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1. INTRODUCTION

The investigation of supersymmetric versions of the formalism of spectral triples and the spectral
action functional in noncommutative geometry has been an interesting question in the field, since the
early development of particle physics models based on the spectral action, [5, 9, 48]. Noncommutative
geometry versions of supersymmetric extensions of the standard model of elementary particles were
recently developed in [2]. In this paper we look at simpler supersymmetric models, based on 1D
Supersymmetry Algebras, and we show two ways of associating to them a spectral action model. In
the two construction we provide, the respective supersymmetric spectral action is computed in terms
of a Selberg trace formula or of a Poisson summation formula. We also discuss the relation between
these two models, which is determined by the relation between two different construction of arithmetic
algebraic curves, namely dessins d’enfant (Belyǐ curves) and origami.

More precisely, in order to construct spectral geometries (spectral triples) and spectral action func-
tionals associated to 1D supersymmetry algebras, we use the classification of [17] of these superalgebras
in terms of combinatorial data of Adinkra graphs, in combination with recent results of [14], which show
that an Adinkra graph determines geometric data:

• a compact Riemann surface X,

• a branched covering f : X → P
1(C) ramified at {0, 1,∞} (that is, a Belyi map),

• a spin structure on X,

• a structure of Super Riemann Surface on X.
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The first two property specify a dessin d’enfant, in the sense of Grothendieck, given by the graph f−1(I),
for I = [0, 1], embedded in X.

In the first construction we describe, we associate a spectral geometry to a given 1D supersymmetry
algebra, by considering the canonical spectral triple (C∞(X), L2(X,Ss, /Ds) on the Riemann surface X,
with spin structure s and spinor bundle Ss and Dirac operator /Ds, where X and s are determined by the
Adinkra of the 1D supersymmetry algebra, as in [14, 15].

We show that the associate spectral action functional of the spectral triple can be computed using
the Selberg trace formula for a finite index subgroup of a Fuchsian triangle group of the form ΔN,N,2.
For a special choice of the test function, the spectral action functional can be computed in terms of the
Selberg zeta function, which in turn can be computed with the method of [43], using the thermodynamic
formalism and the Ruelle transfer operator of a symbolic dynamics coding the geodesic flow on X.

We also show that, given the transfer operator for the Fuchsian triangle group ΔN,N,2, the one for a
finite index subgroup H ⊂ ΔN,N,2 can be obtained by extending the symbolic dynamics and the transfer
operator from the boundary of the upper half plane to its product with the coset space P = ΔN,N,2/H .

The results of [14, 15] show that the Adinkra classifying the 1D supersymmetry algebra also
determines on X the structure of a Super Riemann Surface. We refine the construction of the spectral
geometry and the spectral action functional by incorporating this supersymmetry, and replacing the
Dirac operator with the supersymmetric Dirac Laplacian, which is an operator proportional to DD̄,
where D = ∂θ + θ∂z on the Super Riemann Surface. The associated action functional is a super spectral
action computed as a supertrace of this operator, regularized by a test function. We show that this action
functional can be computed using the Selberg supertrace formula of [1].

The second construction of spectral geometries associated to 1D supersymmetry algebras that we
propose in this paper is based on origami curves.

We show, by using the construction in [40] of origami curves associated to dessins d’enfant, that the
Adinkra graph A of a 1D supersymmetry algebra determines uniquely an origami curve Y , in which the
graph A embeds, with a choice of 2n embeddings, where n = #E(A) is the number of edges.

This result is based on a general result we prove about Adinkras, which is a fibered product
construction. Since this result is general and of independent interest, we state it and prove it in a separate
section.

Using this fibered product construction, we then obtain the correspondence between Adinkras and
origami curves, with the origami corresponding to a given Adinkra described in terms of the associated
Belyǐ curve as in [14, 15] and the fibered product construction of [40], combined with the fibered product
of the given Adinkra with an Adinkra associated in a standard way to an elliptic curve.

We then use a result of [38] showing that, for all Riemann surfaces Y that admits a branched cover
p : Y → E, with E an elliptic curve (hence in particular for all origami curves), it is possible to construct
a family of metrics on Y , determined by compatibility conditions on the period matrix coming from the
existence of the branched cover map to E. For each metric in this family, it is shown in [38] how to
obtain an infinite family of eigenvalues and eigenvectors of the corresponding Laplacian. The resulting
spectrum and spectral action functional behave more like the spectral action of tori and its computation
can be approached in terms of a Poisson summation formula.

2. BACKGROUND MATERIAL ON SPECTRAL GEOMETRY AND ON ADINKRAS

In this section we provide a quick review of background material on Adinkras and on the spectral
action functional in noncommutative geometry that we will be using later in the paper. Since these
two topics pertain to different sub-communities in the world of mathematical physics, we prefer not to
assume that the reader of this paper is necessarily familiar with both.
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2.1. Supersymmetry and Spectral Geometry

Spectral triples were introduced in [9] as a generalization, in the context of noncommutative geom-
etry, of the usual notion of a Riemannian spin manifold. The data of a spectral triple (A,H,D) consist
of an associative algebra A, represented by bounded operators on a Hilbert space H, and a self-adjoint
operatorD with compact resolvent, playing the role of the geometric Dirac operator, satisfying a bounded
commutator condition with the elements of the algebra, which generalizes the usual fact that commuting
a smooth function with the Dirac operator gives Clifford multiplication by the differential of the function.
In the case of an ordinary compact smooth spin manifold X, these data are (C∞(X), L2(X,S), /D) with
S the spinor bundle and /D the Dirac operator on X, for a given choice of spin structure. The greater
flexibility of the axiomatization given by the spectral triples setting makes it possible to extend methods
of Riemannian geometry to spaces that are not ordinary manifolds, including quantum groups, fractals,
noncommutative spaces (like noncommutative tori), and the almost-commutative geometries used for
the construction of particle physics models. In particular, within this setting, there is a natural action
functional that can be associated to a spectral triple (with a finite summability assumption that reflects
the finite dimensionality of the geometry), the spectral action functional of [5]. This action functional is
constructed as a trace of the Dirac operator with a cutoff regularization,

Tr(f(D/Λ)) =
∑

λ∈Sp(D)

f(λ/Λ),

where f is a smooth approximation to a cutoff function and Λ > 0 is an energy scale. As shown in
[5] (see also Chapter 1 of [10]) this can be viewed as an action functional for gravity on the (possibly
noncommutative) space described by the underlying spectral triple (A,H,D). The spectral action
method was very successful in constructing particle physics models, when the underlying geometry is an
almost-commutative geometry (locally a product of an ordinary manifold and a finite noncommutative
space). Indeed, noncommutative geometry has developed a broad approach to the construction of
particle physics models and gravity models (see the overviews given in [48] and in the upcoming [36]).
These model provide extensions of the minimal standard model of elementary particle physics, as well
as modified gravity models in cosmology, obtained from the spectral action functional of a suitable
(noncommutative) geometry. We refer the reader to [48] for an overview of spectral action models of
particle physics. Within this context of physical application, the general question of how to incorporate
supersymmetric models in the spectral triples and spectral action formalism is very natural. A setting
for treating certain supersymmetric extensions of the standard model of elementary particles within
the spectral triples formalism has been recently developed in [2]. Their work showed to what extent
the Minimally Supersymmetric Standard Model (MSSM) can be incorporated and recovered from
this general approach. The results of [2] provided a novel and important insight on noncommutative
geometry and supersymmetry. In this context it is interesting to investigate examples of spectral triples
and spectral action functionals associated to supersymmetry algebras. This question is the motivation
for the present paper, where we consider a different type of supersymmetric models, much simpler in
nature than the MSSM of particle physics, namely the 1-dimensional supersymmetry algebras, or
(1|N)-Superalgebras.

As described in the Introduction we will use the classification of [17] in terms of Adinkra graphs,
and the results of [14, 15] associating to an Adinkra graph a dessin d’enfant and a Belyi map, in order
to associate to a supersymmetry algebra a geometric object, a Riemann surface, or a Super Riemann
Surface with a spin structure. We then use this geometric object to obtain a spectral triple associated
to the supersymmetry algebra. It is given by the standard spectral triple of this spin geometry. We
will compute the associated spectral action functional in terms of a Selberg trace formula. We also
will provide a second construction of a spectral triple, which is based on the relation between dessins
d’enfant and origami curves as in [40], to construct another related spectral geometry and compare their
properties.

While the models we consider here are not directly related to the particle physics models considered in
[2], they provide a rich class of examples of physical models with supersymmetry that have an associated
spectral geometry and spectral action functional. It would be interesting to further investigate how this
point of view based on spectral triples and the spectral action relates, for example, to the real homotopy
theory approach of [29], though this is beyond the scope of the present paper.
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Before we proceed to our main results, we need to recall also some main facts we will be using about
1D Supersymmetry Algebras and Adinkras.

2.2. Supersymmetry Algebras

We recall here the notion of 1D Supersymmetry Algebras and in the following subsection we
recall their description in terms of Adinkras obtained in [17]. In the theory of Supersymmetry, the
possible symmetries of a 4-dimensional quantum field theory (viewed as symmetries of the S-matrix)
are classified by the Haag-Lopuszanski-Sohnius theorem, [24]. This result shows that the possible
symmetries consist of internal symmetries and a nontrivial extension of the Poincaré algebra: the
supersymmetry algebras.

The off-shell supersymmetry algebras we will be considering here correspond to the case of a 1-
dimensional space-time, with time coordinate t, and zero-dimensional space (supersymmetric quantum
mechanics). We consider the (1|N) Superalgebras, generated by operators Q1, Q2, . . . , QN and H ,
where the Qk, k = 1, . . . , N are the supersymmetry generators, and H = i∂t. These operators are
required to satisfy the following commutation relations:

[Qk,H] = 0 (2.1)

{Qk, Q�} = 2δk�H. (2.2)

We consider representations of these operators, acting on bosonic and fermionic fields. Let
{φ1, . . . , φm} be a set of bosonic fields, given by commuting real valued functions, and {ψ1, . . . , ψm}
be a set of fermionic fields, given by anticommuting real (Grassman variable) valued functions. The
off-shell condition means that the only relations are given by (2.1) and (2.2) and no other equation holds
imposing additional relations between these fields. We consider operators acting as

Qkφa = c∂λ
t ψb (2.3)

Qkψb =
i

c
∂1−λ
t φa, (2.4)

for parameters c ∈ {−1, 1} and λ ∈ {0, 1}. These representations clearly satisfy the relations (2.1) and
(2.2).

2.3. Adinkras

Recently, a graphical method for classifying the supersymmetry algebras was introduced by Faux and
Gates, [17]. The resulting decorated bipartite graphs are called Adinkras. The mathematical and physical
properties of Adinkras were extensively studied in recent years, see for instance [13] and [14, 15]. A good
introduction to Adinkras for mathematicians is given in [49]. We recall here briefly a few basic facts about
Adinkras, following the aforementioned references.

Let A be a finite graph that is simple, namely it has no looping edges and no parallel edges. We denote
by V (A) and E(A) the sets of vertices and edges of A.

An N-dimensional chromotopology is a finite connected simple graph, A such that:

• A is N-regular (all vertices have valence N ) and bipartite.

• The elements of E(A) are colored by N colors, represented by elements of the set {1, 2, . . . , N}.

• Every vertex is incident to exactly one edge of each color.

• For any distinct colors i and j, the edges in E(A) with colors i and j form a disjoint union of
4-cycles.
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In superalgebras, the two sets of vertices that form the bipartition correspond to “bosons" and
“fermions". We color them white and black, respectively.

A ranking on a graph A is a partial ordering on the set V (A), determined by a function, h : V (A) →
Z. One can represent the ranking on a graph as vertical placement of the vertices, that is, as a height
function.

A dashing on a graph A is a function d : E(A) → Z/2Z that assigns to each edge a value 0 (solid) or
1 (dashed). A 4-cycle in a graph has an odd-dashing if it has an odd number of dashed edges. A colored
graph whose 2-colored 4-cycles all have an odd-dashing is called well-dashed.

An Adinkra is a well-dashed, N-dimensional chromotopology, with a ranking on its bipartition, such
that the bosons have even ranking and the fermions have odd ranking. We call any chromotopology
Adinkraizable if it can be well-dashed and it admits a well-defined ranking as above.

The results of [17] showed that Adinkras can be used to classify the one-dimensional superalgebras
and to generate large classes of significant examples of such algebras. We just recall here briefly how one
encodes a superalgebra of the form (2.3) and (2.4) as an Adinkra graph.

Given {φ1, . . . , φm} (bosonic fields) and {ψ1, . . . , ψm} (fermionic fields) with a representation of the
form (2.3) and (2.4), with c ∈ {−1, 1} and λ ∈ {0, 1}, as above, one constructs an Adinkra graph with
a set of white vertices corresponding to the set of bosonic fields and time derivatives and a set of black
vertices corresponding to the fermionic fields and time derivatives. An edge is assigned between a pair
{va, vb} of vertices for each relation of the form (2.3) or (2.4), with the rule that the edge is oriented
from the white to the black vertex in the pair if λ = 0 and from the black to the white vertex if λ = 1.
Moreover, the edge is dashed if c = −1 and solid if c = 1. This orientation is obtained by effect of the
ranking function h : V (A) → Z described above. We can summarize these rules on ranking and dashing
in the following table.

Action of QI Adinkra Action of QI Adinkra

QI

⎡

⎣ψB

φA

⎤

⎦ =

⎡

⎣iφ̇A

ψB

⎤

⎦ QI

⎡

⎣ψB

φA

⎤

⎦ =

⎡

⎣−iφ̇A

−ψB

⎤

⎦

QI

⎡

⎣φA

ψB

⎤

⎦ =

⎡

⎣iψ̇B

φA

⎤

⎦ QI

⎡

⎣φA

ψB

⎤

⎦ =

⎡

⎣−iψ̇B

−φA

⎤

⎦

We refer the reader to [17], and [11–15] for more details on the correspondence between Adinkras
and one-dimensional superalgebras.

2.3.1. Adinkras from codes. We also recall a general useful construction of Adinkras from [11, 12]. The
simplest example of an Adinkra is provided by the N-cube AN , whose vertices, identified with binary
words of length N , one can think of as the Hamming cube. After labeling the 2N vertices with the
corresponding binary words, one connects with an edge a pair of vertices whose words differ by a single
entry (words with Hamming distance 1). The resulting graph can be colored by assigning color i to an
edge connecting vertices whose words differ at the i-th binary digit. A ranking is obtained by defining
h : V (A) → Z as h(v) = # of 1’s in v. The bipartion into bosons and fermions is obtained by separating
vertices with even ranking (bosons) and odd ranking (fermions). There are then 22

N−1 possible choices
of dashings. An example of a well-dashed 2-cube is given in Figure 1.

It was shown in Theorem 4.4 of [11] (see also [12]) that all Adinkraizable chromotopologies can be
obtained from the cube Adinkras via linear codes. Theorem 4.5 of [49] gives a slightly more general
version of this result that includes multigraphs. More precisely, a linear binary code L of dimension k is
a k-dimensional linear subspace of the Z/2Z-vector space (Z/2Z)N . The weight wt(c) of codewords

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 11 No. 3 2019
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Fig. 1. 2-cube Adinkra.

c ∈ L counts the number of 1’s in the codeword. A code L is even if every c ∈ L has even weight and
doubly-even if the weight of every codeword is divisible by 4. One can associate a chromotopology
A = AN/L to the quotient space (Z/2Z)N/L by taking as set of vertices V (A) the equivalence class
of vertices, with an edge of color i connecting two classes [v] and [w] ∈ V (A) whenever there is at
least one edge of color i between a vertex v′ ∈ [v] and a vertex w′ ∈ [w]. The properties of the code L
determine properties of the resulting chromotopology A = AN/L. In particular, the following properties
are significant to the construction of Adinkras:

• the graph A has a loop iff L contains a codeword of weight 1.

• the graph A has a double edge iff L contains a codeword of weight 2.

• the graph A can be ranked iff A is bipartite, which is true iff L is an even code.

• the graph A can be well-dashed iff L is a doubly-even code.

The main result of Theorem 4.4 of [11] then shows that Adinkraizable chromotopologies are exactly
quotients A = AN/L, with L is a doubly-even linear code.

One often denotes by AN,k = AN/L an Adinkra obtained from a code with k = dim(L).

2.4. Adinkras and Dessins d’Enfant
In the recent papers [14, 15] the authors uncovered a surprising connection between Adinkras and

Grothendieck’s theory of dessins d’enfants by showing that the data of an Adinkra diagram determine a
Belyi pair.

According to Belyi’s theorem [3], a smooth projective algebraic curve X is defined over a number
field if and only if it admits a Belyi map, that is, a branched cover f : X → Ĉ = P

1(C) that is ramified
only at the points 0, 1, and ∞. Moreover, let X be a smooth algebraic curve defined over a number field
and let f : X → Ĉ be a Belyi function. Denote by p, q, r, positive common multiples of the orders of
ramifications of f at 0, 1,∞, respectively, so that p−1 + q−1 + r−1 < 1. Let Δ = Δp,q,r be the Fuchsian
triangle group of signature (p, q, r). Then it is known (see [8]) that there exists a uniformization
Φ : H → X = H\H, where H is the hyperbolic upper half plane, ramified at f−1{0, 1,∞}, and where
the uniformizing group is a finite index subgroup H ⊂ Δ. The Belyi function then gives a branched
covering f : X = H\H → Ĉ = Δp,q,r\H. If p, q, r are the ramification numbers at every point of f−1(0),
f−1(1), f−1(∞), respectively, then Φ is the unramified universal cover of X.
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2.4.1. Dessins d’enfant and Fuchsian triangle groups. Let X be a compact Riemann surface and let
Ĉ = P

1(C) denote the Riemann sphere. A Belyi map f : X → Ĉ is a meromorphic function, unramified
outside of the set {0, 1,∞}. A dessin d’enfant (sometimes simply referred to as dessin) is a bipartite
graph Γ embedded on the surface X, obtained by placing white vertices at the points f−1(1), black
vertices at the points f−1(0), and curvilinear edges along the preimage f−1 (Io) of the open interval
Io = (0, 1). A Belyi pair (X, f) is a Riemann surface X equipped with a Belyi map f . It should be noted
that every Belyi pair defines a dessin and every dessin defines a Belyi pair.

Example 2.1. Consider the function f(x) = − (x−1)3(x−9)
64x . Figure 2 shows the associated dessin.

Fig. 2. The dessin corresponding to the equation f(x) = − (x−1)3(x−9)
64x

.

It is proved in [14, 15] that, given an Adinkra AN,k, one can associate to it a dessin. This is
achieved by constructing an embedding of AN,k on a compact Riemann surface XN,k, of genus g =

1 + 2N−k−3(N − 4) for N ≥ 2 and g = 0 for N < 2. The surface XN,k is constructed by attaching 2-
cells to all consecutively colored 4-cycles of the Adinkra. Moreover, it is shown in [14, 15] how to obtain
the Belyi pair f : XN,k → Ĉ with the Adinkra as dessin graph.

It was shown in [45] that a smooth projective algebraic curve is defined over a number fields if and
only if, as a compact Riemann surface, it can be triangulated by equilateral triangles. More precisely,
such a triangulation consists of an even number of open cells T±

j homeomorphic to Euclidean triangles.

The triangulation of X lifts to a triangulation of the universal cover H, such that, for each triangle T̃

in H there are reflections σ1, σ2, σ3 in the sides of T̃ that are anti-holomorphic homeomorphisms of H
preserving the triangulation, mapping the triangle T̃ to its neighbor sharing the side around which the
reflection happens, and switching orientation. This is called a covered symmetric triangulation (see
[8]). Given a Belyi map f : X → Ĉ, a covered symmetric triangulation is obtained by considering the
two hemispheres H± with H

+ ∪H
− = P

1(C)� P
1(R) and the triangles T±

j in X given, respectively, by
the connected components of f−1(H±).

Lemma 2.2. For N > 4, an Adinkra AN,k determines a covered symmetric triangulation on the
Riemann surface XN,k with Fuchsian triangle group Δ = ΔN,N,2.

Proof. As shown in [14, 15] the Belyi map f : XN,k → Ĉ has ramification of order N at 0 and 1 and
ramification of order 2 at ∞, hence according to [8] the Fuchsian triangle group associated to the
dessin is ΔN,N,2. The condition N > 4 ensures the hyperbolic condition 2

N + 1
2 < 1 for the triangle

Fuchsian groups. The remaining cases with N ≤ 4 correspond to genus zero and genus one surfaces.
The preimages f−1(H±) under the Belyi maps constitute the triangles T±

j of the covered symmetric

triangulation. In XN,k the pairs of triangles T+
j ∪ T−

j constitute the 2-cells attached to AN,k along

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 11 No. 3 2019



230 MARCOLLI, ZOLMAN

consecutively colored 4-cycles in the Adinkra: the diagonal along which the two triangles are joined lies
in the preimage under the Belyi map f of the two arcs (1,∞) and (∞, 0) inP

1(R) = P
1(C)� (H+ ∪H

−),
with the preimage of the point ∞ lying in the middle of the 2-cell.

2.5. Dimers and Spin Curves

The starting point for the construction of spectral triples associated to 1D-supersymmetry algebras
is the work of Cimasoni and Reshetikhin [7] on dimers on surface graphs and spin structures.

A perfect matching on a bipartite graph A is a collection of edges such that every vertex is incident
to exactly one edge of the collection. Perfect matchings are also referred to as dimer configurations. As
observed in [14, 15], if A is an Adinkra, then taking the set of edges of a fixed color in A determines a
dimer configuration.

Let A be a graph embedded on a compact Riemann surface X. A Kasteleyn orientation is an
orientation of the edges of A with the property that, when going around the boundary of a face
counterclockwise, one goes against the orientation of an odd number of edges. As observed in [14, 15]
an odd dashing of an Adinkra AN,k determines a Kasteleyn orientation, when viewing the Adinkras as
embedded in a Riemann surface, AN,k ↪→ XN,k, as recalled above.

A vertex change operation on an Adinkra is a transformation that interchanges the dash/solid
coloring of each edge incident to a chosen vertex. Two choices of dashing on an Adinkra are equivalent
if they can be obtained from one another by performing a sequence of vertex changes.

It is shown in [7] (see also [14, 15]) that a dimer configuration on an embedded graph A on a Rie-
mann surface X determines an isomorphism between Kasteleyn orientations on A (up to equivalence)
and spin structures on X. Equivalent dashings give equivalent orientations, which correspond to the
same spin structure on X.

3. FIBERED PRODUCT OF ADINKRAS

Before proceeding with our construction of the spectral geometries, we prove in this section a general
result on fibered products of Adinkras. This will be used in §5 to obtain our second spectral geometry
from the first one described in §4 together with a simple construction of Adinkras associated to elliptic
curves. Since the existence of a fibered product construction for Adinkras is general and of independent
interest, we present the result separately in this section.

Different combinatorial objects can be obtained from Adinkras via various types of operations on
graphs. For instance, a Cartesian product (with additional structure that prescribes coloring, ranking,
and dashing) was considered in [20, 27] and [28], for 2D-supersymmetry algebras. These products of
Adinkras are defined in the following way. Let A1 = AN1,k1 and A2 = AN2,k2 be two Adinkras with colors
1, 2, . . . , N1 and N1 + 1, N1 + 2, . . . , N1 +N2, respectively. The product A1 ×A2 is defined as follows.
Let u, v ∈ V (A1) and u′, v′ ∈ V (A2). We denote the presence of an edge between vertices v1, v2 with
the notation v1 ∼ v2. We also denote the color of a vertex by ci(v) ∈ {−1, 1}, where 1 is white and −1 is
black. For (u, u′), (v, v′) ∈ V (A1 ×A2) we have (see [28]):

• (u, u′) ∼ (v, v′) with color i if and only if:

– u ∼ v with color i and u′ = v′

– or u = v and u′ ∼ v′ with color i.

• the vertex color of (u, u′) is given by c(u, u′) = c1(u)c2(u
′).

• the ranking of (u, u′) is given by h(u, u′) = h1(u) + h2(u
′), where hi are the rankings of each

Adinkra.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 11 No. 3 2019



ADINKRAS 231

• the dashing d((u, u′) ∼ (v, v′)) of edges in the product Adinkra is given by d1(u ∼ u′), the
dashing of A1, or by d2(v ∼ v′) + h1(u) mod 2, with d2 the dashing of A2, in the two cases of
(u, u′) ∼ (v, v′) with u′ = v′ and u = v, respectively.

We consider here a different kind of product of Adinkras, which we view as a fibered product, because
they will correspond to taking fibered products of the corresponding Riemann surfaces fibered over the
Belyi maps.

Definition 3.1. Let A1 and A2 be Adinkras, with N1 and N2 the respective number of colors. Let
fi : Xi → Ĉ, for i = 1, 2, be the associated Belyi maps. The fibered product A = A1 ×I A2, with
I = [0, 1], is defined as the graph with set of vertices V (A) = V0(A1)× V0(A2) ∪ V1(A1)× V1(A2),
where Vi(Aj) denotes the vertices of Aj that are colored i in the bipartition. The edges are given
by all pairs of edges (e1, e2) ∈ E(A1)× E(A2) with endpoints in V (A). These are all edges in
E(A1)× E(A2), since the Ai are bipartite.

The graph obtained in this way has a natural interpretation in terms of the fibered product of the
assiciated Riemann surfaces, fibered over the Belyi maps.

Lemma 3.2. Let ANi,ki , with i = 1, 2 be two Adinkras, and let fi : XNi,ki → Ĉ be the associated
Belyi maps. Let Y be the desingularization of the fibered product Ỹ = XN1,k1 ×̂C

XN2,k2 fibered

along the Belyi maps, with f : Y → Ĉ the resulting branched cover. The graph A = AN1,k1 ×I

AN2,k2 can be identified with the preimage f−1(I) in Y .

Proof. The set of vertices V (A) is given by V (A) = f−1
1 (0) × f−1

2 (0) ∪ f−1
1 (1)× f−1

2 (1), hence it cor-
responds to the locus {(z, w) ∈ XN1,k1 ×XN2,k2 : f1(z) = f2(w) = 0} ∪ {(z, w) ∈ XN1,k1 ×XN2,k2 :
f1(z) = f2(w) = 1} ⊂ XN1,k1 ×̂C

XN2,k2 . The edges E(A) can be identified with the set {(z, w) ∈
XN1,k1 ×XN2,k2 : f1(z) = f2(w) ∈ I} ⊂ XN1,k1 ×̂C

XN2,k2 .

Lemma 3.3. The fibered product A = A1 ×I A2 is a chromotopology with a ranking h : V (A) → Z,
which send white/black vertices of the bipartition to even/odd numbers. When the numbers of
edge colorings N1 and N2 are coprime, there is a unique such chromotopology structure, while
otherwise there are several inequivalent structures, corresponding to the different choices of
colorings. One of these corresponds to the embedding A = AN1,k1 ×I AN2,k2 � f−1(I) in Y , while
the other choices correspond to other surfaces.

Proof. The graph A is bipartite with V0(A) = V0(A1)× V0(A2) and V1(A) = V1(A1)× V1(A2). The
edges can be colored by N = lcm{N1, N2} colors, with an edge (e1, e2) colored by (c1(e1), c2(e2), with
ci the coloring on Ai. Note that, when going around a vertex in X1, the colors go cyclically from 1
to N1, and similarly on X2, with colors cyclically ordered from 1 to N2. Thus, on the fibered product,
the elements ci in the pairs (c1, c2) have periodicities Ni. This implies that, when N1 and N2 are not
coprime, the different orbits determine different choices of rainbows of colors, hence different possible
resulting chromotopologies. Since the graphs Ai are bipartite, the set of edges in A between two vertices
v = (v1, v2) and w = (w1, w2) consists of the product Ev1,v2(A1)× Ew1,w2(A2) of the sets of edges in
Ai connecting the two respective vertices. Since the Ai have no parallel edges, there is only one edge
in each set Ev1,v2(A1) = {e1} and Ew1,w2(A2) = {e2}, hence there is a unique e = (e1, e2) connecting
v = (v1, v2) and w = (w1, w2) inA, with color c(e) = (c1(e1), c2(e2)). Thus, each vertex inA has valence
N and is incident to exactly one edge of each color. Given two distinct colors (i, j) �= (i′, j′), consider
the set of edges of A with color either c(e) = (i, j) or c(e) = (i′, j′). The condition (i, j) �= (i′, j′) occurs
when either i �= i′ or when i = i′ and j �= j′. In the first case, the set we are considering consists of

(c−1
1 (i) ∪ c−1

1 (i′))× E(A2).
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In this case, the left factor consists of a disjoint union of 4-cycles, hence the product set also does, as it
is a disjoint union of a copy of such a disjoint union of 4-cycles, for each choice of an element of E(A2).
In the second case, the set we are considering consists of

c−1
1 (i)× (c−1

2 (j) ∪ c−1
2 (j′)).

Again the second factor is a disjoint union of 4-cycles, hence the product also is. This shows that the
fibered product A is an N-chromotopology. To show that it is an Adinkra, we need to check that it is
well-dashed and it has a ranking h : V (A) → Z with h(V0(A)) ⊂ 2Z and h(V1(A)) ⊂ 2Z+1. We obtain
a ranking with the desired property by setting h(v1, v2) = h1(v1) · h2(v2), where hi : V (Ai) → Z are the
rankings of the Adinkras Ai. Since h1(v1) and h2(v2) are either simultaneously even or simultaneously
odd for (v1, v2) ∈ V (A), their product is, respectively, even on V0(A) and odd on V1(A).

As an example where the construction above gives rise to different surfaces with different rainbows of
colors, consider the case where both A1 and A2 are isomorphic to the same Adinkra with N1 = N2 = 8,
and with 16 vertices (8 bosons and 8 fermions). Then the construction of Lemma 3.3 above determines 8
different surfaces, each with 8 colors, corresponding to the different choices of c1 − c2 mod 8, rather than
a single surface with 64 different colors. Indeed, a rainbow of 64 colors would not be compatible with the
Adinkra structure, which would require, in that case, at least 232 vertices rather than 128 (64 bosons and
64 fermions). (This example was suggested to us by Kevin Iga.)

In the rest of this section, when we refer to “the fibered product chromotopology" we mean the choice
of rainbow of colors in Lemma 3.3, such that the resulting chromotopology corresponds to the Riemann
surface Y with Belyi map f : Y → Ĉ, with the embedding A = AN1,k1 ×I AN2,k2 � f−1(I).

The dashings di on the Adinkras Ai, do not immediately extend to a dashing on the fibered product
Adinkra A = A1 ×I A2 constructed as above, unlike the case of the Cartesian product structure recalled
above, considered in [28]. To see where the problem lies, notice that the 2-colored 4-cycles in A
correspond to choices of two colors (i, j) �= (i′, j′). This corresponds to the cases i = i′ and j �= j′, or
i �= i′ and j �= j′, or i �= i′ and j = j′. In the first two cases the dashing d1 would give a dashing on A
with the property that each of these 2-colored 4-cycles has an odd number of dashed lines, and similarly
the dashing d2 would work for the second and third case, but each separately would not cover all cases,
as the remaining cases would have an even number of dashings.

However, as shown in [14, 15] using the result of [7] on Kasteleyn orientations and spin curves,
the choice of a dashing on an Adinkra AN,k determines a dimer configuration, hence a spin structure
on the curve XN,k, in such a way that equivalent dashings determine the same spin structure. Thus,
it is possible to show that the dashings on the two Adinkras Ai determine a choice of dashing (up
to equilavence) on the fibered product A = A1 ×I A2 by showing that a choice of spin structures on
the respective Riemann surfaces Xi determines uniquely a choice of a spin structure on the resulting
Riemann surface Y obtained by desingularizing Ỹ = X1 ×̂C

X2.

Lemma 3.4. There is a one-to-one correspondence between pairs of dashings up to vertex change
equivalence on the Adinkras Ai and dashings on the fibered product chromotopology A = A1 ×I

A2 up to vertex change equivalence.

Proof. Because of the one-to-one correspondence between dashings up to vertex change equivalence
on a chromotopologyA and spin structures on the associated Riemann surface X with A ⊂ X, it suffices
to show that there is a one-to-one correspondence between pairs (s1, s2) of spin structures on X1 and
X2 and spin structures on the fibered product Y . It is well known that there are exactly 22g different spin
structures on a Riemann surface of genus g. Thus, we only need to verify the relation between the genera
g1 = g(X1) and g2 = g(X2) and the genus g = g(Y ). Since the base space Ĉ of the fibered product is
simply connected, the cohomology of the fibered product Ỹ = X1 ×̂C

X2 is computed by the Eilenberg-
Moore spectral sequence with Ep,q

2 = Torp,q
H∗(̂C)

(H∗(X1),H
∗(X2)), converging to H∗(X1 ×̂C

X2). This

reduces to computing H∗(X1)⊗H∗(̂(C)
H∗(X2) as a tensor product of graded modules over a graded

ring. This gives H1(Ỹ ) � Z
2(g1+g2), hence the genera add, g = g1 + g2.
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4. SPECTRAL GEOMETRY FROM ADINKRAS, DESSINS, AND SELBERG TRACE
FORMULA

In this section we associate to a 1D supersymmetry algebra a spectral triple and a (supersymmetric)
spectral action functional, through the construction of [14, 15] of the Riemann surface XN,k associated
to an Adinkra graph AN,k. We show that the spectral action can be computed using the Selberg trace
formula. We then refine the construction to include the Super Riemann Surface structure on XN,k

determined by the Adinkra, and we relate the resulting super spectral action to the Selberg supertrace
formula of [1].

4.1. Selberg Trace Formula and the Laplacian Spectral Action

Let X = Γ\H be a compact hyperbolic Riemann surfaces of genus g = g(X) ≥ 2, uniformized by
a Fuchsian group Γ ⊂ SL2(R), endowed with the hyperbolic metric of constant curvature −1 induced
from the hyperbolic upper half place H, with Γ acting by isometries.

Definition 4.1. Let {λj =
1
4 + r2j}j∈Z+ be the spectrum of the Laplacian Δ in the hyperbolic metric

of constant curvature −1 on X. For f ∈ S(R) a rapidly decaying even test function, the Laplacian
spectral action on X is given by

SΔ,f (Λ) :=

∞∑

j=0

f(rj/Λ). (4.1)

Let GX denote the set of oriented closed geodesics on X. For an oriented closed geodesic γ ∈ GX let
�(γ) denote the length and Nγ = exp(�(γ)) the norm. Moreover, let λ(γ) := �(γ0) where γ0 is the unique
oriented primitive closed geodesic, such that γ = γm0 for some m ∈ N. The Laplacian spectral action can
be computed via the Selberg trace formula.

Lemma 4.2. Let h ∈ C∞(R) be an even compactly supported test function. We assume that
supp(h) = [−1, 1]. Let f ∈ S(R) be the rapidly decaying even test function obtained as Fourier
transform f = ĥ. The Laplacian spectral action on X satisfies

SΔ,f (Λ) = Λ2(g(X) − 1)

∫ ∞

0
rf(r) tanh(Λπr) dr + Λ

∑

γ∈GX,Λ

λ(γ)

N
1/2
γ −N

−1/2
γ

h(Λ logNγ), (4.2)

where the sum on the right hand side is over the set of oriented closed geodesics

GX,Λ = {γ ∈ GX : �(γ) ≤ 1

Λ
}. (4.3)

Proof. The Selberg trace formula gives

∞∑

j=0

f(rj) =
A(X)

4π

∫ ∞

0
rf(r) tanh(πr) dr +

∑

γ∈GX

λ(γ)

N
1/2
γ −N

−1/2
γ

h(logNγ), (4.4)

where A(X) is the area of the surface X, which by Gauss-Bonnet satisfies A(X) = 4π(g − 1), with
g = g(X) ≥ 2 the genus of X. The expression (4.2) is then an immediate consequence of (4.4), after
replacing f(r) with fΛ(r) = f(r/Λ) and h(s) with hΛ(s) = Λh(Λs), so that fΛ = ĥΛ. Since the function
h has support the interval [−1, 1], the function hΛ has support [−1/Λ, 1/Λ], hence only the geodesics γ
in the set GX,Λ contribute to the sum.
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Corollary 4.3. Let CΓ denote the set of conjugacy classes of primitive simple hyperbolic elements
in the Fuchsian group Γ. For P ∈ CΓ, let tP denote the translation length of an element of P . The
Laplacian spectral action on the hyperbolic surface X = Γ\H satisfies

SΔ,f (Λ) = Λ2(g(X) − 1)

∫ ∞

0
rf(r) tanh(Λπr) dr

+ Λ
∑

P∈CΓ

arccosh(
tP
2
)

∑

�∈SΛ(P )

h(Λ2� arccosh( tP2 ))

sinh(� arccosh( tP2 ))
,

(4.5)

where, for a given P ∈ CΓ, the sum is over the finite set

SΛ(P ) = {� ∈ N : 2� arccosh(tP /2) ≤ 1/Λ}. (4.6)

Proof. Since all elements in Γ� {1} are hyperbolic, it is well known that the Selberg trace formula (4.4)
can be rewritten equivalently in terms of conjugacy classes CΓ as

∞∑

j=0

f(rj) = (g(X) − 1)

∫ ∞

0
rf(r) tanh(πr) dr

+
∑

P∈CΓ

arccosh(
tP
2
)

∞∑

�=1

h(2� arccosh( tP2 ))

sinh(� arccosh( tP2 ))
.

(4.7)

Replacing f(r)with fΛ(r) = f(r/Λ) and h(s) with hΛ(s) = Λh(Λs), we obtain (4.5). Since the function
h has support [−1, 1], for a given P ∈ CΓ, the only integers � contributing to the sum are those in the set
SΛ(P ).

4.2. The Dirac Spectral Action on a Compact Riemann Surface

In noncommutative geometry, instead of working with the Laplacian Δ and the Laplace spectral
action discussed above, one considers the Dirac operator D and the Dirac Laplacian D2. Indeed, Dirac
operators are abstracted to the more general setting of spectral triples (A,H,D), which generalize to
possibly noncommutative settings the spin geometry (C∞(X), L2(X,S),D), with S the spinor bundle
of a compact Riemannian spin manifold X, see [9] for more details. The spectral action functional, for
a Dirac operator D of a spectral triple, is defined (see [5]), for f ∈ S(R) an even rapidly decaying test
function, as

SD,f (Λ) := Tr(f(D/Λ)). (4.8)

In the case of a compact Riemann surface X of genus g ≥ 2, with the constant negative curvature
hyperbolic metric, the behavior of the spectral action functional (4.8) is similar to the behavior of the
Laplacian spectral action discussed in the previous subsection. The effect on the Selberg trace formula
of replacing the Laplacian Δ by the Dirac Laplacian D2 is discussed in [4]. When we adapt these results
to the argument given in the previous subsection, we obtain the following result for the spectral action
of a hyperbolic surface.

In the case of the Dirac operator, the choice of the spin structure on the Riemann surface X is encoded
in the choice of the spinor bundle S over X. A vector bundle on X corresponds to a trivial pullback bundle
on the universal cover, π∗(S) = H× S, with S the fiber of S, together with the datum of a transition
function σ : H× Γ → GL(S), where Γ ⊂ PSL2(R) is the uniformizing Fuchsian group, so that spinor
sections of S are identified with functions ψ : H → S with ψ(γz) = σ(z, γ)ψ(z). The transition function
σ can be encoded by the pair of an automorphy factor j : H× Γ̃ → GL(S) and a character χ : Γ̃ → U(1),
where Γ̃ ⊂ SL2(R) is such that Γ = Γ̃/{±1}, with χ(−1) = −1, see §III of [4] and [44], so that the spinor
sections satisfy the automorphic condition Ψ(γz) = χ(γ)j(z, γ)Ψ(z), where Ψ(z) = (ψ1(z), ψ2(z)) and
j(z, γ) diagonal with entries j(z, γ,±1). (We consider here only the case of the Dirac operator D = D1

of [4] with weight k = 1, that is, the standard Dirac operator.) The matching between the eigenfunctions
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Ψ = (ψ1, ψ2) of D with eigenvalue λ and the eigenfunctions ψ = ψ1 of the Laplacian with eigenvalue
λ2 + 1/4 is proved in Proposition 1 of [4].

In the specific case where the Riemann surface X is defined over a number field, so that it admits a
Belyi map f : X = H\H → Ĉ = Δp,q,r\H and a uniformization X = H\H by a finite index subgroup of
a triangle group Δp,q,r, as in [8], the automorphic functions approach of [4] to the spectral decomposition
of the Dirac operator can be made more explicit, using the results of [16] on automorphic forms for
triangle groups.

Lemma 4.4. Let X be a compact Riemann surface of genus g = g(X) ≥ 2, endowed with the
hyperbolic metric of constant curvature −1. Let s be a spin structure on X and D = Ds the
corresponding Dirac operator, acting on sections of the spinor bundle S = Ss on X. Let χ : Γ̃ →
U(1) be the character determined by the spin structure s, as above. Let h ∈ C∞(R) be an even
compactly supported test function with support supp(h) = [−1, 1] and let f ∈ S(R) be the Fourier
transform f = ĥ. The Dirac spectral action then satisfies

SD,f (Λ) = Λ2(g(X) − 1)
∫
R
rf(r) coth(πr)dr

+ Λ
∑

P∈CΓ̄

∞∑

�=1

χ(P �) arccosh( tP2 )h(Λ2� arccosh(
tP
2 ))

sinh(� arccosh( tP2 ))

(4.9)

where CΓ̄ is the set of Γ̄-conjugacy classes.

Proof. According to Theorem 1 of [4], the Selberg trace formula for the Dirac operator on a hyperbolic
compact Riemann surface is obtained by modifying the case (4.7) of the Laplacian in the following way:

∞∑

j=0

f(λj) = (g(X) − 1)

∫

R

rf(r) coth(πr) dr

+
∑

P∈CΓ̄

arccosh(
tP
2
)

∞∑

�=1

χ(P �)
h(2� arccosh( tP2 ))

sinh(� arccosh( tP2 ))
,

(4.10)

where {λj} = Spec(Ds). Again, we replace f(r) with fΛ(r) = f(r/Λ) and h(s) with hΛ(s) = Λh(Λs),
to obtain (4.9).

4.3. Selberg Zeta Function and the Spectral Action

An approach to the Selberg trace formula via the Selberg zeta function is described in [18], see also
§VII of [4] for the Dirac case. For �(s) > 1 and �(σ) > 1, the trace formula applied to the test function

f(λ) = (λ2 + (s− 1

2
)2)−1 − (λ2 + (σ − 1

2
)2)−1 (4.11)

gives as the second term in the right-hand-side of (4.10) the expression

1

2s− 1

Z ′
Γ(s)

ZΓ(s)
− 1

2σ − 1

Z ′
Γ(σ)

ZΓ(σ)
,

where ZΓ(s) is the Selberg zeta function

ZΓ(s) =
∏

P∈CΓ̄

∏

�

(1− χ(P )eLP (s+�)), (4.12)

where the set CΓ̄ is identified with the set of primitive closed geodesics on X = Γ\H andLP =

2arccosh( tP2 ) with the geodesic length.
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The Selberg zeta function can sometimes be computed in terms of a coding of geodesics via symbolic
dynamics and the Fredholm determinant of an associated Ruelle transfer operators. For the case of
the modular group SL2(Z) and finite index subgroups, see [6]. Similar results have been obtained for
a particular class of Fuchsian triangle groups, the Hecke triangle groups, see [39, 47], and generalized
to an algorithm for symbolic coding of geodesics applicable to other Fuchsian groups in [43].

Hecke triangle groups Hq are the Fuchsian triangle groups of the form Δ2,q,∞. They have a pre-
sentation Hq = 〈S, Tq |S2 = (STq)

q = 1〉, with Sz = −1/z and Tqz = z + λq, where λq = 2cos(π/q).
A compact Riemann surface X that admits a regular tessellation by hyperbolic q-gons also admits
a uniformization by a finite index subgroup H of a Hecke group Hq, with a Belyi map given by the
projection f : H\H → P

1 = Hq\H, with the single cusp {∞} of Hq added in the compactification P
1.

The Selberg zeta function of a Hecke triangle groupHq = Δ2,q,∞ can be computed explicitly, in terms
of thermodynamic formalism and the appropriate transfer operator, associated to a continued fraction
algorithm, as shown in [39, 47]. More precisely, the Selberg zeta function is obtained, in the case of the
Hecke triangle groups Hq as a ratio of Fredholm determinants

ZHq (s) =
det(1− Ls)

det(1−Ks)
, (4.13)

where Ls is the Liouville transfer operator of the continued fraction algorithm of Hq, in analogy to
the case of SL2(Z) of [6]. However, the operator Ls alone introduces an overcounting, in the case of
triangle groups Hq, which is corrected by another transfer operator Ks. Moreover, in [41] it is shown
that the Maass cusp forms of Hecke triangle groups Hq are solutions of a certain functional equation,
generalizing the one of Lewis-Zagier for the modular group, which characterizes fixed points of the
transfer operator associated to the Selberg zeta function.

A coding of geodesics for the more general triangle groups Δp,q,∞ and associated transfer operators,
whose Fredholm determinant is similarly related to the Selberg zeta function, were obtained in [19].
A more general approach to symbolic dynamics and transfer operators, for arbitrary 2-dimensional
hyperbolic good orbifolds X, is developed in [43].

These methods provide an approach to compute the spectral action SD,f (Λ) with a test function of
the form (4.11) using the Selberg zeta function computed via the transfer operator method.

The transfer operator method in general consists of a construction of a cross section for the geodesic
flow on the hyperbolic surface X = Γ\H, where Γ is a cocompact Fuchsian group, using a choice
of fundamental domains, so that the first return map determines a discrete dynamical system. This
dynamical system is then encoded on the boundary P

1(R) of H in terms of a family of finitely many
local diffeomorphisms, determined by a coding of geodesics by infinite sequences in an alphabet Σ in
which the first return map becomes the shift map of the symbolic dynamics. Given the resulting map F
describing this boundary dynamics, the associated transfer operator (depending on a parameter β ∈ C)
is given by

LF,βf(x) =
∑

y∈F−1(x)

|F ′(y)|−β f(y). (4.14)

We refer the reader to [43] for a detailed construction of the transfer operator for a class of Fuchsian
groups.

4.4. Dirac Spectral Action of Adinkras

Given an Adinkra chromotopology AN,k and the associated Riemann surface XN,k with a Belyi map
f : XN,k → Ĉ as in [14, 15] we can consider the spectral triple (C∞(XN,k), L

2(XN,k,Ss),D) with D
the Dirac operator D = /Ds associated to the spin structure s determined by the dashing of the Adinkra
graph as in [14, 15]. By the discussion above and the results of [8], we know that the Riemann surface
can be uniformized as XN,k = H\H, where H is a finite index subgroup of the Fuchsian triangle group
ΔN,N,2. While in general it is difficult to describe the subgroup H explicitly, it is still possible to use the
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method of [43], applied to the Fuchsian triangle group ΔN,N,2, as an approach to the computation of the
spectral action, by including the finite coset space ΔN,N,2/H in the construction of the transfer operator,
as was done for the finite index subgroups of the modular group in [6], see also [34, 35].

More precisely, suppose given a construction as above of a transfer operator LF,β = LF,β,Γ based on
the coding of the geodesic flow on a hyperbolic surface X = Γ\H, for a given Fuchsian group Γ. There is
a way to obtain from it a transfer operator for an arbitrary finite index subgroup H ⊂ Γ, using the same
boundary dynamics that determines LF,β,Γ. This is a simple generalization of the same construction
used in [6, 34, 35] for the case of Γ = SL2(Z). We assume the following general condition: the transfer
operator can be written in terms of local determinations of the function F as

LF,β,Γf(x) =
∑

E

∑

s∈ΣE

χEs(x) |g′s(x)|−β f(gsx), (4.15)

where F−1(x) = ∪E is a union of pairwise disjoint sets E = ∪sEs, labelled by elements s ∈ ΣE ⊂ Σ in
the alphabet of the symbolic coding, such that F |E(y) = g−1

s y = x, for elements gs ∈ Γ.

Lemma 4.5. Let Γ be a Fuchsian group that has a transfer operator LF,β,Γ, with F (x) the
boundary dynamical system providing the coding of geodesics on Γ\H, which satisfies (4.15).
Let H ⊂ Γ be a finite index subgroup and X = H\H the corresponding hyperbolic surface. For
P = Γ/H , a coding map for the geodesics on X can be obtained by extending F (x) uniquely to a
function F (x, a) with a ∈ P , with transfer operator of the form

LF,β,H⊂Γf(x, a) =
∑

E

∑

s∈ΣE

χEs(x) |g′s(x)|−βf(gsa, gsa). (4.16)

Proof. Let P = Γ/H be the coset space, with the left transitive action of Γ. We extend the map F (x) of
the boundary dynamics to a map F (x, a), with a ∈ P , by setting

F |Es×P (x, a) = (g−1
s x, g−1

s a).

Correspondingly we obtain a transfer operator of the form (4.16). This transfer operator and the map F
considered here provide a coding of geodesics on X = H\H through the identification of this quotient
with the quotient Γ\(H× P ).

4.5. Supersymmetric Riemann Surfaces

A Super Riemann Surface M is locally modeled on C
1|1, with local coordinates z (bosonic) and theta

(fermionic). A non-integrable subbundle D ⊂ TC1|1 is determined by

Dθ = ∂θ + θ∂z,

which satisfies

[Dθ,Dθ] = 2∂z,

so that one has D⊗D � TM/D. We refer the reader to [32, 33] for a detailed treatment of the theory of
supermanifolds and in particular Super Riemann Surfaces.

It is shown in [14, 15] that an odd dashing on an Adinkra AN,k determines a Super Riemann Surface
structure on XN,k.

Thus, one can refine the data of the spectral triple and spectral action discussed above, based on the
Riemann surface XN,k, by including also the structure of Super Riemann Surface. To this purpose, we
modify the definition and computation of the spectral action given above to incorporate the supermanifold
structure, by replacing the Selberg trace formula with a Selberg supertrace formula.
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4.6. The Supersymmetric Selberg Trace Formula

A Selberg super trace formula for Super Riemann Surfaces, based on the Dirac Laplacian, was
obtained in [1]. Additional results on the Selberg super zeta function were obtained in [22], see also [23].
We consider here the Dirac Laplacian Δ = 2Y DD̄ (the case m = 0 of the family of Dirac Laplacians
considered in [1, 22]), where −(4Y 2)−1 is the superdeterminant of the metric tensor on the super
upper half plane SH, and D = Dθ = θ∂z + ∂θ and D̄ = Dθ̄ = −∂θ̄ + θ̄∂z . Let {λB

j = irBj + 1/2} and

{λF
j = irFj + 1/2} denote, respectively, the bosonic and fermionic spectra of Δ.

Note that the operator D satisfies D2 = ∂z , so it can be viewed as a square root of ∂z . This is reflected
in the structure of the spectrum, with respect to the Dirac spectrum on an ordinary Riemann surface.
Thus, a natural type of spectral action functional to consider in this supersymmetric spectrum is obtained
by replacing the ordinary Dirac operator by the supersymmetric Dirac Laplacian Δ and the trace by a
supertrace.

Let f be a test function with the properties that f(ix+ 1/2) is in C∞(R) with f(ix+ 1/2) ∼ O(x−2)
for x → ±∞, and with f(iz + 1/2) holomorphic for |�(z)| ≤ 1 + ε.

Definition 4.6. For a test function f as above. The supersymmetric spectral action of the Super
Riemann Surface SX = Γ\SH is given by

SSX,Δ,f (Λ) = Trs(f(Δ/Λ)) =

∞∑

j=0

(f(
λB
j

Λ
)− f(

λF
j

Λ
)). (4.17)

One can consider also a slightly different version of the supersymmetric spectral action, defined
by analogy with the Laplacian spectral action discussed above. Let f̃(r) = f(ir + 1/2) with f a test
function as above and define the supersymmetric spectral action as

SSX,Δ,f̃ (Λ) =

∞∑

j=0

(f̃(
rBj
Λ

)− f̃(
rFj
Λ

)). (4.18)

The difference with respect to the previous version lies in rescaling rBj �→ Λ−1rBj and rFj �→ Λ−1rFj rather

than λB
j = rBj + 1/2 �→ Λ−1λB

j =
rBj +1/2

Λ and similarly λF
j �→ Λ−1λF

j .

Let h denote the Fourier transform

h(t) =
1

2π

∫

R

e−itx f(ix+ 1/2) dx,

of a test function f chosen as above. Let G(x, χ) be the function

G(x, χ) = h(x) + h(−x)− (χ e−x/2h(x) + χ ex/2h(−x)). (4.19)

The supersymmetric spectral action can then be computed in terms of the Selberg supertrace formula.

Proposition 4.7. Let f be a test function as above. The supersymmetric spectral action satisfies

SSX,Δ,f (Λ) = iΛ(g(X) − 1)
∫
R
f(ir + 1/2) tanh(Λπr) dr

+
∑

γ∈C(Γ)

∞∑

k=1

λ(γ)

N
1/2
γ −N

−1/2
γ

GΛ(logNγ , χ(γ)),
(4.20)

where GΛ(x, χ) = hΛ(x) + hΛ(−x)− (χ e−x/2hΛ(x) + χ ex/2hΛ(−x)), with the function hΛ(t) =

Λe−
t
2
(Λ−1)h(Λt).
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Proof. The Selberg supertrace formula is given by ([1, 22])

∑∞
j=0(f(λ

B
j )− f(λF

j )) = i(g − 1)
∫
R f(ir + 1/2) tanh(πr) dr

+
∑

γ∈C(Γ)

∞∑

k=1

λ(γ)

N
1/2
γ −N

−1/2
γ

G(logNγ , χ(γ)),
(4.21)

where the function G(x, χ) is given by (4.19). Here we identify the set C(Γ) of conjugacy classes of Γ
with the oriented primitive closed geodesics and we write λ(γ) = �(γ0) = logNγ0 for the length of the
unique element in the class of γ such that γ = γm0 for some m ∈ N. We write Nγ = exp(�(γ)) for the
exponentiated lengths. When scaling the spectrum of the Dirac Laplacian by Δ �→ Δ/Λ, we replace
the test function f with the scaled function fΛ(λ) = f(λ/Λ). Correspondingly, the Fourier transform
hΛ(t) = (2π)−1

∫
R
e−itx fΛ(ix+ 1/2) dx is given by hΛ(t) = Λe−

t
2
(Λ−1)h(Λt).

The case of the form (4.18) of the supersymmetric spectral action is similar.

Corollary 4.8. Let f be a test function as above. The supersymmetric spectral action in the form
(4.18) satisfies

S
SX,Δ,f̃ (Λ) = iΛ(g(X) − 1)

∫
R f̃(r) tanh(Λπr) dr

+ Λ
∑

γ∈C(Γ)

∞∑

k=1

λ(γ)

N
1/2
γ −N

−1/2
γ

G(Λ logNγ , χ(γ)).
(4.22)

Proof. The argument is analogous to the previous case, with f̃Λ(r) = f̃( r
Λ) and the Fourier transform

hΛ(t) = (2π)−1
∫
R
e−itxf̃Λ(x) dx = Λh(Λt).

5. SPECTRAL GEOMETRY FROM ADINKRAS, ORIGAMI, AND POISSON SUMMATION

In this section we present a second construction of a spectral geometry associated to a 1D super-
symmetry algebra, obtained by associating to an Adinkra an origami curve. This method gives rise to a
spectral geometry for which the spectral action functional is computed more easily in terms of a Poisson
summation formula, instead of relying on a Selberg trace formula as in the hyperbolic geometry method
described in the previous section. We first discuss how to associated an origami curve to an Adinkra, and
then we describe the resulting spectral geometry.

5.1. Origami Curves

In addition to Grothendieck’s theory of dessins d’enfant, another construction of algebraic curves
based on combinatorial data has received considerable attention: the theory of origami curves. These
consist of branched coverings p : Y → E ramified only over {∞}. Origami curves determine Teichmüller
embeddings of the hyperbolic plane in the Teichmüller space Tg,n for given genus g with n marked
points. These are complex geodesics (Teichmüller disks). Origami curves have been largely studied in
connection to Teichmüller curves and Veech groups, see [26, 40]. Moreover, both dessins d’enfant and
origami curves have been studied extensively as possible combinatorial objects carrying an action of
the absolute Galois group, with the goal of gaining a better understanding of the absolute Galois group
through combinatorial models of its action. In particular, various relations between dessins and origami
have been studied, see [26, 40]. For our purposes, we will especially focus on a construction, given in [40]
that associates an origami curve to a dessin d’enfant.

Let E be an elliptic curve and let X be a compact Riemann surface. An origami is a finite covering
map p : X → E ramified over a single point ∞ ∈ E.
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Fig. 3. The torus with generators x, y. Reproduced from [26] .

Fig. 4. figure
A simple example of an origami with

opposite edges glued together.
Fig. 5. figure

The oriented graph descrption of the origami in Figure 4
.

Consider the cell structure of E given by the generators x, y shown in Figure 3. Now consider the
preimage p−1(E). This creates a finite cell structure on X obtained by gluing cells together, as in
Figure 4.

Proposition 5.1 of [26] gives the following equivalent description of origami curves. An origami
p : X → E is up to equivalence uniquely determined by

(i) A surface obtained from gluing Euclidean unit squares such that:

• each left edge is uniquely glued to a right edge and vice versa.

• each upper edge is glued to a unique lower one and vice versa.

• the result is a connected surface X.

(ii) A finite oriented graph with edges labelled by x and y, with the property that each vertex has
exactly two incoming edges and two outgoing edges, with one of which type labelled, respectively,
by x and y.

(iii) A monodromy map α : F2 → Sd, up to conjugation in Sd, where F2 is the free group with 2
generators and Sd is the permutation group of d elements.

(iv) A finite subgroup U of F2 up to conjugation in F2.
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5.2. 4-Colored Adinkras and Elliptic Curves

In this subsection we describe simple standard Adinkras associated to elliptic curves. In §5.5
(Proposition 5.4) we combine this with an Adinkra associated to a Belyǐ curve, using the fibered product
construction of §3, in order to obtain the desired correspondence between Adinkras and origami curves.

Lemma 5.1. In the case of Adinkras AN,k with N = 4 the Riemann surfaceX4,k is an elliptic curve.

Proof. For N = 4, the genus formula g = 1 + 2N−k−3(N − 4) for XN,k immediately implies that X4,k

is an elliptic curve.

We assign the colors bijectively to the directed edges. Because each vertex has four edges going to
unique vertices, this translates to each face being adjacent to four unique faces in the origami picture,
resulting in a grid cell structure. This corresponds exactly to the cell structure we would get if we
glued 2-cells to consecutively colored 2-colored 4-cycles, as is done in [14, 15] to determine the dessin.
The choice of consecutively colored 2-cycles gives us an orientation, just as the directed edges do. By
identifying edges according to labels we obtain a quotient E that is still topologically a 2-torus, see
Figures 6 and 7, depicting the cases of the Adinkras A4,0 and A4,1, respectively. These examples are well
known, see [13].

Fig. 6. figure
The Adinkra A4,0 embedded in an elliptic curve,

obtained by identifying the top row of edges with the
bottom row, and the left column of edges with the right

column.

Fig. 7. figure
The Adinkra A4,1 embedded in an elliptic curve,

obtained by identifying the edges as labeled.

5.3. Dual Graphs of Adinkras and Origami

Before we describe the fibered product construction of origami curves associated to Adinkras,
we present here a generalization of the Adinkra graphs of elliptic curves described in the previous
subsection, which extends the case of self-dual graphs considered above to include non-self-dual graphs
with N even. In this more general case, one gets that the faces of the Belyǐ curve are squares, hence the
case discussed in this subsection corresponds to those Adinkras for which the Belyǐ curve itself is already
an origami curve. In fact we have pairs of such geometries related by the duality of the graphs.

We use here the characterization recalled above (Proposition 5.1 of [26]) of origami in terms of
oriented graphs with edges labeled x or y, two incoming and two outgoing edges at each vertex, with
one of each type labelled by x and y, respectively. We refer to an oriented graph satisfying these property
as an “origami graph".
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Proposition 5.2. For N > 2, let A = AN,k be an Adinkra, embedded on the Riemann surface XN,k,
formed by attaching 2-cells to all consecutively colored 4-cycles in A. Let A∗ denote the dual
graph of A, with respect to the given embedding A ↪→ XN,k. If N is even, then there exists an edge
labeling and an orientation such that A∗ is an origami graph.

Fig. 8. The process of defining the origami. Left: the Adinkra A with face Fi,i+1 adjacent to faces with edges i− 1 and
i+ 2. Middle: The Adinkra, A, with its dual graph, A∗. Right: The oriented dual graph, A∗, with odd edges labeled x
and even edges labeled y. The resulting orientation and labeling is consistent with that of an origami.

Proof. Let E and V denote, respectively, the edge and vertex set of A. Similarly, let E∗ and V ∗ denote
the edge and vertex set of the dual graph A∗. First observe that, because every face of the embedding
A ↪→ XN,k is comprised of a consecutively colored 4-cycle, every vertex in V ∗ has degree four. Let
Fi,i+1 be a face in the embedding A ↪→ XN,k with boundary a consecutively colored 4-cycle with colors
{i, i + 1}. Then each edge with color i in ∂Fi,i+1 is also incident to a face Fi−1,i with colors {i− 1, i}.
Clearly these faces exist, as each vertex in V is incident to exactly one edge of each color, and these faces
are distinct, because if they were the same face, then there would exist a 2-cycle between the colors
{i− 1, i} which is disallowed by the chromotopology rules. By the same argument, each edge of color
i+ 1 in ∂Fi,i+1 is also incident to a face Fi+1,i+2 with boundary a 4-cycles with colors {i+ 1, i+ 2}.
Notice also that no other faces can be adjacent to Fi,i+1 because if there were other such faces Fi,j , then
either there would be two edges of the same color incident to a vertex, or there would be a face formed
by two non-consecutive colors. Neither of these possibilities is allowed by hypothesis. Thus, each face
Fi,i+1 is incident to exactly four other faces. Thus, the dual graph A∗ is 4-regular. Now let us label
the dual graph edges as follows. An edge e∗ ∈ E∗ adjacent to a given vertex v∗ ∈ V ∗ crosses exactly
one edge e of the face Fi,i+1 of the embedding A ↪→ XN,k that determines the vertex v∗ = v∗(Fi,i+1) of
the dual graph. We label the edge e∗ with x or y, according to whether the edge e it crosses is colored
by an odd color (i.e. i = 1, 3, 5...), or an even color, respectively. Since the edges of the face of A are
consecutively colored, there are exactly two x-labelled edges and two y-labelled edges adjacent to each
vertex v∗ ∈ V ∗. We need the assumption that N is even: if N were odd, then the edges adjacent to
vertices in V ∗ corresponding to faces F1,N with colors {1, N} would all be labeled by x. To show that
A∗ is an origami graph, we still need to assign an orientation to the graph, in such a way that at each
vertex one incoming and one outgoing edge are labeled, respectively, by x and y. Pick an arbitrary vertex
and assign a valid orientation to each edge (with one incoming and outgoing edge labelled x and y,
respectively). Proceed inductively by following the outgoing edge of a given label: at the next vertex, by
our construction, we know there is another edge labelled y, which we can orient outwards. The case of
the x-labelled edges is analogous. This process terminates once a cycle has been created. Then proceed
to the next undirected vertex. Note that there cannot exist two conflicting cycles, as this would imply that
a vertex in V ∗ has more than two edges of a given label, resulting in a contradiction. The construction of
the origami associated to the dual graph is illustrated in Figure 8.
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This construction generalizes the case of the N = 4 Adinkras described in the previous Section 5.2,
which corresponds to the self-dual graphs.

Remark 5.3. The case we considered here corresponds to the case where the Belyǐ curve XN,k is
already an origami curve. The origami structure on the Belyǐ curve is induced by the construction of
Proposition 5.2: by dualizing this construction one sees that the faces of the Belyǐ curve have to be
squares. This determines the map to an elliptic curve that confers to Xn,k the structure of origami curve.

For our purpose of constructing an associated spectral geometry, we want to consider a more general
way of associating an origami curve to an Adinkra, which does not require that the Belyǐ curve itself is
already an origami curve. We need not just a construction of an origami curve YN,k, but also the map of
YN,k to the elliptic curve, which we need for the spectral geometry construction, and a map comparing
the origami and the Balyǐ curve, which relates these two geometries associated to an Adinkra.

To this purpose, we will use a fibered product construction that associates origami curves to Adinkras,
which we will use in the construction of the associated spectral geometry. This construction is based on
the fibered product construction of M-origami of [40] that we recall in §5.4 combined with the fibered
product of Adinkras introduced in §3.

The advantage of this construction will be the fact that the origami curve is described explicitly as (a
desingularization of) a fibered product of the Belyǐ curve and an elliptic curve, hence one has not only the
origami curve itself but also the maps to the elliptic curve and to the Belyǐ curve. In particular the map
of the origami curve to the elliptic curve will be the key to the construction of the spectral geometry we
describe in §5.6 .

5.4. Dessins and Origami Curves

We first recall here a way of passing from a dessin (a Belyi map f : X → Ĉ) to an origami curve,
as introduced by [40] (see also §4 of [42]). This construction associates to a Belyi map f : X → Ĉ an
origami p : Y → E, where the curve Y is obtained by first taking the fibered product Ỹ = E ×

̂C
X,

fibered with respect to the map f : X → Ĉ and the quotient h : E → Ĉ by the elliptic involution,

Ỹ = E ×
̂C
X = {(z, w) ∈ E ×X : h(z) = f(w)}. (5.1)

The map h : E → Ĉ is a double cover, ramified at four points {0, 1,∞, λ}. The curve Ỹ has singularities
at those points (z, w) such that h is ramified at z and f is ramified at w. The desingularization Y → Ỹ
is connected and endowed with a map, which we still denote by h, to the elliptic curve, h : Y → E,
which is a branched covering, branched at {0, 1,∞, λ}. Let m2 : E → E be the multiplication by 2, the
unramified covering that maps four Weierstrass points (which we identify with {0, 1,∞, λ}) to ∞. Then
the composition p = m2 ◦ h : Y → E is ramified at only the point ∞ and is therefore an origami curve.
One refers to the origami curve obtained in this way as the M-origami O(f) = (p : Y → E) associated
to the dessin f : X → Ĉ.

5.5. M-Origami of Adinkras

As we have recalled earlier, by the general result of [14, 15] all AN,k Adinkras give rise to dessins,
which determine a Riemann surface XN,k and a Belyi map f : XN,k → Ĉ, so that AN,k embeds in XN,k

as the dessin obtained as the preimage f−1(I) with I = [0, 1] ⊂ Ĉ.

Here we show that Adinkra graphs admit embeddings in origami curves. We use the construction of
the Riemann surface XN,k and the Belyi map f : XN,k → Ĉ associated to an Adinkra AN,k, as in [14, 15]
together with the construction of M-origami of [40], which obtains an origami curve O(f) = (p : Y →
E) from a Belyi map f : X → Ĉ, to show that the Adinkra graph can be embedded (with a choice of
2#E(AN,k embeddings) in the curve Y = YN,k.
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Proposition 5.4. Let A = AN,k be an Adinkra. There exists an origami curve YN,k, with p : YN,k →
E ramified only at {∞}, determined by the Adinkra, and a collection of 2#E(A) embeddings of the
Adinkra AN,k in YN,k.

Proof. Let XN,k be the Riemann surface associated to the Adinkra A = AN,k, with Belyi map f :

XN,k → Ĉ. Following the construction of the origami curve O(f) = (p : YN,k → E) associated to this
Belyi map. The origami curve is determined by the Adinkra AN,k because the Riemann surface XN,k

and the Belyi map f : XN,k → Ĉ are. Let Γ denote the graph in E obtained as h−1(f(AN,k), where

h : E → Ĉ is the double cover ramified at {0, 1,∞, λ}. Since the image f(AN,k) in Ĉ consists of the
interval I = [0, 1], the set of vertices V (Γ) = h−1(0) ∪ h−1(1) consists of two points, V (Γ) = {0, 1} and
the set of edges consists of two parallel edges connecting the two vertices, E(Γ) = {e1, e2} = h−1(Io),
with Io = (0, 1). Consider then the preimage in ỸN,k = E ×

̂C
XN,k of the interval I in Ĉ. This consists

of a graph Ã with set of vertices V (Ã) = V (A) and set of edges E(Ã) = E(A) ∪E(A) consisting of two
copies of the set of edges of A, with each edge of A replaced by a pair of parallel edges. Thus, we obtain
in this way 2#E(A) ways of embedding the graph A = AN,k in ỸN,k (hence in the desingularization YN,k)
given by choosing, in all possible ways, one of the two parallel edges.

When the Belyǐ curve XN,k is already an origami curve, the projection map ỸN,k → XN,k of the fibered
product is the identity and the relation between Adinkra and origami is just as discussed previously in
§5.3 .

5.6. Origami Curves and the Laplace Spectrum

In addition to the spectral geometry associated to Adinkras via the Belyǐ curve, which we considered
in §4, obtained from the spectrum of the Dirac operator on the (Super) Riemann surface XN,k, we can
also construct a spectral geometry associated to the Adinkra AN,k, via the origami curve YN,k considered
in Proposition 5.4.

In the case of a branched cover p : Y → E of an elliptic curve E, it is shown in [37, 38] that it is
possible to construct an infinite set of eigenvalues and eigenfunctions of the Laplacian on Y , which we
recall briefly here.

Let {ωk}gk=1 be a basis of holomorphic differentials for Y and let Ω be the period matrix Ωjk =
∫
βj

ωk,

with the normalization
∫
αj

ωk = δjk for {αj , βj} a symplectic basis of H1(Y,Z). It is shown in [37, 38]
that each solution of the equations

mi −
g∑

k=1

Ωiknk = Nij(mj −
g∑

k=1

Ωjknk) (5.2)

for (n,m) ∈ Z
2g, with NijNjk = Nik determined by g − 1 elements, determines a metric g = g(n,m) on

Y .

One considers then the set of solutions (n′,m′) ∈ Z
2g ofωn′,m′ = cωn,m, for some c = c(n,m, n′,m′),

where the ωn,m are the primitive differentials

ωn,m =

g∑

k=1

cn,m;k ωk,

cn,m;k = π

g∑

j=1

mj −
∑g

�=1 Ω̄�jn�

(�(Ω)−1)jk
.
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As in [38], we denote by Sn,m(Ω) this set of solutions. This set of solutions in particular includes the
(kn, km) for k ∈ Z, but can in general be larger. Each such solution (n′,m′) determines an eigenvalue

λn′m′ = 2An,m

∣∣∣∣
m′

i −
∑g

k=1 Ω̄ikn
′
k

mi −
∑g

k=1 Ω̄iknk

∣∣∣∣
2

,

of the Laplacian Δ = Δg(n,m) , where An,m = i
4

∫
Y ωn,m ∧ ω̄n,m.

Solutions to the equation (5.2) can be seen as a set of consistency equations satisfied by the period
matrix of Y . It is shown in [38] that a Riemann surface Y has period matrix satisfying these conditions
if and only if it is a branched cover of an elliptic curve. Thus, in particular, the construction works for all
origami curves.

Thus, given the origami curve Y = YN,k, associated to an Adinkra graph AN,k as in Proposition 5.4,
one can consider the spectral action functional associated to the spectrum {λn′,m′} constructed in
[37, 38]. Since the spectrum considered in the action functional should correspond to a square root
of the Laplacian, we consider the sequence

ρn′,m′ = ±
√

2An,m

∣∣∣∣
m′

i −
∑g

k=1 Ω̄ikn
′
k

mi −
∑g

k=1 Ω̄iknk

∣∣∣∣

for (n′,m′) ∈ Sn,m(Ω), and we define

S(n,m),Y,f (Λ) :=
∑

(n′,m′)∈Sn,m(Ω)

f(ρn′,m′/Λ), (5.3)

for an even test function f ∈ S(R).

These eigenvalues have a structure similar to the spectrum of the Dirac operator on a torus, hence the
computation of the action functional (5.3) can be carried out via a Poisson summation formula, instead
of having to rely on the Selberg trace formula. Thus, using origami curves instead of Belyǐ curves as
geometries associated to Adinkras has computational advantages when it comes to the properties of the
associated spectral geometry and spectral action functional.
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11. C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, G. D. Landweber and R. L. Miller, “Codes

and supersymmetry in one dimension,” Adv. Theor. Math. Phys. 15 (6), 1909–1970 (2011).
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