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A fast and stable Li metal anode incorporating an
MoeS; artificial interphase with super Li-ion

*a

The poor interfacial stability of Li metal leads to formation of unstable solid-electrolyte interphases (SEls)
and severely limits its practical applications. Protecting Li metal with an artificial SEI that has balanced
stability, conductivity and mechanical strength is critical. Here we demonstrate a design strategy for
stabilizing Li using MogSg/carbon artificial SEI films. These films are directly coated on Li foil and the

MogSg particles provide ordered conduction channels for fast but regulated Li-ion flux, and provide

hybrid anodes that have nearly four times higher exchange current densities. They also have seamless
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contact with Li metal and protect it from parasitic reactions, and hence significantly improve its stability.

Consequently, Li metal batteries in which the hybrid anodes were paired with LiNiggMng1C00 10>
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Li metal is commonly considered as the ultimate anode mate-
rial for high energy density batteries because of its unique
properties particularly its highest theoretical capacity of 3860
mA h g™, low density of 0.59 g cm >, and low electrochemical
potential (—3.040 V vs. the standard hydrogen electrode).'”
Unfortunately, Li metal has extremely high reactivity with
almost all battery electrolytes and produces solid-electrolyte
interphases (SEIs) that are unstable, nonuniform and have low
Li-ion conductivity. The formation of an SEI causes irreversible
loss of battery materials and fluctuations in local current
densities and Li ion concentrations,*® which results in
substantial polarization increases and Li corrosion along with
dendrite growth during Li plating and stripping.” Consequently,
current Li anodes suffer severely from low coulombic efficiency
and poor cycling stability, especially in carbonate-based elec-
trolytes that are compatible with current 4 V intercalation
cathodes.®®

Modifying SEI properties with artificial protection layers
recently appeared as an attractive approach to address the
instability issue.’® The composition and structure of these
layers, in principle, could be tuned precisely to allow seamless
contact with Li metal and provide simultaneously improved
interfacial stability and balanced electronic/ionic conductivity
that are required for stable battery cycling. Artificial SEI films
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cathodes (3.0 mA h per cell) exhibited significantly improved cycling stability (63% vs. 25% retention) and
a stabilized Li interphase compared with pristine Li anodes.

composed of LiF,'>*? Li-metal alloys,"*** nitrides,'® cross-linked
polymers,® Li;PS,,"” and LizPO, (ref. 18) have been described.
Notably, these are usually ultrathin films that are coated on Li
metal through separate in situ reactions by immersing Li in
a liquid solution that contains reactive precursors.'*'*'2!
These coatings have been shown to be effective at suppressing
side-reactions and dendrite growth, particularly under low
current conditions and during the initial stages of cycling.
However, they usually have limited Li-ion conductivity and/or
poor flexibility, and could crack during cycling. Overall, it is still
very challenging to design SEI films that could be directly coated
on Li metal and afford their stable operation.**

Herein, we describe a new strategy of designing transferrable
artificial SEI layers and demonstrate their remarkable capability
for providing substantially improved interfacial stability to Li
metal (Fig. 1a). These artificial layers was based on Chevrel phase
MoeSg/carbon composites, which are known for superior ionic
conductivity and outstanding stability.”®*** We hypothesized that
artificial layers designed with robust materials that allow rapid Li-
ion diffusion could effectively protect Li metal from side-reactions
without sacrificing the stripping/plating kinetics, and the use of
transferrable films allows for precise thickness and composition
control and facilitates scalable production of hybrid anodes.”” We
discovered that the protected hybrid anodes have substantially
increased Li-ion transport kinetics along with outstanding surface
stability under aggressive cycling conditions. As a result of the
stabilized Li surface without parasitic reactions, prototype Li metal
batteries employing high loading LiNi, gMn, ;Cog 0, (NMC-811)
cathodes exhibited drastically enhanced cycling stability in
a carbonate electrolyte compared with unmodified Li anodes.

This journal is © The Royal Society of Chemistry 2019
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Fig. 1 (a) Schematic illustrations of protecting Li metal with MogSg/C artificial SEI layers and (b—g) structural characterization of MogSg particles
and the hybrid anodes: (b) X-ray diffraction pattern and (c and d) TEM images of the MogSg/C composite; photographs of (e) a piece of MogSg/C
thin film and (f) protected hybrid Li metal anode; (g) SEM image of the interphase between the MogSg/C layer and Li metal that shows their

intimate contact without separation.

Chevrel phase MogSg/carbon composites were obtained by
acid leaching of Cu®" off Cu,MogSg/carbon, which was synthe-
sized from precursors including 0.6 g carbon, 3.0 g MoS,, 1.8 g
Mo and 1.2 g CuS. These precursors were first ball-milled and
then calcined under Ar at 1000 °C for 10 h (detailed in ESIf}).
Pristine Mo¢S;g particles without carbon were also synthesized
for comparison. It should be noted that this method is more
scalable, faster and requires less work for producing high
quality Chevrel phase compounds compared with typical
methods.?” The combined XRD and TEM characterization
confirmed nearly 100% production of MogSg both for the
synthesis with (Fig. 1b and c¢) and without (Fig. S1 and S2%)
carbon but particles synthesized with carbon have a smaller size
and better conductivity, which are beneficial for faster ion
transport necessary for improving battery operations.*® MogSg
has inherent large open channels (~6.45 A, Fig. 1d) between
nearby clusters, which are ideal for stable and fast diffusion of
a variety of cations.??*® When used as a host for insertion of Li",
it delivered a specific capacity of 112 mA h g~' at 0.1C and
retained ~66% of the this capacity when the rate was increased
to 20C in the voltage range of 1.5-2.9 V, along with superior
stability (Fig. S31).

Thin films composed of Mo0gSg/C or MogSg particles were
prepared using polytetrafluoroethylene (PTFE) as the binder.
These films (Fig. 1le) had thicknesses of ~40 pum and areal

This journal is © The Royal Society of Chemistry 2019

densities of ~3.5 mg cm 2, and they were pressed onto the

surface of bulk Li anodes (450 pm thickness) at 500 psi using
a hydraulic press (Fig. 1f). The SEM image reveals that the
MogSg film and Li metal had seamless intimate contact without
separation (Fig. 1g). These hybrid anodes were first assembled
into coin cells using 1.0 M LiPF4 in EC/DEC for evaluation of Li
ion transport properties and interfacial stabilities. The direct
contact of MogSg with Li metal in the presence of electrolyte
leads to rapid Li-ion diffusion to the Mo¢Ss framework, in
a way similar to battery short-circuit, and results in formation
of Li-ion conductive lithiated Li,MogSg. The value of x was
estimated as 16 based on the discharge capacity of the
Li||MogSg cells to 0.0 V (Fig. S47). The exact structure of the
fully discharged product Li;sM0sSg is complex but XRD anal-
ysis suggests dominance of the Chevrel phase crystal structure
(Fig. S51). The hybrid anodes were actually Li;sM0gSg coated Li
metal. We reason that the Li;sMo0¢Sg layer has better interfacial
stability compared with pristine Li and provides three-
dimensional channels for fast and regulated Li-ion flux that
regulate Li stripping and plating, which is critical for miti-
gating formation of dendritic structures and improving SEI
stability (Fig. 1a).

The Li ion plating/stripping properties of the hybrid Li
anodes were evaluated using symmetric coin cells. Fig. 2a
compares the cyclic voltammograms (CV) of different anodes

J. Mater. Chem. A, 2019, 7, 6038-6044 | 6039
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Fig. 2 MogSs/C@Li hybrid anodes have enhanced Li-ion transfer kinetics: (a) cyclic voltammogram (0.1 mV s~%) for symmetric cells assembled
with pristine or hybrid anodes; (b) Tafel plots obtained from analyzing results shown in (a); (c) Nyquist plots acquired from the symmetric cells and
(d and e) analysis of the EIS results for the Li-ion diffusion coefficient and charge-transfer resistance; (f) rate capability of prototype full cells in

which different Li anodes are paired with a NMC-811 cathode.

acquired at 0.1 mV s~ " within a voltage range of —0.1 to 0.1 V.
They all exhibited linear shaped and symmetric polarization
curves, suggesting dominance of the Li/Li" redox couple without
obvious side redox reactions.?® Importantly, both of the hybrid
anodes exhibited steeper slopes that correspond to faster Li
deposition/stripping kinetics compared with pristine Li anodes.
The analysis of these results using the Tafel relationship yields
their exchange current densities (Fig. 3b). The MogSg/C@Li
anode had the best Li-ion charge transfer kinetics, evidenced
with a substantially higher exchange current of 3.9 mA cm >

6040 | J. Mater. Chem. A, 2019, 7, 6038-6044

compared with the MogSz@Li (1.5 mA cm ?) and pristine Li
(0.98 mA cm ™) anodes.

The symmetric cells were also examined using electro-
chemical impedance spectroscopy (EIS) at open circuit potential
and the obtained Nyquist plots are shown in Fig. 2c. These
spectra were analyzed using the equivalent circuit model shown
in Fig. S61 for estimation of charge-transfer resistance (R.),
Warburg impedance (Z,) and the Li-ion diffusion coefficient
(Drir). The MogSg/C@Li anode outperformed both MogSg@Li
and pristine Li anodes, and exhibited the lowest charge transfer

This journal is © The Royal Society of Chemistry 2019
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Fig. 3 MogSg/C@li hybrid anodes significantly improved the cycling stability of Li metal batteries paired with the NMC-811 cathodes:
comparison of voltage profiles at (a) the first, (b) 1007, and (c) 200" cycles; and cycling stability of full cells assembled with (d) hybrid Li anodes

and (e) pristine Li anodes at 1.0C (1.52 mA cm™2).

resistance of only 28 Q cm” and the highest Li* diffusion coef-
ficient that reached 2.7 x 10~'* cm? s * (Fig. 2e). The improved
kinetics with the hybrid anodes also ensured Li metal batteries
with much better rate performance. Specifically, different Li
anodes were paired with the intercalation cathode LiNijg-
Mn, ;Co,,0, (NMC-811, coated on Al foil at 9.12 mg cm™?). The
cathodes were punched into relatively large discs (16 mm, 2.0
cm?) and each disc delivered a capacity of ~3 mA h at 1C. The
rate test shows that the MogSs/C@Li hybrid anode affords full
cells with the best high rate performance (Fig. 2f), with 48%
capacity retention the rate was increased to from 0.1 to 10C. In
comparison, the Li||NMC-811 battery only had 35% retention.
These results reinforce the conclusions drawn from the CV and
EIS results that the MoSg/C artificial SEI layer promoted faster
Li-ion transfer even though these films are relatively thick
compared with typical SEI layers reported in the literature,*-*
perhaps due to the inherent fast cation transport kinetics of the
Chevrel phase compounds and/or the increased -electro-
chemical active surface area with the introduction of MogSg/C
nanoparticles.

The artificial SEI layers based on MogSg/C significantly
improved the cycling stability of Li metal both in symmetric cell
and full cell configurations. The symmetric cell with hybrid

This journal is © The Royal Society of Chemistry 2019

anodes only had slight polarization increases (up to 0.17 V) after
600 h of cycling at 1.0 mA cm™2 for 1.0 mA h ecm™? per cycle
(Fig. S71), which is much smaller than those of pristine Li
anodes. The Li metal full cells were assembled with the same
high-loading NMC-811 cathode and tested under 2.7-4.3 V for
200 cycles (Fig. 3). The NMC-811 is one of the most promising
cathode materials but is poorly compatible with Li metal anode
due to its reactivity with electrolytes that form corrosive inter-
mediates to degrade Li metal.*** The batteries were cycled at
a current of 3.04 mA (equivalent to 1.52 mA cm™ >, 1C rate), which
is usually considered an aggressive current because the degra-
dation of Li metal is accelerated.** The battery with a hybrid
anode delivered similar initial capacities to the one with pristine
Li metal (at ~160 mA h g~ ') and their voltage profiles are nearly
identical (Fig. 3a), indicating that the artificial SEI layers didn't
affect the behavior of the Li anode, which agrees with observa-
tions from Fig. 2a. The capacity of both batteries decreased slowly
during the first 100 cycles (Fig. 3d and e), and the hybrid anode
afforded a smaller polarization increase and notably better
stability, with a capacity retention of 88% as compared with the
71% for the pristine Li anode battery (Fig. 3b).

As the cycling continues a typical rapid capacity decay after
~120 cycles was observed for the battery with a pristine Li

J. Mater. Chem. A, 2019, 7, 6038-6044 | 6041
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anode due to nearly complete degradation of Li metal as
previously described.**** The coulombic efficiency (CE) also
dropped to ~92% and the overall retention was only 25%
(Fig. 3c). In contrast, the battery with the hybrid anode
maintained highly efficient cycling (99.6% average CE) and
had much better stability without abnormal decay, and overall
retained 63% of the initial capacity after 200 cycles. Fig. 3d and
e also compare the the sum of charging and discharging
capacities cycled at Li anodes (blue colored X-axis). The hybrid
anodes had superior stability and retained a total capacity of
898 mA h, which is among the best for Li metal protection
under similar conditions.? In addition, it should be noted that
the observed capacity decay originates mostly from the anode,
as cells re-assembled with the same cathode but with fresh
anodes and electrolytes recovered the initial capacities (Fig. 3).
Furthermore, the impedance of these batteries was also
determined during cycling (Fig. 4a and b). The R, was
analyzed using the equivalent circuit model outlined in
Fig. S8t and the results are included in the insets. Notably, the
cell equipped with the hybrid anode had much better stability,
and the R, increased from the initial 45 to 165 Q cm? after 200
cycles. In strong contrast, the pristine Li anode reached to
a much higher resistance of 425 Q cm? after the same testing.
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The effective protection of Li metal with artificial SEI layers
was further confirmed with post-mortem analysis of Li anodes
with EDS and SEM (Fig. 4, S9 and S107). After 200 cycles, the SEI
generated in the protected Li anode was much thinner (only ~20
um) and the detected F and P concentrations were only half of
those of the pristine Li anode (Fig. 4c and d). The surface of
protected Li was also much smoother without obvious dendritic
or mossy structures, whereas the pristine Li anode had a rather
thick (~120 pm) SEI that appeared extremely porous (Fig. 4e-h,
and S9 and S10t for additional SEM images). Notably, no Li
growth was observed on the surface or within the bulk of the
MoeSg/C artificial SEI layers, suggesting that the presence of
MogSg didn't affect the growth behavior of Li metal. This is
supported by the fact that the Li nucleation overpotential on
lithiated MogSg was rather high (~89 mV at 2 mA cm™2) as shown
in Fig. S111'“* In addition, the artificial SEI layer maintained
intimate contact with the metallic Li during battery cycling, as no
segregation or peeling off was observed after 200 cycles
(Fig. S12t). These combined electrochemical and post-mortem
analyses therefore further strengthened the exceptional capa-
bility of the artificial SEI layers proposed in this work for isolation
of Li and effectively mitigate its side-reactions with electrolyte,
and provided significantly improved interfacial stability.
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Fig. 4 MogSg/C artificial layers stabilize Li metal in carbonate electrolytes: Nyquist plot acquired for different stages of cycling for Li metal
batteries with a (a) hybrid anode and (b) pristine Li anode; post-mortem (c and d) EDS spectra and (e—h) SEM images of the (c, e and f) hybrid
anode and (d, g and h) pristine Li anode after 200 cycles with the NMC-811 cathodes.
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In conclusion, we describe the design of transferrable arti-
ficial SEI layers using Mo4Sg/C particles to improve the practical
stability of Li metal in carbonate electrolytes. We discovered
that Li anodes coated with MogSg/C films have substantially
increased exchange current densities that could be attributed to
the promoted and regulated Li-ion flux through the lithiated
MogSs frameworks. The Li;M0¢Sg/C films have intimate inter-
action with Li metal and protect it from parasitic reactions,
which results in hybrid Li anodes that have stabilized inter-
phases for practical applications as demonstrated with signifi-
cantly improved cycling stability for prototype full cells coupled
with high-loading NMC-811 cathodes.
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