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Abstract

The objective of this study is to examine the asymptotic behavior of Betti

numbers of Čech complexes treated as stochastic processes and formed from

random points in the d-dimensional Euclidean space Rd. We consider the case

where the points of the Čech complex are generated by a Poisson process with

intensity nf for a probability density f . We look at the cases where the behavior

of the connectivity radius of Čech complex causes simplices of dimension greater

than k+1 to vanish in probability, the so-called sparse regime, as well when the

connectivity radius is on the order of n−1/d, the critical regime. We establish

limit theorems in the aforementioned regimes: central limit theorems for the

sparse and critical regimes, and a Poisson limit theorem for the sparse regime.

When the connectivity radius of the Čech complex is o(n−1/d), i.e., the sparse

regime, we can decompose the limiting processes into a time-changed Brownian

motion or a time-changed homogeneous Poisson process respectively. In the

critical regime, the limiting process is a centered Gaussian process but has

much more complicated representation, because the Čech complex becomes

highly connected with many topological holes of any dimension.

Keywords: Random topology; Betti number; Central limit theorem; Poisson

limit theorem.

2010 Mathematics Subject Classification: Primary 60D05.

Secondary 55U10; 60F05; 05E45.

∗ Postal address: Department of Statistics, Purdue University, IN, 47907, USA
∗∗ Postal address: Department of Statistics, Purdue University, IN, 47907, USA

1



2 T. Owada and A. M. Thomas

1. Introduction

The problem of analyzing data in the presence of noise has always been a challenge.

With the advent of the application of algebraic topology to probabilitistic structures,

the tools to capture the most prominent of features of a space have never been as

numerous and versatile. These techniques and their corresponding theory typically

fall under the umbrella of topological data analysis (TDA). This paper takes up the

mantle of trying to capture the dynamic evolution of these features, by investigating

stochastic processes of topological summaries, specifically Betti numbers.

A brief introduction to the concepts of algebraic topology is needed before moving

onward. Though our introduction here will be somewhat informal, it will nonetheless

provide an intuition for some of the concepts discussed in this study. Those wishing for

an introduction to algebraic topology for statistical ends should see [10, 32]. Treatments

from a topological perspective for practitioners of all sorts can be seen in [16], and a

rigorous treatment can be seen in [18]. In many of the studies on TDA, especially

those specific to random topology, the Betti number has been a main focus as a good

quantifier of topological complexity beyond simple connectivity. Given a topological

space X and an integer k ≥ 0, the kth homology group Hk(X) is the quotient

group ker ∂k/im ∂k+1, where ∂k, ∂k+1 are boundary maps for X. More intuitively,

Hk(X) represents a class of topological invariants representing k-dimensional “cycles”

or “holes” as the boundary of a (k+1)-dimensional body. The kth Betti number of X,

denoted by βk(X), is defined as the rank of Hk(X). Thus βk(X) captures, in essence,

the number of k-dimensional cycles in X (in the following we write “k-cycle” for short).

Having dispatched with this formalism, it is useful to know that β0(X) represents the

number of connected components of X, β1(X) the number of “closed loops” in X and

β2(X) the number of “voids”. For a manifold embedded in Rd these are features in one,

two and three-dimensional subspaces respectively. Though it is the case that βk(X) is

defined for all integers k ≥ 0, in Figure 1 above βk(X) = 0 for k ≥ 3.

In recent years, there has been a growing interest in the theory of random topology

[20, 5, 2, 21, 22, 34], exploring the probabilistic features of Betti numbers as well as

related notions, for example, the number of critical points of a certain distance function

with a fixed Morse index. In an additional study, [7] studied the maximal (persistent)
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Figure 1: The object in (a) is a 1-sphere, or a circle, i.e., S1 = {x ∈ R2 : |x| = 1}. The surface

in (c) is a 2-sphere or S2. Finally, (d) is a two-dimensional torus. Denoting the space corresponding

to the torus as X, the blue and red cycles represent the generators of H1(X), and are regarded as

non-equivalent cycles. Note that the torus is hollow, thus β2(X) = 1.

k-cycles when an underlying distribution is a uniform Poisson process in the unit cube.

Further, [11, 9] investigated topology of a Poisson process on a d-dimensional torus.

Those wishing to examine the properties of Betti numbers formed from points generated

by a general stationary point process should consult [33, 34]. An elegant summary on

recent progress in the field is provided by [6]. The topological objects in these studies

are typically constructed from a geometric complex. Among many choices of geometric

complexes (see, e.g., [16]), the present paper deals with one of the most studied ones,

a Čech complex ; see Figure 2.

Definition 1.1. If t > 0 and X is a collection of points in Rd, the Čech complex

Č(X , t) is defined as follows:

1. The 0-simplices are the points in X .

2. A k-simplex [xi0 , . . . , xik ] is in Č(X , t) if
⋂k
j=0B(xij ; t/2) 6= ∅,

where B(x; r) = {y ∈ Rd : |x− y| < r} is an open ball of radius r around x ∈ Rd.

One good reason for concentrating on the Čech complex is its topological equivalence

to the union of balls
⋃
y∈X B(y; t/2). A fundamental result known as the Nerve lemma

(see, e.g., Theorem 10.7 of [4]), asserts that the Čech complex and the union of balls

are homotopy equivalent. In particular, they induce the same homology groups, that

is for all k ≥ 0,

Hk

(
Č(X , t)

) ∼= Hk

( ⋃
y∈X

B(y; t/2)
)
.
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Figure 2: Čech complex Č(X , t) with X = {x1, . . . , x7} ⊂ R2. There are eleven 1-simplices with

each adding a line segment joining a pair of the points. The 2-simplex [x3, x4, x5] belongs to Č(X , t),

since the balls around these points have an non-empty intersection. The 3-simplex [x4, x5, x6, x7]

represents a tetrahedron.

The objective of the current paper is to investigate how the kth Betti number fluctuates

as the sample size increases under the setup of [21, 5, 8]. This setup dates back to

the classical study on random geometric graphs as seen in the monograph [26]. This is

due to the fact that a Čech complex can be seen as a higher-dimensional analogue of

a geometric graph. In fact, a geometric graph is a 1-skeleton of a Čech complex. Let

Xn be a set of random points on Rd. Typically Xn represents n i.i.d random points

sampled from a probability density f or a set of points taken from a Poisson process

with intensity nf . Further, let rn denote a sequence of connectivity radii of a Čech

complex. In this setting the behavior of Č(Xn, rn) is classified into several different

regimes, depending on how nrdn varies as n→∞. There is an intuitive meaning behind

the quantity nrdn. It is actually the average number of points in a ball of radius rn

around a point x ∈ Rd, up to a proportionality constant.

The first regime is that if nrdn → 0 as n → ∞, the complex is so sparse that

separate connected components are scattered throughout the space. This is called the

sparse regime. If the connectivity radii rn decays to 0 more slowly, i.e., nrdn → ξ ∈

(0,∞), then Č(Xn, rn) belongs to the critical regime, in which the complex begins

to be connected, forming much larger components with topological holes of various

dimensions. Finally the case when nrdn →∞ is the dense regime, for which the complex

is highly connected with few topological holes. Detailed study of the Betti numbers

has yielded univariate central limit theorems for the sparse regime [21, 22] and for the

critical regime [34, 31]. The strong law of large numbers in the critical regime has
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been established in [34, 17, 30]. In addition [21] has proven a Poisson convergence

result of Betti numbers when nk+2r
d(k+1)
n → λ ∈ (0,∞) as n→∞, so that topological

holes hardly ever occur, in the sense that a Poisson limit theorem ensures that the

expectation of kth Betti number converges to a positive constant as n → ∞, whereas

the expectation diverges if nk+2r
d(k+1)
n →∞ as n→∞. In other words, the occurrence

of topological holes is rare.

The main objective of this study is to generalize Betti numbers as a stochastic

process and provide comprehensive results on the central limit theorem and Poisson

limit theorem. We shall consider the Betti number of a Čech complex with radius

rn(t) := snt, namely

βk,n(t) := βk
(
Č(Xn, rn(t))

)
, t > 0. (1.1)

Obviously (1.1) gives a stochastic process in parameter t with right continuous sample

paths with left limits. With this functional setup, this paper reveals that when the

Čech complex is relatively sparse, the limiting process of (properly normalized) βk,n(t)

can be decomposed into the difference of well-known stochastic processes. Specifically,

if nsdn → 0 as in Section 3, we can decompose the limiting process into the difference

of time-changed Brownian motions and if nk+2s
d(k+1)
n → 1 as in Section 5, we can

decompose the limiting process as the difference of time-changed homogenous Poisson

processes on the real half-line. In the critical regime of Section 4 however, the limiting

process of the normalized βk,n(t) has much more complicated representation due to

the emergence of connected components of larger size. In fact, the limiting process

is denoted as the sum of infinitely many Gaussian processes with each representing

connected components of size i ≥ k + 2 with j topological holes. We would like to

emphasize that various “non-functional” type limit theorems with t in (1.1) fixed, have

been proven so far – as seen in the last paragraph. However, much less is known about

the process-level Betti numbers in (1.1), and their corresponding “functional” limit

theorems.

The motivation of reformulating Betti numbers as a stochastic process partially

comes from an application to persistent homology. Persistent homology is perhaps

the most prominent and ubiquitous tool in TDA. Those needing a quick introduction

should consult [1]. For surveys of applications of persistent homology see [15, 10,
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32]. The first [10] gives a self-contained theoretical treatment of the topological and

probabilistic aspects as well as detailed applications. The second [15] is an essential

and succinct overview. The final one [32] gives an introduction to persistent homology

and its applications from a statistical perspective. Theoretically rigorous treatment

of persistent homology, especially the computational aspects, can be seen in [14, 35].

In addition one can even prove vague and weak convergence for persistence diagrams

based off of geometric complexes formed from stationary point processes [19].

Considering a family
(
Č(Xn, rn(t)), t > 0

)
of Čech complexes and increasing radii

t, the kth persistent homology provides a list of pairs (birth, death), representing the

birth time (radius) at which a k-cycle is born and the death time (radius) at which

it gets filled in and disappears. One of the typical applications of our results is the

analysis on the sum of persistence barcodes as seen in [24], that is, the sum of life

lengths of all k-cycles up to time (radius) t, given by

Lk,n(t) =

∫ t

0

βk,n(s) ds, t > 0. (1.2)

This is useful insofar as it allows us to capture the average length of the persistence

barcode for the kth persistent homology of our random point cloud, which is poten-

tially important in various statistical applications. Of course, the limiting process of

(1.2) is impossible to obtain from non-functional Betti numbers that do not involve

parameter t. According to our results, however, it can be obtained as an integral of

the limiting process of βk,n(t). Similar treatments of the stochastic process approach

to geometric/topological functionals include [24, 25].

Regarding proof techniques, we shall borrow ideas from [26, 21, 22] and apply

sharper variance/covariance bounds than those given in [22]. Using these sharper

bounds, the central limit theorem proven for the sparse regime no longer requires

sn = o(n−1/d−δ) for some δ > 0 in the case that nk+3s
d(k+2)
n is bounded away from

zero, as is assumed in [22]. Furthermore, we did not use techniques as seen in the

[34, 17, 30, 31] for the critical regime because of the fact that this fundamentally

alters the representation of the limiting process we obtain, and such a representation

is integral to our contribution. We will highlight these differences later on in Section

4. The argument for the Poisson limit theorem uses a completely different technique

based on [12].
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As a final remark, unlike [26, 21, 22] we do not consider points generated by a

binomial process. Further studies would have to perform “De-Poissonization” as seen

in section 2.5 of [26]. We have skipped these results not only for brevity but because

they are highly technical and add little to the intuition behind our results.

The structure of the paper is as follows. The second section details our setup and

all the notation needed to appropriately and succinctly elucidate our results. The

third section details the central limit theorem for the sparse regime, i.e. when we have

nsdn → 0 and nk+2s
d(k+1)
n → ∞. The fourth section is about the critical regime, in

which nsdn = 1, and Section 5 is dedicated to investigating the Poisson limit theorem

with nk+2s
d(k+1)
n = 1. The major part of Section 6 is devoted to proving the central

limit theorem for the critical regime and the Poisson limit theorem for the sparse

regime. The proof for the central limit theorem in the sparse regime can be obtained

immediately via simple modification of the critical regime case, but is nonetheless given

a brief treatment in Section 6.2.

2. Setup

To begin, we start by defining some essential concepts towards proving the results in

this paper. We look at point clouds generated by Pn, a Poisson process on Rd, d ≥ 2.

We take Pn to have the intensity measure n
∫
A
f(x) dx for all measurable A in Rd,

where f is a probability density that is almost everywhere bounded and continuous with

respect to Lebesgue measure. Throughout the paper, Lebesgue measure on Rd(k+1) is

denoted by mk and for convenience we let m := m0.

As an aside, we have a few definitions to mention before we begin. First, let ‖f‖∞
be the essential supremum of the aforementioned f , which is finite as f is almost

everywhere bounded. Furthermore, define θd := m(B(0; 1)) to be the volume of the

unit ball in Rd. The constant Cf,k is mentioned frequently in the study and is defined

as

Cf,k :=
1

(k + 2)!

∫
Rd

f(x)k+2 dx.

Furthermore we let R+ := [0,∞) and N be the positive integers and N0 := N∪{0}—the

non-negative integers, and 1
{
·
}

denotes an indicator function.

It is useful to define the notion of a finite point cloud throughout the study. We
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let Xm := {X1, X2, . . . , Xm} where Xi are i.i.d with density f as mentioned before,

though it may represent an arbitrary subset of Rd of cardinality m as needed. Thus if

Nn is a Poisson random variable with parameter n, which is independent of Xi’s, then

we can represent the Poisson process Pn as

Pn(A) =

Nn∑
i=1

δXi(A),

for all measurable A ⊂ Rd, with δx a Dirac measure at x ∈ Rd.

With this definition in tow, we turn towards the study of Betti numbers. Fixing 1 ≤

k < d, we define ht(x1, . . . , xk+2), xi ∈ Rd, to be the indicator that Č({x1, x2, . . . , xk+2}, t)

contains an empty (k + 1)-simplex. This means that Č({x1, x2, . . . , xk+2}, t) does not

contain a (k + 1)-simplex but does contain all possible k-simplices.

With this in mind, we see that ht can be represented as

ht(x1, . . . , xk+2) = h+t (x1, . . . , xk+2)− h−t (x1, . . . , xk+2),

where we define

h+t (x1, . . . , xk+2) :=

k+2∏
i=1

1
{ k+2⋂
j=1, j 6=i

B(xj ; t/2) 6= ∅
}
,

h−t (x1, . . . , xk+2) := 1
{ k+2⋂
j=1

B(xj ; t/2) 6= ∅
}
.

It is important to note that h±t is non-decreasing in t. That is,

h±s (x1, . . . , xk+2) ≤ h±t (x1, . . . , xk+2)

for all 0 ≤ s < t and xi ∈ Rd.

Throughout the paper we interest ourselves in the kth Betti number for Č(Pn, rn(t))

where rn(t) := snt. Recall that the nature of how sn decays to 0 as n→∞ is the object

of our study. We denote by Sk,n(t) the number of empty (k+1)-simplex components of

Č(Pn, rn(t)). In other words, Sk,n(t) represents the number of connected components

C on k + 2 points such that βk(C) = 1. More generally, for integers i ≥ k + 2 and

j > 0, we define Ui,j,n(t) as the number of connected components C of Č(Pn, rn(t))

such that |C| = i and βk(C) = j. Then the kth Betti number of Č(Pn, rn(t)) can be

represented as

βk,n(t) =
∑
i≥k+2

∑
j>0

jUi,j,n(t), t > 0. (2.1)
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Since Sk,n(t) = Uk+2,1,n(t) and one cannot form multiple empty (k+ 1)-simplices from

k + 2 points, (2.1) can also be represented as

βk,n(t) = Sk,n(t) +
∑
i>k+2

∑
j>0

jUi,j,n(t), t > 0. (2.2)

In this setting it is instructive to introduce the following indicator functions to

formalize these concepts for an arbitrary collection of points Y ⊂ X ⊂ Rd:

• Ji,t(Y,X ) := 1
{
Č(Y, t) is a connected component of Č(X , t)

}
1
{
|Y| = i}.

• bj,t(Y) := 1
{
βk
(
Č(Y, t)

)
= j
}

.

• g(i,j)t (Y,X ) := bj,t(Y)Ji,t(Y,X ).

In particular, denote

gt(Y,X ) := g
(k+2,1)
t (Y,X ) = b1,t(Y)Jk+2,t(Y,X ) = ht(Y)Jk+2,t(Y,X ).

Additionally, for A ⊂ Rd, let

• ht,A(Y) := ht(Y)1{LMP(Y) ∈ A},

• g(i,j)t,A (Y,X ) := g
(i,j)
t (Y,X )1{LMP(Y) ∈ A},

where LMP(Y) is the left-most point, in dictionary order, of the set Y.

With the above indicators now available, it is clear that Sk,n(t) =
∑
Y⊂Pn

grn(t)(Y,Pn)

and Ui,j,n(t) =
∑
Y⊂Pn

g
(i,j)
rn(t)

(Y,Pn). As a final bit of notation, let

βk,n,A(t) =
∑
i≥k+2

∑
j>0

jUi,j,n,A(t) = Sk,n,A(t) +
∑
i>k+2

∑
j>0

jUi,j,n,A(t),

where, in all functions above, we require the left-most point of every subset Y to be an

element ofA. When brevity is paramount, we occasionally shorten
∑
i>k+2

∑
j>0 jUi,j,n(t)

to Rk,n(t) and
∑
i>k+2

∑
j>0 jUi,j,n,A(t) to Rk,n,A(t) respectively.

3. Central limit theorem in sparse regime

Throughout this section we assume that nsdn → 0 and ρn := nk+2s
d(k+1)
n → ∞

as n → ∞. The essence is that Čech complexes are distributed sparsely with many

separate connected components, because of a fast decay of sn as a result of nsdn → 0.
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Consequently, all k-cycles are asymptotically supported on k+ 2 points. From a more

analytic viewpoint, the behavior of the kth Betti number (2.2) is completely determined

by Sk,n(t), whereas Rk,n(t) = βk,n(t)−Sk,n(t) is asymptotically negligible in the sense

that E[Sk,n(t)]/ρn tends to a finite positive constant, but E[Rk,n(t)]/ρn → 0 as n→∞.

The most relevant study to this section is [21], in which the central limit theorem

for the sparse regime is discussed. We have extended [21] (with the erratum paper

[22]) in two directions. First, we develop the process-level central limit theorem. This

highlights the chief contribution of this paper. Whereas [21, 22], as well as [34] in

the ensuing section, treat the “static” topology of random Čech complexes (i.e., no

time parameter t involved), the main focus of this paper is “dynamic” topology of the

same complex, treating Betti numbers as a stochastic process. Second, our central limit

theorem is for the entirety of the sparse regime, without requiring that sn = o(n−1/d−δ)

for some δ > 0 as assumed in [22].

Before presenting the main result we define the limiting stochastic process

Gk(t) :=

∫
Rd(k+1)

ht(0,y)Gk(dy), (3.1)

where Gk is a Gaussian random measure such that Gk(A) ∼ N (0, Cf,kmk(A)) for all

measurable A in Rd(k+1). Furthermore, for A1, . . . , Am disjoint, Gk(A1), . . . , Gk(Am)

are independent. As defined, Gk(t) depends on the indicator ht, meaning that due to

sparsity of the Čech complex in this regime, the k-cycles affecting Gk(t) must be always

formed by connected components on k+2 points (i.e., components of the smallest size).

The significance of the characterization of the process at (3.1) is that if we define

G±k (t) :=

∫
Rd(k+1)

h±t (0,y)Gk(dy),

then G±k (t) becomes a time-changed Brownian motion; see Proposition 3.1 below.

Hence Gk(t) = G+k (t)− G−k (t) is a difference of two dependent time-changed Brownian

motions, where dependence is due to the same Gaussian random measure Gk shared by

G+k (t) and G−k (t). Those wishing to examine this characterization in more detail should

refer to [25]. For example, it is proven in [25] that the process Gk(t) is self-similar with

exponent H = d(k − 1)/2 and is Hölder continuous of any order in [0, 1/2).

Proposition 3.1. The process G±k (t) can be expressed as

(G±k (t), t ≥ 0)
d
=
(
B(Cf,kmk(D±1 )td(k+1)), t ≥ 0

)
,
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where B is a standard Brownian motion and D±t = {y ∈ Rd(k+1) : h±t (0,y) = 1}.

Proof. We prove only the result for G+k , as the proof for G−k is the same. It is

elementary to show that G+k (t) has mean zero. Thus, it only remains to demonstrate the

covariance result. Since h+t is non-decreasing in t, we have D+
t1 ⊂ D+

t2 for 0 ≤ t1 ≤ t2;

therefore,

E
[
G+k (t1)G+k (t2)

]
= E

[
Gk(D+

t1)Gk(D+
t2)] = E

[
Gk(D+

t1)2]

= Cf,kmk(D+
t1) = Cf,kmk(D+

1 )t
d(k+1)
1 .

�

Our main result can be seen below. The proof is briefly presented in Section 6.2 as a

straightforward variant of the proof for the critical regime. For the proof we need to

examine the asymptotic growth rate of expectations and covariances of βk,n(t). The

detailed results are presented in Proposition 6.2, where it is seen that the expectation

and covariance both grow at the rate ρn.

Theorem 3.1. Suppose that nsdn → 0 and ρn = nk+2s
d(k+1)
n → ∞. Assume that f

is an almost everywhere bounded and continuous density function. Then, we have the

following weak convergence in the finite dimensional sense, namely

ρ−1/2n

(
βk,n(t)− E[βk,n(t)]

) fidi⇒ Gk(t),

meaning that for every m ∈ N and 0 < t1 < t2 < · · · < tm <∞ we have

ρ−1/2n

(
βk,n(ti)− E[βk,n(ti)], i = 1, . . . ,m

)
⇒
(
Gk(ti), i = 1, . . . ,m

)
weakly in Rm.

4. Central limit theorem in critical regime

We now expand on the results of [34] (see also [31]) by offering an explicit limit of

appropriately scaled moments and a central limit theorem for βk,n(t). In the critical

regime, the connectivity radius sn is defined to be sn = n−1/d. This sequence decays

more slowly than that in the previous section; hence, Čech complexes become highly

connected with many topological holes of any dimension k < d. More analytically, all
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terms in the sum (2.1) contribute to the kth Betti number, unlike in the sparse regime.

This implies that the k-cycles in the limit could be supported not only on k+ 2 points

but also on i points for all possible i > k + 2.

In [34], the authors established the central limit theorem for the first time for the

critical regime (though they referred to it as the “thermodynamic” regime). There are

two key differences between that paper and ours. The first is that the Poisson process

they consider is homogeneous with unit intensity, restricted to a set Bn such that

m(Bn) = n. The second difference between the two, and equivalent to the contrast

indicated in the sparse regime, is again that [34] treats the static topology of random

Čech complexes whereas we treat the dynamic topology. As a consequence, while the

weak limit in [34] is a simple Gaussian distribution with unknown variance, our limit

is a Gaussian process having structure similar to that of the Betti number (2.1).

The other relevant article to our study is [31], which generalizes [34] to an inho-

mogeneous Poisson process case, but again only deals with static topology. We would

like to emphasize that our proof techniques are significantly different from those in

[34, 31]. In fact, our proof is highly analytic in nature, borrowing machinary from

[26] and [21], whereas the proofs of [34, 31] rely more on the topological nature of the

objects, including weakly/strongly stabilizing properties of Betti numbers, the notion

of critical radius of percolation, and the theory of geometric functionals as in [27]; see

also Remark 4.2. By virtue of our analytic approach, we can fully specify the structure

of the limiting Gaussian process as in (4.1) below. This is actually the main objective

of this study.

We now define the aforementioned limiting Gaussian process by

Hk(t) =
∑
i≥k+2

∑
j>0

jH(i,j)
k (t), t > 0, (4.1)

where
(
H(i,j)
k , i ≥ k + 2, j > 0

)
is a family of centered Gaussian processes with inter-

process dependence between H(i1,j1)
k and H(i2,j2)

k determined by

Cov
(
H(i1,j1)
k (t1),H(i2,j2)

k (t2)
)

=
1

i1!
η
(i1,j1,j2)

k,Rd (t1, t2)δi1,i2 +
1

i1!i2!
ν
(i1,i2,j1,j2)

k,Rd (t1, t2).

(4.2)

Here δi1,i2 is the Kronecker delta, and the functions η
(i1,j1,j2)

k,Rd , ν
(i1,i2,j1,j2)

k,Rd are explicitly

defined during the proof of the main theorem (see (6.2) and (6.3)). From (4.2), the
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covariance of H(i,j)
k is given by

Cov
(
H(i,j)
k (t1),H(i,j)

k (t2)
)

=
1

i!
η
(i,j,j)

k,Rd (t1, t2) +
1

(i!)2
ν
(i,i,j,j)

k,Rd (t1, t2).

The main point here is that the Betti number (2.1) and the limit (4.1) are represented

in a very similar fashion. In fact, the process Ui,j,n(t) in (2.1) and H(i,j)
k (t) in (4.1)

both capture the spatial distribution of connected components C with |C| = i and

βk(C) = j. In particular, H(k+2,1)
k (t) represents the distribution of components C on

k+ 2 points with βk(C) = 1 (i.e., components of the smallest size) as does Gk(t) in the

sparse regime. In the present regime however, many of the Gaussian processes in (4.1)

beyond H(k+2,1)
k (t), do contribute to the limit.

As a bit of a technical remark, note that for every i ≥ k+2, there exists j0 > 0 such

that bj,t(x) = 0 for all j ≥ j0, t > 0, and x ∈ Rdi. In this case,

η
(i,j,j)

k,Rd (t, t) = ν
(i,i,j,j)

k,Rd (t, t) = 0,

and thus H(i,j)
k becomes an identically zero process. For example, H(k+2,j)

k ≡ 0 for all

j ≥ 2, since one cannot create multiple k-cycles from k + 2 points.

All proofs are collected in Section 6.1. In particular we will see that the growth

rate of the expectation and variance of βk,n(t) is of order n—see Proposition 6.1. This

indicates that the scaling constant for the central limit theorem must be of order n1/2.

Theorem 4.1. Suppose that nsdn = 1 and f is an almost everywhere bounded and

continuous density function. If 0 < t1 < t2 < · · · < tm < (e‖f‖∞θd)−1/d, and

Hk(t) is the centered Gaussian process defined above, then we have the following weak

convergence in the finite dimensional sense, namely

n−1/2
(
βk,n(t)− E[βk,n(t)]

) fidi⇒ Hk(t).

This means that for every m ∈ N we have

n−1/2
(
βk,n(ti)− E[βk,n(ti)], i = 1, . . . ,m

)
⇒
(
Hk(ti), i = 1, . . . ,m

)
,

weakly in Rm.

Remark 4.1. Here we assume nsdn = 1, but we could generalize it to nsdn → 1,

n→∞. Indeed, throughout the proof of Proposition 6.1 we will frequently encounter
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the integral expressions multiplied by (nsdn)i−1 (e.g., (6.6)). If one assumes nsdn → 1,

the integral and (nsdn)i−1 both converge. Thus, without loss of generality we may set

nsdn = 1, so that we do not have to maintain (nsdn)i−1 outside of the integral.

Remark 4.2. Although Theorem 4.1 imposes a restriction on the range of ti’s, the

central limit theorem does hold for every t > 0 in the case of the “truncated” Betti

number

β
(M)
k,n (t) =

M∑
i=k+2

∑
j>0

jUi,j,n(t), M ∈ N,

which itself is useful for the approximation arguments in our proof.

The need for the restriction on ti’s seems to be a delicate issue. First, according to

[34], if the Poisson process is homogeneous, the non-functional central limit theorem

holds for any fixed t > 0. However in the case of an inhomogeneous Poisson process, [31]

has put a restriction on the value of t, despite significant difference in proof techniques

with this paper. More specifically, in the notation of Theorem 4.1, the result of [31]

indicates that tm must be less than rc‖f‖−1/d∞ , where rc is the critical radius for

percolation in a Boolean model in Rd ([23]).

The restriction on ti’s in Theorem 4.1 looks a little artificial; indeed it has only been

used for demonstrating that

lim
M→∞

lim sup
n→∞

Var
(
βk,n(t)− β(M)

k,n (t)
)

= 0.

Nevertheless, removing this restriction is not easy, because of the “global” nature of

Betti numbers. In fact, the Betti number consists of (infinitely many) component

counts as in (2.1), and their moment calculations always involve an entire point set

Pn (see the definition of Ji,t(Y,X ) after (2.2)). This property of Betti numbers seems

to make it highly difficult to estimate the probability of large components, unless the

radius (i.e., the value of t) is restricted in some way or other. For example, under our

restriction E
[
Pn
(
B(x; rn(t))

)]
is bounded by e−1 for all x ∈ Rd, while it can be as

large as possible if t is unrestricted. Furthermore, as mentioned above, if the Betti

number is truncated we no longer need to deal with large components, hence we do

not need a restriction on the range of t.

Before concluding this section we shall exploit Theorem 4.6 in [34] and present the

strong law of large numbers of βk,n(t). Though the strong law of large numbers has
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already been proven in [17, 30] for any fixed t > 0, we shall state the result to highlight

the novelty of our representation of the limit as the sum of contributions to the Betti

number for variously sized components. The proof is short and given at the end of

Section 6.1.

Corollary 4.1. Under the condition of Theorem 4.1, we assume moreover that f has

a compact, convex support such that infx∈supp(f) f(x) > 0. Then we have, as n→∞,

βk,n(t)

n
→

∞∑
i=k+2

∑
j>0

j

i!
η
(i,j,j)

k,Rd (t, t), a.s.

5. Poisson limit theorem in sparse regime

Before concluding this paper we shall explore the random topology of Čech com-

plexes when the complex is even more sparse than that in Section 3, so that k-

cycles hardly ever occur. Then, the kth Betti number no longer follows a central

limit theorem. Nevertheless, it does obey a Poisson limit theorem. In terms of the

connectivity radii, we assume ρn = nk+2s
d(k+1)
n = 1, equivalently, sn = n−(k+2)/d(k+1),

so that sn converges to 0 more rapidly than in Section 3.

For the definition of a “Poissonian” type limiting process, we let Mk be a Poisson

random measure with mean measure Cf,kmk. Namely it is defined by

Mk(A) ∼ Poi(Cf,kmk(A))

for all measurableA in Rd(k+1). Further, ifA1, . . . , Am are disjoint, Mk(A1), . . . ,Mk(Am)

are independent. We are now ready to define the stochastic process

Vk(t) =

∫
Rd(k+1)

ht(0,y)Mk(dy),

which appears below as a weak limit in the main theorem. What is interesting about

this is that if we define

V±k (t) :=

∫
Rd(k+1)

h±t (0,y)Mk(dy),

then Vk(t) = V+
k (t)−V−k (t) is the difference of two dependent (time-changed) Poisson

processes on R+. Interestingly, this treatment is analogous to the statement of the

Gaussian process limit in Section 3, and those wishing a deeper exploration of this in
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a similar setting should refer to [24]. What is precisely meant by this can be seen in

the following proposition.

Proposition 5.1. The process V±k can be expressed as

(V±k (t), t ≥ 0)
d
=
(
N±k (td(k+1)), t ≥ 0

)
,

where N±k is a (homogeneous) Poisson process with intensity Cf,kmk(D±1 ) with D±t =

{y ∈ Rd(k+1) : h±t (0,y) = 1}.

Proof. As with Proposition 3.1, we prove only the result for V+
k , as the proof for V−k

is the same. We can see that if 0 = t0 < t1 < · · · < tk < ∞ and λi > 0, i = 1, . . . , k,

then by the non-decreasingness of h+t ,

E
[
exp
(
−

k∑
i=1

λi
(
V+
k (ti)− V+

k (ti−1)
))]

= E
[
exp
(
−

k∑
i=1

λiMk(D+
ti \D

+
ti−1

)
)]
,

where D+
ti \ D

+
ti−1

are disjoint and Mk(D+
ti \ D

+
ti−1

), i = 1, . . . , k, are independent.

Moreover, Mk(D+
ti \D

+
ti−1

) is Poisson distributed with parameter

Cf,kmk(D+
ti \D

+
ti−1

) = Cf,kmk(D+
1 )(t

d(k+1)
i − td(k+1)

i−1 )

by a change of variable. Hence we have that

E
[
exp
(
−

k∑
i=1

λiMk(D+
ti \D

+
ti−1

)
)]

=

k∏
i=1

exp
(
Cf,kmk(D+

1 )(t
d(k+1)
i −td(k+1)

i−1 )(e−λi−1)
)
,

which implies that the process V+
k (t1/d(k+1)) has independent increments and

V+
k ((t+ s)1/d(k+1))− V+

k (s1/d(k+1))

is Poisson with parameter Cf,kmk(D+
1 )t. �

In what follows we assume ρn = 1, though we could easily modify this to suppose

that ρn → 1 as n → ∞. For simplicity in our proofs we assert the former. The proof

is again given in Section 6 and the main techniques there are those in [12].

Theorem 5.1. Suppose that ρn = 1 and f is an almost everywhere bounded and

continuous density function. Then, we have the following weak convergence in the

finite dimensional sense, namely

βk,n(t)
fidi⇒ Vk(t),
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meaning that for every m ∈ N and 0 < t1 < t2 < · · · < tm <∞ we have

(
βk,n(ti), i = 1, . . . ,m

)
⇒
(
Vk(ti), i = 1, . . . ,m

)
, (5.1)

weakly in Rm.

6. Proofs

In this section we prove the theorems seen in the sections above, with the exposition

focused on Sections 4 and 5. We only briefly discuss the proof of Section 3, since the

proof is considerably similar to (or even easier than) the critical regime case.

In the sequel, we write x+y = (x+y1, . . . , x+ym) for x ∈ Rd and y = (y1, . . . , ym) ∈

Rdm.

6.1. Central limit theorem in critical regime

The first step towards the required central limit theorem is to examine the asymp-

totic moments as follows. Before proceeding with the proof, let us define the “trun-

cated” Betti numbers

β
(M)
k,n,A(t) :=

M∑
i=k+2

∑
j>0

jUi,j,n,A(t), M ∈ N ∪ {∞} (6.1)

for any measurable A ⊂ Rd. Clearly βk,n,A(t) = β
(∞)
k,n,A(t).

Let us introduce a few items useful for specifying the limiting covariances. In the

following i, i1, i2, j1, and j2 are positive integers, t1, t2 are non-negative reals, A is an

open subset of Rd with m(∂A) = 0, and a ∧ b := min{a, b} with a ∨ b := max{a, b}.

Additionally, we define the two functions

η
(i,j1,j2)
k,A (t1, t2) :=

∫
Rd(i−1)

∫
Rd

1
{
Č
(
{0,y}, t1 ∧ t2

)
is connected

} 2∏
`=1

bj`,t`(0,y) (6.2)

× exp
(
− (t1 ∨ t2)df(x)m

(
B({0,y}; 1)

))
f(x)i1A(x) dxdy,

and

ν
(i1,i2,j1,j2)
k,A (t1, t2) :=

∫
Rd

dx

∫
Rd(i1−1)

dy1

∫
Rdi2

dy2 1
{
Č
(
{0,y1}, t1

)
is connected

}
(6.3)
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× 1
{
Č
(
y2, t2

)
is connected

}
bj1,t1(0,y1) bj2,t2(y2)

×
[(
αt1,t2

(
{0,y1},y2

)
− α(t1∨t2)/2

(
{0,y1},y2

))
e−f(x)m

(
B({0,y1};t1)∪B(y2;t2)

)
− αt1,t2

(
{0,y1},y2

)
e−f(x)

{
m(B({0,y1};t1))+m(B(y2;t2))

}]
f(x)i1+i21A(x),

where

B(X ; r) :=
⋃
y∈X

B(y; r) (6.4)

for a collection X of Rd-valued vectors and r > 0. Moreover,

αr,s(Xi1 ,Xi2) := 1
{
B(Xi1 ; r) ∩ B(Xi2 ; s) 6= ∅

}
,

and αr(Xi1 ,Xi2) := αr,r(Xi1 ,Xi2). Finally we define for M ∈ N ∪ {∞},

Φ
(M)
k,A (t1, t2) :=

M∑
i1=k+2

M∑
i2=k+2

∑
j1>0

∑
j2>0

j1j2

(
η
(i1,j1,j2)

k,Rd (t1, t2)δi1,i2

i1!
+
ν
(i1,i2,j1,j2)

k,Rd (t1, t2)

i1!i2!

)
,

where δi1,i2 is again the Kronecker delta and we define Φk,A(t1, t2) := Φ
(∞)
k,A (t1, t2).

Proposition 6.1. Let f be an almost everywhere bounded and continuous density func-

tion. Let nsdn = 1 and A ⊂ Rd is open with m(∂A) = 0.

(i) If M <∞, then for t, t1, t2 > 0,

n−1E[β
(M)
k,n,A(t)]→

M∑
i=k+2

∑
j>0

j

i!
η
(i,j,j)
k,A (t, t), n→∞,

n−1Cov(β
(M)
k,n,A(t1), β

(M)
k,n,A(t2))→ Φ

(M)
k,A (t1, t2), n→∞.

(ii) If M =∞, then for 0 < t, t1, t2 <
(
e‖f‖∞θd

)−1/d
,

n−1E[βk,n,A(t)]→
∞∑

i=k+2

∑
j>0

j

i!
η
(i,j,j)
k,A (t, t), n→∞,

n−1Cov(βk,n,A(t1), βk,n,A(t2))→ Φk,A(t1, t2), n→∞,

so that the limits above are finite non-zero constants.

Proof. We only establish the statements in (ii). We aim to demonstrate the con-

vergence of the expectation in Part 1 and then in Part 2, the convergence of the

covariance to Φk,A(t1, t2). For ease of description we treat only the case when A = Rd.

The argument for a general A will be the same except obvious minor changes.
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Part 1: The definition in (2.1), the Palm theory for Poisson processes in [26], and

the monotone convergence theorem supply that

n−1E[βk,n(t)] =
∞∑

i=k+2

∑
j>0

j
ni−1

i!
E[g

(i,j)
rn(t)

(Xi,Xi ∪ Pn)], (6.5)

where Xi = (X1, . . . , Xi) ∈ Rdi is a collection of i.i.d random points in Rd with common

density f . By conditioning on Xi we have that

ni−1E[g
(i,j)
rn(t)

(Xi,Xi ∪ Pn)] (6.6)

= ni−1E
[
bj,rn(t)(Xi)E

[
Ji,rn(t)(Xi,Xi ∪ Pn)

∣∣Xi]]
= ni−1

∫
Rdi

1
{
Č(x, rn(t)) is connected

}
bj,rn(t)(x) exp

(
− nIrn(t)(x)

) i∏
j=1

f(xj) dx,

where

Irn(t)(x) = Irn(t)(x1, . . . , xi) =

∫
B(x;rn(t))

f(z) dz.

Subsequently we perform the change of variables x1 = x and xj = x + snyj−1 for

j = 2, . . . , i, to get that (6.6) is equal to

(nsdn)i−1
∫
Rd(i−1)

∫
Rd

1
{
Č({x, x+ sny}, rn(t)) is connected

}
bj,rn(t)(x, x+ sny)

× exp
(
− nIrn(t)(x, x+ sny)

)
f(x)

i−1∏
j=1

f(x+ snyj) dxdy

=

∫
Rd(i−1)

∫
Rd

1
{
Č({0,y}, t) is connected

}
bj,t(0,y)

× exp
(
− nIrn(t)(x, x+ sny)

)
f(x)

i−1∏
j=1

f(x+ snyj) dxdy,

where the equality follows from the location and scale invariance of both of the indicator

functions. By the continuity of f we have that
∏i−1
j=1 f(x + snyj) → f(x)i−1 a.e. as

n→∞. As for the convergence of the exponential term, we have

nIrn(t)(x, x+ sny) = n

∫
B({x,x+sny};rn(t))

f(z) dz,

which after the change of variable z = x+ snv, gives us

n

∫
B({x,x+sny};rn(t))

f(z) dz → tdf(x)m
(
B
(
{0,y}; 1

))
.
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It then follows from the dominated convergence theorem that

ni−1E[g
(i,j)
rn(t)

(Xi,Xi ∪ Pn)]→ η
(i,j,j)

k,Rd (t, t), n→∞.

It remains to find a summable upper bound for (6.5) to apply the dominated con-

vergence theorem for sums. To this end we use the inequality j ≤
(
i

k+1

)
which

is the result of the fact that there must be a k-simplex in Č(Xi, rn(t)) whenever

βk
(
Č(Xi, rn(t))

)
> 0. In addition, using an obvious inequality

Ji,rn(t)(Xi,Xi ∪ Pn) ≤ 1
{
Č(Xi, rn(t)) is connected

}
, (6.7)

we get that

n−1E[βk,n(t)] ≤
∞∑

i=k+2

(
i

k + 1

)
ni−1

i!

( i
k+1)∑
j=1

E
[
1
{
Č(Xi, rn(t)) is connected

}
bj,rn(t)(Xi)

]
(6.8)

≤
∞∑

i=k+2

(
i

k + 1

)
ni−1

i!
P
(
Č(Xi, rn(t)) is connected

)
.

For further analysis we claim that

P
(
Č(Xi, rn(t)) is connected

)
≤ ii−2

(
rn(t)d‖f‖∞θd

)i−1
. (6.9)

Indeed this can be derived from

P
(
Č(Xi, rn(t)) is connected

)
(6.10)

=

∫
Rdi

1
{
Č(x, rn(t)) is connected

} i∏
j=1

f(xj) dx

= rn(t)d(i−1)
∫
Rdi

1
{
Č({0,y}, 1) is connected

}
f(x)

i−1∏
j=1

f(x+ rn(t)yj) dx dy

≤
(
rn(t)d‖f‖∞

)i−1 ∫
Rd(i−1)

1
{
Č({0,y}, 1) is connected

}
dy

≤ ii−2
(
rn(t)d‖f‖∞θd

)i−1
.

The last inequality comes from the basic fact that there are ii−2 spanning trees on i

vertices. Combining (6.8), (6.9), and nsdn = 1 we conclude that

n−1E[βk,n(t)] ≤ 1

(k + 1)!

∞∑
i=k+2

ii−2

(i− k − 1)!
(td‖f‖∞θd)i−1 =:

1

(k + 1)!

∞∑
i=k+2

ai.
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It is easy to check that ai+1/ai → etd‖f‖∞θd as i→∞, where the limit is less than 1

by our assumption. So the ratio test has shown that
∑∞
i=k+2 ai converges as required.

Part 2: We assume 0 < t1 ≤ t2 < (e‖f‖∞θd)−1/d and proceed with the fact that

E[βk,n(t1)βk,n(t2)]

=
∞∑

i1=k+2

∞∑
i2=k+2

∑
j1>0

∑
j2>0

j1j2E

 ∑
Y1⊂Pn

∑
Y2⊂Pn

g
(i1,j1)
rn(t1)

(Y1,Pn) g
(i2,j2)
rn(t2)

(Y2,Pn)


=

∞∑
i=k+2

∑
j1>0

∑
j2>0

j1j2E

[ ∑
Y⊂Pn

g
(i,j1)
rn(t1)

(Y,Pn) g
(i,j2)
rn(t2)

(Y,Pn)

]

+
∞∑

i1=k+2

∞∑
i2=k+2

∑
j1>0

∑
j2>0

j1j2

× E

[ ∑
Y1⊂Pn

∑
Y2⊂Pn

g
(i1,j1)
rn(t1)

(Y1,Pn) g
(i2,j2)
rn(t2)

(Y2,Pn)1
{
|Y1 ∩ Y2| = 0

}]
.

The second equality comes from an observation that if Y1 6= Y2 and the intersection

of Y1 and Y2 is non-empty, then Č(Y2, rn(t2)) cannot be an isolated component of

Č(Pn, rn(t2))—so these terms are zero. Appealing to Palm theory again as seen in

[21], we get that

E[βk,n(t1)βk,n(t2)]

=
∞∑

i=k+2

∑
j1>0

∑
j2>0

j1j2
ni

i!
E
[
g
(i,j1)
rn(t1)

(Xi,Xi ∪ Pn) g
(i,j2)
rn(t2)

(Xi,Xi ∪ Pn)
]

+
∞∑

i1=k+2

∞∑
i2=k+2

∑
j1>0

∑
j2>0

j1j2
ni1+i2

i1!i2!

× E
[
g
(i1,j1)
rn(t1)

(Xi1 ,Xi1 ∪ Xi2 ∪ Pn) g
(i2,j2)
rn(t2)

(Xi2 ,Xi1 ∪ Xi2 ∪ Pn)
]
,

where Xi and Pn are independent, and Xi1 , Xi2 , and Pn are also mutually independent

such that Xi1 and Xi2 are disjoint.

Applying (6.5) to each E[βk,n(ti)], i = 1, 2, and utilizing the independence of Xi1
and Xi2 , we see that the covariance function can be written as

Cov(βk,n(t1), βk,n(t2)) = A1,n +A2,n, (6.11)

with

A1,n :=
∞∑

i=k+2

∑
j1>0

∑
j2>0

j1j2
ni

i!
E
[
g
(i,j1)
rn(t1)

(Xi,Xi ∪ Pn)g
(i,j2)
rn(t2)

(Xi,Xi ∪ Pn)
]
, (6.12)
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A2,n :=
∞∑

i1=k+2

∞∑
i2=k+2

∑
j1>0

∑
j2>0

j1j2
ni1+i2

i1!i2!
(6.13)

× E
[
g
(i1,j1)
rn(t1)

(Xi1 ,Xi1 ∪ Xi2 ∪ Pn)g
(i2,j2)
rn(t2)

(Xi2 ,Xi1 ∪ Xi2 ∪ Pn)

− g(i1,j1)rn(t1)
(Xi1 ,Xi1 ∪ Pn)g

(i2,j2)
rn(t2)

(Xi2 ,Xi2 ∪ P ′n)
]
,

where P ′n is an independent copy of Pn and is also independent of Xi1 and Xi2 .

Let us denote the expectation portions of A1,n and A2,n as E
(i,j)
1,n and E

(i,j)
2,n , with

i = (i1, i2), and j = (j1, j2) respectively. Our goal is to show that n−1(A1,n + A2,n)

tends to Φk,Rd(t1, t2) as n → ∞. For now we shall compute the limits of ni−1E
(i,j)
1,n

and ni1+i2−1E
(i,j)
2,n for each i, i1, i2, j1, and j2, while temporarily assuming that the

dominated convergence theorem for sums is applicable for both n−1A1,n and n−1A2,n.

By mirroring the argument from Part 1 with the same change of variables and recalling

t1 ≤ t2,

ni−1E
(i,j)
1,n = ni−1E

[
1
{
Č(Xi, rn(t1)) is connected

}
×

2∏
`=1

bj`,rn(t`)(Xi) exp
(
− nIrn(t2)(Xi)

)]
=

∫
Rd(i−1)

∫
Rd

1
{
Č
(
{0,y}, t1

)
is connected

} 2∏
`=1

bj`,t`(0,y)

× exp
(
− nIrn(t2)(x, x+ sny)

)
f(x)

i−1∏
j=1

f(x+ snyj) dx dy

→ η
(i,j1,j2)

k,Rd (t1, t2) as n→∞.

Hence the assumed dominated convergence theorem for sums concludes that

n−1A1,n →
∞∑

i=k+2

∑
j1>0

∑
j2>0

j1j2
i!

η
(i,j1,j2)

k,Rd (t1, t2) n→∞. (6.14)

To demonstrate convergence for ni1+i2−1E
(i,j)
2,n , let us shorten g

(i1,j1)
rn(t1)

to g1 and g
(i2,j2)
rn(t2)

to g2 and decompose E
(i,j)
2,n into two terms:

E
(i,j)
2,n = E

[
g1(Xi1 ,Xi1 ∪ Xi2 ∪ Pn)g2(Xi2 ,Xi1 ∪ Xi2 ∪ Pn)

− g1(Xi1 ,Xi1 ∪ Pn)g2(Xi2 ,Xi2 ∪ Pn)
]

+ E
[
g1(Xi1 ,Xi1 ∪ Pn)

(
g2(Xi2 ,Xi2 ∪ Pn)− g2(Xi2 ,Xi2 ∪ P ′n)

)]
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:= B1,n +B2,n.

Note that for ` = 1, 2,

g`(Xi` ,Xi1 ∪ Xi2 ∪ Pn) = g`(Xi` ,Xi` ∪ Pn) 1
{
B
(
Xi1 ; rn(t`)/2

)
∩ B
(
Xi2 ; rn(t`)/2

)
= ∅
}
,

where B(X ; r) is defined in (6.4). Hence we have that

B1,n = −E
[
g1(Xi1 ,Xi1 ∪ Pn) g2(Xi2 ,Xi2 ∪ Pn)αrn(t2)/2(Xi1 ,Xi2)

]
.

At the same time, the spatial independence of Pn justifies that

B2,n = E
[
g1(Xi1 ,Xi1 ∪ Pn)

(
g2(Xi2 ,Xi2 ∪ Pn)

− g2(Xi2 ,Xi2 ∪ P ′n)
)
αrn(t1),rn(t2)(Xi1 ,Xi2)

]
.

Consequently we can rewrite E
(i,j)
2,n as

E
(i,j)
2,n = E

[
g1(Xi1 ,Xi1 ∪ Pn)g2(Xi2 ,Xi2 ∪ Pn) (6.15)

×
(
αrn(t1),rn(t2)(Xi1 ,Xi2)− αrn(t2)/2(Xi1 ,Xi2)

)]
− E

[
g1(Xi1 ,Xi1 ∪ Pn)g2(Xi2 ,Xi2 ∪ P ′n)αrn(t1),rn(t2)(Xi1 ,Xi2)

]
:= C1,n − C2,n.

After conditioning on Xi1 ∪ Xi2 , the customary change of variable yields

ni1+i2−1C1,n = ni1+i2−1E
[ 2∏
`=1

1
{
Č(Xi` , rn(t`)) is connected

}
bj`,rn(t`)(Xi`)

×
(
αrn(t1),rn(t2)(Xi1 ,Xi2)− αrn(t2)/2(Xi1 ,Xi2)

)
× exp

(
− n

∫
B(Xi1

;rn(t1))∪B(Xi2
;rn(t2))

f(z) dz
)]

=

∫
Rd

dx

∫
Rd(i1−1)

dy1

∫
Rdi2

dy2 1
{
Č
(
{0,y1}, t1

)
is connected

}
× 1
{
Č
(
y2, t2

)
is connected

}
bj1,t1(0,y1) bj2,t2(y2)

×
(
αt1,t2

(
{0,y1},y2

)
− αt2/2

(
{0,y1},y2

))
× exp

(
− n

∫
B({x,x+sny1};rn(t1))∪B(x+sny2;rn(t2))

f(z) dz
)

× f(x)

i1−1∏
j=1

f(x+ sny1,j)

i2∏
j=1

f(x+ sny2,j)
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→
∫
Rd

dx

∫
Rd(i1−1)

dy1

∫
Rdi2

dy2 1
{
Č
(
{0,y1}, t1

)
is connected

}
× 1
{
Č
(
y2, t2

)
is connected

}
bj1,t1(0,y1) bj2,t2(y2)

×
(
αt1,t2

(
{0,y1},y2

)
− αt2/2

(
{0,y1},y2

))
× e−f(x)m

(
B({0,y1};t1)∪B(y2;t2)

)
f(x)i1+i2 ,

where y1 = (y1,1, . . . , y1,i1−1) ∈ Rd(i1−1) and y2 = (y2,1, . . . , y2,i2) ∈ Rdi2 .

Similarly one can see that

ni1+i2−1C2,n →
∫
Rd

dx

∫
Rd(i1−1)

dy1

∫
Rdi2

dy2 1
{
Č
(
{0,y1}, t1

)
is connected

}
× 1
{
Č
(
y2, t2

)
is connected

}
bj1,t1(0,y1) bj2,t2(y2)αt1,t2

(
{0,y1},y2

)
× e−f(x)

{
m(B({0,y1};t1))+m(B(y2;t2))

}
f(x)i1+i2 .

Therefore,

ni1+i2−1E
(i,j)
2,n = ni1+i2−1(C1,n − C2,n)→ ν

(i1,i2,j1,j2)

k,Rd (t1, t2), n→∞.

Assuming convergence under summation, we have that

n−1A2,n →
∞∑

i1=k+2

∞∑
i2=k+2

∑
j1>0

∑
j2>0

j1j2
i1!i2!

ν
(i1,i2,j1,j2)

k,Rd (t1, t2), n→∞. (6.16)

From (6.14) and (6.16), it follows that n−1(A1,n +A2,n)→ Φk,Rd(t1, t2) as n→∞.

Now we would like to show that both ni−1E
(i,j)
1,n and ni1+i2−1|E(i,j)

2,n | are bounded by

a summable quantity, so that application of the dominated convergence theorem for

sums is valid for both n−1A1,n and n−1A2,n. Using the bounds (6.7), (6.9), together

with nsdn = 1, we have

n−1A1,n ≤
∞∑

i=k+2

∑
j1>0

∑
j2>0

j1j2
ni−1

i!
E
[
1
{
Č(Xi, rn(t1)) is connected

} 2∏
`=1

bj`,rn(t`)(Xi)
]

(6.17)

≤
∞∑

i=k+2

(
i

k + 1

)2
ni−1

i!
P
(
Č(Xi, rn(t1)) is connected

)
≤ 1(

(k + 1)!
)2 ∞∑

i=k+2

i!ii−2(
(i− k − 1)!

)2 (td1‖f‖∞θd)i−1.
The last term is convergent by appealing to the assumption t1 < (e‖f‖∞θd)−1/d and

the ratio test for sums.
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Subsequently we turn our attention to n−1A2,n. Returning to (6.15) and using

obvious relations

αrn(t1),rn(t2)(Xi1 ,Xi2) ≤ αrn(t2)(Xi1 ,Xi2), αrn(t2)/2(Xi1 ,Xi2) ≤ αrn(t2)(Xi1 ,Xi2),

we get that

|C1,n − C2,n| ≤ 3E
[ 2∏
`=1

1
{
Č(Xi` , rn(t2)) is connected

}
bj`,rn(t`)(Xi`)αrn(t2)(Xi1 ,Xi2)

]
By virtue of this bound we have that

n−1|A2,n| ≤ 3
∞∑

i1=k+2

∞∑
i2=k+2

∑
j1>0

∑
j2>0

j1j2
ni1+i2−1

i1!i2!
(6.18)

× E
[ 2∏
`=1

1
{
Č(Xi` , rn(t2)) is connected

}
bj`,rn(t`)(Xi`)αrn(t2)(Xi1 ,Xi2)

]
≤ 3

∞∑
i1=k+2

∞∑
i2=k+2

(
i1

k + 1

)(
i2

k + 1

)
ni1+i2−1

i1!i2!

× P
(
Č(Xi` , rn(t2)) is connected for ` = 1, 2,

B
(
Xi1 ; rn(t2)

)
∩ B
(
Xi2 ; rn(t2)

)
6= ∅
)
.

We claim here that

P
(
Č(Xi` , rn(t2)) is connected for ` = 1, 2, B

(
Xi1 ; rn(t2)

)
∩ B
(
Xi2 ; rn(t2)

)
6= ∅
)

(6.19)

≤ 2dii1−11 ii2−12

(
rn(t2)d‖f‖∞θd

)i1+i2−1
.

To see this, by the change of variables as in (6.10), we have that

P
(
Č(Xi` , rn(t2)) is connected for ` = 1, 2, B

(
Xi1 ; rn(t2)

)
∩ B
(
Xi2 ; rn(t2)

)
6= ∅
)

≤
(
rn(t2)d‖f‖∞

)i1+i2−1 ∫
Rd(i1+i2−1)

1
{
Č({0, y1, . . . , yi1−1}, 1) is connected

}
× 1
{
Č({yi1 , . . . , yi1+i2−1}, 1) is connected

}
× 1
{
B({0, y1, . . . , yi1−1}; 1) ∩ B({yi1 , . . . , yi1+i2−1}; 1) 6= ∅

}
dy.

Note that there are ii1−21 spanning trees on the set of points {0, y1, . . . , yi1−1} with

unit connectivity radius, and there are ii2−22 spanning trees on {yi1 , . . . , yi1+i2−1} with
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unit connectivity radius as well. In addition there are i1 × i2 possible ways of picking

one vertex from {0, y1, . . . , yi1−1} and another from {yi1 , . . . , yi1+i2−1}, and connecting

the two chosen vertices with connectivity radius 2. Therefore, the expression above is

eventually bounded by

(
rn(t2)d‖f‖∞

)i1+i2−1
ii1−21 ii2−22 θi1+i2−2d (i1i22dθd)

= 2dii1−11 ii2−12

(
rn(t2)d‖f‖∞θd

)i1+i2−1
.

Now we have

n−1|A2,n| ≤
3 · 2d(

(k + 1)!
)2
td2‖f‖∞θd

{ ∞∑
i=k+2

ii−1

(i− k − 1)!

(
td2‖f‖∞θd

)i}2

.

The constraint t2 < (e‖f‖∞θd)−1/d, together with the ratio test, guarantees that the

last term converges. Hence the proof is completed. �

Proof of Theorem 4.1. We begin by proving the corresponding result for the trun-

cated Betti number in (6.1) for every M ∈ N, that is,

n−1/2
(
β
(M)
k,n (ti)− E[β

(M)
k,n (ti)], i = 1, . . . ,m

)
⇒
(
H(M)
k (ti) i = 1, . . . ,m

)
,

where H(M)
k is the “truncated” limiting centered Gaussian process given by

H(M)
k (t) =

M∑
i=k+2

∑
j>0

jH(i,j)
k (t).

We now restrict ourselves to the case in which the corresponding left most points

belong to a fixed bounded set A. By the Cramér-Wold device [13, p. 176], we need

to demonstrate a univariate central limit theorem for
∑m
i=1 aiβ

(M)
k,n,A(ti), where ai ∈ R,

m ≥ 1. The asymptotic variance of
∑m
i=1 aiβ

(M)
k,n,A(ti) scaled by n−1/2 can be derived

from Proposition 6.1 (i):

Var
(
n−1/2

m∑
i=1

aiβ
(M)
k,n,A(ti)

)
=

m∑
i=1

m∑
j=1

aiajn
−1Cov(β

(M)
k,n,A(ti), β

(M)
k,n,A(tj))

→
m∑
i=1

m∑
j=1

aiajΦ
(M)
k,A (ti, tj), n→∞.

(6.20)

Our proof exploits Stein’s normal approximation method for weakly dependent

random variables, as in Theorem 2.4 in [26]. We assume the limit in (6.20) is positive
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as otherwise our proof is trivial. Recall that in the statement of Theorem 4.1, we

have set 0 < t1 < t2 < · · · < tm, and let (Qj,n, j ∈ N) be an enumeration of almost

disjoint closed cubes (i.e., their interiors are disjoint) of side length rn(tm), such that

∪j∈NQj,n = Rd.

Vn := {j ∈ N : Qj,n ∩A 6= ∅},

and

ξj,n :=
m∑
i=1

aiβ
(M)
k,n,A∩Qj,n

(ti),

so that
∑m
i=1 aiβ

(M)
k,n,A(ti) =

∑
j∈Vn

ξj,n. We now turn Vn into the vertex set of a

dependency graph (see Section 2.1 in [26] for the definition) by declaring that for

j, j′ ∈ Vn, j ∼ j′ if and only if

inf{|x− y| : x ∈ Qj,n, y ∈ Qj′,n} ≤ 2Mrn(tm).

It is easy to show that this provides us with the required independence properties, that

is, for any vertex set I1, I2 ⊂ Vn with no edges connecting vertices in I1 and those in

I2, we have that (ξj,n, j ∈ I1) and (ξj,n, j ∈ I2) are independent. Note moreover that

the degree of (Vn,∼) is uniformly bounded regardless of n. Since A is a bounded set,

we have |Vn| = O(s−dn ). Let Yj,n denote the number of points of Pn belonging to

Tube(Qj,n,Mrn(tm)) :=
{
x ∈ Rd : inf

y∈Qj,n

|x− y| ≤Mrn(tm)
}
.

Then we have

|ξj,n| ≤
m∑
i=1

|ai|β(M)
k,n,A∩Qj,n

(ti)

≤
m∑
i=1

|ai|βk
(
Č
(
Pn ∩ Tube

(
Qj,n,Mrn(tm)

)
, rn(ti)

))
≤

m∑
i=1

|ai|
(
Yj,n
k + 1

)
.

By definition, Yj,n is Poisson distributed with parameter

λj,n := n

∫
Tube(Qj,n,Mrn(tm))

f(z) dz,

which itself yields an upper bound of the form

λj,n ≤ n‖f‖∞m
(

Tube
(
Qj,n,Mrn(tm)

))
:= c. (6.21)
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This implies that Yj,n is stochastically dominated by a Poisson random variable, which

we call Y , with parameter c. The assumption nsdn = 1 ensures that c does not depend

on n, and for the rest of the proof, let C∗ denote a generic positive constant which is

independent of n but may vary between lines.

We get that for α ∈ N

E[|ξj,n|α] ≤
( m∑
i=1

|ai|
)α

E

[(
Yj,n
k + 1

)α]
≤
( m∑
i=1

|ai|
)α

E

[(
Y

k + 1

)α]
= C∗ (6.22)

Letting

ξ′j,n :=
ξj,n − E[ξj,n]√

Var(
∑m
i=1 aiβ

(M)
k,n,A(ti))

,

it is clear that (Vn,∼) still constitutes a dependency graph for the (ξ′j,n, j ∈ N) because

independence is not affected by affine transformations. Let Z be a standard normal

random variable. It then follows from Stein’s normal approximation method (i.e.

Theorem 2.4 from [26]) that for all x ∈ R,∣∣∣P(∑
j∈Vn

ξ′j,n ≤ x
)
− P(Z ≤ x)

∣∣∣ ≤ C∗(√s−dn E
[
|ξ′j,n|3

]
+
√
s−dn E

[
|ξ′j,n|4

])

≤ C∗
(√

s−dn n−3/2E
[
|ξj,n − E[ξj,n]|3

]
+
√
s−dn n−2E

[
|ξj,n − E[ξj,n]|4

])
,

where we have applied (6.20) for the second inequality.

Now we have by (6.22) that E
[
|ξj,n − E[ξj,n]|p

]
≤ C∗ for p = 3, 4, so that

s−dn n−p/2E
[
|ξj,n − E[ξj,n]|p

]
≤ C∗n1−p/2 → 0, n→∞.

From the argument thus far we conclude that∑
j∈Vn

ξ′j,n ⇒ Z,

which in turn implies

n−1/2
(
β
(M)
k,n,A(ti)− E

[
β
(M)
k,n,A(ti)

]
, i = 1, . . . ,m

)
⇒ N

(
0, (Φ

(M)
k,A (ti, tj))

m
i,j=1

)
for all bounded sets A. The case when A is unbounded can be established by standard

approximation arguments nearly identical to those in [21] and [26], so we omit the

details and conclude that as n→∞

n−1/2
(
β
(M)
k,n (ti)− E

[
β
(M)
k,n (ti)

]
, i = 1, . . . ,m

)
⇒ N

(
0, (Φ

(M)

k,Rd(ti, tj))
m
i,j=1

)
.
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This is equivalent to

n−1/2
(
β
(M)
k,n (ti)− E

[
β
(M)
k,n (ti)

]
, i = 1, . . . ,m

)
⇒
(
H(M)
k (ti), i = 1, . . . ,m

)
,

as n→∞. Additionally, as M →∞(
H(M)
k (ti), i = 1, . . . ,m

)
⇒
(
Hk(ti), i = 1, . . . ,m

)
,

since Φ
(M)

k,Rd(ti, tj) → Φk,Rd(ti, tj) as M → ∞. According to Theorem 3.2 in [3] it

suffices to show that for every t > 0 and ε > 0,

lim
M→∞

lim sup
n→∞

P
( ∣∣βk,n(t)− β(M)

k,n (t)− E[βk,n(t)− β(M)
k,n (t)]

∣∣ > εn1/2
)

= 0. (6.23)

By Chebyshev’s inequality, the probability in (6.23) is bounded by

1

ε2n
Var
(
βk,n(t)− β(M)

k,n (t)
)
,

which itself converges to

1

ε2

∞∑
i1=M+1

∞∑
i2=M+1

∑
j1>0

∑
j2>0

j1j2

(
η
(i1,j1,j2)

k,Rd (t1, t2)δi1,i2

i1!
+
ν
(i1,i2,j1,j2)

k,Rd (t1, t2)

i1!i2!

)
, n→∞.

(6.24)

Since Φk,Rd(t, t) is a finite constant, (6.24) goes to 0 as M →∞. �

Proof of Corollary 4.1. Theorem 4.6 in [34] verified that

lim
n→∞

n−1
(
βk,n(t)− E[βk,n(t)]

)
= 0

almost surely. Combining this with Proposition 6.1 (ii) proves the claim. �

6.2. Central limit theorem in sparse regime

As with the critical regime case, the key results for proving a central limit theorem

are those on asymptotic moments that can be seen in the proposition below. As

discussed in Section 3, the probabilistic features of these moments are asymptotically

determined by Sk,n(t). Many functions and objects in Section 6.1 will be carried over

for use in this section.

Proposition 6.2. Let f be an almost everywhere bounded and continuous density

function. If nsdn → 0 and A ⊂ Rd is open with m(∂A) = 0, then we have that for

t > 0,

ρ−1n E[βk,n,A(t)]→ µk,A(t, t), n→∞,
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and for t1, t2 > 0,

ρ−1n Cov(βk,n,A(t1), βk,n,A(t2))→ µk,A(t1, t2), n→∞,

where

µk,A(t1, t2) :=
1

(k + 2)!

∫
A

f(x)k+2 dx

∫
Rd(k+1)

ht1(0,y)ht2(0,y) dy.

Proof. We only discuss the covariance result in the case A = Rd. Throughout the

proof we assume 0 < t1 ≤ t2. We first derive the same expression as in (6.11) :

Cov
(
βk,n(t1), βk,n(t2)

)
= A1,n +A2,n,

whereA1,n andA2,n are given in (6.12), (6.13) respectively. Observing that g
(k+2,j)
rn(t)

(Xi,Xi∪

Pn) = 0 for all j ≥ 2 and any t > 0, we can split A1,n into two parts, A1,n = D1,n+D2,n,

where

D1,n :=
nk+2

(k + 2)!
E
[
grn(t1)(Xk+2,Xk+2 ∪ Pn) grn(t2)(Xk+2,Xk+2 ∪ Pn)

]
,

D2,n := A1,n−D1,n =

∞∑
i=k+3

∑
j1>0

∑
j2>0

j1j2
ni

i!
E
[
g
(i,j1)
rn(t1)

(Xi,Xi∪Pn)g
(i,j2)
rn(t2)

(Xi,Xi∪Pn)
]
,

Based on this decomposition, we claim that

ρ−1n D1,n → µk,Rd(t1, t2), n→∞, (6.25)

and ρ−1n D2,n and ρ−1n A2,n both converge to 0 as n→∞. An important implication of

these convergence results is that

ρ−1n Cov
(
Sk,n(t1), Sk,n(t2)

)
→ µk,Rd(t1, t2), n→∞;

namely, the covariance of βk,n(t) asymptotically coincides with that of Sk,n(t).

By what should now be a familiar argument and the customary change of variable,

we see that

ρ−1n D1,n =
ρ−1n nk+2

(k + 2)!
E
[
hrn(t1)(Xk+2)hrn(t2)(Xk+2) (6.26)

× E[Jk+2,rn(t2)(Xk+2,Xk+2 ∪ Pn)
∣∣Xk+2]

]
=
ρ−1n nk+2

(k + 2)!

∫
Rd(k+2)

hrn(t1)(x)hrn(t2)(x) exp
(
−nIrn(t2)(x)

) k+2∏
j=1

f(xj) dx
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=
1

(k + 2)!

∫
Rd(k+1)

∫
Rd

ht1(0,y)ht2(0,y) exp
(
−nIrn(t2)(x, x+ sny)

)
× f(x)

k+1∏
j=1

f(x+ snyj) dxdy.

By the continuity of f it holds that
∏k+1
j=1 f(x + snyj) → f(x)k+1 a.e. as n → ∞.

Moreover, the exponential term converges to 1 because we see that

nIrn(t2)(x, x+ sny) ≤ nsdn‖f‖∞m
(
B
(
{0,y}; t2

))
→ 0, n→∞.

Thus (6.25) follows from the dominated convergence theorem.

Next let us turn to the asymptotics of ρ−1n D2,n. Proceeding as in (6.17), while

applying (6.7) and (6.9), we have that

ρ−1n D2,n ≤
∞∑

i=k+3

∑
j1>0

∑
j2>0

j1j2
ρ−1n ni

i!

× E
[
1
{
Č(Xi, rn(t1)) is connected

} 2∏
`=1

bj`,rn(t`)(Xi)
]

≤
∞∑

i=k+3

(
i

k + 1

)2
ρ−1n ni

i!
P
(
Č(Xi, rn(t1)) is connected

)
≤
(
td1‖f‖∞θd

)k+1(
(k + 1)!

)2 ∞∑
i=k+3

bi,n,

where

bi,n :=
i!ii−2(

(i− k − 1)!
)2 (nrn(t1)d‖f‖∞θd

)i−(k+2)
.

Obviously bi,n → 0, n → ∞ for all i ≥ k + 3. Since nsdn → 0, it is easy to find

a summable upper bound ci ≥ bi,n for sufficiently large n. Now the dominated

convergence theorem for sums concludes ρ−1n D2,n → 0 as n→∞.

For the evaluation of n−1|A2,n|, we apply (6.19) to the right hand side at (6.18).

Slightly changing the description of the resulting bound, we obtain

ρ−1n |A2,n| ≤ 3 · 2d
(
td2‖f‖∞θd

)k+1(
(k + 1)!

)2
×

∞∑
i1=k+2

∞∑
i2=k+2

ii1−11 ii2−12

(i1 − k − 1)!(i2 − k − 1)!

(
nrn(t2)d‖f‖∞θd

)i1+i2−(k+2)
.

Since nsdn → 0 as n→∞, it follows from the dominated convergence theorem for sums

that ρ−1n A2,n → 0, n→∞, as desired. �
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Proof of Theorem 3.1. We first establish the central limit theorem for Sk,n(t) by

proceeding in an almost identical fashion to Theorem 4.1. As in that proof, we require

that the left-most point of each subset Y ⊂ Pn to lie in an (open) bounded set A ⊂ Rd,

with m(∂A) = 0. Let Vn, Qj,n be defined as in the proof of Theorem 4.1 and recall one

more that we assume 0 < t1 < t2 < · · · < tm. In this case however, we let Vn be the

vertex set of a dependency graph by letting j ∼ j′ if and only if

inf{|x− y| : x ∈ Qj,n, y ∈ Qj′,n} ≤ 2(k + 2)rn(tm).

We modify ξj,n to be defined as

ξj,n :=
m∑
i=1

ai
∑
Y⊂Pn

grn(ti),A∩Qj,n
(Y,Pn)

so that
∑m
i=1 aiSk,n,A(ti) =

∑
j∈Vn

ξj,n. Furthermore, Yj,n denotes the number of

points of Pn in Tube(Qj,n, (k + 2)rn(tm)). Then,

|ξj,n| ≤
m∑
i=1

|ai|
(
Yj,n
k + 2

)
.

It is easy to demonstrate that the Poisson parameter of Yj,n is bounded by cnsdn for

some constant c > 0—see (6.21). Letting C∗ be a general positive constant as in the

proof of Theorem 4.1, we get that for α ∈ N,

E[|ξj,n|α] ≤ C∗(nsdn)k+2.

This in turn implies E
[
|ξj,n − E[ξj,n]|p

]
≤ C∗(nsdn)k+2 for p = 3, 4. Let

ξ′j,n :=
ξj,n − E[ξj,n]√

Var
(∑m

i=1 aiSk,n,A(ti)
)

and Z ∼ N (0, 1). As in the critical regime case, Stein’s normal approximation method

gives ∣∣∣P(∑
j∈Vn

ξ′j,n ≤ x
)
− P(Z ≤ x)

∣∣∣
≤ C∗

(√
s−dn ρ

−3/2
n E

[
|ξj,n − E[ξj,n]|3

]
+
√
s−dn ρ−2n E

[
|ξj,n − E[ξj,n]|4

])
,

The right-hand side vanishes as n→∞, since for p = 3, 4,

s−dn ρ−p/2n E
[
|ξj,n − E[ξj,n]|p

]
≤ C∗ρ1−p/2n → 0, n→∞.
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Thus we have obtained

ρ−1/2n

(
Sk,n(ti)− E

[
Sk,n(ti)

]
, i = 1, . . . ,m

)
⇒ N

(
0, (µk,Rd(ti, tj))

m
i,j=1

)
. (6.27)

The limiting covariance matrix above coincides with the covariance functions of the

process Gk, i.e.,

E
[
Gk(ti)Gk(tj)

]
= Cf,k

∫
Rd(k+1)

hti(0,y)htj (0,y) dy = µk,Rd(ti, tj), i, j = 1, . . . ,m.

Therefore (6.27) is equivalent to

ρ−1/2n

(
Sk,n(ti)− E

[
Sk,n(ti)

]
, i = 1, . . . ,m

)
⇒
(
Gk(ti), i = 1, . . . ,m

)
.

Now we can finish the entire proof, provided that for every t > 0,

ρ−1/2n

(
βk,n(t)− E

[
βk,n(t)

])
− ρ−1/2n

(
Sk,n(t)− E

[
Sk,n(t)

]) p→ 0, n→∞.

This can be proved immediately by Chebyshev’s inequality. That is, for every ε > 0,

P
(
ρ−1/2n

∣∣Rk,n(t)− E[Rk,n(t)]
∣∣ > ε

)
≤ 1

ε2ρn
Var
(
Rk,n(t)

)
→ 0,

where the convergence is a direct consequence of ρ−1n D2,n → 0 and ρ−1n A2,n → 0, which

were verified in the proof of Proposition 6.2. �

6.3. Poisson limit theorem in sparse regime

Proof of Theorem 5.1. We begin by defining

Hk,n(t) :=
∑
Y⊂Pn

hrn(t)(Y),

and show that

(
Hk,n(ti), i = 1, . . . ,m

)
⇒
(
Vk(ti), i = 1, . . . ,m

)
. (6.28)

Subsequently we shall verify that for every t > 0,

Hk,n(t)− Sk,n(t)
p→ 0, (6.29)

βk,n(t)− Sk,n(t)
p→ 0. (6.30)

Then the proof of (5.1) will be complete.
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Part 1: For the proof of (6.28), it is sufficient to show that for any a1, a2, . . . , am > 0,

m ≥ 1,
m∑
i=1

aiHk,n(ti)⇒
m∑
i=1

aiVk(ti).

We may use positive constants because of the fact that the Laplace transform charac-

terizes a random vector with values in Rm+ . We proceed by using Theorem 3.1 from

[12]. First let (Ω,F ,P) denote a generic probability space on which all objects are

defined. Let N(R+) be the set of finite counting measures on R+. We equip N(R+)

with the vague topology; see, e.g., [28] for more information on the vague topology. .

Let us define a point process ξn : Ω→ N(R+) by

ξn(·) :=
∑
Y⊂Pn

1
{ m∑
i=1

aihrn(ti)(Y) > 0
}
δ∑m

i=1 aihrn(ti)
(Y)(·),

where δ is a Dirac measure.

Additionally let ζ : Ω → N(R+) denote a Poisson random measure with mean

measure Cf,kτk where

τk(A) := mk

{
y ∈ Rd(k+1) :

m∑
i=1

aihti(0,y) ∈ A \ {0}
}
, A ⊂ R+.

The rest of Part 1 is devoted to showing that

ξn ⇒ ζ in N(R+). (6.31)

According to Theorem 3.1 in [12], the following two conditions suffice for (6.31). Let

Ln(·) := E[ξn(·)] and M(·) := E[ζ(·)] = Cf,kτk(·). The first requirement for (6.31) is

the convergence in terms of the total variation distance:

dTV(Ln,M) := sup
A∈B(R+)

∣∣Ln(A)−M(A)
∣∣→ 0, n→∞, (6.32)

where B(R+) is the Borel σ-field over R+. In addition, the second requirement for

(6.31) is

vn := max
1≤`≤k+1

∫
Rd`

(∫
Rd(k+2−`)

1
{ m∑
i=1

aihrn(ti)(x1, . . . , xk+2) > 0
}

(6.33)

λk+2−`(d(x`+1, . . . , xk+2)
))2

λ`
(
d(x1, . . . , x`)

)
→ 0

as n→∞, where λm = λ⊗· · ·⊗λ is a product measure on Rm with λ(·) = n
∫
· f(z) dz.
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Let us now return to (6.32) and present its proof here. As usual, we have assumed

0 < t1 < t2 < · · · < tm. Then, for any A ∈ B(R+) we have from Palm theory, the

change of variables x1 = x, xi = x+ snyi−1 for i = 2, . . . , k + 2, and ρn = 1 that

Ln(A) =
nk+2

(k + 2)!

∫
Rd(k+2)

1
{ m∑
i=1

aihrn(ti)(x) ∈ A \ {0}
} k+2∏
j=1

f(xj) dx

=
1

(k + 2)!

∫
Rd(k+2)

1
{ m∑
i=1

aihti(0,y) ∈ A \ {0}
}
f(x)

k+1∏
j=1

f(x+ snyj) dx dy.

Therefore,∣∣Ln(A)−M(A)
∣∣ ≤ 1

(k + 2)!

∫
Rd(k+2)

1
{ m∑
i=1

aihti(0,y) ∈ A \ {0}
}

× f(x)
∣∣∣k+1∏
j=1

f(x+ snyj)− f(x)k+1
∣∣∣dxdy.

If the indicator function above is equal to 1, then hti(0,y) = 1 for at least one i, which

means that the distance of each component in y from the origin must be less than tm.

Otherwise one cannot form a required empty (k + 1)-simplex. Hence we have

∣∣Ln(A)−M(A)
∣∣ ≤ 1

(k + 2)!

∫
Rd(k+2)

k+2∏
i=1

1{|yi| ≤ tm}

× f(x)
∣∣∣k+1∏
j=1

f(x+ snyj)− f(x)k+1
∣∣∣dxdy.

We have by continuity of f that
∣∣∏k+1

j=1 f(x+ snyj)− f(x)k+1
∣∣ converges to 0 a.e. as

n → ∞ and is bounded by 2‖f‖k+1
∞ < ∞. So the dominated convergence theorem

applies to get
∣∣Ln(A)−M(A)

∣∣→ 0 as n→∞. Since this convergence holds uniformly

for all A ∈ B(R+), we have now established (6.32).

Next we turn to proving (6.33). First we can immediately see that

vn = max
1≤`≤k+1

n2k+4−`
∫
Rd(2k+4−`)

1
{ m∑
i=1

aihrn(ti)(x1, . . . , xk+2) > 0
}

× 1
{ m∑
i=1

aihrn(ti)(x1, . . . , x`, xk+3, . . . , x2k+4−`) > 0
} 2k+4−`∏

j=1

f(xj) dx.

Making a change of variables with x1 = x and xi = x+ snyi−1 for i = 2, . . . , 2k+ 4− `,

while using f(x+ snyi−1) ≤ ‖f‖∞, we get that

vn ≤ ‖f‖2k+3−`
∞ max

1≤`≤k+1
n2k+4−`sd(2k+3−`)

n

∫
Rd(2k+3−`)

1
{ m∑
i=1

aihti(0, y1, . . . , yk+1) > 0
}
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× 1
{ m∑
i=1

aihti(0, y1, . . . , y`−1, yk+2, . . . , y2k+3−`) > 0
}

dy.

Obviously the above integral is finite, and

max
1≤`≤k+1

n2k+4−`sd(2k+3−`)
n = max

1≤`≤k+1
(nsdn)k+2−` → 0, n→∞,

by the assumption ρn = 1. So vn → 0 follows and (6.33) is obtained.

Part 2: Define the map T̂ : N(R+) → R+ by T̂ (
∑
n δxn

) =
∑
n xn. This map is

continuous because it is defined on the space of finite counting measures. Applying

the continuous mapping theorem to (6.31) gives T̂ (ξn)⇒ T̂ (ζ). Equivalently, we have

m∑
i=1

aiHk,n(ti)⇒
m∑
i=1

aiVk(ti).

To see such equivalence, note that T̂ (ξn) =
∑m
i=1 aiHk,n(ti), so it now suffices to show

that T̂ (ζ) is equal in distribution to
∑m
i=1 aiVk(ti). To this aim let us represent ζ as

ζ
d
=

Mn∑
i=1

δYi
,

where Y1, Y2, . . . are i.i.d with common distribution τk(·)/τk(R+) and Mn is Poisson

distributed with parameter Cf,kτk(R+). Further, (Yi) and Mn are independent. On

one hand, it follows from the Laplace functional of a Poisson random measure (see

Theorem 5.1 in [29]) that for every λ > 0,

E
[
exp
(
−λ

m∑
i=1

aiVk(ti)
)]

= E
[
exp

(
−
∫
Rd(k+1)

λ

m∑
i=1

aihti(0,y)Mk(dy)
)]

= exp

(
−Cf,k

∫
Rd(k+1)

(
1− e−λ

∑m
i=1 aihti

(0,y)
)

dy

)
.

On the other hand it is straightforward to compute that

E
[
exp

(
− λT̂ (ζ)

)]
= E

[
exp

(
− λ

Mn∑
i=1

Yi

)]
= exp

(
−Cf,kτk(R+)(1− E[e−λY1 ])

)
= exp

(
−Cf,k

∫
Rd(k+1)

(
1− e−λ

∑m
i=1 aihti

(0,y)
)

dy
)
,

implying T̂ (ζ)
d
=
∑m
i=1 aiVk(ti) as required.

Part 3: It remains to show (6.29) and (6.30). As for (6.29), we know from (6.25)

with ρn = 1 and t1 = t2 = t, that

E[Sk,n(t)]→ µk,Rd(t, t), n→∞.
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Since the exponential term in (6.26) converges to 1 without affecting the value of the

limit, it must be that the E[Hk,n(t)] and E[Sk,n(t)] have the same limit. That is,

E[Hk,n(t)]→ µk,Rd(t, t), n→∞,

and thus, the Markov inequality gives (6.29).

Finally we turn our attention to (6.30). By Markov’s inequality, it suffices to show

that E[Rk,n(t)]→ 0 as n→∞. Mimicking the derivation of (6.8) with ρn = 1, we get

that

E[Rk,n(t)] ≤
∞∑

i=k+3

(
i

k + 1

)
ni

i!
P
(
Č(Xi, rn(t)) is connected

)
.

Recalling the bound in (6.9), we have

E[Rk,n(t)] ≤
(
td‖f‖∞θd

)k+1

(k + 1)!

∞∑
i=k+3

ii−2

(i− k − 1)!

(
nrn(t)d‖f‖∞θd

)i−(k+2) → 0

as n→∞. �
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