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Abstract

The main focus of this paper is topological crackle, the layered structure of annuli formed by heavy-
tailed random points in Rd . In view of extreme value theory, we study the topological crackle generated by
a heavy-tailed discrete-time moving average process. Because of the clustering effect of a moving average
process, various topological cycles are produced consecutively in time in the layers of the crackle. We
establish the limit theorems for the Betti numbers, a basic quantifier of topological cycles. The Betti number
converges to the sum of stochastic integrals, some of which induce multiple cycles because of the clustering
effect.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Topological crackle

The main theme of this paper is topological crackle — the annuli structure of a continued
presence of topological cycles in a manifold. Topological crackle is a phenomenon that has been
recognized, at least empirically, in the field of manifold learning. Among many relevant studies,
those presented in [30] and [31] showed that if a sample is taken from a nice manifold M with
a small, e.g., Gaussian, error, then one can recover the topology of M with high probability.
However, if the error becomes large, i.e., has a heavy-tailed distribution, then one is no longer
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able to recover the underlying topology. The layers of extraneous homology elements, caused
by heavy-tailed errors, that damage the estimation of an original manifold is called the crackle
phenomenon, in an analogy to audio crackle in temporal signal analysis; see [2].

Although not necessarily related to the manifold learning problem, this paper addresses the
crackle phenomenon in view of extreme value theory (EVT), in light of the fact that it is in
general caused by data with a heavy tail. Typically, we suppose that independently and identically
distributed (i.i.d) random points on Rd , d ≥ 2 are taken from a (spherically symmetric)
distribution with a heavy tail. Let Ann(K , L) denote a closed annulus with inner radius K and
outer radius L . We then divide Rd into the layers of annuli at different radii, all of which grow to
infinity as the sample size n increases:

Rd
=

d⋃
i=1

Ann(Ri,n, Ri−1,n),

where

0 = Rd,n < Rd−1,n ≪ Rd−2,n ≪ · · · ≪ R1,n < R0,n = ∞, n → ∞.

This layered structure provides basic modeling of the topological crackle, with each annulus
containing an extreme sample cloud generated by a heavy-tailed distribution.

The study of the topological features of the layered structure above belongs to EVT. EVT
addresses, as its name implies, the extremal behavior of stochastic processes at the intersection of
probability theory and statistics; an excellent treatment of the field is provided in [35] and a more
recent exposition in [21], with other key publications over the years including [13,18,19,27],
and [36]. Over the last decade or so, many articles have provided geometric descriptions of
multivariate extremes, among them [3,4], and [5]. In particular, Poisson limits of point processes
with a U-statistic structure were discussed in [14,37], and [17], the last two of which also include
a number of stochastic geometry examples.

As for topological crackle, its study from the viewpoints of EVT has just begun, and
hence, there exist only a limited number of relevant publications, e.g., [2,33], and [32]. More
importantly, these papers intrinsically assume i.i.d (heavy-tailed) observations or the similar
variant, such as a Poisson point process with spatial independence. The main contribution of
this paper is to remove the independence assumption and investigate the crackle phenomenon of
a discrete-time moving average process of finite order q ,

Yn =

q∑
j=0

A j Xn− j , n = 0, 1, 2, . . . , (1)

where A j represents d×d non-random matrices and (X j , j ∈ Z) denotes a noise sequence of i.i.d
Rd -valued heavy-tailed random variables. Of course, many other stochastic processes can give
non-trivial dependency to heavy-tailed observations; see, e.g., [6,15]. However, a moving average
process is the most basic in time series analysis. For example, at least in a classical setup, every
autoregressive moving average (ARMA) process and many of the stationary Gaussian sequences
have moving average representation [12]. Moreover, the tail behavior of heavy-tailed moving
average processes has been studied in depth by many authors; see, e.g., [16,26,28], and [23], to
mention just a few. Therefore, from a more practical viewpoint, some of the techniques developed
previously are also applicable to our analyses. The main characteristic of a heavy-tailed moving
average process is “clustering of extremes”. Namely, the process forms a significant amount of
clusters at a distance from the origin, so that “cluster Poisson limits” may arise; see [16,35].
In this paper, the clustering effect of extremes plays a crucial role in characterizing the crackle
phenomenon.
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Fig. 1. (a) One-dimensional sphere. (b) One-dimensional disk. (c) Two-dimensional sphere. (d) Two-dimensional torus.

1.2. Basic notions in algebraic topology

We now collect the basic notions in algebraic topology necessary for this paper. Although
not necessarily dealing with extremes, there has been increasing interest in random topology
beyond classical issues of connectivity; see [24,25,40,41], and [11], and recent progress is nicely
summarized in [10]. Among these articles, [40] is somewhat relevant to our study; the authors
discussed the impact of clustering on random topology for stationary point processes. It seems
that in most of the studies on random topology, Betti numbers were chosen as a good quantifier
of topological complexity. Following this convention, we also employ Betti numbers to measure
the topological complexity of various layers in the crackle. Given a topological space X and an
integer k ≥ 1, the kth homology group Hk(X ) is the quotient group ker δk/imδk+1, where δk, δk+1

are boundary maps for X . Equivalently, Hk(X ) represents a topological invariant generated
by elements representing (non-trivial) k-dimensional “cycles” as the boundary of a (k + 1)-
dimensional body. (Hereinafter, we write “k-cycle” for short.) The kth Betti number, denoted
by βk(X ), is the rank of Hk(X ), representing the number of k-cycles in X . More intuitively,
β1(X ) counts the number of “closed loops” in X , whereas β2(X ) counts the number of “voids”
within X . More formal coverage of Betti numbers in view of homology theory can be found in,
e.g., [22,39], and [29]. An excellent review [1] contains a gentle introduction of the topological
concepts used in the current paper.

Since it is impossible to define Betti numbers formally in a few paragraphs, we would like
instead to discuss a few actual examples of objects in the Euclidean space; see Fig. 1. First, a
one-dimensional sphere, i.e., a circle, shown in Fig. 1(a) has β1 = 1 and βk = 0 for all k ≥ 2.
A two-dimensional sphere as shown in Fig. 1(c) has β1 = 0, because even if we wind a closed
loop around the sphere, the loop ultimately vanishes as it moves upward (or downward) along the
sphere until the pole. In addition, it has β2 = 1 because of the “void” consisting of the interior
of the sphere. In general, a d-dimensional sphere has βd = 1, and βk = 0 for all k ≥ 1 with
k ̸= d . Finally, a two-dimensional torus, as shown in Fig. 1(d), has β1 = 2 (i.e., there are two
independent closed loops), and β2 = 1 (i.e., the inside of the torus is void).

In order to extract topological information from extreme sample clouds, we consider the
Betti numbers of some geometric complexes. These complexes will be constructed from a set
of random points generated by the process (1). Among many candidates of geometric complexes
(see, e.g., [20]), we chose the two most studied ones known as the Vietoris–Rips complex and the
Čech complex.

Definition 1.1. Let X be a collection of points in Rd and t be a positive number. The Vietoris–
Rips complex Rt (X ) is defined as follows.
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Fig. 2. Čech complex Ct (X ) and Vietoris–Rips complex Rt (X ) with X = {x1, . . . , x8} ⊂ R2. The first order Betti
numbers are β1

(
Ct (X )

)
= 2 and β1

(
Rt (X )

)
= 1.

1. The 0-simplices are the points in X .
2. A p-simplex σ = [xi0 , . . . , xi p ] belongs to Rt (X ) if B(xik , t/2) ∩ B(xim , t/2) ̸= ∅ for

every 0 ≤ k < m ≤ p,

where B(x, r ) is a closed ball of radius r centered at x .

Definition 1.2. The Čech complex Ct (X ) is defined as follows.

1. The 0-simplices are the points in X .
2. A p-simplex σ = [xi0 , . . . , xi p ] is in Ct (X ) if a family of closed balls

{
B(xi j , t/2), j =

0, . . . , p
}

has a non-empty intersection.

The difference between these complexes is that, in order for a p-simplex to be its element,
the Čech complex requires a common intersection of all p + 1 balls, whereas the Vietoris–Rips
complex merely requires pairwise intersections between the balls. The main importance of the
Čech complex is its equivalence to the union of balls; the Nerve theorem, e.g., Theorem 10.7
in [9], claims that Ct (X ) is homotopy equivalent to the union of balls of radius t/2 around X .
Although the Vietoris–Rips complex does not have such a nice link to the union of balls, it
is much more efficient in computational applications. Since Rt ′ (X ) ⊂ Ct (X ) ⊂ Rt (X ) for
t/t ′ >

√
2d/(d + 1) (see [38]), the Vietoris–Rips complex can be used to approximate the Čech

complex.
To obtain a clearer picture of the two geometric complexes, a simple example is presented

in Fig. 2. Take X = {x1, . . . , x8} ⊂ R2. Note that the 2-simplex [x1, x2, x3] is in Ct (X ), since
the three balls with radius t centered at x1, x2, x3 have a common intersection. Then, the Betti
numbers are β1

(
Ct (X )

)
= 2 (two closed loops) and βk = 0 for k ≥ 2. For the Vietoris–Rips

complex Rt (X ), there exists another 2-simplex [x5, x6, x7], because the balls around x5, x6, x7

have pairwise intersections. As a result, the first order Betti number is β1
(
Rt (X )

)
= 1, since one

of the closed loops in Ct (X ) has been filled in.

1.3. Poissonian regime

Now that all the necessary notions in algebraic topology have been covered, we return to
topological crackle and add a few comments. In the spirit of EVT, throughout the paper, we
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focus on the “Poissonian” regime, under which the appearance of topological k-cycles becomes
a rare event. In this case, if the geometric complex is generated by a set of i.i.d heavy-tailed points
in Rd , the kth Betti number is known to converge to some non-trivial limit without any centering
and scaling. See Theorem 2.2 in [32] and Theorem 5.1 in [33]. In particular, the former represents
the limit process as the difference of two dependent Poisson processes, with one representing the
birth and the other representing the death of k-cycles. The objective of this study is to establish
the limit theorems for the Betti numbers, under the same Poissonian regime, when the geometric
complex is generated by a heavy-tailed moving average process. For the description of the limit
process, the notion of a Poisson random measure is important. Let (E, E, µ) be a σ -finite measure
space. The Poisson random measure N on E , with mean measure µ, is defined by the finite-
dimensional distributions

P
{

N (A) = m
}

=
e−µ(A)

(
µ(A)

)m

m!
, m = 0, 1, 2, . . .

for all measurable sets A ⊂ E with µ(A) < ∞. Furthermore, if A1, . . . , Am are disjoint,
N (A1), . . . , N (Am) are independent.

The organization of the paper is as follows. In Section 2, we establish the required limit
theorems for the Betti numbers associated to a Vietoris–Rips complex. In Section 3, the same
is done for the Čech complex. We discuss some future research topics in Section 4. All the
necessary arguments for the proof are collected in Section 5.

Finally let us add a few comments on our assumptions. First we assume a spherically
symmetric distribution of the noise sequence in (1). Although this assumption is never crucial,
we adopt it to avoid unnecessary technicalities. Second, this paper addresses only the case in
which the density of an i.i.d noise sequence has a regularly varying tail. As is well-known in
EVT, in the one-dimensional case, regular variation of the tail in the density suffices for the
distribution to be in the max-domain of attraction of the Fréchet law. Lastly, this paper assumes
the process (1) is of finite order. In the infinite order case (i.e. q = ∞), the moving average will
exhibit longer range dependence due to the emergence of larger clusters. We conjecture that even
in the infinite order case, the Poissonian limit theorem holds for our Betti numbers. However, the
discussion should involve much more technicalities, which may blur the message of this paper.
So we have decided to assume the finiteness of q .

2. Vietoris–Rips complex

2.1. Setup and assumptions

Let (X j , j ∈ Z) be a sequence of i.i.d Rd -valued random variables with spherically symmetric
probability density f . Let Sd−1 be the (d − 1)-dimensional unit sphere in Rd and assume that
f has a regularly varying tail with parameter −α. That is, for some α > d and some θ ∈ Sd−1
(equivalently, for every θ ∈ Sd−1),

lim
r→∞

f (r tθ )
f (rθ )

= t−α for all t > 0. (2)

Taking (X j , j ∈ Z) as a heavy-tailed noise sequence, we consider a discrete-time moving
average process of order 1 ≤ q < ∞.

Yn =

q∑
j=0

A j Xn− j , n ≥ 1, (3)

where A j represents d × d non-singular matrices with non-random real entries.
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The main focus of the current paper is the topological crackle occurring in the tail of
(Yn, n ≥ 1). We employ the kth Betti numbers, for k ≥ 1, to quantify the topological complexity
of the crackle phenomenon. We attempt to follow the dynamical evolution of the topology outside
a growing ball, through the filtration associated to Vietoris–Rips complexes:{

Rt
(
Yn ∩ B(0, R(1)

k,n)c), t ≥ 0
}
, (4)

where Yn = (Y1, . . . , Yn), and R(1)
k,n → ∞ is determined by

n2k+2(R(1)
k,n)d f (R(1)

k,ne1)2k+2
→ 1 as n → ∞ (5)

with e1 = (1, 0, . . . , 0)′ ∈ Rd .
Note that

(
R(1)

k,n, k = 1, 2, . . . , d − 1
)

grow at regularly varying rates as a function of n, such
that

R(1)
d−1,n ≪ R(1)

d−2,n ≪ · · · ≪ R(1)
2,n ≪ R(1)

1,n, n → ∞.

A set of radii above divides Rd as

Rd
=

d⋃
i=1

Ann(R(1)
i,n , R(1)

i−1,n), (6)

where Ann(K , L) is a closed annulus of inner radius K and outer radius L , and R(1)
0,n ≡ ∞,

R(1)
d,n ≡ 0.
For k = 1, . . . , d − 1, the kth Betti number studied in the section is

βk

(
Rt

(
Yn ∩ B(0, R(1)

k,n)c)), t ≥ 0. (7)

Clearly, this can be viewed as a stochastic process, in the parameter t , possessing right continuous
sample paths with left limits. By analyzing (7) as a stochastic process, we expect to capture the
birth and death of topological cycles as t varies.

The main point for (5) is that the Vietoris–Rips complex (4) defined outside B(0, R(1)
k,n) is so

sparse that, as n → ∞, we observe only “finitely many” k-cycles. Consequently, the kth Betti
number should be governed by a Poissonian type limit theorem. On the contrary, the Vietoris–
Rips complex inside B(0, R(1)

k,n) becomes denser, and there should be “infinitely many” k-cycles
there. To be more specific on this point, let us return to the layered structure (6). Then, we have,
as n → ∞,

• Outside B(0, R(1)
1,n), there are finitely many 1-cycles, but no i-cycles for all i ≥ 2.

• Outside B(0, R(1)
2,n), equivalently inside Ann(R(1)

2,n, R(1)
1,n), there are infinitely many 1-cycles

and finitely many 2-cycles, but no i-cycles for all i ≥ 3.

In general,

• Outside B(0, R(1)
k,n), equivalently inside Ann(R(1)

k,n, R(1)
k−1,n), there are infinitely many

i-cycles for all i = 1, . . . , k−1, and finitely many k-cycles, but no i-cycles for all i ≥ k+1.

In the following, for a fixed 1 ≤ k ≤ d − 1, we wish to give a complete description of the
topological crackle of a moving average process in terms of how the dependence structure of the
process affects the spatial distribution of finitely many k-cycles occurring in Ann(R(1)

k,n, R(1)
k−1,n).

Before moving to the next section, we shall add a few conditions on a sequence of matrices (A j )
in (3).
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• For all distinct i, j ∈ {0, . . . , q},

inf
θ∈Sd−1

 (Ai − A j )θ
 > 0. (8)

• There exists a constant c > 0 such that

c ∥A−1
j ∥ ∥x∥ ≤ ∥A−1

j x∥ (9)

for all j = 0, . . . , q and x ∈ Rd . ∥A∥ denotes the usual matrix norm of a d × d matrix A.
• For all off-diagonal elements (ℓ1, . . . , ℓ2k+2) ∈ {0, . . . , q − 1}

2k+2 (i.e., ℓi ̸= ℓ j for some
i ̸= j) and m = 1, . . . , q − max1≤i≤2k+2 ℓi , assume that for some i ̸= j ,

Aℓi +m A−1
ℓi

̸= Aℓ j +m A−1
ℓ j

. (10)

These three conditions do not appear in the classical study of extremes of moving averages. In
particular, the first two, (8) and (9), are needed in our proof when using standard techniques in
EVT, such as the Potter bound for regularly varying functions (e.g., Theorem 1.5.6 in [8]), and
the approximation argument by point processes. In contrast, the last one plays a more decisive
role. It actually restricts multiple occurrence of k-cycles in a certain situation. More details on
this point are given in Example 2.1 and Theorem 2.5.

2.2. Limit process

The objective of this section is to formalize the limit process of the kth Betti number (7). First,
let

h(x1, . . . , x2k+2) = 1
{
βk

(
R1(x1, . . . , x2k+2)

)
= 1

}
, xi ∈ Rd . (11)

It is obvious that h is translation invariant; namely,

h(x1, . . . , x2k+2) = h(x1 + y, . . . , x2k+2 + y) for all xi , y ∈ Rd . (12)

Since the Vietoris–Rips complex appearing in (11) is necessarily connected (with connectivity
radius 1/2), there exists a finite M > 0, such that

h(0, x1, . . . , x2k+1) = 0 if ∥xi∥ > M for some i ∈ {1, . . . , 2k + 1}. (13)

In addition, for every t > 0, we define a scaled version of h by setting

ht (x1, . . . , x2k+2) := h(x1/t, . . . , x2k+2/t) (14)

= 1
{
βk

(
Rt (x1, . . . , x2k+2)

)
= 1

}
.

As mentioned earlier, the occurrence of k-cycles is rare in the sense that, outside B(0, R(1)
k,n),

there asymptotically appear only finitely many k-cycles. Because of their rareness, all the
k-cycles in the limit must be supported on 2k+2 vertices; this is actually the minimum number of
vertices to form a single k-cycle. Furthermore, any of the components built on more than 2k + 2
vertices would not contribute to the limit. From this viewpoint, at least in the limit, it suffices
only to count the k-cycles on exactly 2k + 2 vertices.

Let (Ω ,F ,P) be a generic probability space on which our limit process is constructed. Define(
X (i)

j , j ∈ Z, i = 1, . . . , 2k+2
)

as a collection of Rd -valued i.i.d random variables on a different
probability space (Ω ′,F ′,P′), with common density f . Then, we define

Y (i)
n (ω′) =

q∑
j=0

A j X (i)
n− j (ω

′), i = 1, . . . , 2k + 2, n ≥ 0, ω′
∈ Ω ′. (15)
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Observe that, for every n ≥ 0, Y (1)
n , . . . , Y (2k+2)

n are independent random variables, but, for each
i ∈ {1, . . . , 2k + 2}, Y (i)

n and Y (i)
m are not independent whenever |n − m| ≤ q .

Subsequently, we need to introduce a family of Poisson random measures on a generic
probability space (Ω ,F ,P). First, for ℓ1, . . . , ℓ2k+2 ∈ {0, . . . , q}, define a positive constant

C(ℓ1,...,ℓ2k+2) :=

(∏2k+2
j=1 det Aℓ j

)−1

α(2k + 2) − d

∫
Sd−1

2k+2∏
j=1

∥A−1
ℓ j

θ∥
−α J (θ )dθ, (16)

where J (θ ) = |∂x/∂θ | is the Jacobian given by J (θ ) = sind−2(θ1) sind−3(θ2) · · · sin(θd−2).
Writing λm for the Lebesgue measure on (Rd )m , denote by M(·) = M(· ;ω), ω ∈ Ω , a Poisson
random measure on (0,∞) × Sd−1 × Ω ′

× (Rd )2k+1 with mean measure
1

(2k + 2)!
ρd−1−2α(k+1)dρ × J (θ )dθ × P′

× λ2k+1.

Moreover, for (ℓ1, . . . , ℓ2k+2) ∈ {0, . . . , q}
2k+2, denote by M(ℓ1,...,ℓ2k+2)(·) = M(ℓ1,...,ℓ2k+2)(· ;ω),

ω ∈ Ω , independent Poisson random measures on Ω ′
× (Rd )2k+1, each of which is independent

of M and has a mean measure
C(ℓ1,...,ℓ2k+2)

(2k + 2)!
P′

× λ2k+1.

Finally, for m ≥ 1, let

Lm =
{
(ℓ1, . . . , ℓm) ∈ {0, . . . , q}

m}
, (17)

L̃m =
{
(ℓ1, . . . , ℓm) ∈ Lm : ℓi ̸= ℓ j for some i ̸= j

}
. (18)

The latter denotes a collection of off-diagonal elements in {0, . . . , q}. Now, we are ready to
define the limit process for the Betti number (7) by

Vk(t ; ω) := V (1)
k (t ; ω) + V (2)

k (t ; ω), (19)

where

V (1)
k (t ; ω) =

q∑
ℓ=0

∫
(∥Aℓθ∥−1,∞)×Sd−1×Ω ′×(Rd )2k+1

ht
(
Y (1)

ℓ (ω′), . . . ,

Y (2k+2)
ℓ (ω′)

)⏐⏐
(X (1)

0 (ω′),...,X (2k+2)
0 (ω′))=(0,y)

M(dρ dθ dω′ dy ; ω),

and

V (2)
k (t ; ω) =

∑
ℓ∈L̃2k+2

∫
Ω ′×(Rd )2k+1

ht
(
Y (1)

ℓ1
(ω′), . . . , Y (2k+2)

ℓ2k+2
(ω′)

)⏐⏐
X (i)

0 (ω′)=A−1
ℓi

yi−1,i=1,...,2k+2

Mℓ(dω′ dy ; ω)

with y = (y1, . . . , y2k+1) ∈ (Rd )2k+1, y0 ≡ 0, and ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L̃2k+2. For the process
V (1)

k , the notation ht (. . . )
⏐⏐
(X (1)

0 (ω′),...,X (2k+2)
0 (ω′))=(0,y) requires to substitute

(X (1)
0 (ω′), . . . , X (2k+2)

0 (ω′)) = (0, y)

into (Y (1)
ℓ (ω′), . . . , Y (2k+2)

ℓ (ω′)). This type of notation will frequently appear throughout the
paper. From onward however, for ease of description we omit the dependence on ω and ω′.
For example, we simply write V (1)

k (t) = V (1)
k (t ; ω), Y (i)

ℓ = Y (i)
ℓ (ω′) etc.
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The process Vk(t) looks quite complicated, but it clarifies how topological k-cycles are formed
by the moving average (3). First, the Poisson random measure M in the process V (1)

k (t) is driving
multiple, i.e., q + 1, indicator functions. More intuitively M possibly produces multiple k-cycles
over q+1 periods of time. To be more specific, suppose that M has driven (Y (1)

0 , . . . , Y (2k+2)
0 ) and

forms a k-cycle at time 0. Then, at time 1, (Y (1)
1 , . . . , Y (2k+2)

1 ) can also form another k-cycle. This
is because, for every i = 1, . . . , 2k +2, Y (i)

0 and Y (i)
1 have the same X (i)

j s in common, that is, they
are both functions of X (i)

0 , . . . , X (i)
−(q−1). Since our moving average process is of order q , we may

eventually obtain multiple (up to q + 1) k-cycles, all of which are driven by a “single” Poisson
random measure M . Note that as q gets larger, more and more k-cycles are induced by M . In
other words the “clustering effect” of a moving average process continues for longer periods of
time. As a result, the kth Betti number asymptotically increases. For the process V (2)

k (t), however,
each of the Poisson random measures, denoted by Mℓ, triggers at most a single k-cycle.

Before presenting the main weak limit theorem, it is beneficial to display a simple example to
understand how the moving average (3) forms non-trivial cycles, and the Betti number converges
to the limit (19).

Example 2.1. We consider a moving average process

Yn = Xn + AXn−1 + B Xn−2,

where A, B are d × d non-singular matrices with A ̸= B A−1; see (10). Assume, for simplicity,
that A and B are orthogonal matrices with 0 < ∥B∥ < ∥A∥ < 1. Taking R(1)

1,n as in (5), we are
interested in the topological crackle outside B(0, R(1)

1,n). Condition (5) imposes a restriction that
one can take at most four extremal points (i.e. points at a large distance from the origin) from
(X j , j ∈ Z). This is a crucial requirement throughout this example.

We first consider the quadruple (Yi1 , . . . , Yi4 ), for which we set X i j −1 = X i j −2 = 0 for
all j = 1, . . . , 4, and assume that (Yi1 , . . . , Yi4 ) = (X i1 , . . . , X i4 ) forms a 1-cycle outside
B(0, R(1)

1,n). See Fig. 3(i). Since ∥A∥ < 1, the four points (AX i1 , . . . , AX i4 ) approach closer
to the origin and asymptotically are equal to each other. Nevertheless, these four points may still
lie outside B(0, R(1)

1,n). Then,

(Yi1+1, . . . , Yi4+1) = (X i1+1 + AX i1 , . . . , X i4+1 + AX i4 )

may, once again, create a 1-cycle outside B(0, R(1)
1,n). Since (AX i1 , . . . , AX i4 ) are already ex-

tremal at a large distance from the origin, any of the points in (X i1+1, . . . , X i4+1) cannot be a fifth
extremal point, but their small perturbations may create a 1-cycle. Similarly, (Yi1+2, . . . , Yi4+2)
can form another 1-cycle as well, and hence, there could eventually occur multiple (up to three)
1-cycles in the extreme. The sum of all 1-cycles thus created converges to V (1)

1 (t).
Returning to the quadruple (Yi1 , . . . , Yi4 ), we suppose alternatively that X i1−1 = X i1−2 =

X i2−1 = X i2−2 = X i3 = X i3−2 = X i4 = X i4−2 = 0, and

(Yi1 , . . . , Yi4 ) = (X i1 , X i2 , AX i3−1, AX i4−1) (20)

forms a 1-cycle in the outside of B(0, R(1)
1,n). See Fig. 3(ii). In this case, since 0 < ∥B∥ < ∥A∥ <

1, we have that AX i1 ≈ AX i2 and B X i3−1 ≈ B X i4−1. At the same A ̸= B A−1 implies that AX i1
and B X i3−1 are necessarily far apart from each other. Accordingly,

(Yi1+1, . . . , Yi4+1) = (X i1+1 + AX i1 , X i2+1 + AX i2 , X i3+1 + B X i3−1, X i4+1 + B X i4−1)

cannot create a 1-cycle. More precisely since (AX i1 , AX i2 , B X i3−1, B X i4−1) are all extremal,
there are no other extremal points in (X i1+1, . . . , X i4+1). Since AX i1 and B X i3−1 are far apart
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Fig. 3. Topological crackle of a moving average process. (i): (a) denotes a 1-cycle formed by (Yi1 , . . . , Yi4 ) =

(X i1 , . . . , X i4 ). Since A is an orthogonal matrix with ∥A∥ < 1, we have that AX i1 ≈ AX i2 ≈ AX i3 ≈ AX i4 ; however,
(Yi1+1, . . . , Yi4+1) can create a 1-cycle because of the perturbation of (X i1+1, . . . , X i4+1). (ii): (b) denotes a 1-cycle
formed by (Yi1 , . . . , Yi4 ) = (X i1 , X i2 , AX i3−1, AX i4−1). Since 0 < ∥B∥ < ∥A∥ < 1, we have that AX i1 ≈ AX i2
and B X i3−1 ≈ B X i4−1, while A ̸= B A−1 implies AX i1 and B X i3−1 are at a distance from each other. In this case,
(Yi1+1, . . . , Yi4+1) does not create a 1-cycle.

from one another, it is impossible to make Yi j +1’s close together to form a 1-cycle. By the same
reasoning (Yi1+2, . . . , Yi4+2) does not form a 1-cycle. Then, the sum of all 1-cycles occurring
“individually”, as that induced by (20), converges to V (2)

1 (t).

2.3. Weak limit theorem

We now formally describe the main result of this paper. The proof is provided in Section 5.
Hereinafter, ⇒ denotes the weak convergence and D[0, ∞) is the space of right continuous
functions on [0,∞) with left limits.

Theorem 2.2. Under the assumptions (2), (5), (8), (9), and (10), the Betti number (7) satisfies

βk

(
Rt

(
Yn ∩ B(0, R(1)

k,n)c))
⇒ Vk(t) in D[0, ∞), n → ∞. (21)

Remark 2.3. If q = 0 and A0 = I , i.e., d ×d identity matrix, the moving average in (3) reduces
to an i.i.d heavy-tailed sequence, i.e., Yn = Xn for all n ≥ 1. In such a case, an elementary
calculation shows that

Vk(t) =

∫
(Rd )2k+1

ht (0, y)M ′(dy), (22)

where M ′ is a Poisson random measure on (Rd )2k+1 with mean measure

Ck :=
sd−1

(2k + 2)!
(
2α(k + 1) − d

) λ2k+1

(sd−1 is the surface area of a (d − 1)-dimensional unit sphere in Rd ). It is clear that the
process (22) has Poisson marginals, i.e., Vk(t) is a Poisson random variable with mean parameter
Ck

∫
(Rd )2k+1 ht (0, y)dytd(2k+1); see [32]. The general limit (19), however, does not possess
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Poisson marginals, unless q = 0. More precisely, each of the integrals in V (2)
k (t) has Poisson

marginals, because their integrands are all indicator functions, as in (22). However, the process
V (1)

k (t) drives many indicator functions, and therefore, it does not possess Poisson marginals.

Remark 2.4. One of the main techniques used in the proof are those from EVT via convergence
of appropriate point processes. Indeed our argument extends the discussion in Section 2 of [16]
to a multidimensional setting. Another key step is to transform point process convergence into
the convergence of some k-cycle counts. Since we are dealing with the Poissonian regime, these
k-cycle counts can be approximated by “isolated” k-cycle counts, and the latter can be further
approximated by the Betti number (7). In the case of i.i.d heavy-tailed points, a similar treatment
was made in [2] and [33].

Before concluding this section, we want to add one more result to clarify the role of condition
(10). As implied in the latter case of Example 2.1, it prevents multiple occurrence of k-cycles.
Although generalizing Theorem 2.2 by removing (10) seems feasible, it makes the description of
the limit process extremely complicated, because of the involvement of more general coefficient
matrices (A j ). Therefore, in the following, we set A j ≡ I and consider a simple moving average
process

Yn =

q∑
j=0

X j . (23)

Clearly, this process does not fulfill (10) (and also (8)). We now state the limit theorem for the
Betti number (7). Since the proof is very similar to that of Theorem 2.2, we omit it.

Theorem 2.5. For the moving average process (23), assume all the conditions in Theorem 2.2
except (10) and (8). Then, we have

βk

(
Rt

(
Yn ∩ B(0, R(1)

k,n)c))
⇒ Wk(t) in D[0, ∞), n → ∞,

where Wk(t) := W (1)
k (t) + W (2)

k (t) such that

W (1)
k (t) =

q∑
ℓ=0

∫
Ω ′×(Rd )2k+1

ht
(
Y (1)

ℓ , . . . , Y (2k+2)
ℓ

)⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y) M(dω′, dy),

W (2)
k (t) =

q∑
p=1

∑
ℓ∈L̃2k+2

min1≤i≤2k+2 ℓi =0
max1≤i≤2k+2 ℓi =p

∫
Ω ′×(Rd )2k+1

q−p∑
j=0

ht
(
Y (1)

ℓ1+ j , . . . , Y (2k+2)
ℓ2k+2+ j

)⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y)

× Mℓ(dω′, dy).

Here, M and Mℓ’s are independent Poisson random measures on Ω ′
× (Rd )2k+1 with common

mean measure
sd−1

(2k + 2)!
(
2α(k + 1) − d

) P′
× λ2k+1.

In the corollary, the process W (1)
k (t) is essentially the same as V (1)

k (t) in the sense that both
represent multiple occurrence of k-cycles over q + 1 periods of time. The process W (2)

k (t),
however, consists of many more integrals than V (2)

k (t) does, some of which relate to multiple
occurrences of k-cycles, whereas all the integrals in V (2)

k (t) induce at most a single k-cycle.
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Specifically, for every ℓ ∈ L̃2k+2 with p = max1≤i≤2k+2 ℓi , the corresponding Poisson random
measure Mℓ drives multiple (up to q − p + 1) k-cycles, unless p = q .

3. Čech complex

In this section, we consider the filtration relating to the Čech complex Ct
(
Yn ∩ B(0, R(2)

k,n)c
)
,

where Yn = (Y1, . . . , Yn) is the same moving average process (3), and R(2)
k,n is defined as a

solution to the asymptotic equation

nk+2(R(2)
k,n)d f (R(2)

k,ne1)k+2
→ 1 as n → ∞. (24)

Then one can obtain the same layered structure as in (6), with radii of different regularly varying
rates. The corresponding kth Betti number is defined as

βk

(
Ct

(
Yn ∩ B(0, R(2)

k,n)c))
= βk

( ⋃
Y∈Yn∩B(0,R(2)

k,n )c

B(Y, t/2)
)

, t ≥ 0, (25)

where the equality holds because of homotopy equivalence between the Čech complex and the
union of balls.

As for the coefficient matrices A j , we again assume (8) and (9). Additionally we need to
slightly modify (10) by changing the dimensions. Namely, for all off-diagonal elements (ℓ1, . . . ,

ℓk+2) ∈ {0, . . . , q − 1}
k+2 (i.e., ℓi ̸= ℓ j for some i ̸= j) and m = 1, . . . , q − max1≤i≤k+2 ℓi ,

assume that for some i ̸= j ,

Aℓi +m A−1
ℓi

̸= Aℓ j +m A−1
ℓ j

. (26)

Subsequently, we define the limiting process in a way analogous to that in the previous section.
By slightly abusing notations in (11) and (14), define

h(x1, . . . , xk+2) := 1
{
βk

(
C1(x1, . . . , xk+2)

)
= 1

}
, xi ∈ Rd ,

ht (x1, . . . , xk+2) := h(x1/t, . . . , xk+2/t).

Moreover, N and Nℓ with ℓ = (ℓ1, . . . , ℓk+2) ∈ L̃k+2 denote independent Poisson random
measures with mean measures

1
(k + 2)!

ρd−1−α(k+2)dρ × J (θ )dθ × P′
× λk+1

and
C(ℓ1,...,ℓk+2)

(k + 2)!
P′

× λk+1, (ℓ1, . . . , ℓk+2) ∈ L̃k+2, (27)

respectively.
Then, the following process becomes the weak limit for (25).

Zk(t) =

q∑
ℓ=0

∫
(∥Aℓθ∥−1,∞)×Sd−1×Ω ′×(Rd )k+1

ht
(
Y (1)

ℓ , . . . , Y (k+2)
ℓ

)⏐⏐
(X (1)

0 ,...,X (k+2)
0 )=(0,y) (28)

N (dρ dθ dω′ dy)

+

∑
ℓ∈L̃k+2

∫
Ω ′×(Rd )k+1

ht
(
Y (1)

ℓ1
, . . . , Y (k+2)

ℓk+2

)⏐⏐
X (i)

0 =A−1
ℓi

yi−1,i=1,...,k+2 Nℓ(dω′ dy)

:= Z (1)
k (t) + Z (2)

k (t),

where ℓ = (ℓ1, . . . , ℓk+2) ∈ L̃k+2, y = (y1, . . . , yk+1) ∈ (Rd )k+1 with y0 ≡ 0.
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The structure of (28) is essentially the same as that of (19) except for the dimensions of the
domain of functions and measures, as well as a multiplicative constant in (27). The reason for the
difference in dimensions is that the minimum number of points to form a single k-cycle differs
between the two complexes. In fact, in order to make a k-cycle, there need to be at least 2k + 2
points for the Vietoris–Rips complex, while there need to be only k + 2 points for the Čech
complex.

Theorem 3.1. Under the assumptions (2), (8), (9), (24), and (26), the kth Betti number (25)
satisfies

βk

(
Ct

(
Yn ∩ B(0, R(2)

k,n)c))
⇒ Zk(t), n → ∞, (29)

in a finite-dimensional sense.

Remark 3.2. In contrast to the Vietoris–Rips complex, the definition of a k-simplex in the Čech
complex requires a non-empty intersection of “multiple” closed balls. This difference makes it
much harder to establish the required tightness. Although the weak limit theorem above seems
to hold in the space D[0, ∞), we have proven it only in a finite-dimensional sense.

4. Future work

The current paper presented a novel result for the topological crackle when the underlying
moving average process exhibits non-trivial linear dependence. However, this study is just a
first step toward developing the theory of the crackle phenomenon for more general stochastic
processes. With this goal in mind, we discuss a few possible future research directions.

1. The crackle phenomenon can be observed not only in heavy-tailed distributions with a
regularly varying tail, but also in the distributions of lighter tails, such as subexponential
or exponential distributions; see [33]. From this viewpoint, we conjecture that, if the
moving average process is constructed from i.i.d subexponential (or exponential) random
variables, then the process once again exhibits the crackle phenomenon. The resulting
limit process will be expressed in terms of the sum of stochastic integrals as in (19), all
of which are driven by Poisson random measures. However, the mean measure of these
Poisson random measures should be a different one, reflecting the light tail of the moving
average, as well as its clustering property.

2. For the current work, Eq. (5) plays a crucial role in determining R(1)
k,n , so that there appear

only finitely many k-cycles outside B(0, R(1)
k,n). Suppose, on the contrary, that one takes a

different radius Rn growing more slowly than R(1)
k,n , such that

n2k+2 Rd
n f (Rne1)2k+2

→ ∞ as n → ∞. (30)

Then, the Vietoris–Rips complexes in the exterior of B(0, Rn) are more dense than those
outside B(0, R(1)

k,n). Consequently, as n → ∞, we would observe “infinitely many”
k-cycles outside B(0, Rn). This implies that by proper centering and scaling, the nor-
malized kth Betti number follows a functional central limit theorem. The weak limits of
the normalized Betti numbers are represented as the sum of many integrals as in (19), but
all the integrals should be driven by certain Gaussian random measures. In the case of i.i.d
heavy-tailed points, the normal convergence under the condition similar to that in (30)
was proven in [32].
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5. Proof of the main theorem

The proofs of (21) and (29) are basically the same. In fact, the argument is completely parallel
up to finite-dimensional convergence, regardless of the type of complex. Thus, we prove only
(21) together with the required tightness. Since the proof of (21) is rather long and heavy on
notations, we would like to introduce shorthand notations to save space. Let N be the non-
negative integers. For m ≥ 1, let

Im =
{
(i1, . . . , im) ∈ Nm

+
: 1 ≤ i1 < · · · < im ≤ n

}
and

Ĩm =
{
(i1, . . . , im) ∈ Im : i j − i j−1 > 2q, j = 2, . . . , m

}
.

We need to recall notations (17) and (18). Recall also R(1)
k,n given in (5), but hereafter, we drop

the superscript “(1)” for typographical ease.
Given a moving average process (3), define, for i ∈ Z,

Xi = (X i , X i−1, . . . , X i−q ) ∈ (Rd )q+1

and for i = (i1, . . . , i2k+2) ∈ I2k+2,

Yi = (Yi1 , . . . , Yi2k+2 ) ∈ (Rd )2k+2.

Finally, we provide a basic fact: for every m ≥ 1,(
n
m

)
∼

nm

m!
as n → ∞, (31)

where ∼ means that the ratio of the two sides tends to 1 as n → ∞. Moreover, for x ∈ Rd and
y = (y1, . . . , ym) ∈ (Rd )m , we write

x + y := (x + y1, . . . , x + ym).

In the following, C∗ denotes a generic positive constant, which does not depend on n and may
vary between lines.

An entire proof is divided into four parts. Our proof employs, at least partially, some
arguments in EVT via point process convergence [16] and [35]. We first propose some claims
about point process convergence. Assuming these claims, we transform the point process into
some k-cycle counts. Part I shows that such k-cycle counts weakly converges to Vk(t) in a finite-
dimensional sense. The required tightness is proven in Part II. Subsequently, Part III verifies that
the k-cycle counts can be approximated by the kth Betti number. Finally, Part IV proves all the
claims regarding point process convergence and finishes the entire proof.

Now we state three claims (32)–(34) below about point process convergence. Among them,
the major statement is (33), asserting the multidimensional version of the result in Section 2
of [16]. Writing ϵ for the usual Dirac measure, we define a point process∑

i∈I2k+2

ht (Yi) ϵ
R−1

k,n

(
Xi1 ,...,Xi2k+2

)(·)

on the space Ek :=
(
[−∞, ∞]d(q+1)

\ {0}
)2k+2 (0 is the vector of zeros in Rd(q+1)). Based on this

point process, the first claim is that∑
i∈I2k+2

ht (Yi) ϵ
R−1

k,n

(
Xi1 ,...,Xi2k+2

) −

∑
i∈Ĩ2k+2

ht (Yi) ϵ
R−1

k,n

(
Xi1 ,...,Xi2k+2

) p
→ 0 (32)

in the space Mp(Ek) of point measures on Ek .
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For i ∈ {0, . . . , q}, let δi = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0)′ be an Rd(q+1)-valued column vector
with ones from the (di+1)th position to the d(i+1)th position, and all other entries 0. The second
claim is that in the space Mp(Ek),∑

i∈Ĩ2k+2

ht (Yi) ϵ
R−1

k,n

(
Xi1 ,...,Xi2k+2

) (33)

−

∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi) ϵ
R−1

k,n

(
diag(δℓ1Xi1 ),...,diag(δℓ2k+2Xi2k+2 )

) p
→ 0.

Here, diag(A) := (a11, a22, . . . , amm) for an m × m matrix A = (ai j )m
i, j=1 and so,

diag(δℓ jXi j ) = (0, . . . , 0, X i j −ℓ j , 0, . . . , 0) ∈ Rd(q+1),

where the components in X i j −ℓ j are distributed from the (dℓ j + 1)th position to the d(ℓ j + 1)th
position. A key insight for this claim is that for each j = 1, . . . , 2k + 2, exactly one component
in Xi j is likely to be so large that it cannot be driven to zero by the normalization Rk,n , while all
the other components in Xi j tend to zero by the Rk,n (remember that 0 /∈ [−∞, ∞]d(q+1)).

In addition, we also claim that∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi) ϵ
R−1

k,n

(
diag(δℓ1Xi1 ),...,diag(δℓ2k+2Xi2k+2 )

) (34)

−

∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi+ℓ) ϵ
R−1

k,n

(
diag(δℓ1Xi1+ℓ1 ),...,diag(δℓk+2Xi2k+2+ℓ2k+2 )

) p
→ 0,

where, by definition,

diag(δℓ jXi j +ℓ j ) = (0, . . . , 0, X i j , 0, . . . , 0) ∈ Rd(q+1).

When (32), (33), and (34) have been established, we can immediately derive∑
i∈I2k+2

ht (Yi) 1
{

min
j=1,...,2k+2

∥Yi j ∥ ≥ Rk,n
}

(35)

−

∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi+ℓ) 1
{

min
j=1,...,2k+2

∥Aℓ j X i j ∥ ≥ Rk,n
} p

→ 0.

In what follows, we temporarily assume (32), (33), and (34), together with (35), and start with
the discussion in Part I.

Part I: The goal of Part I is to establish the convergence of the finite-dimensional distributions of

Gn(t) :=

∑
i∈I2k+2

ht (Yi) 1
{

min
j=1,...,2k+2

∥Yi j ∥ ≥ Rk,n
}

⇒ Vk(t).

By virtue of (35) and Slutsky’s lemma, it suffices to show that∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi+ℓ) 1
{

min
j=1,...,2k+2

∥Aℓ j X i j ∥ ≥ Rk,n
}

⇒ Vk(t) (36)

in a finite-dimensional sense. For typographical ease, we consider only one-dimensional
distributions. In the case of more than one-dimension, the argument is similar because of the
Cramér–Wold device, but the notation becomes more cumbersome.
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We begin with defining a point process on N,

ξn(·) :=

∑
i∈Ĩ2k+2

1
{ ∑

ℓ∈L2k+2

ht (Yi+ℓ) 1
{

min
j=1,...,2k+2

∥Aℓ j X i j ∥ ≥ Rk,n
}

̸= 0
}

× ϵ(∑
ℓ∈L2k+2

ht (Yi+ℓ) 1
{

min j=1,...,2k+2 ∥Aℓ j Xi j ∥≥Rk,n

})(·).

Additionally let ζ be a Poisson random measure on N with finite mean measure µ+
∑

ℓ∈L̃2k+2
νℓ,

where

µ(·) =
1

(2k + 2)!

∫
∞

0
dρ

∫
Sd−1

J (θ )dθ

∫
(Rd )2k+1

dyρd−1−2α(k+1)

× P′

{ q∑
ℓ=0

ht (Y
(1)
ℓ , . . . , Y (2k+2)

ℓ )
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y)1

{
ρ ≥ ∥Aℓθ∥

−1}
∈ · \ {0}

}
,

and for ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L̃2k+2,

νℓ(·) =
Cℓ

(2k + 2)!

∫
(Rd )2k+1

P′

{
ht (Y

(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐

X (i)
0 =A−1

ℓi
yi−1, i=1,...,2k+2 ∈ · \ {0}

}
dy.

For the latter we take y0 ≡ 0 and Cℓ is given in (16).
Under this setup we show that

ξn ⇒ ζ in Mp(N). (37)

Before proving (37) we would like to demonstrate that (37) implies (36). To see this let
T̂ : Mp(N) → N be a functional defined by T̂

(∑
m ϵzm

)
=

∑
m zm . This functional is continuous

on a set of finite point measures. Combining (37) and the continuous mapping theorem yields

T̂ (ξn) ⇒ T̂ (ζ ).

Clearly T̂ (ξn) is equal to the left hand side of (36). Furthermore, we claim that

T̂ (ζ ) d
= Vk(t). (38)

To show (38) let us represent ζ as

ζ
d
=

Mn∑
i=1

ϵZi ,

where Z1, Z2, . . . are i.i.d with common distribution(
µ(N) +

∑
ℓ∈L̃2k+2

νℓ(N)
)−1(

µ +

∑
ℓ∈L̃2k+2

νℓ

)
,

and Mn is a Poisson random variable with parameter µ(N)+
∑

ℓ∈L̃2k+2
νℓ(N). Moreover, (Z i ) and

Mn are independent. It then follows from the Laplace functional of a Poisson random measure
(see Theorem 5.1 in [36]) that for every λ > 0,

E
{

exp
(
−λVk(t)

)}
= E

{
exp

(
−λV (1)

k (t)
)}
E

{
exp

(
−λV (2)

k (t)
)}

(39)

= exp
(
−

∞∑
m=1

(1 − e−λm)µ(m)
)

exp
(
−

∑
ℓ∈L̃2k+2

∞∑
m=1

(1 − e−λm)νℓ(m)
)
.
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On the other hand it is elementary to see that

E
{

exp
(
−λT̂ (ζ )

)}
= E

{
exp

(
−λ

Mn∑
i=1

Z i

)}
(40)

= exp
(
−

∞∑
m=1

(1 − e−λm)
(
µ(m) +

∑
ℓ∈L̃2k+2

νℓ(m)
))

Since (39) and (40) are the same, we get (38) and hence (36) follows as desired.
In order to finish the argument in Part I, it now remains to verify (37). According to

Kallenberg’s theorem (e.g., Proposition 3.22 in [35]), it is enough to show that for every
m = 1, 2, . . .

E{ξn(m)} → E{ζ (m)} = µ(m) +

∑
ℓ∈L̃2k+2

νℓ(m) (41)

and

P
{
ξn(m) = 0

}
→ P

{
ζ (m) = 0

}
. (42)

Since ξn(m) denotes a sum of indicators over i = (i1, . . . , i2k+2) ∈ Ĩ2k+2 with i j − i j−1 >

2q, j = 2, . . . , 2k + 2, we see that for every ℓ ∈ L2k+2, the components in Yi+ℓ =

(Yi1+ℓ1 , . . . , Yik+2+ℓk+2) do not share the same X j s. Therefore, by (31) and (15), we have, as
n → ∞,

E{ξn(m)} ∼
n2k+2

(2k + 2)!
P′

{ ∑
ℓ∈L2k+2

ht (Y
(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)

× 1
{

min
j=1,...,2k+2

∥Aℓ j X ( j)
0 ∥ ≥ Rk,n

}
= m

}
.

=
n2k+2

(2k + 2)!

∫
(Rd )2k+2

P′

{ ∑
ℓ∈L2k+2

ht (Y
(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(z1,...,z2k+2)

× 1
{

min
j=1,...,2k+2

∥Aℓ j z j∥ ≥ Rk,n
}

= m
} 2k+2∏

i=1

f (zi )dz

≡ Jn.

For ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L2k+2 and z = (z1, . . . , z2k+2) ∈ (Rd )2k+2, we set

Iℓ(z) := ht (Y
(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(z1,...,z2k+2) 1

{
min

j=1,...,2k+2
∥Aℓ j z j∥ ≥ Rk,n

}
.

(43)

Using (43), we can write Jn = J (1)
n +

∑
ℓ∈L̃2k+2

J (2)
n,ℓ + J (3)

n , where

J (1)
n :=

n2k+2

(2k + 2)!

∫
(Rd )2k+2

P′

{ q∑
ℓ=0

I(ℓ,...,ℓ)(z) ̸= 0,
∑

ℓ∈L2k+2

Iℓ(z) = m
} 2k+2∏

i=1

f (zi )dz,

J (2)
n,ℓ :=

n2k+2

(2k + 2)!

∫
(Rd )2k+2

P′

{
Iℓ(z) ̸= 0,

∑
ℓ′∈L2k+2

Iℓ′ (z) = m
} 2k+2∏

i=1

f (zi )dz,
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and J (3)
n := Jn − J (1)

n −
∑

ℓ∈L̃2k+2
J (2)

n,ℓ. Then, we prove the following: as n → ∞,

J (1)
n → µ(A), (44)

J (2)
n,ℓ → νℓ(A) for every ℓ ∈ L̃2k+2, (45)

J (3)
n → 0. (46)

To handle J (1)
n , changing the variables z1 ↔ x , zi ↔ x + yi−1, i = 2, . . . , 2k + 2 yields

J (1)
n =

n2k+2

(2k + 2)!

∫
Rd

∫
(Rd )2k+1

P′

{ q∑
ℓ=0

ht (Y
(1)
ℓ , . . . , Y (2k+2)

ℓ )
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y)

× 1
{

min
j=1,...,2k+2

∥Aℓ(x + y j−1)∥ ≥ Rk,n
}

̸= 0,∑
ℓ∈L2k+2

Iℓ(x, x + y) = m
}

× f (x)
2k+1∏
i=1

f (x + yi )dydx,

where y0 ≡ 0, and we have applied

q∑
ℓ=0

I(ℓ,...,ℓ)(x, x + y) (47)

=

q∑
ℓ=0

ht (Y
(1)
ℓ , . . . , Y (2k+2)

ℓ )
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y) 1

{
min

j=1,...,2k+2
∥Aℓ(x + y j−1)∥ ≥ Rk,n

}
,

which is derived from the translation invariance (12).
Subsequently, the polar coordinate transform x ↔ (r, θ) with J (θ ) = |∂x/∂θ | and another

change of variable ρ = r/Rk,n yield

J (1)
n =

n2k+2

(2k + 2)!
Rd

k,n f (Rk,ne1)2k+2
∫

∞

0
dρ

∫
Sd−1

J (θ )dθ

∫
(Rd )2k+1

dyρd−1 (48)

× P′

{ q∑
ℓ=0

ht (Y
(1)
ℓ , . . . , Y (2k+2)

ℓ )
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y)

× 1
{

min
j=1,...,2k+2

∥Aℓ(ρθ + y j−1/Rk,n)∥ ≥ 1
}

̸= 0,∑
ℓ∈L2k+2

Iℓ(Rk,nρθ, Rk,nρθ + y) = m
}

×
f (Rk,nρe1)
f (Rk,ne1)

2k+1∏
i=1

f
(
Rk,n∥ρθ + yi/Rk,n∥e1

)
f (Rk,ne1)

.

By (5), we see that

n2k+2

(2k + 2)!
Rd

k,n f (Rk,ne1)2k+2
→

1
(2k + 2)!

, n → ∞. (49)
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By the regular variation of f , we have, as n → ∞,

f (Rk,nρe1)
f (Rk,ne1)

2k+1∏
i=1

f
(
Rk,n∥ρθ + yi/Rk,n∥e1

)
f (Rk,ne1)

→ ρ−2α(k+1)

for all ρ > 0, θ ∈ Sd−1, and y = (y1, . . . , y2k+1) ∈ (Rd )2k+1.
In addition, it follows from (13) and (14) that for every ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L̃2k+2 (assume,

without loss of generality, ℓ1 ̸= ℓ2),

ht (Y
(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(Rk,nρθ,Rk,nρθ+y)

≤ 1
{
∥Y (1)

ℓ1
− Y (2)

ℓ2
∥ ≤ Mt

}⏐⏐
(X (1)

0 , X (2)
0 )=(Rk,nρθ,Rk,nρθ+y1)

= 1
{
∥Rk,nρ(Aℓ1 − Aℓ2 )θ − Aℓ2 y1 + Ỹ (1)

ℓ1
− Ỹ (2)

ℓ2
∥ ≤ Mt

}
,

where Ỹ (1)
ℓ1

= Y (1)
ℓ1

− Aℓ1 X (1)
0 and Ỹ (2)

ℓ2
= Y (2)

ℓ2
− Aℓ2 X (2)

0 . From (8) we have that (Aℓ1 − Aℓ2 )θ ̸= 0
and hence, the last expression converges to 0 as n → ∞ a.s. Thus, the probability P′ on the right
hand side of (48) converges to

P′

{ q∑
ℓ=0

ht (Y
(1)
ℓ , . . . , Y (2k+2)

ℓ )
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y) 1

{
ρ ≥ ∥Aℓθ∥

−1}
= m

}
.

Therefore, the proof of (44) will be complete if one can find an integrable upper bound for
the application of the dominated convergence theorem. First, the probability P′ in (48) can be
bounded by

q∑
ℓ=0

P′

{
ht (Y

(1)
ℓ , . . . , Y (2k+2)

ℓ )
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y) ̸= 0

}
,

and, by (13), we have∫
(Rd )2k+1

P′

{
ht (Y

(1)
ℓ , . . . , Y (2k+2)

ℓ )
⏐⏐
(X (1)

0 ,...,X (2k+2)
0 )=(0,y) ̸= 0

}
dy < ∞

for all ℓ = 0, . . . , q .
Next, we need to provide another bound for the probability P′ in (48); namely, it can be

bounded above by

1
{

max
ℓ=0,...,q

min
j=1,...,2k+2

Aℓ(ρθ + y j−1/Rk,n)
 ≥ 1

}
≤ 1

{
min

j=1,...,2k+2
∥ρθ + y j−1/Rk,n∥ ≥

(
max

ℓ=0,...,q
∥Aℓ∥

)−1}
.

Using this bound together with the Potter bound for regularly varying functions (e.g., Theo-
rem 1.5.6 in [8]), we derive that, for every η ∈ (0, α − d), there exist constants C1, C2 > 0 such
that

1
{
ρ ≥

(
max

ℓ=0,...,q
∥Aℓ∥

)−1} f (Rk,nρe1)
f (Rk,ne1)

(50)

≤ C11
{
ρ ≥

(
max

ℓ=0,...,q
∥Aℓ∥

)−1} (ρ−(α+η)
+ ρ−(α−η))

and
2k+1∏
i=1

1
{
∥ρθ + yi/Rk,n∥ ≥

(
max

ℓ=0,...,q
∥Aℓ∥

)−1} f
(
Rk,n∥ρθ + yi/Rk,n∥e1

)
f (Rk,ne1)

≤ C2. (51)
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Here, we have introduced specific constants Ci (not a generic one) for later use. Since∫
∞(
maxℓ=0,...,q ∥Aℓ∥

)−1(ρd−1−(α+η)
+ ρd−1−(α−η))dρ < ∞,

the dominated convergence theorem justifies the convergence under the integral sign and (44)
has been proven.

We now turn to proving (45). The argument basically proceeds in the same manner as in (44).
Fix ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L̃2k+2. Changing the variables z1 ↔ A−1

ℓ1
x , zi ↔ A−1

ℓi
(x + yi−1),

i = 2, . . . , 2k + 2 and using the translation invariance (12) as in (47), we obtain

J (2)
n,ℓ =

(2k+2∏
j=1

det Aℓ j

)−1 n2k+2

(2k + 2)!

×

∫
Rd

∫
(Rd )2k+1

P′

{
ht (Y

(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐

X (i)
0 =A−1

ℓi
yi−1, i=1,...,2k+2

× 1
{

min
j=1,...,2k+2

∥x + y j−1∥ ≥ Rk,n
}

̸= 0,∑
ℓ′∈L2k+2

Iℓ′

(
A−1

ℓ1
x, A−1

ℓ2
(x + y1), . . . , A−1

ℓ2k+2
(x + y2k+1)

)
= m

}

× f (A−1
ℓ1

x)
2k+2∏
i=2

f
(

A−1
ℓi

(x + yi−1)
)
dydx

(with y0 ≡ 0).
Next, the polar coordinate transform x ↔ (r, θ) followed by the change of variable ρ =

r/Rk,n gives

J (2)
n,ℓ =

(2k+2∏
j=1

det Aℓ j

)−1 n2k+2

(2k + 2)!
Rd

k,n f (Rk,ne1)2k+2 (52)

×

∫
∞

0
dρ

∫
Sd−1

J (θ )dθ

∫
(Rd )2k+1

dyρd−1

× P′

{
ht (Y

(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐

X (i)
0 =A−1

ℓi
yi−1, i=1,...,2k+2 ̸= 0,∑

ℓ′∈L2k+2

Iℓ′

(
A−1

ℓ1
Rk,nρθ, A−1

ℓ2
(Rk,nρθ + y1), . . . , A−1

ℓ2k+2
(Rk,nρθ + y2k+1)

)
= m

}
× 1

{
min

j=1,...,2k+2
∥ρθ + y j−1/Rk,n∥ ≥ 1

}
×

f
(
Rk,n∥A−1

ℓ1
ρθ∥e1

)
f (Rk,ne1)

2k+2∏
i=2

f
(
Rk,n∥A−1

ℓi
(ρθ + yi−1/Rk,n)∥e1

)
f (Rk,ne1)

.

By the regular variation of f , as n → ∞,

f
(
Rk,n∥A−1

ℓ1
ρθ∥e1

)
f (Rk,ne1)

2k+2∏
i=2

f
(
Rk,n∥A−1

ℓi
(ρθ + yi−1/Rk,n)∥e1

)
f (Rk,ne1)

→ ρ−2α(k+1)
2k+2∏
j=1

∥A−1
ℓ j

θ∥
−α.
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Observe that for every ℓ′
= (ℓ′

1, . . . , ℓ
′

2k+2) ∈ L2k+2 with ℓ′
̸= ℓ,

ht (Y
(1)
ℓ′

1
, . . . , Y (2k+2)

ℓ′
2k+2

)
⏐⏐

X (i)
0 =A−1

ℓi
(Rk,nρθ+yi−1), i=1,...,2k+2 → 0 as n → ∞, a.s.

Hence, the probability P′ in (52) converges to

P′
{

ht (Y
(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐

X (i)
0 =A−1

ℓi
yi−1, i=1,...,2k+2 = m

}
.

Putting these results together, while using (49) and assuming that all convergences take place
under the integral sign, we can obtain (45).

It now remains to find an integrable upper bound. Note first that (13) implies∫
(Rd )2k+1

P′
{

ht (Y
(1)
ℓ1

, . . . , Y (2k+2)
ℓ2k+2

)
⏐⏐

X (i)
0 =A−1

ℓi
yi−1, i=1,...,2k+2 ̸= 0

}
dy < ∞.

By virtue of (9), on the set
{
min j=1,...,2k+2 ∥ρθ + y j−1/Rk,n∥ ≥ 1

}
, we have

∥A−1
ℓ1

ρθ∥ ≥ c∥A−1
ℓ1

∥(> 0),A−1
ℓ j

(ρθ + y j−1/Rk,n)
 ≥ c∥A−1

ℓ j
∥(> 0), j = 2, . . . , 2k + 2,

for all ρ > 0, θ ∈ Sd−1 and y = (y1, . . . , y2k+1) ∈ (Rd )2k+1, from which Potter’s bounds are
applicable once again, and the required integrable bound can be established as before.

Finally, the proof of (46) is mostly parallel to those of (44) and (45), and therefore, we omit
it. Now, we can conclude (41).

Subsequently we turn our attention to verifying (42). First we write

ξn(m) =

∑
i∈Ĩ2k+2

ηi,n, m ≥ 1,

with

ηi,n := 1
{ ∑

ℓ∈L2k+2

ht (Yi+ℓ) 1
{

min
j=1,...,2k+2

∥Aℓ j X i j ∥ ≥ Rk,n
}

= m
}
.

Our argument needs the total variation distance, which is defined for real-valued random
variables Y1, Y2 on the same probability space:

dTV(Y1, Y2) := sup
A⊂R

⏐⏐P{Y1 ∈ A} − P{Y2 ∈ A}
⏐⏐.

Then, we see that⏐⏐P{ξn(m) = 0} − P{ζ (m) = 0}
⏐⏐ (53)

≤ dTV

(
ξn(m), Poi

(
E

{
ξn(m)

}))
+

⏐⏐⏐P{
Poi

(
E

{
ξn(m)

})
= 0

}
− P

{
ζ (m) = 0

}⏐⏐⏐,
where Poi(a) is a Poisson random variable with mean parameter a. Since Poi

(
E{ξn(m)}

)
and

ζ (m) are both Poisson random variables, an elementary calculation shows that⏐⏐⏐P{
Poi

(
E

{
ξn(m)

})
= 0

}
− P

{
ζ (m) = 0

}⏐⏐⏐ ≤
⏐⏐E{ξn(m)} − E{ζ (m)}

⏐⏐ → 0,

where the last convergence is due to (41). To handle the first term in (53), we use the so-
called Stein’s method for Poisson approximation (see Theorem 2.1 in [34]). To fulfill this
aim, note first that ηi,n is a Bernoulli random variable. For i = (i1, . . . , i2k+2) ∈ Ĩ2k+2 and
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j = ( j1, . . . , j2k+2) ∈ Ĩ2k+2, write i ∼ j if and only if they are “close” to one another in the sense
of {

(i1 + r1, . . . , i2k+2 + r2k+2) : |rp| ≤ q, p = 1, . . . , 2k + 2
}

∩
{
( j1 + r1, . . . , j2k+2 + r2k+2) : |rp| ≤ q, p = 1, . . . , 2k + 2

}
̸= ∅.

Recalling that all elements in Ĩ2k+2 are separate from one another by at least 2q , we find
that (Ĩ2k+2, ∼) becomes a dependency graph with respect to (ηi,n, i ∈ Ĩ2k+2). That is, for all
I1, I2 ⊂ Ĩ2k+2 with no edges connecting I1 and I2, we have that (ηi,n, i ∈ I1) and (ηi,n, i ∈ I2)
are independent. Therefore, Stein’s method for Poisson approximation yields

dTV

(
ξn(m), Poi

(
E

{
ξn(m)

}))
(54)

≤ 3
( ∑

i∈Ĩ2k+2

∑
j∈Ni

E{ηi,n}E{ηj,n} +

∑
i∈Ĩ2k+2

∑
j∈Ni\{i}

E{ηi,nηj,n}
)
,

where Ni = { j ∈ Ĩ2k+2 : i ∼ j} ∪ {i}.
For the first term on the right hand side of (54), we see that (41) implies, for each i ∈ Ĩ2k+2,

E{ηi,n} ∼

(
n

2k + 2

)−1

E
{
ζ (m)

}
, n → ∞.

Furthermore,∑
i∈Ĩ2k+2

∑
j∈Ni

1 = o
((

n
2k + 2

)2 )
,

and thus, the first term in (54) goes to 0 as n → ∞. Proceeding as in the derivation of (41), we
have, for all i ∈ Ĩ2k+2 and j ∈ Ni \ {i} with p := |i ∩ j| ∈ {0, . . . , 2k + 1},

E{ηi,nηj,n} ∼ C∗ Rd
k,n f (Rk,ne1)4k+4−p as n → ∞.

It follows from (31) and (5) that∑
i∈Ĩ2k+2

∑
j∈Ni\{i}

E{ηi,nηj,n}

∼ C∗

2k+1∑
p=0

(
n

2k + 2

) (
2k + 2

p

) (
n − (2k + 2)
2k + 2 − p

)
E{ηi,nηj,n}1{|i ∩ j| = p}

∼ C∗

2k+1∑
p=0

n4k+4−p Rd
k,n f (Rk,ne1)4k+4−p

∼ C∗

2k+1∑
p=0

(
n f (Rk,ne1)

)2k+2−p
→ 0.

We now obtain (42), and accordingly, we also obtain (37) as desired.

Part II: For the tightness of

Gn(t) =

∑
i∈I2k+2

ht (Yi) 1
{

min
j=1,...,2k+2

∥Yi j ∥ ≥ Rk,n
}
,
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we need to check a sufficient condition given in Theorem 13.5 of [7]. For a fixed L > 0, we
show that there exists B > 0, for which

P
{

min
{⏐⏐Gn(t) − Gn(s)

⏐⏐, ⏐⏐Gn(s) − Gn(r )
⏐⏐} ≥ λ

}
≤

B
λ2 (t − r )2

for all 0 ≤ r < s < t ≤ L and λ > 0.
By Markov’s inequality, we have to show only that

E
{⏐⏐Gn(t) − Gn(s)

⏐⏐⏐⏐Gn(s) − Gn(r )
⏐⏐} ≤ B(t − r )2 (55)

for all 0 ≤ r < s < t ≤ L . In the below, the following functions are used. Define

ht,s(x) := ht (x) − hs(x), 0 ≤ s ≤ t, x = (x1, . . . , x2k+2) ∈ (Rd )2k+2

and define, for 0 ≤ m ≤ 2k + 2 and x = (x1, . . . , x4k+4−m) ∈ (Rd )4k+4−m ,

h(m)
t,s,r (x) := ht,s(x1, . . . , x2k+2)hs,r (x1, . . . , xm, x2k+3, . . . , x4k+4−m) (56)

for 0 ≤ r < s < t . In particular, we set

hs,r (x1, . . . , xm, x2k+3, . . . , x4k+4−m) :=

{
hs,r (x2k+3, . . . , x4k+4) if m = 0
hs,r (x1, . . . , x2k+2) if m = 2k + 2.

Using these functions, the left hand side in (55) is bounded by
2k+2∑
m=0

E
{ ∑

i∈I4k+4−m

⏐⏐ h(m)
t,s,r (Yi)

⏐⏐ 1
{

min
j=1,...,4k+4−m

∥Yi j ∥ ≥ Rk,n
}}

, (57)

where Yi = (Yi1 , . . . , Yi4k+4−m ) for i = (i1, . . . , i4k+4−m) ∈ I4k+4−m . Observe that

1
{

min
j=1,...,4k+4−m

∥Yi j ∥ ≥ Rk,n
}

(58)

≤

∑
ℓ∈L4k+4−m

1
{

min
j=1,...,4k+4−m

∥Aℓ j X i j −ℓ j ∥ ≥ Rk,n/(q + 1)
}
,

and, because of (32), I4k+4−m in (57) can be asymptotically replaced with Ĩ4k+4−m . Therefore,
(57) is further bounded by a constant multiple of

2k+2∑
m=0

∑
ℓ∈L4k+4−m

E
{ ∑

i∈Ĩ4k+4−m

⏐⏐ h(m)
t,s,r (Yi)

⏐⏐ 1
{

min
j=1,...,4k+4−m

∥Aℓ j X i j −ℓ j ∥ ≥ Rk,n/(q + 1)
}}

:=

2k+2∑
m=0

∑
ℓ∈L4k+4−m

Kℓ,m .

We now bound Kℓ,m for every 1 ≤ m ≤ 2k+2 and ℓ = (ℓ1, . . . , ℓ4k+4−m) ∈ L4k+4−m . In the case
of m = 0, the task of bounding Kℓ,0 is even easier, because ht,s and hs,r in (56) do not share the
same elements. Thus, in the following, we restrict our consideration to the case 1 ≤ m ≤ 2k + 2
and ℓ ∈ L4k+4−m . Then, the same calculation as that for (45), i.e., the same change of variables
as well as applications of the Potter bound, gives

Kℓ,m ≤ C∗n4k+4−m Rd
k,n f (Rk,ne1)4k+4−m (59)

×

∫
(Rd )4k+3−m

E′

{⏐⏐ h(m)
t,s,r (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
)
⏐⏐⏐⏐⏐

X (i)
0 =A−1

ℓi
yi−1, i=1,...,4k+4−m

}
dy
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≤ C∗

∫
Ω ′

∫
(Rd )4k+3−m

⏐⏐ h(m)
t,s,r (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
)
⏐⏐⏐⏐⏐

X (i)
0 =A−1

ℓi
yi−1, i=1,...,4k+4−m

dydP′.

In order to bound the rightmost term, one needs some properties on ht . First, for x = (x1,

. . . , x2k+2) ∈ (Rd )2k+2,

ht (x) ≤ at (x) := 1
{
Rt (x) is connected

}
.

In particular, at is non-decreasing in the sense that as(x) ≤ at (x) for all 0 ≤ s < t and
x ∈ (Rd )2k+2. Thus, we have, for x ∈ (Rd )2k+2,⏐⏐ht,s(x)

⏐⏐ = 1
{{

ht (x) = 1, hs(x) = 0
}

∪
{
ht (x) = 0, hs(x) = 1

}}
≤ aL (x) 1

{
s < ∥xi − x j∥ ≤ t for some i, j ∈ {1, . . . , 2k + 2}

}
.

This is because, whenever the values of hs(x) and ht (x) are different, there always exist two
points (xi , x j ) such that the Euclidean distance between them is greater than s and less than t .

Finally, similarly to (56), we define an augmented version of at by setting, for 1 ≤ m ≤ 2k+2
and x = (x1, . . . , x4k+4−m) ∈ (Rd )4k+4−m ,

a(m)
t (x) := at (x1, . . . , x2k+2) at (x1, . . . , xm, x2k+3, . . . , x4k+4−m).

Returning to the rightmost term in (59), we now have that⏐⏐h(m)
t,s,r (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
)
⏐⏐

≤ a(m)
L (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
)

∑
p1>p2

∑
q1>q2

1
{
s < ∥Y (p1)

ℓp1
− Y (p2)

ℓp2
∥ ≤ t

}
× 1

{
r < ∥Y (q1)

ℓq1
− Y (q2)

ℓq2
∥ ≤ s

}
,

where pi , i = 1, 2 ranges over {1, . . . , 2k + 2} and qi , i = 1, 2 ranges over {1, . . . , m} ∪ {2k +

3, . . . , 4k + 4 − m}. It therefore remains to show that∫
Ω ′

∫
(Rd )4k+3−m

a(m)
L (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
) 1

{
s < ∥Y (p1)

ℓp1
− Y (p2)

ℓp2
∥ ≤ t

}
× 1

{
r < ∥Y (q1)

ℓq1
− Y (q2)

ℓq2
∥ ≤ s

}⏐⏐
X (i)

0 =A−1
ℓi

yi−1, i=1,...,4k+4−mdydP′

≤ B(t − r )2

for all 1 ≤ m ≤ 2k + 2, pi ∈ {1, . . . , 2k + 2}, and qi ∈ {1, . . . , m} ∪ {2k + 3, . . . , 4k + 4 − m}

with p1 > p2, q1 > q2.
If p1 = q1 and p2 = q2, the product of the two indicator functions is identically zero. Thus, we

may consider only the case (p1, p2) ̸= (q1, q2). Assuming, without loss of generality, p1 ̸= q1,
we consider the integral∫

(Rd )2
a(m)

L (Y (1)
ℓ1

, . . . , Y (4k+4−m)
ℓ4k+4−m

) 1
{
s < ∥Y (p1)

ℓp1
− Y (p2)

ℓp2
∥ ≤ t

}
(60)

× 1
{
r < ∥Y (q1)

ℓq1
− Y (q2)

ℓq2
∥ ≤ s

}⏐⏐
X (i)

0 =A−1
ℓi

yi−1, i=1,...,4k+4−mdyp1−1dyq1−1.

Note that

∥Y (p1)
ℓp1

− Y (p2)
ℓp2

∥
⏐⏐

X (i)
0 =Aℓi yi−1, i=p1,p2

= ∥yp1−1 − yp2−1 + Ỹ (p1)
ℓp1

− Ỹ (p2)
ℓp2

∥

∥Y (q1)
ℓq1

− Y (q2)
ℓq2

∥
⏐⏐

X (i)
0 =Aℓi yi−1, i=q1,q2

= ∥yq1−1 − yq2−1 + Ỹ (q1)
ℓq1

− Ỹ (q2)
ℓq2

∥
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(yp2−1 and yq2−1 can be zero), where Ỹ (pi )
ℓpi

= Y (pi )
ℓpi

− Aℓpi
X (pi )

0 and Ỹ (qi )
ℓqi

= Y (qi )
ℓqi

− Aℓqi
X (qi )

0 for
i = 1, 2.

By changing the variables z1 = yp1−1 − yp2−1 + Ỹ (p1)
ℓp1

− Ỹ (p2)
ℓp2

and z2 = yq1−1 − yq2−1 +

Ỹ (q1)
ℓq1

− Ỹ (q2)
ℓq2

, it turns out that the integral (60) has an upper bound

sup
∥zi ∥≤L ,i=1,2

a(m)
L (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
)
∫

(Rd )2
1
{
s < ∥z1∥ ≤ t, r < ∥z2∥ ≤ s

}
dz1dz2

≤ C∗ sup
∥zi ∥≤L ,i=1,2

a(m)
L (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
) (t − r )2,

for which we have substituted

X (i)
0 = A−1

ℓi
yi−1, i = 1, . . . , 4k + 4 − m, i ̸= p1, q1, (61)

X (p1)
0 = A−1

ℓp1
(z1 + yp2−1 − Ỹ (p1)

ℓp1
+ Ỹ (p2)

ℓp2
), (62)

X (q1)
0 = A−1

ℓq1
(z2 + yq2−1 − Ỹ (q1)

ℓq1
+ Ỹ (q2)

ℓq2
). (63)

Writing

g(y \ {yp1−1, yq1−1}, z1, z2; ω′) := a(m)
L (Y (1)

ℓ1
, . . . , Y (4k+4−m)

ℓ4k+4−m
), y ∈ (Rd )4k+3−m,

with (61), (62), and (63) all substituted on the right hand side, we need to show that∫
Ω ′

∫
(Rd )4k+1−m

sup
∥zi ∥≤L ,i=1,2

g(y \ {yp1−1, yq1−1}, z1, z2; ω′)

× d
(
y \ {yp1−1, yq1−1}

)
< ∞. (64)

Because of (13) and (14), we can see that

sup
∥zi ∥≤L ,i=1,2

g(y \ {yp1−1, yq1−1}, z1, z2; ω′)

≤

4k+4−m∏
i=2 i ̸=p1,q1

1
{
∥Y (i)

ℓi
− Y (1)

ℓ1
∥ ≤ M L

}⏐⏐
X (i)

0 =A−1
ℓi

yi−1, X (1)
0 =0

=

4k+4−m∏
i=2, i ̸=p1,q1

1
{
∥yi−1 + Ỹ (i)

ℓi
− Ỹ (1)

ℓ1
∥ ≤ M L

}
.

This in turn implies that the integral (64) is bounded by λd
(
B(0, M L)

)4k+1−m
< ∞, and thus,

the proof for the tightness is complete.

Part III: The arguments in Part I and Part II have proven

Gn(t) =

∑
i∈I2k+2

ht (Yi) 1
{

min
j=1,...,2k+2

∥Yi j ∥ ≥ Rk,n
}

⇒ Vk(t) in D[0, ∞).

Denote Yn = (Y1, . . . , Yn) and, for i = (i1, . . . , i2k+2) ∈ I2k+2, define

gt (Yi,Yn) := ht (Yi) 1
{
Rt (Yi) is an isolated component of Rt (Yn)

}
.

We claim that

G̃n(t) :=

∑
i∈I2k+2

gt (Yi,Yn) 1
{

min
j=1,...,2k+2

∥Yi j ∥ ≥ Rk,n
}



4990 T. Owada / Stochastic Processes and their Applications 129 (2019) 4965–4997

has the same weak limit as Gn(t) does. Equivalently, we claim that

Gn(t) − G̃n(t)
p

→ 0 in D[0, ∞). (65)

Since at is non-decreasing in t , we have, for every L > 0,

sup
0≤t≤L

(
Gn(t) − G̃n(t)

)
≤

∑
i∈I2k+2

1
{
RL (Yi) is connected but is not an isolated component of RL (Yn)

}
× 1

{
min

j=1,...,2k+2
∥Yi j ∥ ≥ Rk,n

}
.

Since an isolated component on p (≥ 2k + 3) points may have at most
(

p
2k + 2

)
non-trivial

k-cycles, it follows from (58) that

sup
0≤t≤L

(
Gn(t) − G̃n(t)

)
≤

∞∑
p=2k+3

(
p

2k + 2

) ∑
i∈Ip

1
{
RL (Yi) is connected

}
1
{

min
j=1,...,p

∥Yi j ∥ ≥ Rk,n
}

≤

∞∑
p=2k+3

(
p

2k + 2

) ∑
ℓ∈Lp

∑
i∈Ip

1
{
RL (Yi) is connected

}
× 1

{
min

j=1,...,p
∥Aℓ j X i j −ℓ j ∥ ≥ Rk,n/(q + 1)

}
.

From (32), we show only that, as n → ∞,

An :=

∞∑
p=2k+3

(
p

2k + 2

)
(q + 1)p sup

ℓ∈Lp

E
{ ∑

i∈Ĩp

1
{
RL (Yi) is connected

}
× 1

{
min

j=1,...,p
∥Aℓ j X i j −ℓ j ∥ ≥ Rk,n/(q + 1)

}}
→ 0.

Repeating the same calculation as that for (45),

E
{ ∑

i∈Ĩp

1
{
RL (Yi) is connected

}
1
{

min
j=1,...,p

∥Aℓ j X i j −ℓ j ∥ ≥ Rk,n/(q + 1)
}}

(66)

≤ C∗C p n p

p!
Rd

k,n f (Rk,ne1)p

×

∫
Ω ′

∫
(Rd )p−1

1
{
RL (Y (1)

ℓ1
, . . . , Y (p)

ℓp
) is connected

}⏐⏐
X (i)

0 =A−1
ℓi

yi−1, i=1,...,pdydP′,

where C = max{C1, C2} (see (50) and (51)). Exploiting the well-known fact that there exist
p p−2 spanning trees on a set of p vertices, we have∫

(Rd )p−1
1
{
RL (Y (1)

ℓ1
, . . . , Y (p)

ℓp
) is connected

}⏐⏐
X (i)

0 =A−1
ℓi

yi−1, i=1,...,pdy

≤ p p−2λd
(
B(0, L)

)p−1
, P′-a.s.
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Substituting this result back into (66), while applying (5) and Stirling’s formula, i.e., p! ≥ (p/e)p

for sufficiently large p, we get

An ≤ C∗

∞∑
p=2k+3

(
p

2k + 2

)
(q + 1)p C p n p

p!
Rd

k,n f (Rk,ne1)p p p−2λd
(
B(0, L)

)p−1

≤ C∗

∞∑
p=2k+3

p2k(q + 1)pC p(n f (Rk,ne1)
)p−(2k+2)epλd

(
B(0, L)

)p−1

≤ C∗

∞∑
p=1

(p + 2k + 2)2k
(

Ce(q + 1)λd
(
B(0, L)

)
n f (Rk,ne1)

)p
.

The rightmost term goes to 0 as n → ∞, since n f (Rk,ne1) → 0, n → ∞, and thus, (65) is
obtained.

Finally we wish to conclude

βk

(
Rt

(
Yn ∩ B(0, Rk,n)c))

⇒ Vk(t) in D[0, ∞). (67)

To that aim we observe that

G̃n(t) ≤ βk

(
Rt

(
Yn ∩ B(0, Rk,n)c))

≤ G̃n(t) + Ln(t), (68)

where

Ln(t) =

∑
i∈I2k+3

1
{
Rt (Yi) is connected

}
1
{

min
j=1,...,2k+3

∥Yi j ∥ ≥ Rk,n
}
.

The inequality at the left side of (68) comes from the fact that k-cycles can be built not only on
2k + 2 points but also on more than 2k + 2 points. At the right side of (68), Ln(t) counts 2k + 3
tuples constituting a connected graph. Then, adding the total count to G̃n(t) exceeds the kth Betti
number because of an overcounting by Ln(t).

For every L > 0,

E
{

sup
0≤t≤L

[
βk

(
Rt

(
Yn ∩ B(0, Rk,n)c))

− G̃n(t)
]}

≤ E
{

sup
0≤t≤L

Ln(t)
}

≤ E
{ ∑

i∈I2k+3

1
{
RL (Yi) is connected

}
1
{

min
j=1,...,2k+3

∥Yi j ∥ ≥ Rk,n
}}

= O
(

n2k+3 Rd
k,n f (Rk,ne1)2k+3

)
= O

(
n f (Rk,ne1)

)
→ 0, n → ∞.

This implies that

βk

(
Rt

(
Yn ∩ B(0, Rk,n)c))

− G̃n(t)
p

→ 0 in D[0, ∞),

and thus, (67) follows.

Part IV: Finally, we prove (32), (33), and (34). For the proof of (32), note that the difference of
the two point processes becomes another point process represented as the sum over i ∈ I2k+2

with i j − i j−1 ≤ 2q for at least one j ∈ {2, . . . , 2k + 2}. We here only show that, for every
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1 ≤ r ≤ 2q, ∑
i∈I2k+2, i2=i1+r,

i j −i j−1>2q, j=3,...,2k+2

ht (Yi) ϵ
R−1

k,n

(
Xi1 ,...,Xi2k+2

) p
→ 0

in the space Mp(Ek). Equivalently, for every non-negative continuous function f : Ek → R+

with compact support,∑
i∈I2k+2, i2=i1+r,

i j −i j−1>2q, j=3,...,2k+2

ht (Yi) f
(

R−1
k,n

(
Xi1 , . . . ,Xi2k+2

)) p
→ 0. (69)

More specifically we shall show that the expectation of (69) decays at the rate of

O
(
n2k+1 Rd

k,n f (Rk,ne1)2k+2)
= O(n−1) → 0, n → ∞.

Before handling (69) we want to make a quick comment on what happens if multiple i ′

j s are
not separate enough. For example, if i2 = i1 + r1, i3 = i2 + r2 for some r1, r2 ∈ {0, . . . , 2q}, and
i j − i j−1 > 2q for j = 4, . . . , 2k + 2, then one can show that the expectation of∑

i∈I2k+2, i2=i1+r1, i3=i2+r2,

i j −i j−1>2q, j=4,...,2k+2

ht (Yi) f
(

R−1
k,n

(
Xi1 , . . . ,Xi2k+2

))
(70)

vanishes at a faster rate

O
(
n2k Rd

k,n f (Rk,ne1)2k+2)
= O(n−2) → 0, n → ∞.

Similarly if more and more i ′

j s get closer to one another, the expectation of the quantities as
those in (69) and (70) will decay to 0 at even faster rates. Since the necessary arguments are very
similar, we only show (69).

Since f has compact support on Ek =
(
[−∞, ∞]d(q+1)

\ {0}
)2k+2 (0 is the vector of zeros in

Rd(q+1)), there exists δ > 0 such that the support of f , denoted by supp f , satisfies

supp f ⊂
{
x = (x (0)

1 , . . . , x (q)
1 , . . . , x (0)

2k+2, . . . , x (q)
2k+2) ∈ Ek : min

j=1,...,2k+2
max

i=0,...,q
∥x (i)

j ∥ ≥ δ
}
.

(71)

Hence, we have that∑
i∈I2k+2, i2=i1+r,

i j −i j−1>2q, j=3,...,2k+2

ht (Yi) f
(

R−1
k,n

(
Xi1 , . . . ,Xi2k+2

))

≤ ∥ f ∥∞

∑
i∈I2k+2, i2=i1+r,

i j −i j−1>2q, j=3,...,2k+2

ht (Yi) 1
{

min
j=1,...,2k+2

max
ℓ j =0,...,q

∥X i j −ℓ j ∥ ≥ δRk,n
}

≤ ∥ f ∥∞

∑
ℓ∈L2k+2

∑
i∈I2k+2, i2=i1+r,

i j −i j−1>2q, j=3,...,2k+2

ht (Yi) 1
{

min
j=1,...,2k+2

∥X i j −ℓ j ∥ ≥ δRk,n
}
,

where ∥ f ∥∞ = supx∈Ek
| f (x)| is a finite and positive constant.

Now, what needs to be proven is that, for every ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L2k+2,

E
{ ∑

i∈I2k+2, i2=i1+r,
i j −i j−1>2q, j=3,...,2k+2

ht (Yi) 1
{

min
j=1,...,2k+2

∥X i j −ℓ j ∥ ≥ δRk,n
}}

→ 0.
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It then suffices to consider the case r + ℓ1 = ℓ2, because it implies X i1−ℓ1 = X i2−ℓ2 and reduces
one of the constraints in the indicators. Taking, without loss of generality, ℓ1 = 0, ℓ2 = r , as
well as ℓ3 = · · · = ℓ2k+2 = 0, we have to show only that

E
{ ∑

i∈I2k+2, i2=i1+r,
i j −i j−1>2q, j=3,...,2k+2

ht (Yi) 1{ ∥X i2−r∥ ≥ δRk,n, min
j=3,...,2k+2

∥X i j ∥ ≥ δRk,n}

}
→ 0.

Because of the constraints that i1 = i2 −r and all the indices in (i2 −r, i3, . . . , i2k+2) are separate
from each other by at least 2q, the entire expression is asymptotically equal to

n2k+1

(2k + 1)!
E

{
ht (Y

(2)
0 , Y (2)

r , Y (3)
0 , . . . , Y (2k+2)

0 ) 1
{

min
j=2,...,2k+2

∥X ( j)
0 ∥

}
≥ δRk,n

}
,

where Y (i)
j ’s are given in (15). Note that if ∥X (2)

0 ∥ ≥ δRk,n ,

ht (Y
(2)
0 , Y (2)

r , Y (3)
0 , . . . , Y (2k+2)

0 )

≤ 1
{
∥Y (2)

0 − Y (2)
r ∥ ≤ Mt

}
≤ 1

{ (A0 − Ar )X (2)
0

 ≤ Mt +
 q∑

j=1

A j X (2)
− j −

q∑
j=0, j ̸=r

A j X (2)
r− j

 }
≤ 1

{
δRk,n inf

θ∈Sd−1

(A0 − Ar )θ
 ≤ Mt +

q∑
j=1

∥A j∥∥X (2)
− j∥ +

q∑
j=0, j ̸=r

∥A j∥∥X (2)
r− j∥

}
.

The first inequality above follows from (13) and (14), and the second is due to the triangle
inequality. The third is a result of the triangle inequality together with the constraint ∥X (2)

0 ∥ ≥

δRk,n . Note that (8) ensures infθ∈Sd−1

(A0 − Ar )θ
 > 0; thus, the condition in the last indicator

function implies that there is an η > 0 such that ∥X (2)
s ∥ ≥ ηRk,n for some s ∈ {−q, . . . , r} \ {0}.

Thus, we now need to verify

n2k+1

(2k + 1)!
E

{
ht (Y

(2)
0 , Y (2)

r , Y (3)
0 , . . . , Y (2k+2)

0 )

× 1
{
∥X (2)

s ∥ ≥ ηRk,n, min
j=2,...,2k+2

∥X ( j)
0 ∥ ≥ δRk,n

}}
→ 0

for every s ∈ {−q, . . . , r} \ {0}. The change of variables, as in the derivation of (41), together
with proper applications of the Potter bound, shows that the left hand side above is equal to

O
(
n2k+1 Rd

k,n f (Rk,ne1)2k+2)
= O(n−1) → 0, n → ∞.

Now, the proof of (32) is complete.
To prove (33), it is sufficient to show that for every non-negative continuous function

f : Ek → R+ with compact support,∑
i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
Xi1 , . . . ,Xi2k+2

))
(72)

−

∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
diag(δℓ1Xi1 ), . . . , diag(δℓ2k+2Xi2k+2 )

)) p
→ 0.
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Assume, without loss of generality, that f satisfies (71). Then, the first term in (72) can be written
as ∑

i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
Xi1 , . . . ,Xi2k+2

))
(73)

=

∑
i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
Xi1 , . . . ,Xi2k+2

)) 2k+2∏
j=1

1
{

max
ℓ=0,...,q

∥X i j −ℓ∥ ≥ δRk,n
}
.

We here claim that, for each i ∈ Ĩ2k+2, exactly one component in each of the Xi j s can
asymptotically be at distance at least δRk,n from the origin. More specifically, we claim that
the last term in (73) is equal to∑

ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
Xi1 , . . . ,Xi2k+2

)) 2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n, (74)

max
ℓ=0,...,q, ℓ̸=ℓ j

∥X i j −ℓ∥ < δRk,n
}

+ op(1).

:= Bn + op(1).

To see this, for every ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L2k+2, 1 ≤ m ≤ 2k + 2, and ℓ ̸= ℓm ,

E
{ ∑

i∈Ĩ2k+2

ht (Yi)
2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n

}
× 1

{
∥X im−ℓ∥ ≥ δRk,n

}}
= O

(
n2k+2 Rd

k,n f (Rk,ne1)2k+3)
= O

(
f (Rk,ne1)

)
→ 0, n → ∞.

Turning to the second term in (72), we find that (71) ensures∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
diag(δℓ1Xi1 ), . . . , diag(δℓ2k+2Xi2k+2)

))
=

∑
ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
diag(δℓ1Xi1 ), . . . , diag(δℓ2k+2Xi2k+2)

))

×

2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n

}
From the same reasoning as in (74), the above is equal to∑

ℓ∈L2k+2

∑
i∈Ĩ2k+2

ht (Yi) f
(

R−1
k,n

(
diag(δℓ1Xi1 ), . . . , diag(δℓ2k+2Xi2k+2)

))

×

2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n, max

ℓ=0,...,q, ℓ̸=ℓ j
∥X i j −ℓ∥ < δRk,n

}
+ op(1)

:= Cn + op(1).

Hence, it now remains to demonstrate that Bn − Cn
p

→ 0. This can be established, provided that
for every ℓ = (ℓ1, . . . , ℓ2k+2) ∈ L2k+2,
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Dn :=

∑
i∈Ĩ2k+2

ht (Yi)
⏐⏐⏐ f

(
R−1

k,n

(
Xi1 , . . . ,Xi2k+2

))
− f

(
R−1

k,n

(
diag(δℓ1Xi1 ), . . . , diag(δℓ2k+2Xi2k+2 )

)) ⏐⏐⏐
×

2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n, max

ℓ=0,...,q, ℓ̸=ℓ j
∥X i j −ℓ∥ < δRk,n

} p
→ 0.

For every 0 < η < δ, the same approximation argument as that in (74) yields

Dn =

∑
i∈Ĩ2k+2

ht (Yi)
⏐⏐⏐ f

(
R−1

k,n

(
Xi1 , . . . ,Xi2k+2

))
− f

(
R−1

k,n

(
diag(δℓ1Xi1 ), . . . , diag(δℓ2k+2Xi2k+2 )

)) ⏐⏐⏐
×

2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n, max

ℓ=0,...,q, ℓ̸=ℓ j
∥X i j −ℓ∥ < ηRk,n

}
+ op(1)

:= En + op(1).

Then, we have that

En ≤ sup
(y1,...,y2k+2)∈K

⏐⏐ f (y1, . . . , y2k+2) − f
(
diag(δℓ1 y1), . . . , diag(δℓ2k+2 y2k+2)

)⏐⏐
×

∑
i∈Ĩ2k+2

ht (Yi)
2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n, max

ℓ=0,...,q, ℓ̸=ℓ j
∥X i j −ℓ∥ ≤ ηRk,n

}
,

where

K =
{
(y1, . . . , y2k+2) = (y(0)

1 , . . . , y(q)
1 , . . . , y(0)

2k+2, . . . , y(q)
2k+2) ∈ Ek :

max
j=1,...,2k+2

max
ℓ=0,...,q, ℓ̸=ℓ j

∥y(ℓ)
j ∥ ≤ η

}
(note that y j ∈ Rd(q+1) and y(ℓ)

j ∈ Rd ).
Since f is uniformly continuous on its compact support,

sup
(y1,...,y2k+2)∈K

⏐⏐ f (y1, . . . , y2k+2) − f
(
diag(δℓ1 y1), . . . , diag(δℓ2k+2 y2k+2)

)⏐⏐ → 0

as η → 0. Furthermore, as n → ∞,

E
{ ∑

i∈Ĩ2k+2

ht (Yi)
2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n, max

ℓ=0,...,q, ℓ̸=ℓ j
∥X i j −ℓ∥ ≤ ηRk,n

}}

∼ E
{ ∑

i∈Ĩ2k+2

ht (Yi)
2k+2∏
j=1

1
{
∥X i j −ℓ j ∥ ≥ δRk,n

}}
= O

(
n2k+2 Rd

k,n f (Rk,ne1)2k+2)
= O(1).

Since η > 0 is arbitrary, we now get En
p

→ 0 as required.
Finally, the claim (34) is obvious, since translating indices from i ∈ Ĩ2k+2 to i+ℓ for ℓ ∈ L2k+2

does not change the distributions.
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