7. Example: Persistent Tate Motives. Beilinson, Goncharov, Schechtman and Varchenko in [5] conjectured that,
over a number field K the category of mixed Tate motive is generated by motives of the form

m(P" < A, A~ (AN B))

where A and B are hyperplane arrangements in general position. These are the motives whose cohomological real-
ization gives the middle dimensional relative cohomology of the pair (P" ~\ A, A~ (AN B)). We can consider a setting
as in the previous subsection, where one covers the hyperplane arrangement complement with sublevel sets indexed
by a poset and correspondingly consider motives of the form m ((P" \ A);, (A \ (AN B));) and persistent objects

Range m((P" \ A);, (A~ (AN B))y) - m((P" Ay, (AN (ANB))y)) for s <.

3. Sublevel Sieves and Persistence

In the setting described above we have assumed that we work with a category Cgeom of geometric objects and we
have used the geometric notion of points to define sublevel sets and persistence. We consider here more general
categories C for which objects do not necessarily have points in the geometric sense. However, they always have
a “functor of points” in Grothendieck’s sense: for an object X in C and another object A, an A-point of X is a
morphism ¢ : A — X in Morg (A, X). We will use here this approach to define a notion of persistent functors PH
associated to certain functors H : C — A with values in an abelian category.

3.1. Functor of Points and Poset Functors. Let C be a category and X € Obj(C). The functor of points
wx : C — Sets is a contravariant functor with 7x(A) = Morc(A, X) and nx(¢ : B - A) = —o ¢ :
Morc (A, X) — Morg(B, X). The object X is completely determined by its functor of points wx in the sense
that a natural tranformation n : wy — my determines a morphism f : X — Y in such a way that natural
equivalences are in (1,1)-correspondence with isomorphisms of the respective objects.

3.1.1. Definition. Let C be a category and S its object. Let ms : C — Sets be the functor of points of S. A
poset functor on S is a contravariant functor R(s,<y : C — Sets given on objects by the assignment of a subset
R(s.<)(A) € ms(A) x ws(A) with the following properties:

(1) (pa, pa) € Res,<)(A) forall py € ws(A) = Morc (A, S);

(2) (pa.ply) € Res,<)(A) and (py, p's) € Rs.<)(A) implies (pa, p)y) € R(s,<)(A);

(3) (P4, P)) € Rs,2)(A) and (p)y, pa) € Rs,=)(A) implies pa = ply in ws(A);

@) if (pa, Ply) € Rs,<)(A) and ¢ € Morc(B, A) then (pa o ¢, ply 0 ¢) € R(s,<)(B).

The functor acts on morphisms by Rs,<)(¢ : B — A) : R(s,<)(A) = R(s,<)(B) mapping (pa, pg) —
(pao@, plyow).

3.2. Sublevel Sieve. In this general setting, instead of the sublevel sets and sublevel objects we considered in the
previous sections, we construct sublevels as subfunctors of the functor of points.
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3.2.1. Lemma. (i) Let C be a category with terminal object . Let (S, <) be a poset functor on an object S € Obj(C)
as in Definition 3.1.1.

Starting with a family f : X — S in C and a choice of s € Mor¢ (x, S), consider the assignment
Xf<s(A) ={a enx(A) =Morc(A,X) : foa <sota}

where ty : A —  is the unique morphism to the terminal object in C and f o o < s oty means that
(foa,sota) € Res,<)(A) C ms(A) x ms(A).

Given a morphism ¢ : B — A in Morc(B, A) assign to it the map
Xi<s(@:B—= A): Xp<s(A) = Xr<s(B), atr>aogp.

This assignment determines a contravariant functor X y < 5 : C — Sets, the “sublevel functor” of f : X — §.
(ii) For all s € Morc (x, §) the sublevel functor X 7 < s is a subfunctor of the functor of points wx. Moreover, for
s < 5" in Morc(x, S), the sublevel functor X s < s is a subfunctor of X s < .

Proof (i) By Definition 3.1.1, the subsets R(s <)(A) C ms(A) x ms(A) have the following property: if
(foa,soty) € R¢s,<)(A) thenforany ¢ : B — AinMor¢c (B, A)theelement (foaogp, sotsop) € R(s,<)(B),
where 14 o ¢ = tp is the unique morphism 73 : B — * to the terminal object. Thus, the assignment above is
well defined and determines a contravariant functor.

(ii) For all A € Obj(C) by construction we have X r, < ;(A) C mx(A). Moreover, for a morphism ¢ : B — A the
image X 7, < ;(¢) is the restriction of 7 x (¢) (precomposition with ¢) to X 7, < ¢(B). Hence X 7, < ¢ is a subfunctor
of the functor wx. Similarly, if s < s/, that is (s, s") € R(s,<)(*), the condition f o @ < s o t4 implies that
foa <s oty hence Xy < (A) € Xy~ ¢(A)and X r,< () is the restriction of X < ¢/(¢) hence X 7 < ; is
a subfunctor of X s < . This completes the proof. m]

An assignment of a subfunctor of the functor of points 7rx is a sieve on X. Thus, we equivalently refer to X < s
as the sublevel sieve of X.

3.2.2. Definition. If the subfunctor X r,< s of the functor of points wx is representable, the object X; € Obj(C) with
X f,<s(A) = Morc(A, Xy) is the “s-sublevel object” of X.

Cases where the sublevel functor X y < ; is representable include geometric cases where it is a closed subfunctor.

More precisely, if the sublevel functor X s < ; is representable by an object X; € Obj(C), then for any s, s" €
Mor¢ (*, §) with s < s’ there is a monomorphism j; ¢ : Xy < Xy, since the inclusions X s < ;(A) € X7, < ¢(A)
are monomorphisms of sets js s : Tx, — 7x , which induce corresponding morphisms X; — Xy in C with the
property that for all u, v € 7y, if j; ¢ ou = js ¢ ovthenu = v, hence j; ¢ is a monomorphism in C. In the case
of a representable sublevel functor we can define persistent functors in the following way.

3.2.3. Definition. Let C be a category as above with terminal object x and (S, <) be a poset functor on an object
S € Obj(C). Let H : C — A be a covariant functor to an abelian category. For f : X — S, and s € Mor¢ (%, S) let
X r <5 be the sublevel functor. If X r, <  is representable by X € Obj(C), then the persistent functor P'H is given by

PH . (X) = Range (H(js.¢) : H(X5) = H(Xy)) for s <s'.

Return to the category ég of families in C. For (S, <) asabove and s € Mor¢ (%, S), and for an abelian category A ,
we define AS- 2 as the category of covariant functors F : R s, <)(x) — A and natural transformations of such func-
tors. We can then interpret, for fixed s’ € More (%, ) the persistent functor PH as a functor PHy : C — AB-2) with

PHy(X, f) =s — PHg(X)

for s < s’ and zero otherwise. For a morphism ¢ : (X, f) — (X', f/) we define PHy (¢ : (X, f) — (X', 7)) the
map induced on Range(H(jy s) : H(Xs) — H(X)) by H(p) : H(X) — H(X)).
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4. Nori Diagrams and Tannakian Formalism

4.1. Setup. Start with a diagram D and an R-linear abelian category A, where R is a commutative ring. Consider
arepresentation 7 : D — AG-D where (S, <) is a thin category, and A = F (S, =), A) is the category of
covariant functors from a thin category (S, <) to A.

The representation T assigns to each vertex v € V(D) a functor T'(v) : (S, <) — A andtoeachedgee € E(D)
a natural transformation 7 (e) : T (s(e)) — T (t(e)) between the functors associated to the source s(e) and target
t (e) vertices of e.

For a vertex v € V (D), denote by NV, be the set of natural self-transformations ar, : T (v) — T (v) of the functors
T (v) : (S, <) - A. Moreover, put

N(T) = {(@v)vev(p) @ ay € N, with asey 0 T(e) =T(e) oage), Ye € E(D)}.

Generally, given an abelian category 5 and a set S of objects in 5. As in [24], denote by (S) the smallest full
abelian subcategory of 5 that contains S and such that the inclusion functor is exact. It is generated by the objects
in § and is closed under taking direct sums, direct summands, kernels and cokernels.

Notice that here we do not assume that we start with a representation of the diagram D in a category of R-
modules for some ring R. Hence we do not have an obvious choice of a faithful exact functor from N (7T)-Mod
to A=) playing the role of the forgetful functor to R-Mod in the setting of [24]. However, we can still construct
an abelian category C(D, T, AS-2)) associated to the data (D, T, A=) with the property that the representation
T :D — A% factors through C(D, T, AS-9).

4.1.1. Lemma. Let T : D — ASS be a diagram representation as above. Consider the abelian subcategory
(T (D)) of A2 There is an inclusion functor (T (D)) < N (T)-Mod. Let C(D, T, A% ) denote the subcate-
gory of N'(T)-Mod obtained in this way. If the inclusion functor (T (D)) — N (T)-Mod is exact, this is an abelian
subcategory. Moreover, there is a representation T:D — C(D, T, AS9) such that T factorsas T = F o T with
a faithful exact functor F : C(D, T, AS9) - AGS:3),

Proof Since A is an R-linear abelian category, the category A=) is also an R-linear abelian category (Proposi-
tion 44 of [34]), and the sets AV, and A/ (T') are rings with respect to the composition operation. We proceed as in
Proposition 7.3.24 of [24], assuming for simplicity that D is a finite diagram.

Consider the object X = @,T (v). Then (T(D)) = (X). Let Nx be the set of natural self-transformations
of the functor X : (S, <) — A. Among the transformations in Ay we can identify the elements of N (T) as
those o € Ny that commute with the projections p, : X — T (v) and with the transformations 7T (e). Thus, we
can view (T(D)) as a subcategory of N (T)-Mod. If the inclusion functor (T (D)) — N(T)-Mod is an exact
functor then (T (D)) gives an abelian subcategory of N'(T)-Mod, which we denote by C(D, T, AG-2)) There is
a representation 7 : D — C(D, T, A®9) given by the assignment v — T (v), e — T (e) of the representation
T : D — A®3 seen as objects of (T(D)). By construction, this representation satisfies T = F o T, where
F:C(D,T, A%y = (T(D)) — A3 is the forgetful functor that forgets the A/(7)-module structure.

This completes the proof. o

4.1.2. Remark. If the abelian category A has a tensor structure and AS>=) is endowed with the pointwise tensor
structure, and we assume that the diagram D is a graded diagram with a commutative product with unit, we can con-
sider representations 7 : D — A=) that are unital graded multiplicative representations so that C(D, T, AS-2))
also has a natural tensor structure such that F : C(D, T, AS-2)) — AG-2 pecomes a tensor functor. (The argu-
ment for the original setting of diagram representations to R-Mod is given in Proposition 8.1.5(1) of [24]). We
can then consider faithful exact tensor functors from C(D, T, A(S'f)) to categories B2 where B is an R-linear
abelian tensor category and B%=) is endowed with the pointwise tensor structure. In particular, one can study
tensor functors C(D, T, AS-)) — VecS:=)| as generalizations of persistent homology.
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5. Persistence of Nori Motives

We return here to the algebraic geometric environment of Nori motives, in its updated form of Arapura’s category
of Nori Motivic Sheaves, [2]. We enrich it with a Persistence structure. We write here the Nori motives covariantly
(homologically) as in [2], rather than contravariantly (cohomologically) as in the initial Grothendieck’s project and
in [24].

Let S be a connected variety over K. The Nori Diagram D,,s(S) for Motivic Sheaves over a base S has the
following structure [2]:

e One vertex in V(D,,5(S)) is a quadruple (f : X — S,Y, k, w), where X is a K-variety with a morphism
f:X — §;j:Y < Xisaclosed embedding (endowed with the restriction fly : ¥ — §), k € Z; is a
non-negative integer. and w € Z is an integer.

e Edges in E(D,,5(S)) are of the following types:

(1) Geometric Morphisms: each morphism of varieties ¢ : X — X’ compatible with the maps to the base S and
the inclusions via commutative diagrams

X— X' and

produces an edge
(f: X—=>S,YVkw — (f:X = 8Y kw.
(2) Connecting Morphisms: every chain of closed embeddings Z C Y C X determines an edge
(f:X—=>S8Yk+1lLw) = (fly:Y—3S,Z,k w)
(3) Twist Morphisms: for every vertex (f : X — S, Y, k, w) there is an edge
(Ffopi: XxPl 5 S Y xP UXXx{0Lk+2,w+1)—> (f: X > S, Y, k,w)
A representation of the diagram D,,;(S) is given by the constructible sheaves
Tos : (f : X — S, Y, k,w) — HE(X, Y, F).

The category of Nori Motivic Sheaves is defined as the Nori Diagram Category C(D,,s(S), T,,s) of this repre-
sentation.

5.1.Posets and Semigroups. In order to enrich this construction with a persistent version of the constructible sheaves
H é‘ (X, Y, F), we follow the general formalism described in the previous sections. The first step is to consider a base
S that is endowed with a poset structure that will provide the indexing of the persistence modules.

A source of poset structures on geometric spaces such as K-varieties is the presence of a semigroup structure.
Indeed there are natural poset structures associated to semigroups, which we review briefly, see [33].

Given a semigroup S, the set Eg of idempotents e € S, e> = e, is partially ordered by the relation e < ¢’ if
e = e¢’ = €'e. A natural partial order structure on a semigroup is one that restricts to this relation on the set of
idempotents. Recall that a semigroup S is regular if every element s € S has a pseudoinverse x such tat sxs = s.

The Nambooripad poset structure on a regular semigroup [35] is defined by

s<s iff s=es' =s'¢, forsomee,e € Eg.

Several equivalent definitions are discussed in [33]. This is further extended to more general semigroups as shown
in [Mit86] as follows. Let S be obtained by adjoining a unit to the semigroup S (or S itself if it already has a unit).
If Es is a subsemigroup of § then the relation s < 5" iff s = es’ = s’¢’ for some e, ¢’ € Ej is a partial order
compatible with multiplication. On an arbitrary semigroup the relation

s<s iff s=xs'=s"y and xs =5 forsome x,ye S
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is a partial order, which we call as the natural partial order (see Proposition 2 and Theorem 3 of [33]).

5.2. Varieties with Semigroup Structures. In order to obtain a base S with a poset structure (S, <) it is then
sufficient to consider the case where S has a semigroup structure. Semigroup structures on algebraic varieties have
been investigated in [9]. We review here some general facts from [9] and [10] and some examples from [9].

We consider varieties over an algebraically closed field K. Let S be an algebraic semigroup, that is, an algebraic
variety over K endowed with semigroup operation. Let Eg be the subscheme of idempotents of S. The partial order
structure on idempotents in Eg is given by eg < e iff g = ege; = ejep. Given two idempotents eg, e; with
eg < ey, the “interval” [eg, e1] is given by

[eo.e1] :={e € Es : eg < e < ey}

and is a closed subscheme of S ([10], Corollary 2.17). If S is a smooth algebraic semigroup, then the scheme Eg
of idempotents is also smooth ([10], Remark 2.15). If S is a commutative algebraic semigroup, then the scheme
Eg of idempotents is finite and reduced ([10], Theorem 1.2). If § is irreducible, then there is a smallest closed and
irreducible subsemigroup of S that contains Eg, which is given by a toric monoid ([10], Theorem 1.2).

Classes of examples of algebraic varieties with semigroup structures include:

e linear algebraic semigroups: subsemigroups of End(V) with V some finite dimensional vector space;

e an arbitrary variety S with the left/right projection semigroup laws uy (x,y) = x and ug(x,y) = y for all
x,y € X;

e algebraic groups;

e algebraic semigroup laws on Abelian varieties classified in Section 4 of [9].

e algebraic semigroup laws on affine monomial curves (Theorem 5 of [9]).

5.3. Sublevel Subschemes Over Semigroups. We consider the cases where Eg is a subsemigroup of S so that S
has a Nambooripad poset structure.

5.3.1. Lemma. Let S be an algebraic semigroup, such that the idempotent subscheme Es is a subsemigroup of S. Let
(S, <) be the Nambooripad poset structure. For amorphism f : X — S,the sublevelsets X; = {x € X : f(x) < s}
are closed subschemes of X .

Proof The subset S; = {a € S : a < s} is given by all the elements a € S that are of the form a = es = se’ for
some pair (e, ¢') € E§ Thus, we have S = Eg-s N s - Eg C S. For an algebraic semigroup, the subscheme Eg
of idempotents is closed, hence for a fixed s € S we obtain S, as an intersection of two closed subschemes. The
sublevel sets X5 = f —1(8;) are then preimages in X of closed subschemes of S. This completes the proof. O

The sublevel subvarieties X have embeddings j; ;v : X <> Xy for s < s’ due to the transitive property of the
partial order relation on S.

5.3.2. Corollary. If S is a commutative algebraic semigroup, which is smooth as an algebraic variety, and (S, <)
is the Nambooripad poset structure, then the sublevels X of a morphism f : X — S are finite unions of fibers.

Proof For a commutative smooth algebraic semigroup S, the idempotent subscheme E is a subvariety of S con-
sisting of a finite set of points. Then the S; are also finite and identified with {ese € Eg}, and the preimages
X, = f’1 (Sy) = UeeES]"1 (es) are finite unions of fibers of the morphism f : X — S. |

5.4. Persistent Nori Motivic Sheaves. Let S be a K-variety with a semigroup structure and an associated partial
order (S, <) as discussed above. As in Arapura’s setting of Nori Motivic Sheaves in [2] we consider the Nori
Diagram with vertices (f : X — S, Y, k, w) and with the three classes of edges described above. To this diagram
D,,5(S, <) we associate a representation in the abelian category Vec>:=) in the following way.

We consider a Persistence Diagram D[ (S, <) of Motivic Sheaves over a base algebraic semigroup S with an
associated partial order < determined by the semigroup structure with the following vertices and edges:
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e Vertices in V(D,},:s(S, <)) are given by elements of the form (f : X — §, 7, k, w, s), where X is a K-variety
with a morphism f : X — §, j : ¥ < X is a closed embedding (endowed with the restriction f|y : ¥ — S),
k € Z, is a non-negative integer, w € Z is an integer, and s € S.

e Edgesin E(DF (S, <)) are of the following types:

(1) Geometric Morphisms: for a morphism of varieties ¢ : X — X’ compatible with the maps to the base S and
the inclusions via commutative diagrams

X— %  _x' and vy
\ / lj j/l
x Yo x

there corresponds an edge
(f:X—= S, YVkws)—(f:X = 8Y kw,s)
(2) Connecting Morphisms: every chain of closed embeddings Z C Y C X determines an edge
(f: X—=>S8 Y k+1Lw,s) > (fly:Y—=>S,Z,k,w,s)
(3) Twist Morphisms: for every vertex (f : X — S, Y, k, w) there is an edge
(fop: XxP' 5> S Y xP UXx{0Lk+2,w+1,5) > (f: X > S, Y,k w,s)
(4) Persistence Morphisms: for all s € § with s < s an edge
(f:X—= S, YV kws)—(f:X—= 8V kw,s).

A representation of the diagram DHIZ s(5,5)in VecS-2) is then obtained as follows. Consider the map that assigns
to each vertex (f : X — S, Y, k, w, (s, s")) the functor
F : (S, <) > Vec,
where we view (S, <) as a thin category, given by
F (1) = Range(H«(ji,s) : H«(X1, Y1; Q) — Hi (X, Y3 Q)),

for all # < s in § and zero otherwise. The edges listed above are correspondingly mapped to homomorphisms of
the homology groups H.(X;, Y;; Q) and H.(Xj, Ys; Q) with induced morphisms on Range(Hy (j;.5)).

6. Model Categories and Persistent Topology

In this section we address a question that was posed to us by Jack Morava, about developing a suitable model
structure for persistent topology.

6.1. Model Categories. We review quickly some basic definitions regarding model structures and categories that
we will be using in the following.
Recall that a morphism f in a category is called a retract of another morphism g iff there is a commutative diagram

A——C——A
yoolb
B——D——B

where the horizontal compositions are the identities.
A model category M is a category together with three classes of morphisms: weak equivalences, fibrations and
cofibrations. These data must satisfy the following axioms:
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(1) M has all small limits and colimits;

(2) if in a composition g o f of morphisms two among the three maps f, g, g o f are weak equivalences, then the
third also is;

(3) ifamap f is aretract of g, and if g is a weak equivalence, fibration, or cofibration, then f also is;

(4) given a commutative diagram

A——X

i

a lift B — X exists if either ¢ is a cofibration and p is an acyclic fibration (i.e. both a fibration and a weak
equivalence) or if ¢ is an acyclic cofibration (i.e. both a cofibration and a weak equivalence) and p is a fibration;

(5) morphisms g in M can be factored as g = ¢gi with ¢ an acyclic fibration and i a cofibration or as g = pj with
p a fibration and j an acyclic cofibration.

Let M, N be model categories. A Quillen pair L : M <> N : R is an adjoint pair of functors (L, R) where L
preserves cofibrations and R preserves fibrations, see Section 1.6 of [6].
A model category M is cofibrantly generated ift:

(1) there is a set I of cofibrations of M such that the domains of the elements of Z are small with respect to Z and
such that a map is an acyclic fibration iff it has the right lifting property with respect to Z;

(2) there is a set J of acyclic cofibrations of M (also with the property that the domains are small with respect to
J) such that a map is a fibration iff it has the right lifting property with respect to J.

The set 7 is the set of generating cofibrations and the set 7 is the set of generating acyclic cofibrations (see
Section 1.7 of [6] for the terminology and for more details).

A model category M is called combinatorial if it is cofibrantly generated and as a category it is locally pre-
sentable, that is, it admits all small colimits and a set of small objects such that any object can be obtained as colimit
of a small diagram with objects in this set, see Section 2.7 of [6] for a more detailed exposition.

6.2. Model Structures on Categories of Functors. Given a small category C and a category D, we denote by
F(C, D) the category of functors, whose objects are the covariant functors F : C — D and morphisms the natural
transformations of these functors.

For example, the categories we considered in the previous sections of the form VecS:=) with (S, <) a thin category
are categories of functors, and so are the Top'S:=) considered in [11,12] as a setting for persistent topology.

It is known that if the category D has a model structure that is cofibrantly generated, then for any small category
C the category of functors F(C, D) also has a model structure, called the projective model structure, which is also
cofibrantly generated, see Section 11.6 of [22]. If the category D has a combinatorial model structure, then the
category of functors F(C, D) has a model structure, called the injective model structure.

In the projective model structure on F(C, D) weak equivalences and projective fibrations are those natural
transformations  : F — F’ of functors F, F’ : C — D such that for all objects X € Obj(C), the morphisms
nx : F(X) = F'(X) in D are, respectively, weak equivalences and fibrations. Similarly, in the injective model
structure injective weak equivalences and injective cofibrations are natural transformations that are, object-wise in
C, weak equivalences and cofibrations in D.

6.3. Model Structure for Datasets and Vietoris—Rips complexes. We consider here the main example of persistent
topology, which accounts for its use in topological data analysis, namely datasets with their associated Vietoris—Rips
complexes, and their persistent homology barcode diagrams.

We construct a model category for this setting in several steps:

(1) We start by considering the model structure on the categories of simplicial sets AS and of chain complexes
Chp over a commutative ring R. We denote by M either of these model categories.
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(2) We induce a projective model structure on the category of functors
ME= = F((S, =), M),

where (S, <) is a suitable poset, viewed as a thin category.

(3) We construct a category Pg of finitely supported probability distributions in a fixed ambient metric space E
(e. g. an Euclidean space of sufficiently large dimension).

(4) We describe the assignment of Vietoris—Rips complexes to datasets as a functor VR : Pg — M=),

(5) We use Dugger’s construction [15] of a universal model category associated to a small category to con-
struct a model category U (Pg) for finitely supported probability distributions with a Vietoris—Rips functor
VR :U(Pg) > ME2).

6.3.1. Model Structure on Chain Complexes. Let Chy be the category of (unbounded) chain complexes over a
commutative ring R with chain maps as morphisms. The weak equivalences are the quasi-isomorphisms of chain
complexes. The fibrations are the chain maps ¢, : Co — C. such that for each level n the map ¢, : C, — C,, is
an epimorphism of R-modules. The cofibrations are chain maps that are level-wise monomorphisms of R-modules
with projective cokernel.

This is a projective model structure on Chg. One can similarly consider the injective model structure with the
same weak equivalences, but with cofibrations given by chain maps that are level-wise injective morphisms of
R-modules, while fibrations are level-wise epimorphisms with injective kernel.

These two model structures are Quillen-equivalent (Section 1.7 of [6]). The projective model structure on Chg
is cofibrantly generated (see Section 2.3.11 of [23] and Section 5 of [40]).

6.3.2. Model Structure on Simplicial Sets. The category of simplicial sets AS has a model structure (the Kan-
Quillen model structure) where the weak equivalences are morphisms that induce a weak homotopy equivalence
of topological spaces at the level of geometric realizations, the fibrations are Kan fibrations, and the cofibrations
are monomorphisms of simplicial sets. The Kan—Quillen model structure is cofibrantly generated, with generating
cofibrations the boundary inclusions and generating acyclic cofibrations the horn inclusions, see [6,18,19,22].

6.3.3. Model Structure on Indexed Diagrams. Let M denote either the category of chain complexes Chg with the
projective model structure, or the category of simplicial sets AS with the Kan—Quillen model structure. We consider
now the category M) of (S, <)-indexed diagrams in M, for a poset (S, <). This is the same as the category

M=F(S, =), M)

of covariant functors from the thin category (S, <) to M with morphisms given by natural transformations. This
will include the case of M®-=) that will correspond to the usual Vietoris—Rips complexes of data sets, but we
will work with a more general (S, <) that also incorporates in the Vietoris—Rips complex a cutoff according to a
probability (see Part IV of [8]).

Since the model category M is cofibrantly generated, the category of functors M (S-=) admits a projective model
structure that is also cofibrantly generated.

6.3.4. A Category of Data Sets. Consider the following small category Pg. Its objects are triples (A, f, P) of a
finite set A, an embedding f : A < E in a fixed ambient metric space E, which we can assume to be an Euclidean
space of some fixed sufficiently large dimension, and a probability distribution P on A, which we can view as a
probability on E supported on the finite set f(A) through pushforward along the map f.

A morphism in Morp, (A, f, P), (A’, f', P")) is a pair (¢, ¢) consisting of a continuous and Lipschitz map
@ : E — E that restricts to amap ¢ : A — A’ through a commutative diagram

A2 n

if f'

EL>E

-
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such that P’ = ¢, P, the pushforward measure given by
(P P)y = Z Py, VyGA/.
xep~l(y)

Thus morphisms in Pg are subsets of the set of Lipschitz functions of E. The probability distribution P on the finite
set A should be thought of as assigning a degree of reliability to the points in the dataset, see the discussion in [8].
Points x € A with a low probability P, should be regarded as errors in the data and discarded in the construction
of the associated simplicial complexes.

6.3.5. Vietoris—Rips Functors. Given an object (A, f, P) in Pg, we construct a Vietoris—Rips complex
VR(A, f, P), obtained by considering, for any choice of an error threshold A € [0, 1], the set of points

Xa={xe f(A) CE|P = A}

and then constructing the Vietoris—Rips complex V R,(X 4, t) for t € RY where VR, (X4, 1) is the span of all
unordered (n + 1)-tuples of points (xo, ..., x,) in X o for which all the pairwise distances satisfy dist(x;, x;) < r.
The threshold A is aimed at discarding a number of outliers of small probability among the data.

Consider then a morphism (¢, ¢) in Pg, where ¢ is a Lipschitz function ¢ : E — E with Lipschitz constant
K >0adgp: A — A ' hasm = minyeA/#(p_l(y). This map sends X to X/, = {y € f'(A")| P, = mA}.
Moreover, it sends a pair of points x;, x; € X, with distance dist(x;, x;) < 1 to a pair of points ¢(x;), ¢(x;) € X/, ,
with distance dist(¢(x;), ¢(x;)) < Kt. Thus, it induces a morphism

VR(p,9) : VRe(Xp, 1) = VRe(Xma, K1).

Consider the set S = R x [0, 1] with the partial order structure < given by the product order (¢, A) < (t', A")
iff t <t and A > A’ in the natural ordering of the real numbers (with the reverse ordering on [0, 1]). We regard
(S, <) as a thin category.

6.3.6. Proposition. The assignments (A, f, P) — VR(A, f, P) and (¢, ) — V R(@, §) as above determine a
functor Pg — M3,

Proof The inclusions X, C X Q\ for A > A’ and the inclusions of the subset of points of X, with mutual distances
bounded above by ¢ in the subset of points with mutual distances at most ¢’ for 7 < ¢’ induce morphisms

Ja.n)n@.a) t VRe(XA 1) = VRe(Xpr, 1)
for (¢, A) < (¢, A’) in the chosen ordering of S. Thus, the assignment
VR(A, f, P): (1, A) — VRUN(A, f, P) := VRy(Xn, 1)

determines a functor (S, <) — M, that is, an object in M2 The morphisms V R(p, ¢) of Vietoris—Rips
complexes described above, for

(@, ) € Morpg((a, £.P).(A.f/.P")>

determine natural transformations 7, 5y : VR(A, f, P) — VR(A', f', P') of the functors VR(A, f, P),
VR(A', f', P : (S, <) —> M, with

N,5),t.0) = VR(@, @) : VRe(Xp, 1) = VRe(Xpa, Kt)
satisfying
N(p.@), (", A © J(t,A), (1", A)) = J(Kt,mA),(Kt',mA") © T(0,),(t,A)>

forall (r, A) < (¢/, A) in (S, <).
This completes the proof. O



Nori Diagrams and Persistent Homology 99

In the special case where we fix A = 0, hence we consider all the points of f(A) C E regardless of the assigned
probabilities, then this construction recovers the usual Vietoris-Rips complexes as objects in M ®=) and the functor
VR : Pg — MR factors through the forgetful functor P — Dg where Dy, is the category of unweighted data
sets with objects (A, f) and morphisms given by restrictions of Lifschitz functions of E (with no conditions on prob-
abilities). The Vietoris-Rips functor then defines a functor VR : Dg — M®-3) Ttis convenient to include the prob-
ability data in the construction. We will discuss a more general way of including probability data in the next section.

6.3.7. Dugger’s Universal Model Structure. Dugger’s construction in [15] assigns a universal model category
U (C) to a small category C, with the property that functors from C to a model category factor through U(C). The
main idea is that U (C) extends the category C by formally adjoining homotopy colimits. A factorization of a functor
F : C — M, where M is a model category, through another model category M with a functor J : C — M consists
of a Quillen pair L : M = M : R and a natural weak equivalence n : L o J — F. (For a brief review of Quillen
pairs see Definition 1.6.3 and Proposition 1.6.4 of [6].) The main result of [15] shows that given a small category
C, there exists a closed model category U (C) with a functor J : C — U(C) such that any functor F : C — M to
a model category M factors, in the sense recalled above, through U (C).

6.3.8. Proposition. Let VR : Pg — M S-S be the Vietoris-Rips functor of Proposition 6.3.6, where M) has the
projective model structure. There is a Quillen pair L : U(Pg) = M : R and a natural weak equivalencen : LoJ —
V R that factor the Vietoris—Rips functor through the universal model category U (Pg) of the category Pk of data sets.

Proof We apply the construction of [15] to the category Pg and we obtain an associated universal model category
U (Pg). The factorization property discussed above implies that the Vietoris-Rips functor factors through U (Pg),
when we consider MS-=) endowed with a model structure. We have seen above that MS-=) always supports the
projective model structure, seen as the category of functors F((S, <), M). O

7. Persistence and I'-Spaces

7.1. Setup. We discuss in this section how to adapt to the context of persistent topology another important homotopy-
theoretic construction: Segal’s I"-spaces. We consider a (slightly modified) setting developed in [30] that incorporates
probabilistic data in the construction of Segal’s I"-spaces. They replace the finite probability distributions considered
in the previous section in the context of persistent topology of databases.

Our point of view here is somewhat different from the one proposed in [30] and more closely related to our
discussion of the Vietoris-Rips functor in the previous section. The point we want to stress here is that the Vietoris-
Rips functor, as we described it above, can be generalized using Segal’s I'-spaces [41]. A I"-space is a functor
F : T% — AS, from the category of pointed finite sets to pointed simplicial sets. In particular, Segal showed in
[41] that to a category C with a categorical sum and a zero object one can associate a I'-space obtained by assigning
to a finite pointed set (X, %) the nerve N X¢ (X, %) of the category X¢ (X, x) of summing functors @ : P(X, x) — C,
where P (X, x) is the category with objects the pointed subsets of X and morphisms the pointed inclusions, and the
summing functors satisfy ®x ,(S) ® ®Px () =~ Ox . (SUS) forall S, S’ € P(X, %) with SN S = {x}. A map of
pointed sets f : (X, *) — (¥, *') induces on summing functors a transformation ¢ (f) : e (X, %) — Ze(Y, )
given by Te(f)(Px.)(S) = Py (f71(S)), forall S € P(Y, x).

As in the previous section, we consider a category of databases, identified with finite sets endowed with prob-
abilities, embedded in an ambient metric space (a large dimensional Euclidean space E). To adapt the setting to
the pointed case required for the I'-space formalism, we consider here pointed sets, so we work with the category
Pk whose objects are triples ((X, x), f, P) of a finite pointed set (X, «) with a probability measure P and an
embedding f : X — E with f(x) = 0 the origin, in the Euclidean space E. Morphisms are pairs (¢, ¢) of a
measure-preserving pointed map ¢ of finite sets and a Lipshitz self-map ¢ of E that fixes the origin, which restricts
to ¢ on the images under the embeddings.
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Following the construction of the Vietoris-Rips complex in the previous section, we consider the poset (S, <)
with § = Ry x [0, 1] with the natural order on # € R4 and the reverse order on A € [0, 1]. We then have the
following generalizations of the Vietoris-Rips functor with values in AS®:=).

7.2. Proposition. Any ['-space F¢ : T° — AS, determines a functor
ﬁc :PEsx — ASLS’S.

Proof Start with a I'-space F¢ : I'? — AS, associated as above to a category C with sum and zero object.

We obtain from it a functor I:"c : Peyx — ASiS’S) in the following way. For s = (¢, A) € S we denote by
(X:, A, *) the finite pointed set {x} UY; o where Y = X \ {x} and Y;  is the subset of all the non-marked points of X
with mutual distances dg(f (x), f(x’)) < t and with probabilities P, > A, as in the previous section. We can then
set Fe((X, %), f, P)(s) = Fo(Xy). Fors < s”in S we have an inclusion X; <> X,. This induces a transformation
as above X¢(X;) - X (Xy) on summing functors, hence a map Fg(Xs) — Fg(Xy), hence we obtain a functor
Fo((X, %), f>P) : (S,<) — AS.. Morphisms (¢, @) : ((X,%), f, P) = (X', *), ', P') in Pg 4 induce by
restriction maps ¢, : Xy — X and corresponding maps on summing functors ¢ (X;) — Xc(Xy) as above. 0O

8. Further Directions

8.1. Large Scale Geometry. The idea of studying properties of metric spaces at large scales was introduced by
Gromov [20] in the context of groups of polynomial growth. It was later developed into a broad framework for
coarse geometry and large scale geometry, see [36,38]. Certain (co)homology functors for coarse geometry have
been introduced in [39], see also Chapter 7 of [36]. In particular, the coaresening of homology theories described in
Section 7.5 of [36] is based on the same notion of scale-dependent Vietoris—Rips complexes that we discussed above
in the setting of persistent homology. Thus, we expect that the approach to persistence in terms of Nori diagrams
that we advocate in this paper should be applicable also to the context of coarse geometry. It would be interesting
to compare it with the axiomatic formulations of coarse homology given in [32]. Among the interesting current
problems in coarse geometry are various topological and geometric rigidity conjectures (see Chapter 8 of [36]),
which can be approached via index theory methods, developed in the coarse geometry setting in [39]. It would be
interesting to investigate whether index theory in the coarse geometry context can be formulated in terms of a more
“motivic” view of large scale geometry and coarse homology.

8.2. Cantor-Like Barcodes and Fractality. It was obsevred in [25,37] how ind-pro objects over a category behave
as Cantor-like objects. This property was used in [29] to model algebro-geometrically, in terms of ind-pro varieties,
the energy-crystal momentum dispersion relation for Harper and almost Mathieu operators with irrational param-
eters, replacing the ordinary Bloch variety by an ind-pro object, which parallels the occurrence of the Hofstadter
butterfly at the level of the spectrum, with its Cantor set fractal structure. The density of states and the spectral
functions are obtained in [29] as periods on this “fractal-like” ind-pro version of the Bloch variety.

Within the context of this paper, one can consider the possibility of extending the persistence structures and
associated barcode diagrams to a larger class of objects obtained as limits of finite type objects in Vec'® =) taken in
such a way that the associated barcode diagrams become Cantor sets. It would be interesting to investigate whether
a larger class of physical models similar to the algebro-geometric formulation of Harper operators given in [29]
could be analyzed in terms of such limits of persistent homologies.

8.3. Khovanov Homology and Thin Poset (Co)homologies. In [28] Khovanov constructed a categorification of
the Jones polynomial in the form of a chain complex of graded vector spaces and corresponding homology whose
graded Euler characteristic is the Jones polynomial. The chain complex is constructed by assigning to a knot or link
diagram with N cossings the poset given by the N-cube and a functor from this thin category to the category of
graded vector spaces. The graded vector space assigned to a vertex of the cube corresponds to a smoothing of the
link where all the crossings are eliminated resulting in a union of k planar closed curves, and the graded dimension
of the associated vector space depends on k and on the degree of the vertex, see [4] for more details.
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A generalization of this construction is given in [14], where a chain complex and a Khovanov-type cohomology
H*(F, S, A) are associated to any functor F : (S, <) — A from a poset to an abelian category, where the poset
has a “thinness” property described as follows. One requires the existence of a grading r : § — N withr(x) < r(y)
for x < y, such that any pair x, y € § with x < y for which there is no z € § with x < z < y should have
r(y) =r(x)+ 1and whenr(y) = r(x) +2theset{z € S : x < z < y} consists of exactly two elements. For
posets (S, <) that satisfy this thinness property, given a functor F : (S, <) — .A one constructs a chain complex
with CK(F, S, A) = @r(x)=k F'(x) and sk = > e(x, y)F(x <y), where the sum is over all pairs x, y withx <y
such that there is no z with x < z < y, and c is a “balanced coloring”. This is a {£1} valued function on the set
of pairs as above, with the property that it has an odd number of —1’s on each “diamond” set{z € § : x < z < y}
with (y) = r(x) + 2. The thinness property of the poset and the balanced coloring property ensure that 2 = 0
so that one obtains a chain complex. This general formalism is very suitable for introducing persistent versions of
Khovanov homology and related constructions and investigating the topological information about knots and links
that these persistent functors would capture.
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