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Abstract Recently, it was found that there is a remarkable intuitive similarity between studies in theoretical
computer science dealing with large data sets on the one hand, and categorical methods of topology and geometry
in pure mathematics, on the other. In this article, we treat the key notion of persistency from computer science in
the algebraic geometric context involving Nori motivic constructions and related methods. We also discuss model
structures for persistent topology.
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Introduction and Summary

This paper is a contribution to the emerging research field in which computational mathematics dealing with large
data bases interacts with topology, homological algebra, and “brave new algebra” of homotopy theory.

As a remarkable result of such interaction, (various versions of) the notion of persistent homology appeared.
According to the informative survey presented in [12], the general notion of persistence in computational mathemat-
ics was informed by the topological data analysis. For a general introduction and overview of persistent homology
and topological data analysis, see [8,13,16,42].

Large data bases are first represented by a family of sampled data at various scales. Then each sample is structured
as a topological/algebraic object say, a simplicial space or its chain complex, which are interrelated by a nesting
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relation. Finally, the invariants of these objects at all scales are compared, so that those of them that are persistent
across a sufficiently large range of scales become encoded in a persistence diagram, or barcode. An intuitively
transparent picture of this kind, leading to a multidimensional bar-encoding of derived category of sheaves on a real
finite-dimensional vector space,was developed very recently in [27],while to our knowledge the earliest introduction
of persistence and bar code diagrams, in the topological/homotopical context, is due to S. Barannikov, [3].

Our starting point was the observation that conversely, some of the important and already well formalised tech-
nical tools of algebraic topology and algebraic geometry may be represented as the product of intuitive search
for “persistent” properties of topological spaces/ algebraic varieties/schemes “observed” at various scales or from
various distances.

In this paper, we focus on the formalism of Nori diagrams and Nori motives (see [24] and [2]) and show that
persistence philosophy presents them in a new light.

In mathematical community, existence of a rich ramification of persistency ideas is not as widely known as it
deserves. Hence we hope that our input might be fruitful.

0.1. Diagrams in Various Contexts. We work below in a fixed small universe as it was presented in [26], Ch. 1.
We do not mention the universe explicitly.

0.1.1. Definitions. ([24], Def. 7.1.1) A diagram D is a family, consisting of two disjoint sets V (D) (vertices), E(D)

(edges), and a map ∂ : E(D) → V (D) × V (D), ∂(e) = (∂out (e), ∂in(e)) (orientation of edges). An oriented edge
is sometimes called an arrow.

Morphism of diagrams D1 → D2 consists of two maps V (D1) → V (D2), E(D1) → E(D2), compatible with
orientations.

A diagram with identities is a diagram D in which for every vertex v, exactly one oriented edge from v to v is
given and called the identity edge idv . Morphism of diagrams with identities must map identities to identities.

For example, each category C defines a diagram with identities D(C) for which

V (D(C)) := Ob C, E(D(C)) := Hom C,

and ∂( f : X → Y ) := (X,Y ).

Given a diagram D and a category H, any morphism of diagrams D → D(H) is called a representation of D.
Of course, representations (perhaps, satisfying additional compatibility conditions) themselves are objects of a cat-
egory/ vertices of its diagram etc. This is the universe where various persistence intuitions reside and constructions
of persistence invariants develop.

We will start here with a brief description of persistence constructions developed in computer science, and then
give a short survey of Nori’s persistency.

0.2. Thin Categories and Diagrams. Let (S,≤) be a poset that is, a set S with reflexive, transitive, and anti-
symmetric binary order relation ([26], Def. 1.1.3.) It defines a diagram D for which V (D) := S, E(D) := the set
of all pairs (s1, s2) such that s1 < s2, oriented from s1 to s2.

0.2.1. Definition. A category C is called thin, if each set Hom(X,Y ) consists of ≤ 1 element.
Clearly, for such a category Ob C has the canonical structure of a poset: X < Y iff X �= Y and Hom(X,Y ) is non-

empty. Conversely, each poset defines in this way a thin category in whichmorphisms in Hom(X,Y ) are equivalence
classes of oriented paths from X to Y . Hence, describing a thin category, one may restrict oneself to an explicit
description of onlygeneratingmorphisms andkeep inmind that each diagram in a thin category is automatically com-
mutative. Basic examples of posets/thin categories used in data mining are natural numbers N and real numbers R.

Let now I be a category. Then the functors C → I from a fixed category C to I form objects of a category
denoted IC , with natural transformations as morphisms. If “the indexing category” I is thin, then IC is also thin.
More precisely, a natural transformation F → G exists if and only if F(X) ≤ G(X) for all X ∈ Ob C, and this last
relation makes from IC a poset.

This remark allows one to define a general analog of the semigroup of oriented translations of the poset R:
x �→ x + a, for arbitrary thin category I. Namely, it is the monoid TransI := II with respect to the composition.

Author's personal copy



Nori Diagrams and Persistent Homology 79

It acts on any IC by the precomposition. According to [12], p. 1511, “we can think of TransI as a sort of ‘positive
cone’ in the monoid of all endomorphism (i. e., monotone functions) I → I.”
0.2.2. Example. Spectral Sequences. Our exposition below is based upon [18], pp. 200–218.

Let r ≥ 1 be an integer. We will call the rth page of a spectral sequence the following thin indexing category Er :
Ob Er := triples (p, q, r),where p, q ∈ Z.

Besides identities, a system of generating morphisms of Er consists of the arrows
d p,q
r : (p, q, r) → (p + r, q − r + 1, r).

Moreover, the last page of a spectral sequence is the thin category E∞ whose objects are all pairs (p, q) ∈ Z2,
and morphisms are generated by the arrows (p, q) → (p + 1, q − 1).

Let now A be an additive category, and F : Er → A be any functor, satisfying the additional condition

F(d p,q
r ) ◦ F(d p+r,q−r+1

r ) = 0 for all p, q.

Such functors form a thin subcategory of EA
r an object of which may be called the rth page of an A-valued spectral

sequence.
Similarly, for the last page we consider the A-valued functors E∞ → A transforming each morphism

(p, q) → (p + 1, q − 1) into the embedding

Fil p+1An → Fil p An for n = p + q

where Fil∗ is family of filtrations on each object of a sequence of objects An , n ∈ Z, in A.

0.3. Role of Thin Diagrams in Persistence Constructions.Chronologically early definition of persistence module
was a family of vector spaces Vs , indexed by s ∈ N or by s ∈ R, endowedwith a family of morphisms fs,t : Vs → Vt
whose properties can be succinctly expressed by the statement that this family forms a functor from the indexing
category N or R to the target category of vector spaces. More generally, one can consider functors with values in
a thin category such as pages of a spectral sequence.

0.3.1. Example. Sublevelset Persistence Module. It is a real valued function (say, piecewise continuous) on a
topological space f : X → R considered as a functor F ∈ TopR, F : t �→ f −1(−∞, t] ⊆ X .

Sublevelset persistence homology of f is defined as a postcomposition of F and a homology theory. One can
consider points in the indexing diagram s ∈ N or s ∈ R at which persistence homology jumps up or down when
we increase t , say t+ or t−. The resulting sequence of indexed numbers, together with some additional information
about appearing/vanishing homology spaces, is called the barcode of this persistent homology. For more details,
see Sect. 1.3 below.

We omit here an essential construction of interleaving distance. It was analysed in categorical terms in [12].More
precisely, the authors have shown that an interleaving distance can be defined by comparing themonoidTransI with
the monoid [0,∞] by a sublinear projection ω : TransI → [0,∞]: or with the monoid [0,∞) by a superlinear
family � : [0,∞) → TransI . Moreover, the authors observe that ω and � are dual in a precise categorical sense.
From this observation, many of their properties follow easily. Then it becomes clear what is needed to replace
the monoids [0,∞] and [0,∞) in order to obtain other ways of measuring interleavings. Comparing TransP with
[0,∞]n and [0,∞)n the authors of [12] show that the resulting ‘vector persistence’ is stable.

0.4. Linear Representations of Diagrams and Nori’s Persistence: Basic Constructions. Startwith the following
data:

(a) a diagram D;
(b) a noetherian commutative ring with unit R and the category of finitely generated R-modules R-Mod;
(c) a representation T of D in R-Mod.
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80 Y. I. Manin, M. Marcolli

Let End(T ) be defined as the ring

End(T ) :=
⎧
⎨

⎩
(φv)

∏

v∈V (D)

EndR(T (v)) | φ∂out (e) ◦ T (e) = T (e) ◦ φ∂in(e), ∀e ∈ E(D)

⎫
⎬

⎭
.

An inclusion of diagrams D1 ⊂ D2 such that T1 = T2|D1 determines a homomorphism End(T2) → End(T1), by
projecting the product

∏
v∈V (D2)

EndR(T2(v)) onto the product
∏

v∈V (D1)
EndR(T1(v)).

Produce from the data above the category C(D, T ) defined in the following way:

(d1) If D is finite, then C(D, T ) is the category End(T )-Mod of finitely generated R-modules equipped with an
R-linear action of End(T ).

(d2) If D is infinite, first consider its all finite subdiagrams F .

For each F construct C(F, T |F ) as in d1). Then apply the following limiting procedure. Objects of C(D, T )

will be all objects of the categories C(F, T |F ). If F ⊂ F ′, then each object XF of C(F, T |F ) gives an
object of XF ′ of C(F ′, T |F ′), via the map from End(TF )-Mod to End(TF ′)-Mod determined by the morphism
End(TF ′) → End(TF ) as above. Morphisms from X to Y in C(D, T ) will be defined as colimits over F of
morphisms from XF to YF with respect to these extensions.

The result is called the diagram category C(D, T ). It is an R-linear abelian category which is endowedwith R-linear
faithful exact forgetful functor

fT : C(D, T ) → R − Mod.

For more details, see [24], pp. 140–144.

0.4.1. Universal Properties of Diagram Categories. Any representation T : D → R − Mod can be presented as
precomposition of the forgetful functor fT with an appropriate representation T̃ : D → C(D, T ):

T = fT ◦ T̃ .

with the following universal property:
Given any R-linear abelian category A with a representation F : D → A and R-linear faithful exact functor

f : A → R−Mod with T = f ◦F , it factorises through a faithful exact functor L(F) : C(D, T ) → A compatibly
with decomposition

T = fT ◦ T̃ .

For proofs, cf. [24], pp. 140–141.

0.4.2. Persistence.The functor L(F) is actually unique up to unique isomorphism of exact additive functors ([24], p.
167). It is this functor, constructed for various diagrams of geometric origin in algebraic geometry/topology/…that
is an embodiment of persistency in our context. Below we give a sketch of relevant constructions; their development
in various geometric environments is the content of Sect. 1 of our paper.

0.5.NoriGeometricDiagrams. If we have a “geometric” categoryC of spaces/varieties/schemes, possibly endowed
with additional structures, in which one can define morphisms of closed embeddings Y ↪→ X (or Y ⊂ X ) and
morphisms of complements to closed embeddings X \ Y → X , we can define the Nori diagram of effective pairs
D(C) in the following way (see [24], pp. 207–208).

(a) One vertex of D(C) is a triple (X,Y, i) where Y ↪→ X is a closed embedding, and i is an integer.
(b) Besides obvious identities, there are edges of two types.
(b1) Let (X,Y ) and (X ′,Y ′) be two pairs of closed embeddings. Every morphism f : X → X ′ such that f (Y ) ⊂ Y ′

produces functoriality edges f ∗ (or rather ( f ∗, i)) going from (X ′,Y ′, i) to (X,Y, i).
(b2) Let (Z ⊂ Y ⊂ X) be a stair of closed embeddings. Then it defines coboundary edges ∂ from (Y, Z , i) to

(X,Y, i + 1).

Author's personal copy



Nori Diagrams and Persistent Homology 81

0.5.1. (Co)homological Representations ofNoriGeometricDiagrams. If we start not just from the initial category
of spaces C, but rather from a pair (C, H) where H is a cohomology theory, then assuming reasonable properties of
this pair, we can define the respective representation TH of D(C) that we will call a (co)homological representation
of D(C).

For a survey of such pairs (C, H) that were studied in the context of Grothendieck’s motives, see [24], pp. 31–133.
The relevant cohomology theories include, in particular, singular cohomology, and algebraic and holomorphic de
Rham cohomologies.

Below we will consider the basic example of cohomological representations of Nori diagrams that leads to Nori
motives.

0.6. Effective Nori Motives ([24], pp. 207–208.) Take as a category C, starting object in Sect. 2.11 above, the
category of varieties X defined over a subfield k ⊂ C.

We can then define the Nori diagram D(C) as above. This diagram will be denoted Pairse f f from now on.
The category of effective mixed Nori motives is the diagram category C(Pairs, H∗) where Hi (X,Z) is the

respective singular cohomology of the analytic space Xan (cf. [24], pp. 31–34 and further on).
Define the diagram of effective pairs Pairse f f exactly as in the general case .
It turns out ([24], Proposition 9.1.2. p. 208) that the map

H∗ : Pairse f f → Z − Mod

sending (X,Y, i) to the relative singular cohomology Hi (X (C),Y (C);Z), naturally extends to a representation of
the respective Nori diagram in the category of finitely generated abelian groups Z-Mod.

1. Nori Geometric Diagrams

We start with a detailed exposition of Nori’s construction briefly sketched in 0.5. We extend it by the additional data
( f, λ) below following D. Arapura’s construction of motivic sheaves [2], but tracing his steps in wider categories
of topological spaces.

1.1. Definition. The Persistence Diagram D of an appropriate category of topological spaces has vertices of the
form ( f : X → R,Y, i, λ) where

(i) j : Y ↪→ X is a continuous embedding of topological spaces.
(ii) f : X → R is a piecewise continuous map with finitely many “critical values” t ∈ R. Criticality here means

that the homotopy types of Xs = f −1(−∞, s] for s < t and for s > t in a small neighbourhood of t are
different.

(iii) i ∈ Z+ is a non-negative integer.
(iv) λ ∈ R+ is a non-negative real number.

There are three types of edges in D:

(1) Each continuous map φ : X → X ′ such that the diagrams

Y
φ|Y ��

j
��

Y ′

j ′
��

X
φ �� X ′

and X
φ ��

f

���
��

��
��

� X ′
f ′

����
��
��
��

R

commute, with φ|Y = φ ◦ j the restriction, gives the corresponding edge

φ∗ : ( f : X → R,Y, i, λ) → ( f ′ : X ′ → R,Y ′, i, λ).

(2) Each pair of inclusions Z ⊂ Y ⊂ X , with compatible maps to R, produces corresponding edge

∂ : ( f : X → R,Y, i, λ) → ( f |Y : Y → R, Z , i − 1, λ).
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82 Y. I. Manin, M. Marcolli

(3) For any λ ≤ λ′, there is an edge

pλ,λ′ : ( f : X → R,Y, i, λ) → (�λ ◦ f : X → R,Y, i, λ′),

where �λ : R → R is the shift map t �→ t − λ.

This notion of Persistence Diagram of a geometric category is not the same as what is usually called a persistence
diagram in the contemporary persistent topology literature (which is a multiset of increasing pairs of numbers in
R+∪{∞}). Aswewill see in Lemma 1.2.1 below, our PersistenceDiagrams are closely related to the (R,≤)-indexed
diagrams of [11], hence it is also related to the usual persistence diagrams, as we will explain.

1.2. Linear Representations of Persistence Diagrams. The notion of (R,≤)-indexed diagrams in the category of
finite dimensional real vector spaces Vec was considered in [11].

Objects of the category Vec(R,≤) of [11] are functors F : (R,≤) → Vec from the thin category (R,≤) to the
category of finite dimensional real vector spaces. Its morphisms are natural transformations of such functors. It is
shown in Section 4 of [11] that Vec(R,≤) is an abelian category.

Below we will construct a representation TR : D → Vec(R,≤).
Start with the following preliminary notations. First, the inclusions ιλ : Xt ⊂ Xt+λ of sublevel sets

Xt = f −1(−∞, t] and Xt+λ = f −1(−∞, t + λ] induce maps of the relative homology groups

ιλX,i : Hi (Xt ,Yt ;R) → Hi (Xt+λ,Yt+λ;R)

where Yt = f |−1
Y (−∞, t] are the induced sublevel sets on Y .

Second, an object V = (Vt ) of Vec(R,≤) is given by a thin diagram of vector spaces V = (Vt ), t ∈ R.

1.2.1. Lemma–Definition. The following maps define a representation TR : D → Vec(R,≤) of the Persistence
Diagram D.

A. On objects:

TR( f : X → R,Y, i, λ)t := Vt := Range(ιλX,i )t .

B. On edges (using notations from Def. 1.1 above):

TR(φi )t := the map Range(ιλX,i )t → Range(ιλX ′,i )t .

Furthermore,

TR(Z ⊂ Y ⊂ X) := the map Range(ιλX,i )t → Range(ιλX ′,i )t

induced by the inclusions of sublevel sets

Hk(Xt ,Yt ;R) → Hk(Xt+λ′−λ,Yt+λ′−λ;R)

And finally, for the third type of edgeswe havemorphisms in homology induced by the inclusions of sublevel sets

Hk(Xt ,Yt ;R) → Hk(Xt+λ′−λ,Yt+λ′−λ;R).

and the corresponding maps

pλ,λ′ : Range(ιλX,i )t → Range(ιλ
′
X,i )t−λ.

This Definition, motivated to a large degree by the algebraic–geometric constructions of [2], agrees also with
the one in [12], Section 2.2.4, where the spaces (Vt ) above appear as the persistent homology of (X,Y ).

The following remark invokes themain example of persistent homology in the form usually applied to topological
data analysis, [13]. Recall that, for a finite set of points P embedded in a Euclidean space RM (or in a more general
metric space) the Vietoris–Rips simplicial complex K (P)t at scale t > 0 has P as 0-skeleton and has a k-simplex
for each (k + 1)-tuple of points {p0, . . . , pk} ⊂ P such that dist(p, p′) ≤ t for all pairs p, p′ ∈ {p0, . . . , pk}.
1.2.2. Example. Let P ⊂ RM be a finite set of points embedded in a Euclidean space (a dataset in some high dimen-
sional ambient space). An (R,≤)-diagram of topological spaces (simplicial sets), that is, a functor P : (R,≤) →
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Top, is obtained by taking P(t) to be theVietoris–Rips simplicial complex K (P)t at scale t ∈ R∗+ (and empty for t <

0). In this case the persistent homology as defined above recovers the usual notion of persistent homology of datasets.

1.3. Barcode Diagrams. Now we consider the thin indexing category with objects n ∈ Z and morphisms
Mor(Z,≤)(n,m) consisting of a single morphism for n ≤ m and empty otherwise. We pass to the category Vec(Z,≤),
with objects that are functors F : (Z,≤) → Vec from the category (Z,≤) to the category of finite dimensional
real vector spaces and with morphisms given by natural transformations of these functors. The category Vec(Z,≤)

is equivalent to the category of modules over the ring R[x] (see Lemma 4.5 of [11]).
A finite type object in Vec(R,≤) is a functor F : (R,≤) → Vec such that F = ⊕N

j=1χI j where χI j (t) = R
for t ∈ I j and zero otherwise and χI j (t ≤ t ′) = idR if a, b ∈ I j and zero otherwise (Definition 4.1 of [11]).
By property (ii) of the functions f : X → R in Definition 1.1, the sublevel sets Xt = f −1(−∞, t] have locally
constant homotopy type, so in particular the homology H∗(Xt ,Yt ;R) is locally constant in t ∈ R. This implies that
the image T (D) in Vec(R,≤) under the representation of Lemma 1.2.1 consists of finite type objects. In particular,
by Theorem 4.6 of [11] finite type objects in Vec(R,≤) are also tame, that is, all but finitely many values t ∈ I are
regular values, for which there is an open interval I � t such that Vt = F(t) is constant on I. The finitely many
points t ∈ R that are not regular values are called critical points.

The barcode diagram of a finite type object F in Vec(R,≤) is given by the multiset of pairs {(a j , b j )}Nj=1 with
a j , b j ∈ R ∪ {±∞} such that a j ≤ b j and {a j , b j } = ∂I j for F = ⊕ jχI j . The finite a j , b j are also the critical
points of the object F . Let −∞ < c0 < c1 < · · · < cM < ∞ denote the ordered sequence of these critical points.

1.3.1. Lemma. The representation T : D → Vec(R,≤) of Lemma 1.2.1. determines a representation TZ : D →
Vec(Z,≤). Conversely, the datum of TZ together with the map that assigns to each vertex of D the barcode diagram
of its persistent homology completely determine the representation T : D → Vec(R,≤).

Proof Let FZ : (Z,≤) → Vec be the functor that assigns to n ∈ Z the vector space FZ(n) given by F(t) for
t ∈ (cn, cn+1) for n = 0, . . . , M − 1, the vector space F(t) for t > cM for all n ≥ M and the vector space F(t) for
t < c0 for all n < 0. To n ≤ m the functor FZ assigns the same morphism F(n ≤ m). This determines a finite type
object FZ in the category Vec(Z,≤) associated to the finite type object F in Vec(R,≤). It is clear then that knowing
FZ together with the multiset of points {(a j , b j )}Nj=1 (the barcode diagram) uniquely determine F . ��

1.4. Diagram Category. The representation TZ : D → Vec(Z,≤) is a representation of the diagram D in the cate-
gory of R-modules for R = R[x]. Thus, we can apply to this representation the construction of the Nori Diagram
Category, see [24], Section 7.1.2.

Given a representation T : D → R-Mod of a diagram D into the category of R-modules for a commutative ring
R, the Nori Diagram Category C(D, T ) is defined in the following way (see 0.4 above and Section 7.1.2 of [24]).
It is the category End(T )-Mod of modules over the ring of endomorphisms

End(T ) = {
(φv)v∈V (D) | φv ∈ EndR(T (v)) such that φt (e) ◦ T (e) = T (e) ◦ φs(e),

∀e ∈ E(D), wi th source and target s(e), t (e) ∈ V (D)} .

The category C(D, T ) is an R-linear abelian category. We denote by � : C(D, T ) → R-Mod the forgetful functor.

1.4.1. Lemma. By identifying as above the categoryVec(Z,≤) withR[x]-Mod, we obtain the Nori DiagramCategory
C(D, TZ) associated to the representation TZ : D → Vec(Z,≤) of Lemma 1.3.1, with C(D, TZ) = End(TZ)-Mod.

1.5. Persistent Homology on theNori DiagramCategory.We show here that the persistent homology, constructed
as in Lemma 1.2.1, determines a faithful exact functor C(D, TZ) → Vec(R,≤) on the Nori Diagram Category.

1.5.1. Lemma. Let Vec(R,≤)
f denote the full subcategory of Vec(R,≤) with objects that are of finite type. Then

(1) Vec(R,≤)
f is an abelian subcategory of Vec(R,≤).

(2) There is an R[x]-linear faithful exact functor � : Vec(R,≤)
f → Vec(Z,≤) constructed as in Lemma 1.3.1.
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84 Y. I. Manin, M. Marcolli

Proof Wehave to show thatVec(R,≤)
f is itself an abelian category and the inclusion functor is exact. This is equivalent

to showing that Vec(R,≤)
f is closed under taking kernels and cokernels. Let α : F → F ′ be a natural transformation

of functors F, F ′ : (R,≤) → Vec that are of the form F = ⊕N
k=1χIk and F ′ = ⊕M

j=1χI ′
j
. On objects t ∈ R the

transformation α acts as anR-linear map αt : ⊕kχIk (t) → ⊕ jχI ′
j
(t). Then there is a finite collection of points c0 <

· · · < cm inR, given by the union of the critical points of F and F ′ such that, for all t ∈ (ci , ci+1), with c−1 = −∞
and cm+1 = +∞, the map αt is a linear map αt : RNi → RMi . Since on morphisms the functor F is determined
by χIk (t ≤ t ′) = id if t, t ′ ∈ Ik and zero otherwise, and similarly for F ′, the natural transformation diagrams

F(t)
F(t≤s) ��

αt

��

F(s)

αs

��
F ′(t) F ′(t≤s)�� F ′(s)

imply that αt is locally constant. Thus, the kernel and cokernel of αt also determine a finite type object in Vec(R,≤)
f .��

Now, consider a functor F : (R,≤) → Vec which is a finite type object in Vec(R,≤)
f . Proceeding as above, denote

by r0 < · · · < r� the critical points of F , so that F(t) is locally constant with F(t) = RNi for all t ∈ (ri , ri+1), with
r−1 = −∞ and r�+1 = +∞. We can then assign to F a functor FZ : (Z,≤) → Vec with FZ(n) = F(t) with t ∈
(rn, rn+1) for n = 0, . . . , �−1 and FZ(n) = F(t)with t < r0 for all n < 0 and FZ(n) = F(t)with t > r� for n ≥ �.
We also define onmorphisms FZ(n ≤ m) = F(t ≤ t ′) for t ∈ (rn, rn+1) (or respectively t < r0 or t > r� depending
on the value of n) and t ′ ∈ (rm, rm+1) (or respectively t ′ < r0 or t ′ > r� depending on the value ofm). Let α : F →
F ′ be a natural transformation of functors F, F ′ : (R,≤) → Vec.We obtain a corresponding natural transformation
αZ : FZ → F ′

Z by assigningαZ,n : FZ(n) → F ′
Z(n) to be the samemapαt : F(t) → F ′(t) for t ∈ (rn, rn+1) (or t <

r0 or t > r� depending on n). The transformation αZ,n : FZ(n) → F ′
Z(n) is trivial if and only if αt : F(t) → F ′(t)

for t in the corresponding interval is also trivial, so that αZ is trivial iff α is, hence the functor F �→ FZ is faithful.
Let Ĩn denote the intervals (−∞, r0) for n < 0, Ĩn = (rn, rn+1) for n = 0, . . . , � − 1 and (r�,∞) for n ≥ �.

We have an R[x]-linear structure on Vec(R,≤)
f where x acts on F(t) as F(t ≤ t ′) for t ∈ Ĩn and and any t ′ ∈ Ĩn+1.

With respect to this R[x]-linear structure the functor F �→ FZ is R[x]-linear. Moreover, by an argument similar to
the one used above to check faithfulness, if we have an exact sequence

0 �� F
α �� F ′ β �� F ′′ �� 0

in Vec(R,≤)
f we also obtain a corresponding exact sequence

0 �� FZ
αZ �� F ′

Z
βZ �� F ′′

Z
�� 0 .

Hence the functor � mapping F �→ FZ and α �→ αZ is a faithful exact R[x]-linear functor Vec(R,≤)
f → Vec(Z,≤).

1.5.2. Proposition. Persistent homology determines a faithful exact functor

PH∗ : C(D, TZ) → Vec(R,≤)
f .

Proof The Nori Diagram Category C(D, T ) of a representation T : D → R-Mod of a diagram D satisfies the
following universal property: given any R-linear abelian category A, a representation TA : D → A, and an R-
linear faithful exact functor � : A → R-Mod such that � ◦ TA = T , then there exists a faithful exact functor
�A : C(D, T ) → A such that the following diagram commutes:
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C(D, T )

�A

��

�

����
���

���
�

D T ��

T̃
�����������

TA

���
��

��
��

��
� R-Mod

A

�

		�����������

As we mentioned in Sect. 0.4 above, the category C(D, T ) is in fact completely characterized by this property up
to unique equivalence of categories. (see Section 7.1.3 of [24], Section 7.1.3.) ��

Now, apply this universal property of the Nori Diagram Category to the following case: D is the Persistence
Diagram of Definition 1.1; TZ : D → R[x]-Mod is the representation of Lemma 1.5.1; A = Vec(R,≤)

f , with the

representation T : D → Vec(R,≤)
f of Lemma 1.2.1, and the functor� : Vec(R,≤)

f → R[x]-Mod is the one of Lemma
1.5.1. To this purpose it suffices to check that the functors �, T, TZ satisfy the composition property � ◦ T = TZ,
which is true by construction (compare Lemma 1.5.1 with Lemma 1.4.1). We then obtain a faithful exact functor
PH∗ : C(D, TZ) → Vec(R,≤)

f that completes the commutative diagram

C(D, TZ)

PH∗

��

�



��
���

���
��

D
TZ ��

��									

T

��















R[x]-Mod

Vec(R,≤)
f

�

		����������

1.6. The Product Structure.We will show here that the Persistence Diagram D of Definition 1.1 has the structure
of a graded diagram with a commutative product with unit, in the sense of Definition 8.1.3 of [24]. Recall from
this definition that a graded diagram D is a diagram endowed with a map deg : V (D) → Z/2Z extended to
deg : E(D) → Z/2Z by deg(e) = deg(s(e))−deg(t (e)). The product D× D is the diagram with vertices the pairs
(v,w) ∈ V (D) × V (D′) and edges of the form (e, id) or (id, e′). A product structure on D is a map of graded
diagrams (a degree preserving map of directed graphs) D × D → D together with a choice of edges

αv,w : v × w → w × v, ∀v,w ∈ V (D)

βv,w,u : v × (w × u) → (v × w) × u,

β ′
v,w,u : (v × w) × u → v × (w × u), .

for all v,w, u ∈ V (D). A unit is a vertex 1 with deg(1) = 0 and edges uv : v → 1 × v for all v ∈ V (D).

1.6.1. Lemma.ThePersistenceDiagram D ofDefinition 1.1 is a graded diagramwith commutative product and unit.

Proof Define the Z2-grading by deg( f : X → R,Y, k, λ) = k mod 2. The product D × D → D is given by

( f : X → R,Y, k, λ) × ( f ′ : X ′ → R,Y ′, k′, λ′) :=
(X ×R X ′ → R, X ×R Y ′ ∪ Y ×R X ′, k + k′, λ + λ′),

where X ×R X ′ is the fibered product:

X ×R X ′ ��

��

X

f
��

X ′
f ′

�� R

.
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This product satisfies the identities

(X ×R X ′)t = {(x, x ′) ∈ X × X ′ : f (x) = f ′(x ′) ≤ t} = Xt ×R X ′
t .

The unit vertex is given by (id : R → R,∅, 0, 0). The edgesαv,w ,βv,w,u andβ ′
v,w,u are the natural homeomorphisms

of topological spaces compatible with the maps. This finishes the proof. ��
We recall now that in the situation of Lemma 1.6.1 one can define a subclass of representations of D that are com-

patible with grading and commutative product. Namely, according to the Definition 8.1.3 of [24], the compatibility
conditions for a representation T → R-Proj of a graded diagram D are given by the existence of isomorphisms

τv,w : T (v × w)
� �� T (v) ⊗ T (w)

for all v,w ∈ V (D), with the following properties:

T (v) ⊗ T (w)
τ−1
v,w �� T (v × w)

T (αv,w)�� T (w × v)
τw,v �� T (w) ⊗ T (v)

is equal to multiplication by (−1)deg(v) deg(w); the β-maps satisfy T (βv,w,u)
−1 = T (β ′

v,w,u), and moreover

τv,w′ ◦ T (1, e) = (id ⊗ T (e)) ◦ τv,w : T (v × w) → T (v) ⊗ T (w′),
τv′,w ◦ T (e, 1) = (T (e) ⊗ id) ◦ τv,w : T (v × w) → T (v′) ⊗ T (w),

T (v × (w × u))
T (βv,w,u) ��

τ◦τ

��

T ((v × w) × u)

τ◦τ

��
T (v) ⊗ (T (w) ⊗ T (u))

� �� (T (v) ⊗ T (w)) ⊗ T (u))

and similarly for the inverse T (β ′
v,w,u).

1.7. Good Persistence Vertices. In order to define a tensor structure on the Nori Diagram Category C(D, TZ) of
the Persistence Diagram we need to proceed in a way similar to that adopted in the construction of the category of
Nori motives, see [24], Section 9. Indeed, because of the Künneth product formula

Hk((X ×R X ′)t , (X ×R Y ′ ∪ Y ×R X ′)t ;R) � ⊕i+ j=k Hi (Xt ,Yt ;R) ⊗ Hj (X
′
t ,Y

′
t ;R)

where (X ×R X ′)t = Xt ×R X ′
t and (X ×R Y ′ ∪ Y ×R X ′)t = Xt ×R Y ′

t ∪ Yt ×R X ′
t , this relative homology

is compatible with the product structure on D in the case where these homology groups are supported in a single
degree. As in the case of Nori motives, we can introduce a class of “good objects” for which the persistent homology
is concentrated in a single degree.

1.7.1. Definition. A vertex ( f : X → R,Y, k, λ) of the Persistence Diagram D is a “good persistence vertex” if
the persistent homology

H Pj ( f : X → R,Y, k, λ)t = Range(Hj (Xt ,Yt ;R) → Hj (Xt+λ,Yt+λ;R))

satisfies H Pj ( f : X → R,Y, k, λ)t = 0 for all j �= k.
Simple examples of good persistence vertices can be constructed as follows. Let X be a smooth n-dimensional

compact manifold and let f : X → R be a Morse function, which has finitely many critical points x1, . . . , xm in
X with critical values c1 < · · · < cm in R. The sublevel sets Xt = f −1(−∞, t] have homotopy type that remains
constant when t varies in each of the intervals (−∞, c1), (ck, ck+1)with k = 1, . . . ,m−1, and (cm,∞) and changes
across the critical values by a handle attachment. Let B be an open n-ball in X that does not contain any critical point
and such that the sublevel sets Bt = f |−1

B (−∞, t] are either empty or a contractible set that is open in the induced
topology on Xt , or all of B. Let Y = X � B. Then the relative homology Hk(Xt ,Yt ;R) = Hk(Xt , Xt � Bt ;R) is
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a local homology and is trivial for k �= 0 and is either trivial or a single copy of R for k = n. This gives an example
where the persistent homology is concentrated in degree k = n.

Indeed, if we assume all the topological spaces involved are CW complexes, it is always possible to compute
the homology via a cellular filtration by good spaces. Indeed we have the following result (Theorem 2.35 of [21]).

1.7.2. Lemma. Given a CW complex X with skeleta X (n), the homology Hk(X;Z) is computed as the homology of
a complex

· · · → Hj (X
( j), X ( j−1);Z) → Hj (X

( j−1), X ( j−2);Z) → · · ·
with the maps given by the boundary maps of the pair of inclusions X ( j−2) ⊂ X ( j−1) ⊂ X ( j). The relative homology
Hn(X ( j), X ( j−1);Z) is trivial for n �= j and a free abelian group for n = j spanned by the j-cells of X .

1.7.3. Lemma. Under the assumption that all spaces considered are cellular with cellular maps, the representa-
tions T : D → Vec(R,≤) and TZ : D → Vec(Z,≤)

f of Lemmas 1.2.1 and 1.3.1 are unital graded multiplicative
representations.

Proof First notice that the image of TZ : D → Vec(Z,≤) = R[x]-Mod lies in the subcategory Vec(Z,≤)
f of finite type.

This is in fact a subcategory of the categoryR[x]-Proj of finite projectivemodule overR[x]. Then observe that, under
the cellular assumption, Lemma 1.7.2 implies that, if we consider the Nori Diagram Category built on a subdiagram
of the Persistence Diagram where all the vertices are good persistence vertices, the resulting C(Dgood, TZ) contains
all the objects (X ( j), X ( j−1), j, λ) and (Y ( j),Y ( j−1), j, λ) for every vertex ( f : X → R,Y, j, λ) of the Persistence
Diagram. Thus, there is an object in the Nori Diagram Category C(Dgood, TZ) whose image under the forgetful
functor to Vec(Z,≤) is the same as the image TZ( f : X → R,Y, j, λ). This implies that we can equivalently use the
categories C(D, TZ) and C(Dgood, TZ). Using the latter, we can define the product structure, finishing the proof. ��

Notice that essentially the same argument was used in [24], Section 9 in order to construct the product structure
on Nori effective motives. The argument is simplified here because we work in a topological setting, hence we can
directly use cellular homology as in Lemma 1.7.2, instead of having to use Beilinson’s fundamental lemma for the
cohomology of affine varieties and complexes of varieties to pass from affine to more general varieties.

The Tannakian Formalism. An advantage of reformulating the categorical construction of persistent homology
of [7,11,12], in terms of the formalism of Nori diagrams and Nori motives, as we did in the previous subsections,
is the fact that this formulation comes endowed with natural symmetries associated to persistent homology which
are not immediately visible otherwise, namely the associated Tannakian formalism.

In the category of Nori motives, one passes from effective motives to the localization with respect to (Gm, {1}, 1)
(inverting the Lefschetz motive) to obtain a rigid abelian tensor category to which the Tannakian formalism can be
applied. In our settingweworkwithweaker properties, as wewill discussmore in Section 4wherewe present amore
general formalism based on Nori diagram for persistent phenomena. We do not assume that the category we con-
struct is a rigid tensor category, although we will assume that it has a tensor structure, obtained via approximations
using filtrations by good objects as explained above. Thus, instead of the group scheme that one expects to obtain as
Tannakian Galois group in the case of rigid tensor categories, we only have a monoid scheme, obtained as follows.

1.8.1. Proposition.The representation TZ : D → Vec(Z,≤)
f induces an equivalence between the Nori Diagram

Category C(D, TZ) and the category of finitely generated comodules over a bialgebra A(D, TZ), which defines a
pro-algebraic monoid scheme Spec(A(D, TZ)).

Proof As before, we view the representation TZ : D → Vec(Z,≤)
f as taking values in the category R[x]-Proj of

finitely generated projective modules over the Dedekind domain R[x]. We can then apply Theorem 7.1.12 of [24]
andwe obtain that theNori DiagramCategory C(D, TZ) is equivalent to the category of finitely generated comodules
over the coalgebra A(D, TZ) given by the colimit

A(D, TZ) = colimDFEnd(TZ|DF )∨

over finite sub-diagrams DF with ∨ the R[x]-dual.
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Indeed, as shown in Section 7.5.1 of [24], if R is a Dedeking domain, then for the R-algebra E = End(T |DF )with
DF a finite diagram and T a representation of a Nori diagram D, the R-dual E∨ = HomR(E, R) has the property
that the canonical map E∨ ⊗R E∨ → Hom (E, E∨) � (E ⊗R E)∨ is an isomorphism. Thus, an E-module that is
finitely generated projective as an R-module carries the structure of an E∨-comodule. The coalgebraA(D, TZ) also
carries an algebra structure induced by the monoidal structure of C(D, TZ), see Sections 7.1.4 and 8.1 of [24]. Thus,
A(D, TZ) determines a pro-algebraic monoid scheme Spec(A(D, TZ)) (see Section 7.1.4 of [24]). This completes
the proof. ��

In the more general setting of Section 4 below we will only assume that the target category of our fiber functors
is an abelian tensor category, but not necessarily a category R-Proj with R a Dedekind domain as here above, with
the Tannakian formalism of Sections 7.1.2–7.1.4 of [24]. Indeed, the target category in general will be a category
Vec(S,≤) for some poset (S,≤). This has a tensor structure obtained by identifying it with the category of covariant
functorsF((S,≤),Vec), endowed with the pointwise monoidal structure induced by the monoidal structure on Vec.

2. Thin Categories and Persistence

In this section, we describe a slightly more general framework for persistence constructions. It was sketched in the
Introduction and its various more precise versions will be given in the remaining Sections of the article.

We start with a category of geometric objects, and an indexing system for persistence which is given by a thin
category.

2.1. Geometric Poset Objects and Thin Categories. Let Cgeom be a category of geometric objects (topological
spaces, simplicial sets, smooth manifolds, algebraic varieties, etc.). Whenever it is fixed, we refer to its morphisms
as “geometric morphisms” etc.

2.1.1. Definition. A poset object in Cgeom is an object S together with a subobject R ⊂ S × S with the following
properties:

• (s, s) ∈ R for all s ∈ S,
• If (s, s′) ∈ R and (s′, s′′) ∈ R, then (s, s′′) ∈ R;
• If (s, s′) ∈ R and (s′, s) ∈ R, then s = s′.

The relation (s, s′) ∈ R we also denote by s ≤ s′.
As was explained in Sect. 0.2 above, the notions of a poset and of a thin category essentially coincide.

2.1.2. Remark. The assumption that Cgeom is a category of geometric objects implies that points and subobjects are
defined in the usual geometric terms. In a more general setting, one needs to use a formulation that depends on a
categorical notion of points in terms of the functor of points. We will discuss this in the next section.

2.2. Persistence Modules. It is a general fact that the category of covariant functors F : B → A from a small
category B to an abelian category A is itself abelian (see for instance Proposition 44 of [34]). Thus, we can give
the following definition.

2.2.1. Definition.Given a poset (S,≤) and an abelian categoryA, letA(S,≤) be the abelian category whose objects
are the covariant functors F : (S,≤) → A and morphisms the natural transformations of such functors. Objects
of A(S,≤) will be referred to as the (S,≤)-persistence modules in A. In the case where A = R-Mod, we refer to
objects in R-Mod(S,≤) as (S,≤)-persistence R-modules.

2.3. Sublevel Objects. As above let Cgeom be a category of geometric objects and let (S,≤) be a poset object in
Cgeom as in Definition 2.1.1.

2.3.1. Definition. Consider a pair (X, f : X → S) where X is an geometric object and f its morphism to the poset
object (S,≤). For any s ∈ S we define the sublevel objects X f,s ⊂ X as X f,s := {x ∈ X : f (x) ≤ s ∈ S}. They
define inclusion maps jX,s,s′ : X f,s ↪→ X f,s′ for all s ≤ s′ in S.
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2.4. Persistent Functors. Consider now a geometric object which is a poset (S,≤) in its category, and let
H : Cgeom → A be a functor with values in an abelian category A.

Denote by C̃S
geom the category of “geometric families over a base S”. More precisely, one of its object is a pair

consisting of a geometric object and geometric morphism (X, f : X → S). A morphism (X, f ) → (X ′, f ′) is a
geometric morphism ϕ : X → X ′ such that f ′ ◦ ϕ = f.

Any functor H : Cgeom → A as above determines the functor

H̃ : C̃S
geom → A(S,≤)

as follows. It sends each family (X, f ) to the object

H̃(X, f : X → S) := FX, f,S : s �→ H(X f,s)

and eachmorphism ϕ : X → X ′ of families to the natural transformation of the functors FX, f,S → FX ′, f ′,S given by

H̃(ϕ) := H(ϕs) : H(X f,s) → H(X ′
f ′,s).

Here ϕs : X f,s → X ′
f ′,s is the restriction ϕs = ϕ|X f,s which maps to X ′

f ′,s because of the compatibility f ′ ◦ϕ = f .

2.4.1. Definition. For λ ∈ S, the persistence functor PHλ : C̃geom → A(S,≤) of the functor H : Cgeom → A is
defined as follows.

It sends each family f : X → S to

PHλ(X, f : X → S) := s �→ Range (H( jXs,λ ))

for s ≤ λ and zero otherwise, where

jXs,λ : X f,s ↪→ X f,λ, for s ≤ λ

and the induced morphism in A
H( jXs,λ ) : H(X f,s) → H(X f,λ).

On morphisms ϕ : X → X ′ with f ′ ◦ϕ = f it is defined as the restriction of H̃(ϕ) to Range(H( jXs,λ )) which takes
values in Range(H( jX ′

s,λ
)).

2.5. Example: Persistent Topology of Graphs. Let H be a finite directed graph of a thin category. Consider
families of finite directed graphs (G, f : G → H) over H . Let G f,v with v ∈ V (H) be the respective sublevel
graphs. The graph G f,v is the induced subgraph of G on the set of vertices w ∈ V (G) such that there is a path of
directed edges in H between f (w) and v. The (H,≤)-persistent topology of G is then specified by the persistent
connected components

Range (H0(G f,v;Z) → H0(G f,v′ ;Z)) for v ≤ v′ ∈ V (H),

and the persistent cycles

Range (H1(G f,v;Z) → H1(G f,v′ ;Z)) for v ≤ v′ ∈ V (H).

2.6. Example: Persistent Orlik–Solomon Algebras. Let A be a hyperplane arrangement. Denote by L(A) the
associated intersection poset, ordered by reverse inclusion. We consider morphisms ϕ of hyperplane arrangements
given by linear maps of the ambient space that map one arrangement to the other and we write L(ϕ) for the induced
map of intersection posets. We fix one arrangement A and we consider pairs (B, ϕ) of arrangements endowed with a
morphism ϕ to A. The intersection poset L(A) determines a structure of poset of topological spaces (equivalently, an
object in Top(L(A),≤) in the notation of [11,12]) on the hyperplane arrangement complement M(A), with inclusions
M(A)s ↪→ M(A)s′ for s ≤ s′ in L(A). Given a morphism of arrangements ϕ : B → A, defined as above, we obtain
similarly a structure of poset of topological spaces on the complement M(B) indexed by the poset L(A). The fam-
ilies M(B)s with s ∈ L(A) with the inclusions M(B)s ↪→ M(B)s′ for s ≤ s′ in L(A) form the system of sublevel
objects described above. The cohomology H∗(M(B)) (with coefficients in a field K) of a hyperplane arrangement
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complement is the Orlik-Solomon algebra OS(B) = H∗(M(B)). We consider the cohomology H∗(M(B)s) with
the maps induced by the inclusions M(A)s ↪→ M(A)s′ . In order to have a covariant functor, we can consider the
homology OS∨(B) := H∗(M(B)) with its structure of module over the exterior algebra on H1(M(B)), [17]. The
associated persistent functor is given by

POS∨
λ (B) := Range (H∗(M(B)s) → H∗(M(B)λ)), for s ≤ λ ∈ L(A).

Notice that we could also consider the persistent homology of a hyperplane arrangement complement M(B)

with the persistence indexed by its own intersection poset L(B). The case considered above, where one considers
arrangements B endowed with maps to a fixed arrangement A and persistence with respect to the fixed L(A) pro-
vides a uniform choice of the poset indexing the persistence modules. Allowing the indexing poset to depend on
the arrangement, as in the case where one uses L(B) has advantages too, for example because there are in general
few linear maps of the ambient space that induce maps between two given arrangements.

2.7. Example: Persistent TateMotives.Beilinson, Goncharov, Schechtman and Varchenko in [5] conjectured that,
over a number field K the category of mixed Tate motive is generated by motives of the form

m (Pn
� A, A � (A ∩ B))

where A and B are hyperplane arrangements in general position. These are the motives whose cohomological real-
ization gives themiddle dimensional relative cohomology of the pair (Pn

�A, A�(A∩B)).We can consider a setting
as in the previous subsection, where one covers the hyperplane arrangement complement with sublevel sets indexed
by a poset and correspondingly consider motives of the formm ((Pn

� A)s, (A� (A∩ B))s) and persistent objects

Range (m((Pn
� A)s, (A � (A ∩ B))s) → m ((Pn

� A)s′ , (A � (A ∩ B))s′)) for s ≤ s′.

3. Sublevel Sieves and Persistence

In the setting described above we have assumed that we work with a category Cgeom of geometric objects and we
have used the geometric notion of points to define sublevel sets and persistence. We consider here more general
categories C for which objects do not necessarily have points in the geometric sense. However, they always have
a “functor of points” in Grothendieck’s sense: for an object X in C and another object A, an A-point of X is a
morphism ϕ : A → X in MorC(A, X). We will use here this approach to define a notion of persistent functors PH
associated to certain functors H : C → A with values in an abelian category.

3.1. Functor of Points and Poset Functors. Let C be a category and X ∈ Obj (C). The functor of points
πX : C → Sets is a contravariant functor with πX (A) = MorC(A, X) and πX (ϕ : B → A) = − ◦ ϕ :
MorC(A, X) → MorC(B, X). The object X is completely determined by its functor of points πX in the sense
that a natural tranformation η : πX → πY determines a morphism f : X → Y in such a way that natural
equivalences are in (1,1)-correspondence with isomorphisms of the respective objects.

3.1.1. Definition. Let C be a category and S its object. Let πS : C → Sets be the functor of points of S. A
poset functor on S is a contravariant functor R(S,≤) : C → Sets given on objects by the assignment of a subset
R(S,≤)(A) ⊆ πS(A) × πS(A) with the following properties:

(1) (pA, pA) ∈ R(S,≤)(A) for all pA ∈ πS(A) = MorC(A, S);
(2) (pA, p′

A) ∈ R(S,≤)(A) and (p′
A, p′′

A) ∈ R(S,≤)(A) implies (pA, p′′
A) ∈ R(S,≤)(A);

(3) (pA, p′
A) ∈ R(S,≤)(A) and (p′

A, pA) ∈ R(S,≤)(A) implies pA = p′
A in πS(A);

(4) if (pA, p′
A) ∈ R(S,≤)(A) and ϕ ∈ MorC(B, A) then (pA ◦ ϕ, p′

A ◦ ϕ) ∈ R(S,≤)(B).

The functor acts on morphisms by R(S,≤)(ϕ : B → A) : R(S,≤)(A) → R(S,≤)(B) mapping (pA, p′
A) �→

(pA ◦ ϕ, p′
A ◦ ϕ).

3.2. Sublevel Sieve. In this general setting, instead of the sublevel sets and sublevel objects we considered in the
previous sections, we construct sublevels as subfunctors of the functor of points.
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3.2.1. Lemma. (i) Let C be a category with terminal object �. Let (S,≤) be a poset functor on an object S ∈ Obj(C)

as in Definition 3.1.1.

Starting with a family f : X → S in C and a choice of s ∈ MorC(�, S), consider the assignment

X f,≤,s(A) = {α ∈ πX (A) = MorC(A, X) : f ◦ α ≤ s ◦ tA}
where tA : A → � is the unique morphism to the terminal object in C and f ◦ α ≤ s ◦ tA means that
( f ◦ α, s ◦ tA) ∈ R(S,≤)(A) ⊂ πS(A) × πS(A).

Given a morphism ϕ : B → A inMorC(B, A) assign to it the map

X f,≤,s(ϕ : B → A) : X f,≤,s(A) → X f,≤,s(B), α �→ α ◦ ϕ.

This assignment determines a contravariant functor X f,≤,s : C → Sets, the “sublevel functor” of f : X → S.
(ii) For all s ∈ MorC(�, S) the sublevel functor X f,≤,s is a subfunctor of the functor of points πX .Moreover, for

s ≤ s′ inMorC(�, S), the sublevel functor X f,≤,s is a subfunctor of X f,≤,s′ .

Proof (i) By Definition 3.1.1, the subsets R(S,≤)(A) ⊂ πS(A) × πS(A) have the following property: if
( f ◦α, s◦tA) ∈ R(S,≤)(A) then for anyϕ : B → A inMorC(B, A) the element ( f ◦α◦ϕ, s◦tA◦ϕ) ∈ R(S,≤)(B),
where tA ◦ ϕ = tB is the unique morphism tB : B → � to the terminal object. Thus, the assignment above is
well defined and determines a contravariant functor.

(ii) For all A ∈ Obj(C) by construction we have X f,≤,s(A) ⊆ πX (A). Moreover, for a morphism ϕ : B → A the
image X f,≤,s(ϕ) is the restriction of πX (ϕ) (precomposition with ϕ) to X f,≤,s(B). Hence X f,≤,s is a subfunctor
of the functor πX . Similarly, if s ≤ s′, that is (s, s′) ∈ R(S,≤)(�), the condition f ◦ α ≤ s ◦ tA implies that
f ◦ α ≤ s′ ◦ tA hence X f,≤,s(A) ⊆ X f,≤,s′(A) and X f,≤,s(ϕ) is the restriction of X f,≤,s′(ϕ) hence X f,≤,s is
a subfunctor of X f,≤,s′ . This completes the proof. ��

An assignment of a subfunctor of the functor of points πX is a sieve on X . Thus, we equivalently refer to X f,≤,s

as the sublevel sieve of X .

3.2.2. Definition. If the subfunctor X f,≤,s of the functor of points πX is representable, the object Xs ∈ Obj(C) with
X f,≤,s(A) = MorC(A, Xs) is the “s-sublevel object” of X .

Cases where the sublevel functor X f,≤,s is representable include geometric cases where it is a closed subfunctor.
More precisely, if the sublevel functor X f,≤,s is representable by an object Xs ∈ Obj(C), then for any s, s′ ∈

MorC(�, S) with s ≤ s′ there is a monomorphism js,s′ : Xs ↪→ Xs′ , since the inclusions X f,≤,s(A) ⊆ X f,≤,s′(A)

are monomorphisms of sets js,s′ : πXs → πXs′ which induce corresponding morphisms Xs → Xs′ in C with the
property that for all u, v ∈ πXs if js,s′ ◦ u = js,s′ ◦ v then u = v, hence js,s′ is a monomorphism in C. In the case
of a representable sublevel functor we can define persistent functors in the following way.

3.2.3. Definition. Let C be a category as above with terminal object � and (S,≤) be a poset functor on an object
S ∈ Obj(C). LetH : C → A be a covariant functor to an abelian category. For f : X → S, and s ∈ MorC(�, S) let
X f,≤,s be the sublevel functor. If X f,≤,s is representable by Xs ∈ Obj(C), then the persistent functor PH is given by

PH(s,s′)(X) = Range (H( js,s′) : H(Xs) → H(Xs′)) for s ≤ s′.

Return to the category C̃S of families in C. For (S,≤) as above and s ∈ MorC(�, S), and for an abelian categoryA ,
we defineA(S,≤) as the category of covariant functors F : R(S,≤)(�) → A and natural transformations of such func-
tors.We can then interpret, for fixed s′ ∈ MorC(�, S) the persistent functor PH as a functor PHs′ : C̃ → A(S,≤) with

PHs′(X, f ) = s �→ PH(s,s′)(X)

for s ≤ s′ and zero otherwise. For a morphism ϕ : (X, f ) → (X ′, f ′) we define PHs′(ϕ : (X, f ) → (X ′, f ′)) the
map induced on Range(H( js,s′) : H(Xs) → H(Xs′)) byH(ϕ) : H(Xs) → H(X ′

s).
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4. Nori Diagrams and Tannakian Formalism

4.1. Setup. Start with a diagram D and an R-linear abelian category A, where R is a commutative ring. Consider
a representation T : D → A(S,≤), where (S,≤) is a thin category, and A(S,≤) = F((S,≤),A) is the category of
covariant functors from a thin category (S,≤) to A.

The representation T assigns to each vertex v ∈ V (D) a functor T (v) : (S,≤) → A and to each edge e ∈ E(D)

a natural transformation T (e) : T (s(e)) → T (t (e)) between the functors associated to the source s(e) and target
t (e) vertices of e.

For a vertex v ∈ V (D), denote byNv be the set of natural self-transformations αv : T (v) → T (v) of the functors
T (v) : (S,≤) → A. Moreover, put

N (T ) = {(αv)v∈V (D) : αv ∈ Nv with αt (e) ◦ T (e) = T (e) ◦ αs(e), ∀e ∈ E(D)}.

Generally, given an abelian category B and a set S of objects in B. As in [24], denote by 〈S〉 the smallest full
abelian subcategory of B that contains S and such that the inclusion functor is exact. It is generated by the objects
in S and is closed under taking direct sums, direct summands, kernels and cokernels.

Notice that here we do not assume that we start with a representation of the diagram D in a category of R-
modules for some ring R. Hence we do not have an obvious choice of a faithful exact functor from N (T )-Mod
to A(S,≤) playing the role of the forgetful functor to R-Mod in the setting of [24]. However, we can still construct
an abelian category C(D, T,A(S,≤)) associated to the data (D, T,A(S,≤)) with the property that the representation
T : D → A(S,≤) factors through C(D, T,A(S,≤)).

4.1.1. Lemma. Let T : D → A(S,≤) be a diagram representation as above. Consider the abelian subcategory
〈T (D)〉 of A(S,≤). There is an inclusion functor 〈T (D)〉 ↪→ N (T )-Mod. Let C(D, T,A(S,≤)) denote the subcate-
gory ofN (T )-Mod obtained in this way. If the inclusion functor 〈T (D)〉 ↪→ N (T )-Mod is exact, this is an abelian
subcategory. Moreover, there is a representation T̃ : D → C(D, T,A(S,≤)) such that T factors as T = F ◦ T̃ with
a faithful exact functor F : C(D, T,A(S,≤)) → A(S,≤).

Proof Since A is an R-linear abelian category, the category A(S,≤) is also an R-linear abelian category (Proposi-
tion 44 of [34]), and the sets Nv and N (T ) are rings with respect to the composition operation. We proceed as in
Proposition 7.3.24 of [24], assuming for simplicity that D is a finite diagram.

Consider the object X = ⊕vT (v). Then 〈T (D)〉 = 〈X〉. Let NX be the set of natural self-transformations
of the functor X : (S,≤) → A. Among the transformations in NX we can identify the elements of N (T ) as
those α ∈ NX that commute with the projections pv : X → T (v) and with the transformations T (e). Thus, we
can view 〈T (D)〉 as a subcategory of N (T )-Mod. If the inclusion functor 〈T (D)〉 ↪→ N (T )-Mod is an exact
functor then 〈T (D)〉 gives an abelian subcategory of N (T )-Mod, which we denote by C(D, T,A(S,≤)). There is
a representation T̃ : D → C(D, T,A(S,≤)) given by the assignment v �→ T (v), e �→ T (e) of the representation
T : D → A(S,≤), seen as objects of 〈T (D)〉. By construction, this representation satisfies T = F ◦ T̃ , where
F : C(D, T,A(S,≤)) → 〈T (D)〉 ↪→ A(S,≤) is the forgetful functor that forgets the N (T )-module structure.

This completes the proof. ��

4.1.2. Remark. If the abelian category A has a tensor structure and A(S,≤) is endowed with the pointwise tensor
structure, and we assume that the diagram D is a graded diagramwith a commutative product with unit, we can con-
sider representations T : D → A(S,≤) that are unital graded multiplicative representations so that C(D, T,A(S,≤))

also has a natural tensor structure such that F : C(D, T,A(S,≤)) → A(S,≤) becomes a tensor functor. (The argu-
ment for the original setting of diagram representations to R-Mod is given in Proposition 8.1.5(1) of [24]). We
can then consider faithful exact tensor functors from C(D, T,A(S,≤)) to categories B(S,≤), where B is an R-linear
abelian tensor category and B(S,≤) is endowed with the pointwise tensor structure. In particular, one can study
tensor functors C(D, T,A(S,≤)) → Vec(S,≤), as generalizations of persistent homology.
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5. Persistence of Nori Motives

We return here to the algebraic geometric environment of Nori motives, in its updated form of Arapura’s category
of Nori Motivic Sheaves, [2]. We enrich it with a Persistence structure. We write here the Nori motives covariantly
(homologically) as in [2], rather than contravariantly (cohomologically) as in the initial Grothendieck’s project and
in [24].

Let S be a connected variety over K. The Nori Diagram Dms(S) for Motivic Sheaves over a base S has the
following structure [2]:

• One vertex in V (Dms(S)) is a quadruple ( f : X → S,Y, k, w), where X is a K-variety with a morphism
f : X → S; j : Y ↪→ X is a closed embedding (endowed with the restriction f |Y : Y → S), k ∈ Z+ is a
non-negative integer. and w ∈ Z is an integer.

• Edges in E(Dms(S)) are of the following types:

(1) Geometric Morphisms: each morphism of varieties ϕ : X → X ′ compatible with the maps to the base S and
the inclusions via commutative diagrams

X
ϕ ��

f

���
��

��
��

� X ′
f ′

����
��
��
��

S

and Y
ϕ|Y ��

j
��

Y ′

j ′
��

X
ϕ �� X ′

produces an edge

( f : X → S,Y, k, w) → ( f ′ : X ′ → S,Y ′, k, w).

(2) Connecting Morphisms: every chain of closed embeddings Z ⊂ Y ⊂ X determines an edge

( f : X → S,Y, k + 1, w) → ( f |Y : Y → S, Z , k, w)

(3) Twist Morphisms: for every vertex ( f : X → S,Y, k, w) there is an edge

( f ◦ p1 : X × P1 → S,Y × P1 ∪ X × {0}, k + 2, w + 1) → ( f : X → S,Y, k, w)

A representation of the diagram Dms(S) is given by the constructible sheaves

Tms : ( f : X → S,Y, k, w) �→ Hk
S (X,Y,F).

The category of Nori Motivic Sheaves is defined as the Nori Diagram Category C(Dms(S), Tms) of this repre-
sentation.

5.1. Posets andSemigroups. In order to enrich this constructionwith a persistent version of the constructible sheaves
Hk
S (X,Y,F), we follow the general formalism described in the previous sections. The first step is to consider a base

S that is endowed with a poset structure that will provide the indexing of the persistence modules.
A source of poset structures on geometric spaces such as K-varieties is the presence of a semigroup structure.

Indeed there are natural poset structures associated to semigroups, which we review briefly, see [33].
Given a semigroup S, the set ES of idempotents e ∈ S, e2 = e, is partially ordered by the relation e ≤ e′ if

e = ee′ = e′e. A natural partial order structure on a semigroup is one that restricts to this relation on the set of
idempotents. Recall that a semigroup S is regular if every element s ∈ S has a pseudoinverse x such tat sxs = s.

The Nambooripad poset structure on a regular semigroup [35] is defined by

s ≤ s′ iff s = es′ = s′e′, for some e, e′ ∈ ES .

Several equivalent definitions are discussed in [33]. This is further extended to more general semigroups as shown
in [Mit86] as follows. Let Ŝ be obtained by adjoining a unit to the semigroup S (or S itself if it already has a unit).
If ES is a subsemigroup of S then the relation s ≤ s′ iff s = es′ = s′e′ for some e, e′ ∈ EŜ is a partial order
compatible with multiplication. On an arbitrary semigroup the relation

s ≤ s′ iff s = xs′ = s′y and xs = s for some x, y ∈ Ŝ
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is a partial order, which we call as the natural partial order (see Proposition 2 and Theorem 3 of [33]).

5.2. Varieties with Semigroup Structures. In order to obtain a base S with a poset structure (S,≤) it is then
sufficient to consider the case where S has a semigroup structure. Semigroup structures on algebraic varieties have
been investigated in [9]. We review here some general facts from [9] and [10] and some examples from [9].

We consider varieties over an algebraically closed fieldK. Let S be an algebraic semigroup, that is, an algebraic
variety overK endowed with semigroup operation. Let ES be the subscheme of idempotents of S. The partial order
structure on idempotents in ES is given by e0 ≤ e1 iff e0 = e0e1 = e1e0. Given two idempotents e0, e1 with
e0 ≤ e1, the “interval” [e0, e1] is given by

[e0, e1] := {e ∈ ES : e0 ≤ e ≤ e1}
and is a closed subscheme of S ([10], Corollary 2.17). If S is a smooth algebraic semigroup, then the scheme ES

of idempotents is also smooth ([10], Remark 2.15). If S is a commutative algebraic semigroup, then the scheme
ES of idempotents is finite and reduced ([10], Theorem 1.2). If S is irreducible, then there is a smallest closed and
irreducible subsemigroup of S that contains ES , which is given by a toric monoid ([10], Theorem 1.2).

Classes of examples of algebraic varieties with semigroup structures include:

• linear algebraic semigroups: subsemigroups of End(V ) with V some finite dimensional vector space;
• an arbitrary variety S with the left/right projection semigroup laws μL(x, y) = x and μR(x, y) = y for all

x, y ∈ X ;
• algebraic groups;
• algebraic semigroup laws on Abelian varieties classified in Section 4 of [9].
• algebraic semigroup laws on affine monomial curves (Theorem 5 of [9]).

5.3. Sublevel Subschemes Over Semigroups. We consider the cases where ES is a subsemigroup of S so that S
has a Nambooripad poset structure.

5.3.1. Lemma. Let S be an algebraic semigroup, such that the idempotent subscheme ES is a subsemigroup of S. Let
(S,≤)be theNambooripadposet structure. For amorphism f : X → S, the sublevel sets Xs = {x ∈ X : f (x) ≤ s}
are closed subschemes of X .

Proof The subset Ss = {a ∈ S : a ≤ s} is given by all the elements a ∈ S that are of the form a = es = se′ for
some pair (e, e′) ∈ E2

S . Thus, we have Ss = ES · s ∩ s · ES ⊂ S. For an algebraic semigroup, the subscheme ES

of idempotents is closed, hence for a fixed s ∈ S we obtain Sa as an intersection of two closed subschemes. The
sublevel sets Xs = f −1(Ss) are then preimages in X of closed subschemes of S. This completes the proof. ��

The sublevel subvarieties Xs have embeddings js,s′ : Xs ↪→ Xs′ for s ≤ s′ due to the transitive property of the
partial order relation on S.

5.3.2. Corollary. If S is a commutative algebraic semigroup, which is smooth as an algebraic variety, and (S,≤)

is the Nambooripad poset structure, then the sublevels Xs of a morphism f : X → S are finite unions of fibers.

Proof For a commutative smooth algebraic semigroup S, the idempotent subscheme ES is a subvariety of S con-
sisting of a finite set of points. Then the Ss are also finite and identified with {es e ∈ ES}, and the preimages
Xs = f −1(Ss) = ∪e∈ES f

−1(es) are finite unions of fibers of the morphism f : X → S. ��

5.4. Persistent Nori Motivic Sheaves. Let S be a K-variety with a semigroup structure and an associated partial
order (S,≤) as discussed above. As in Arapura’s setting of Nori Motivic Sheaves in [2] we consider the Nori
Diagram with vertices ( f : X → S,Y, k, w) and with the three classes of edges described above. To this diagram
Dms(S,≤) we associate a representation in the abelian category Vec(S,≤) in the following way.

We consider a Persistence Diagram DP
ms(S,≤) of Motivic Sheaves over a base algebraic semigroup S with an

associated partial order ≤ determined by the semigroup structure with the following vertices and edges:
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• Vertices in V (DP
ms(S,≤)) are given by elements of the form ( f : X → S,Y, k, w, s), where X is a K-variety

with a morphism f : X → S, j : Y ↪→ X is a closed embedding (endowed with the restriction f |Y : Y → S),
k ∈ Z+ is a non-negative integer, w ∈ Z is an integer, and s ∈ S.

• Edges in E(DP
ms(S,≤)) are of the following types:

(1) Geometric Morphisms: for a morphism of varieties ϕ : X → X ′ compatible with the maps to the base S and
the inclusions via commutative diagrams

X
ϕ ��

f

���
��

��
��

� X ′
f ′

����
��
��
��

S

and Y
ϕ|Y ��

j
��

Y ′

j ′
��

X
ϕ �� X ′

there corresponds an edge

( f : X → S,Y, k, w, s) → ( f ′ : X ′ → S,Y ′, k, w, s)

(2) Connecting Morphisms: every chain of closed embeddings Z ⊂ Y ⊂ X determines an edge

( f : X → S,Y, k + 1, w, s) → ( f |Y : Y → S, Z , k, w, s)

(3) Twist Morphisms: for every vertex ( f : X → S,Y, k, w) there is an edge

( f ◦ p1 : X × P1 → S,Y × P1 ∪ X × {0}, k + 2, w + 1, s) → ( f : X → S,Y, k, w, s)

(4) Persistence Morphisms: for all s′ ∈ S with s ≤ s′ an edge

( f : X → S,Y, k, w, s) → ( f : X → S,Y, k, w, s′).

A representation of the diagram DP
ms(S,≤) in Vec(S,≤) is then obtained as follows. Consider the map that assigns

to each vertex ( f : X → S,Y, k, w, (s, s′)) the functor

F : (S,≤) → Vec,

where we view (S,≤) as a thin category, given by

F(t) = Range(H∗( jt,s) : H∗(Xt ,Yt ;Q) → H∗(Xs,Ys;Q)),

for all t ≤ s in S and zero otherwise. The edges listed above are correspondingly mapped to homomorphisms of
the homology groups H∗(Xt ,Yt ;Q) and H∗(Xs,Ys;Q) with induced morphisms on Range(H∗( jt,s)).

6. Model Categories and Persistent Topology

In this section we address a question that was posed to us by Jack Morava, about developing a suitable model
structure for persistent topology.

6.1. Model Categories. We review quickly some basic definitions regarding model structures and categories that
we will be using in the following.

Recall that amorphism f in a category is called a retract of anothermorphism g iff there is a commutative diagram

A

f
��

�� C ��

g
��

A

f
��

B �� D �� B

where the horizontal compositions are the identities.
A model categoryM is a category together with three classes of morphisms: weak equivalences, fibrations and

cofibrations. These data must satisfy the following axioms:
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(1) M has all small limits and colimits;
(2) if in a composition g ◦ f of morphisms two among the three maps f, g, g ◦ f are weak equivalences, then the

third also is;
(3) if a map f is a retract of g, and if g is a weak equivalence, fibration, or cofibration, then f also is;
(4) given a commutative diagram

A ��

ι

��

X

p
��

B �� Y

a lift B → X exists if either ι is a cofibration and p is an acyclic fibration (i.e. both a fibration and a weak
equivalence) or if ι is an acyclic cofibration (i.e. both a cofibration and a weak equivalence) and p is a fibration;

(5) morphisms g inM can be factored as g = qi with q an acyclic fibration and i a cofibration or as g = pj with
p a fibration and j an acyclic cofibration.

Let M,N be model categories. A Quillen pair L : M ↔ N : R is an adjoint pair of functors (L , R) where L
preserves cofibrations and R preserves fibrations, see Section 1.6 of [6].

A model category M is cofibrantly generated iff:

(1) there is a set I of cofibrations ofM such that the domains of the elements of I are small with respect to I and
such that a map is an acyclic fibration iff it has the right lifting property with respect to I;

(2) there is a set J of acyclic cofibrations ofM (also with the property that the domains are small with respect to
J ) such that a map is a fibration iff it has the right lifting property with respect to J .

The set I is the set of generating cofibrations and the set J is the set of generating acyclic cofibrations (see
Section 1.7 of [6] for the terminology and for more details).

A model category M is called combinatorial if it is cofibrantly generated and as a category it is locally pre-
sentable, that is, it admits all small colimits and a set of small objects such that any object can be obtained as colimit
of a small diagram with objects in this set, see Section 2.7 of [6] for a more detailed exposition.

6.2. Model Structures on Categories of Functors. Given a small category C and a category D, we denote by
F(C,D) the category of functors, whose objects are the covariant functors F : C → D and morphisms the natural
transformations of these functors.

For example, the categorieswe considered in the previous sections of the formVec(S,≤) with (S,≤) a thin category
are categories of functors, and so are the Top(S,≤) considered in [11,12] as a setting for persistent topology.

It is known that if the categoryD has a model structure that is cofibrantly generated, then for any small category
C the category of functors F(C,D) also has a model structure, called the projective model structure, which is also
cofibrantly generated, see Section 11.6 of [22]. If the category D has a combinatorial model structure, then the
category of functors F(C,D) has a model structure, called the injective model structure.

In the projective model structure on F(C,D) weak equivalences and projective fibrations are those natural
transformations η : F → F ′ of functors F, F ′ : C → D such that for all objects X ∈ Obj(C), the morphisms
ηX : F(X) → F ′(X) in D are, respectively, weak equivalences and fibrations. Similarly, in the injective model
structure injective weak equivalences and injective cofibrations are natural transformations that are, object-wise in
C, weak equivalences and cofibrations in D.

6.3.Model Structure forDatasets andVietoris–Rips complexes.We consider here themain example of persistent
topology, which accounts for its use in topological data analysis, namely datasets with their associated Vietoris–Rips
complexes, and their persistent homology barcode diagrams.

We construct a model category for this setting in several steps:

(1) We start by considering the model structure on the categories of simplicial sets �S and of chain complexes
ChR over a commutative ring R. We denote byM either of these model categories.
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(2) We induce a projective model structure on the category of functors

M(S,≤) = F((S,≤),M),

where (S,≤) is a suitable poset, viewed as a thin category.
(3) We construct a category PE of finitely supported probability distributions in a fixed ambient metric space E

(e. g. an Euclidean space of sufficiently large dimension).
(4) We describe the assignment of Vietoris–Rips complexes to datasets as a functor V R : PE → M(S,≤).
(5) We use Dugger’s construction [15] of a universal model category associated to a small category to con-

struct a model category U (PE) for finitely supported probability distributions with a Vietoris–Rips functor
V R : U (PE) → M(S,≤).

6.3.1. Model Structure on Chain Complexes. Let ChR be the category of (unbounded) chain complexes over a
commutative ring R with chain maps as morphisms. The weak equivalences are the quasi-isomorphisms of chain
complexes. The fibrations are the chain maps ϕ• : C• → C ′• such that for each level n the map ϕn : Cn → C ′

n is
an epimorphism of R-modules. The cofibrations are chain maps that are level-wise monomorphisms of R-modules
with projective cokernel.

This is a projective model structure on ChR . One can similarly consider the injective model structure with the
same weak equivalences, but with cofibrations given by chain maps that are level-wise injective morphisms of
R-modules, while fibrations are level-wise epimorphisms with injective kernel.

These two model structures are Quillen-equivalent (Section 1.7 of [6]). The projective model structure on ChR
is cofibrantly generated (see Section 2.3.11 of [23] and Section 5 of [40]).

6.3.2. Model Structure on Simplicial Sets. The category of simplicial sets �S has a model structure (the Kan-
Quillen model structure) where the weak equivalences are morphisms that induce a weak homotopy equivalence
of topological spaces at the level of geometric realizations, the fibrations are Kan fibrations, and the cofibrations
are monomorphisms of simplicial sets. The Kan–Quillen model structure is cofibrantly generated, with generating
cofibrations the boundary inclusions and generating acyclic cofibrations the horn inclusions, see [6,18,19,22].

6.3.3. Model Structure on Indexed Diagrams. LetM denote either the category of chain complexes ChR with the
projective model structure, or the category of simplicial sets�S with the Kan–Quillen model structure.We consider
now the category M(S,≤) of (S,≤)-indexed diagrams inM, for a poset (S,≤). This is the same as the category

M = F((S,≤),M)

of covariant functors from the thin category (S,≤) to M with morphisms given by natural transformations. This
will include the case of M(R,≤) that will correspond to the usual Vietoris–Rips complexes of data sets, but we
will work with a more general (S,≤) that also incorporates in the Vietoris–Rips complex a cutoff according to a
probability (see Part IV of [8]).

Since the model categoryM is cofibrantly generated, the category of functorsM(S,≤) admits a projective model
structure that is also cofibrantly generated.

6.3.4. A Category of Data Sets. Consider the following small category PE. Its objects are triples (A, f, P) of a
finite set A, an embedding f : A ↪→ E in a fixed ambient metric space E, which we can assume to be an Euclidean
space of some fixed sufficiently large dimension, and a probability distribution P on A, which we can view as a
probability on E supported on the finite set f (A) through pushforward along the map f .

A morphism in MorPE((A, f, P), (A′, f ′, P ′)) is a pair (ϕ, ϕ̃) consisting of a continuous and Lipschitz map
ϕ̃ : E → E that restricts to a map ϕ : A → A′ through a commutative diagram

A
ϕ ��

f
��

A′

f ′
��

E
ϕ̃ �� E
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such that P ′ = ϕ∗P , the pushforward measure given by

(ϕ∗P)y =
∑

x∈ϕ−1(y)

Px , ∀y ∈ A′.

Thus morphisms inPE are subsets of the set of Lipschitz functions of E. The probability distribution P on the finite
set A should be thought of as assigning a degree of reliability to the points in the dataset, see the discussion in [8].
Points x ∈ A with a low probability Px should be regarded as errors in the data and discarded in the construction
of the associated simplicial complexes.

6.3.5. Vietoris–Rips Functors. Given an object (A, f, P) in PE, we construct a Vietoris–Rips complex
V R(A, f, P), obtained by considering, for any choice of an error threshold � ∈ [0, 1], the set of points
X� = {x ∈ f (A) ⊂ E | Px ≥ �}
and then constructing the Vietoris–Rips complex V R•(X�, t) for t ∈ R∗+ where V Rn(X�, t) is the span of all
unordered (n + 1)-tuples of points (x0, . . . , xn) in X� for which all the pairwise distances satisfy dist(xi , x j ) ≤ t .
The threshold � is aimed at discarding a number of outliers of small probability among the data.

Consider then a morphism (ϕ, ϕ̃) in PE, where ϕ̃ is a Lipschitz function ϕ̃ : E → E with Lipschitz constant
K > 0 and ϕ : A → A′ has m = miny∈A′ #ϕ−1(y). This map sends X� to X ′

m� = {y ∈ f ′(A′) | Py ≥ m�}.
Moreover, it sends a pair of points xi , x j ∈ X� with distance dist(xi , x j ) ≤ t to a pair of points ϕ̃(xi ), ϕ̃(x j ) ∈ X ′

m�

with distance dist(ϕ̃(xi ), ϕ̃(x j )) ≤ Kt . Thus, it induces a morphism

V R(ϕ, ϕ̃) : V R•(X�, t) → V R•(Xm�, Kt).

Consider the set S = R × [0, 1] with the partial order structure ≤ given by the product order (t,�) ≤ (t ′,�′)
iff t ≤ t ′ and � ≥ �′ in the natural ordering of the real numbers (with the reverse ordering on [0, 1]). We regard
(S,≤) as a thin category.

6.3.6. Proposition. The assignments (A, f, P) �→ V R(A, f, P) and (ϕ, ϕ̃) �→ V R(ϕ, ϕ̃) as above determine a
functor PE → M(S,≤).

Proof The inclusions X� ⊂ X ′
� for � ≥ �′ and the inclusions of the subset of points of X� with mutual distances

bounded above by t in the subset of points with mutual distances at most t ′ for t ≤ t ′ induce morphisms

j(t,�),(t ′,�′) : V R•(X�, t) → V R•(X�′ , t ′)

for (t,�) ≤ (t ′,�′) in the chosen ordering of S. Thus, the assignment

V R(A, f, P) : (t,�) �→ V R(t,�)(A, f, P) := V R•(X�, t)

determines a functor (S,≤) → M, that is, an object in M(S,≤). The morphisms V R(ϕ, ϕ̃) of Vietoris–Rips
complexes described above, for

(ϕ, ϕ̃) ∈ MorPE((A, f,P),(A′, f ′,P ′)),

determine natural transformations η(ϕ,ϕ̃) : V R(A, f, P) → V R(A′, f ′, P ′) of the functors V R(A, f, P),
V R(A′, f ′, P ′) : (S,≤) → M, with

η(ϕ,ϕ̃),(t,�) = V R(ϕ, ϕ̃) : V R•(X�, t) → V R•(Xm�, Kt)

satisfying

η(ϕ,ϕ̃),(t ′,�′) ◦ j(t,�),(t ′,�′) = j(Kt,m�),(Kt ′,m�′) ◦ η(ϕ,ϕ̃),(t,�),

for all (t,�) ≤ (t ′,�′) in (S,≤).
This completes the proof. ��
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In the special case where we fix � = 0, hence we consider all the points of f (A) ⊂ E regardless of the assigned
probabilities, then this construction recovers the usual Vietoris-Rips complexes as objects inM(R,≤) and the functor
V R : PE → M(R,≤) factors through the forgetful functor PE → DE whereDE is the category of unweighted data
sets with objects (A, f ) andmorphisms given by restrictions of Lifschitz functions ofE (with no conditions on prob-
abilities). TheVietoris-Rips functor then defines a functor V R : DE → M(R,≤). It is convenient to include the prob-
ability data in the construction. We will discuss a more general way of including probability data in the next section.

6.3.7. Dugger’s Universal Model Structure. Dugger’s construction in [15] assigns a universal model category
U (C) to a small category C, with the property that functors from C to a model category factor through U (C). The
main idea is thatU (C) extends the category C by formally adjoining homotopy colimits. A factorization of a functor
F : C → M, whereM is a model category, through another model category M̃with a functor J : C → M̃ consists
of a Quillen pair L : M̃ � M : R and a natural weak equivalence η : L ◦ J → F . (For a brief review of Quillen
pairs see Definition 1.6.3 and Proposition 1.6.4 of [6].) The main result of [15] shows that given a small category
C, there exists a closed model category U (C) with a functor J : C → U (C) such that any functor F : C → M to
a model category M factors, in the sense recalled above, through U (C).

6.3.8. Proposition. Let V R : PE → M(S,≤) be the Vietoris-Rips functor of Proposition 6.3.6, whereM(S,≤) has the
projectivemodel structure. There is aQuillen pair L : U (PE) � M : R andanaturalweak equivalenceη : L◦J →
V R that factor theVietoris–Rips functor through the universalmodel categoryU (PE) of the categoryPE of data sets.

Proof We apply the construction of [15] to the category PE and we obtain an associated universal model category
U (PE). The factorization property discussed above implies that the Vietoris-Rips functor factors through U (PE),
when we consider M(S,≤) endowed with a model structure. We have seen above that M(S,≤) always supports the
projective model structure, seen as the category of functors F((S,≤),M). ��

7. Persistence and �-Spaces

7.1. Setup.Wediscuss in this section how to adapt to the context of persistent topology another important homotopy-
theoretic construction: Segal’s�-spaces.Weconsider a (slightlymodified) setting developed in [30] that incorporates
probabilistic data in the construction of Segal’s�-spaces. They replace the finite probability distributions considered
in the previous section in the context of persistent topology of databases.

Our point of view here is somewhat different from the one proposed in [30] and more closely related to our
discussion of the Vietoris-Rips functor in the previous section. The point we want to stress here is that the Vietoris-
Rips functor, as we described it above, can be generalized using Segal’s �-spaces [41]. A �-space is a functor
F : �0 → �S∗ from the category of pointed finite sets to pointed simplicial sets. In particular, Segal showed in
[41] that to a category C with a categorical sum and a zero object one can associate a �-space obtained by assigning
to a finite pointed set (X, �) the nerveN�C(X, �) of the category�C(X, �) of summing functors� : P(X, �) → C,
where P(X, �) is the category with objects the pointed subsets of X and morphisms the pointed inclusions, and the
summing functors satisfy �X,�(S)⊕�X,�(S′) � �X,�(S ∪ S′) for all S, S′ ∈ P(X, �) with S ∩ S′ = {�}. A map of
pointed sets f : (X, �) → (Y, �′) induces on summing functors a transformation �C( f ) : �C(X, �) → �C(Y, �′)
given by �C( f )(�X,�)(S) = �X,�( f −1(S)), for all S ∈ P(Y, �′).

As in the previous section, we consider a category of databases, identified with finite sets endowed with prob-
abilities, embedded in an ambient metric space (a large dimensional Euclidean space E). To adapt the setting to
the pointed case required for the �-space formalism, we consider here pointed sets, so we work with the category
PE,∗ whose objects are triples ((X, �), f, P) of a finite pointed set (X, �) with a probability measure P and an
embedding f : X ↪→ E with f (�) = 0 the origin, in the Euclidean space E. Morphisms are pairs (ϕ, ϕ̃) of a
measure-preserving pointed map ϕ of finite sets and a Lipshitz self-map ϕ̃ of E that fixes the origin, which restricts
to ϕ on the images under the embeddings.
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Following the construction of the Vietoris-Rips complex in the previous section, we consider the poset (S,≤)

with S = R+ × [0, 1] with the natural order on t ∈ R+ and the reverse order on � ∈ [0, 1]. We then have the
following generalizations of the Vietoris-Rips functor with values in �S(S,≤).

7.2. Proposition. Any �-space FC : �0 → �S∗ determines a functor

F̃C : PE,∗ → �S(S,≤)∗ .

Proof Start with a �-space FC : �0 → �S∗ associated as above to a category C with sum and zero object.
We obtain from it a functor F̃C : PE,∗ → �S(S,≤)∗ in the following way. For s = (t,�) ∈ S we denote by

(Xt,�, �) the finite pointed set {�}∪Yt,� where Y = X �{�} and Yt,� is the subset of all the non-marked points of X
with mutual distances dE( f (x), f (x ′)) ≤ t and with probabilities Px ≥ �, as in the previous section. We can then
set F̃C((X, �), f, P)(s) = FC(Xs). For s ≤ s′ in S we have an inclusion Xs ↪→ Xs′ . This induces a transformation
as above �C(Xs) → �C(Xs′) on summing functors, hence a map FC(Xs) → FC(Xs′), hence we obtain a functor
F̃C((X, �), f, P) : (S,≤) → �S∗. Morphisms (ϕ, ϕ̃) : ((X, �), f, P) → ((X ′, �′), f ′, P ′) in PE,∗ induce by
restriction maps ϕs : Xs → Xs′ and corresponding maps on summing functors �C(Xs) → �C(Xs′) as above. ��

8. Further Directions

8.1. Large Scale Geometry. The idea of studying properties of metric spaces at large scales was introduced by
Gromov [20] in the context of groups of polynomial growth. It was later developed into a broad framework for
coarse geometry and large scale geometry, see [36,38]. Certain (co)homology functors for coarse geometry have
been introduced in [39], see also Chapter 7 of [36]. In particular, the coaresening of homology theories described in
Section 7.5 of [36] is based on the same notion of scale-dependent Vietoris–Rips complexes that we discussed above
in the setting of persistent homology. Thus, we expect that the approach to persistence in terms of Nori diagrams
that we advocate in this paper should be applicable also to the context of coarse geometry. It would be interesting
to compare it with the axiomatic formulations of coarse homology given in [32]. Among the interesting current
problems in coarse geometry are various topological and geometric rigidity conjectures (see Chapter 8 of [36]),
which can be approached via index theory methods, developed in the coarse geometry setting in [39]. It would be
interesting to investigate whether index theory in the coarse geometry context can be formulated in terms of a more
“motivic” view of large scale geometry and coarse homology.

8.2. Cantor-Like Barcodes and Fractality. It was obsevred in [25,37] how ind-pro objects over a category behave
as Cantor-like objects. This property was used in [29] to model algebro-geometrically, in terms of ind-pro varieties,
the energy-crystal momentum dispersion relation for Harper and almost Mathieu operators with irrational param-
eters, replacing the ordinary Bloch variety by an ind-pro object, which parallels the occurrence of the Hofstadter
butterfly at the level of the spectrum, with its Cantor set fractal structure. The density of states and the spectral
functions are obtained in [29] as periods on this “fractal-like” ind-pro version of the Bloch variety.

Within the context of this paper, one can consider the possibility of extending the persistence structures and
associated barcode diagrams to a larger class of objects obtained as limits of finite type objects in Vec(R,≤) taken in
such a way that the associated barcode diagrams become Cantor sets. It would be interesting to investigate whether
a larger class of physical models similar to the algebro-geometric formulation of Harper operators given in [29]
could be analyzed in terms of such limits of persistent homologies.

8.3. Khovanov Homology and Thin Poset (Co)homologies. In [28] Khovanov constructed a categorification of
the Jones polynomial in the form of a chain complex of graded vector spaces and corresponding homology whose
graded Euler characteristic is the Jones polynomial. The chain complex is constructed by assigning to a knot or link
diagram with N cossings the poset given by the N -cube and a functor from this thin category to the category of
graded vector spaces. The graded vector space assigned to a vertex of the cube corresponds to a smoothing of the
link where all the crossings are eliminated resulting in a union of k planar closed curves, and the graded dimension
of the associated vector space depends on k and on the degree of the vertex, see [4] for more details.
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A generalization of this construction is given in [14], where a chain complex and a Khovanov-type cohomology
H∗(F, S,A) are associated to any functor F : (S,≤) → A from a poset to an abelian category, where the poset
has a “thinness” property described as follows. One requires the existence of a grading r : S → Nwith r(x) ≤ r(y)
for x ≤ y, such that any pair x, y ∈ S with x ≤ y for which there is no z ∈ S with x < z < y should have
r(y) = r(x) + 1 and when r(y) = r(x) + 2 the set {z ∈ S : x < z < y} consists of exactly two elements. For
posets (S,≤) that satisfy this thinness property, given a functor F : (S,≤) → A one constructs a chain complex
with Ck(F, S,A) = ⊕r(x)=k F(x) and δk = ∑

c(x, y)F(x ≤ y), where the sum is over all pairs x, y with x ≤ y
such that there is no z with x < z < y, and c is a “balanced coloring”. This is a {±1} valued function on the set
of pairs as above, with the property that it has an odd number of −1’s on each “diamond” set {z ∈ S : x ≤ z ≤ y}
with r(y) = r(x) + 2. The thinness property of the poset and the balanced coloring property ensure that δ2 = 0
so that one obtains a chain complex. This general formalism is very suitable for introducing persistent versions of
Khovanov homology and related constructions and investigating the topological information about knots and links
that these persistent functors would capture.
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