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We calculate the effect of the emergent photon on threshold production of spinons in U(1) Coulomb spin
liquids such as quantum spin ice. The emergent Coulomb interaction modifies the threshold production
cross-section dramatically, changing the weak turn-on expected from the density of states to an abrupt onset
reflecting the basic coupling parameters. The slow photon typical in existing lattice models and materials
suppresses the intensity at finite momentum and allows profuse Cerenkov radiation beyond a critical
momentum. These features are broadly consistent with recent numerical and experimental results.
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Quantum spin liquids are low temperature phases of
magnetic materials in which quantum fluctuations
prevent the establishment of long-range magnetic order.
Theoretically, these phases support exotic fractionalized
spin excitations (spinons) and emergent gauge fields [1-4].
One of the most promising candidate class of these phases
are U(1) Coulomb quantum spin liquids such as quantum
spin ice—these are expected to realize an emergent
quantum electrodynamics [5-11]. Establishing the exotic
phenomena in this context would provide a foundation for
exploring other conjectured phases of matter. It also allows
us to explore regimes of quantum electrodynamics which
are theoretically interesting, but otherwise inaccessible.

At present, the main method to diagnose a spin liquid
experimentally is through the absence of distinct features
associated with a local order parameter such as Bragg
peaks, and instead the presence of a broad continuum in
neutron scattering indicative of a multiparticle continuum.
However, broad continua can also arise from other causes
and one would like to have more specific signatures which
highlight the emergent gauge field. Here we identify and
study features in the zero-temperature cross section for
spinon production in Coulomb quantum spin liquids which
directly reflect central aspects of the underlying theory,
including the existence and the unusual nature of the
emergent photon.

Threshold behavior.— The emergent photon in quantum
spin ice arises from coherent ring-exchange processes
which lift the massive degeneracy within the manifold of
spin configurations consistent with classical ice rules. As
ring exchange is typically a weak process, the photon
propagates with a small speed ¢ and has a small bandwidth
set by the Brillouin zone cutoff. On the other hand, the
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spinons typically propagate due to direct spin exchange
interactions, which can be parametrically larger than the
ring exchange process. This contrast leads to a strongly
nonrelativistic theory in which spinons readily propagate
faster than the emergent speed of light. Taking into account
both the gapless nature of the photon and its slow speed
leads us to predict distinctive features in the cross section.

The most dramatic consequence of the Coulomb inter-
action between the spinons is a universal nonperturbative
enhancement of the threshold cross section for spinon pair
production at small momentum ¢. In this regime, the
dynamic structure factor in the spin-flip sector observed
in neutron scattering exhibits a step discontinuity,

S(q. ») NSO[I —% <%ﬂa<w—m—%>, (1)

rather than the naive square root onset predicted by the
density of states for spinon pairs [12]. Here, m and A are
the effective mass and gap for the spinons and c is the
emergent speed of light. The threshold intensity jump,
Sy o« m*e* = m*ca, is proportional to the strength of the
Coulomb interaction and provides a measure of the
emergent fine structure constant a.

The strong onset in Eq. (1) is analogous to the
Sommerfeld enhancement [14,15] observed in semicon-
ductor exciton production [16]. However, here the small
speed of light means that transverse photon exchange has
non-negligible consequences. Indeed, the transverse inter-
action is responsible for the suppression of the enhance-
ment with (g/mc)?> at finitt momentum ¢. More
dramatically, since spinons emit Cerenkov radiation when
their velocity exceeds the speed of light, there is a finite
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lifetime for spinons propagating at high energy and
momenta. For momenta ¢ > 2mc, even threshold spinons
have a finite Cerenkov lifetime, and then the threshold in
the dynamic structure factor becomes entirely diffuse.

The universality of the threshold behavior follows from
Wigner’s insight, according to which the energy depend-
ence of cross sections just above threshold are governed by
long distance interactions between the slowly escaping
particles [17,18]. In our case, these are the Coulomb and
Breit interactions expressed in Eq. (10), which can be
analyzed semiclassically in the long distance region. The
short distance scattering wave functions are, of course,
sensitive to lattice scale effects, but generically those vary
smoothly with energy near threshold. Thus, the jump at
small ¢ and associated low energy spectral weight for
spinon production are remarkably direct signatures of the
emergent gauge theory.

Computation.—A minimal model for the spinon dynam-
ics is given in an effective mass approximation by the
following Lagrangian,

|(=iV — oAy, |

L = yi(i0, — oed)y, —

2m
= Al = V(). (2)
where ,, represent the spinon (¢ = +1) and antispinon
(6 = —1) fields, e is the emergent charge, m is the effective

mass and A is the spinon gap. The higher-order interaction
potential V() contains all of the short-range interactions
between the spinons including those induced by gapped,
weakly dispersive visons (magnetic monopoles), which we
do not otherwise attempt to model. The emergent scalar ¢
and vector A potentials are governed by the usual Maxwell
Lagrangian (in CGS units),

Low =g (V9 + 5047 - (Vx4P2[, ()

with emergent speed of light c. We work in Coulomb gauge
V-A = 0 throughout.

The neutron scattering cross section is proportional to the
dynamic structure factor S(q, w), given by the imaginary
part of the dynamic spin susceptibility y(q,w). The
interesting part comes from pair production of spinons.
Neglecting all interactions, this is given by the bubble

diagram
x(g.iw) = @ 4)

At zero temperature, this produces the usual 3D density of
states, S°(q, @) ~ m>/*\/w — 2A — ¢*/4m.

The effects of interactions can be taken into account with
renormalized propagators G(k,ix) (double lines) and a
vertex function I'(k|, k,, iy, ik,) (triangle) [19]

x(q,iw) =

@ )

where the vertex I is defined through an irreducible two-

particle diagram (hatched square)
» o

p -+

We work with a renormalized mass m which takes into
account the effect of interactions in G(k, ix) = {(1)/[ix —
k?/2m — i3Z(k, ix)]} and neglect higher-order corrections
to the dispersion. We discuss lifetime effects in the next
section and suppress the self-energy X until then. All the
momenta have a UV cutoff due to the Brillouin zone. There
are higher order corrections to the photon dispersion on a
lattice, but they do not affect the effects described below.

Among diagrams resulting from interactions, crossed
diagrams in the two-particle irreducible vertex I" can be
neglected (ladder approximation) since they are suppressed
by products of the Bose occupation factor nz which vanish
at temperature well below the spinon gap 2A. Thus, the
dominant diagrams in the perturbative expansion are ladder
diagrams with Coulomb interactions (dashed line), trans-
verse photon exchange (wavy line) and short-range inter-
actions (line with star) between the spinon and antispinon,

:+§++ (7)

Just above threshold, we can neglect the frequency
dependence of the photon propagator as the spinons
separate asymptotically slowly. In this approximation,
the vertex I' is independent of the relative frequency
between the two spinons, and Eq. (5) can be reduced to
x(q,iw) = W(0;q, iw) where

e®T(q/2 +k,q/2 -k, iw)
W(r,q,iw) = .
(riq. iw) zk: iw— K2 m— /4m —2A

(8)

We have introduced W for convenience and temporarily
neglected radiation effects in the propagators.

Using the Bethe-Salpeter equation [Eq. (6)] for the
vertex, we see that W(r;q,iw) is the Green’s function
for the Schrodinger equation governing the relative spinon
motion

(i — Hy = 20)W(r;q, io) = 5(r), 9)
where
A2 ~D 2
q p
H="—+—-—+V
=gV
2 A2 o2 )
"22 1 (‘I-rz)_Az r(rzp) . (10)
2m=cr \ 4 4r r
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Here, ¢ and p correspond to the center of mass and relative
momentum. The terms suppressed by ¢ are Breit terms
governing the leading velocity dependent interactions
between moving charges. Using a spectral representation
for W, we find

ZHZIl//,

where y; are the relative eigenstates of H,. Physically,
Eq. (11) shows that the naive density of states is enhanced
by the probability that the two spinons be found together in
the eigenfunction.

The preceding derivation of the effective two-body
Schrodinger equation holds for energy close to threshold
and small spinon momenta. In particular, the Breit term,
corresponding to instantaneous current-current interactions
between the spinons, is only valid when the spinons are
moving sufficiently slowly and thus should not be used
directly in the short distance region [21,22]. Fortunately,
the energy dependence of the probability at the origin
ly;(0)|* is governed by the long range part of the inter-
actions near the threshold. The short distance wave func-
tion, whatever it is, is rigid due to the large energy costs
associated with amplitude shifts in that region [17,18]. We
can thus neglect both V(r) and the exact form of the Breit
Hamiltonian for small » in estimating the energy depend-
ence of [y;(0)[*.

At large separation, the effective potential between the
spinons decays as 1/r with a g-dependent effective charge
e — e\/1—(q*/4m*c?) restricted to the zero angular
momentum channel. A semiclassical analysis of the mixed
terms involving products of r and p (which are neither pure
potential nor kinetic) shows that they only change the
probability |y;(0)*> by an energy-independent constant
(see the Supplemental Material [13]).

Using the renormalized effective charge from the Breit
interactions and the solution of the two particle Coulomb
problem [15], we find

0)*6( w— 2A—q—2—e (11)
am

3/2 /27R 2
(g, w) ~— VR 9(w—2A—4q—>, (12)
1— _ 27R m
exp( o 2A—g—:1)
where R = imc?a®[l — (¢*/4m*c*)]* is the effective

Rydberg constant. Here, a = e?/c is the fine-structure
constant. Neglecting the (non-universal) essential singu-
larity cutting off the enhancement for energies above R
recovers Eq. (1).

The two particle problem also has an infinite set of
bound state solutions (excitons) at energies w, = 2A —
(R/n?) below the two particle continuum. The g-dependent
charge renormalization implies that the states bend into the
two-particle continuum as ¢ approaches 2mc. A similar

w

DOS

27Inc 7]

FIG. 1. Dynamic structure factor S(g,®) in a Coulomb quan-
tum spin liquid measuring production of two spinons near
threshold. Compared to the naive density of states (inset), the
threshold intensity is strongly enhanced for small g due to the
emergent Coulomb interaction over an energy range of order the
Rydberg scale a®mc?/4 above threshold 2A. Bound Rydberg
states (not shown) accumulate at the Rydberg scale below the
threshold. Breit interactions due to the transverse photon reduce
the threshold enhancement with increasing ¢. With larger
momentum, the spinons exceed the emergent speed of light
and emit Cerenkov radiation. This causes the threshold to
disappear into a diffuse continuum for ¢ > 2mc and a peak in
intensity for @ ~ [(q/2) — mc]?/m. Both plots span the same
range and use the same color scale.

pattern of bound states is seen in studying defects in
quantum dipolar spin ice from a mapping to a Coulomb
problem on the Bethe lattice [23]. We have not shown
bound states in Fig. 1 since their lifetime is affected by
temperature, disorder, and other complicating effects.

Cerenkov radiation.—Since the system is not Lorentz
invariant, the spinons can exceed the effective speed of
light. The resulting Cerenkov radiation carries momentum
and energy away from the spinon and leads formally to a
finite lifetime (imaginary part of the self-energy) for
k > mc. The leading order contribution to the spinon
lifetime comes from

S(k, iw) ~ & (13)

The seagull diagram, although of the same order in a, does
not contribute. There are no self-energy corrections to the
photon for temperatures below the magnetic monopole gap.

After analytic continuation, the imaginary part of
Eq. (13) is given by

2k2

Sk, w) ~—— d9/ dKKsin®(6)

o)
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where 6 is the angle between k and the photon momentum
K, and 6. is the critical angle below which no photons
are radiated (i.e., the Cerenkov cone). The finite bandwidth
ky can cut off the amount of radiation produced if
kp < 2(k —mc). Assuming no such cutoff,

e’k* [0
IZ(k, w) ~%/) dfsin’ ()

o kcos(0) — mc
<] " V/[kcos(8) — mc]? + 2mw — k2>
(15)

If we evaluate the self-energy on shell, cos(6.) = mc/k
and we get

%Z<k,a) :k_2) RaLs [ﬂ_l (ﬁ)3 _%} (16)
2m me |k 3\ k 3

when k > mc. Close to the threshold for radiation, the

inverse lifetime goes as e’(k —mc)?/mc, whereas for

k > mc, it goes as 2e?k?/3mec.

At threshold, the spinons have no relative momentum,
and both start emitting Cerenkov radiation at a critical
external momentum transfer ¢ = 2mc which gives each of
them momentum of mc and velocity c. Since the relative
momentum is zero, the vertex equation can be again solved
including the self-energy effects. The resulting effect is that
at momenta beyond 2mc, the threshold becomes increas-
ingly diffuse (Fig. 1).

The spinons also emit Cerenkov radiation at any external
momentum once they have enough energy above threshold,
ie, when o> w.(q) =[(q/2) —mc]*/m. The vertex
equation cannot be solved exactly in this regime, but the
dominant effects are captured by considering collinear
trajectories of the spinons in the evaluation of the self-
energies. Additionally, retardation effects from the trans-
verse photon are important away from threshold and
contribute to a cutoff of the Sommerfeld enhancement at
relativistic speeds. The qualitative effect is a peak in
intensity when @ ~ w.(g) due to a spectral weight transfer
(Fig. 2).

Top threshold.—Near the top of the band, the effective
mass is negative. The dominant vertex corrections at the top
threshold can be taken into account by noticing that the
problem can be mapped to a positive mass spinon and
antispinon interacting with a repulsive Coulomb interac-
tion. This suppresses the intensity at the top threshold and
gives [24]

_a _
A am =@

27R
S(q, w) ~ m3>\/2zR exp <— ”2> (17)
2

However, kinematically the negative mass allows for
Cerenkov radiation right at threshold. This means that

FIG. 2. S(gq,®) (arbitrary units) at varying momentum g
(A = 0.5, m = ¢ = 1). The naive density of states (dashed blue)
shows a square-root onset. Interaction with the gauge field
enhances the square root into a jump discontinuity with magni-
tude proportional to the emergent fine-structure constant
a = e*/c. The size of the jump decreases with ¢ due to the
Breit interaction from transverse photon exchange (second
panel), until the threshold is washed out entirely by the produc-
tion of Cerenkov radiation at all energies (third panel). The peaks
in the grayed region arise from spectral transfer from the high
energy regime, where the spinons are broadened significantly by
radiation toward the low energy region where no radiation is
produced. The exact shape of the peaks in the grayed regime is
likely an artifact of the approximations used, which are most
accurate close to threshold.

near the top of the band the threshold is diffuse for all
momentum transfers. The combined effect of the suppres-
sion and Cerenkov radiation at threshold implies that the
spectral intensity at the top is heavily suppressed compared
to the density of states.

Application to spin ice.—The results apply to any U(1)
Coulomb quantum spin liquid with gapped spinons, such as
have been discussed in models of hard-core bosons on the
pyrochlore [5], interacting dipoles [6], quantum rotors [25],
and quantum link models [26]. Perhaps the most promising
experimental application is to quantum spin ice materials
[11,27-41]. The ideal realization is an XXZ model on the
pyrochlore lattice [9,42-45] with parameters J_,, J, such
that /. < J_,, and the generic Hamiltonian describing spin
ice materials contains perturbations to this. The spinons
live on a diamond lattice with the bare mass given by
m~ h*/4J,a} and a gap A ~J../2 —12J.. The photon
has a bandwidth set by the ring-exchange g = 12J3 /J2
and hence a speed of light ¢~ &gay/h where & is
an O(1) constant and g, is the lattice constant. There
would be a significant enhancement in intensity seen in
neutron scattering over an energy scale R = a’mc?/
4~ (9&2a%J5./J%.). Additionally, the threshold becomes
incoherent due to Cerenkov effects at ¢, =2mc~
(3¢nJ% JapJ?,). A more accurate estimate would use the
renormalized parameters determined from data as detailed
in the discussion.
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Recent numerical and experimental works have made
progress in determining the spinon dynamic structure factor
in quantum spin ice. Quantum Monte Carlo data from [45]
clearly shows a sudden onset in intensity at the bottom
threshold and a drop in intensity at threshold at large wave
vectors away from the bottom, indicative of possible
Cerenkov effects. There have been claims of spinon
excitations in neutron scattering data on Pr, Hf,0, a
candidate quantum spin ice [46,47]. If true, then the large
intensity at the expected threshold is consistent with our
predictions, but more precise data are needed to confirm
this and extract quantitative parameters such as the fine-
structure constant. The theoretical analysis in Ref. [48] also
shows a jump in intensity at threshold in the momentum-
integrated structure factor at intermediate temperatures.
However, we do not believe this is related to the emergent
gauge field interactions described here since it requires a
choice of the sign of /. which produces a fine-tuned van
Hove singularity in the spinon dispersion at threshold.

Discussion.—We can use predictions from the effective
theory to determine its fully renormalized parameters, using
numerical or experimental data on spinon cross sections.
The mass and gap can be determined from the onset and
curvature of the threshold respectively. The enhancement of
the response due to the photon makes this measurement
easier than the case where the response only corresponds to
a density of states which vanishes at threshold. The speed
of light can then be determined as ¢ = ¢./2m where q.. is
the momentum at which the threshold starts to become
diffuse.

The fine-structure constant can also be determined from
the threshold behavior. It determines the magnitude of the
jump discontinuity. Since the overall intensity is multiplied
by nonuniversal prefactors, to extract the effective Rydberg
R and corresponding fine-structure constant using Eq. (12)
it is necessary to consider the energy and/or momentum
dependence of the intensity.

In conclusion, let us note that the general possibility to
find emergent gauge structure in “mechanical” models has
a glorious history, as it led Maxwell to his equations. Today,
given our increased abilities to engineer interactions and to
sculpt metamaterials (such as spin-ice physics at room
temperature [49]), it is newly relevant to practice, even if it
does not lead to new models of microphysics. Emergent
electrodynamics can give us access to parameter regimes
and phenomena that are not easily accessible otherwise,
e.g., magnetic monopoles and dyons, the regime of slow
light and copious Cerenkov radiation, and strong coupling.
It can also be interesting as a test bed for approximation
schemes or, more speculatively, as a tool for quantum
simulation.

The authors would like to thank Anushya Chandran,
Bruce Gaulin, Patrick Lee, Roderich Moessner, Boris
Spivak, and Senthil Todadri for useful discussions.
F.W’s work is supported by the U.S. Department of

Energy under Grant Contract No. DE-SC0012567,
by the European Research Council under Grant
No. 742104, and by the Swedish Research Council under
Contract No. 335-2014-7424. C.R.L. acknowledges
support from the NSF through Grant No. PHY-1752727.

[1] P. W. Anderson, Science 235, 1196 (1987).

[2] L. Balents, Nature (London) 464, 199 (2010).

[3] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502
(2017).

[4] J. Knolle and R. Moessner, Annu. Rev. Condens. Matter
Phys. 10, 451 (2019).

[5] O.I. Motrunich and T. Senthil, Phys. Rev. Lett. 89, 277004
(2002).

[6] X.-G. Wen, Phys. Rev. B 68, 115413 (2003).

[7] D. A. Huse, W. Krauth, R. Moessner, and S.L. Sondhi,
Phys. Rev. Lett. 91, 167004 (2003).

[8] R. Moessner and S.L. Sondhi, Phys. Rev. B 68, 184512
(2003).

[9] M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B
69, 064404 (2004).

[10] C. Castelnovo, R. Moessner, and S. Sondhi, Annu. Rev.
Condens. Matter Phys. 3, 35 (2012).

[11] M.J.P. Gingras and P. A. McClarty, Rep. Prog. Phys. 77,
056501 (2014).

[12] The factor of 1/4 in Eq. (1) follows from an approximate
semiclassical analysis of the Breit Hamiltonian as detailed in
the main text and the Supplemental Material [13]. We expect
the correct asymptotic factor to be no larger than 1/4 and no
smaller than 1/8.

[13] See the Supplemental Material at http:/link.aps.org/
supplemental/10.1103/PhysRevLett.124.097204 for semi-
classical analysis of threshold behavior from Breit inter-
actions.

[14] A. Sommerfeld, Ann. Phys. (Berlin) 403, 257 (1931).

[15] L. Landau and E. Lifshitz, in Quantum Mechanics:
Non-Relativistic Theory, Course of Theoretical Physics
(Elsevier Science, 1981).

[16] P.Y. Yu and M. Cardona, Fundamentals of Semiconductors:
Physics and Materials Properties (Springer, 2010).

[17] E.P. Wigner, Phys. Rev. 73, 1002 (1948).

[18] S.C. Morampudi, A.M. Turner, F. Pollmann, and F.
Wilczek, Phys. Rev. Lett. 118, 227201 (2017).

[19] See Ref. [20] for diagrammatic conventions.

[20] H. Bruus, K. Flensberg, and O.U. Press, in Many-Body
Quantum Theory in Condensed Matter Physics: An Intro-
duction, Oxford Graduate Texts (OUP Oxford, 2004).

[21] G. Breit, Phys. Rev. 39, 616 (1932).

[22] H. A. Bethe and E.E. Salpeter, Quantum Mechanics of
One- and Two-Electron Atoms (Springer Science &
Business Media, 2012).

[23] O. Petrova, R. Moessner, and S. L. Sondhi, Phys. Rev. B 92,
100401(R) (2015).

[24] In this section, all the parameters such as A and m refer to an
effective mass approximation around the top of the band.

[25] X.-G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, 2004).

[26] U.-J. Wiese, Ann. Phys. (Berlin) 525, 777 (2013).

097204-5


https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1103/PhysRevLett.89.277004
https://doi.org/10.1103/PhysRevLett.89.277004
https://doi.org/10.1103/PhysRevB.68.115413
https://doi.org/10.1103/PhysRevLett.91.167004
https://doi.org/10.1103/PhysRevB.68.184512
https://doi.org/10.1103/PhysRevB.68.184512
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1146/annurev-conmatphys-020911-125058
https://doi.org/10.1146/annurev-conmatphys-020911-125058
https://doi.org/10.1088/0034-4885/77/5/056501
https://doi.org/10.1088/0034-4885/77/5/056501
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.097204
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.097204
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.097204
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.097204
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.097204
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.097204
http://link.aps.org/supplemental/10.1103/PhysRevLett.124.097204
https://doi.org/10.1002/andp.19314030302
https://doi.org/10.1103/PhysRev.73.1002
https://doi.org/10.1103/PhysRevLett.118.227201
https://doi.org/10.1103/PhysRev.39.616
https://doi.org/10.1103/PhysRevB.92.100401
https://doi.org/10.1103/PhysRevB.92.100401
https://doi.org/10.1002/andp.201300104

PHYSICAL REVIEW LETTERS 124, 097204 (2020)

[27] S. Onoda and Y. Tanaka, Phys. Rev. B 83, 094411 (2011).

[28] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys.
Rev. X 1, 021002 (2011).

[29] L. Savary and L. Balents, Phys. Rev. Lett. 108, 037202
(2012).

[30] L.-J. Chang, S. Onoda, Y. Su, Y.-J. Kao, K.-D. Tsuei, Y.
Yasui, K. Kakurai, and M. R. Lees, Nat. Commun. 3, 992
(2012).

[31] K. Kimura, S. Nakatsuji, J.-J. Wen, C. Broholm, M. B.
Stone, E. Nishibori, and H. Sawa, Nat. Commun. 4, 1934
(2013).

[32] A. W. Glaetzle, M. Dalmonte, R. Nath, I. Rousochatzakis,
R. Moessner, and P. Zoller, Phys. Rev. X 4, 041037
(2014).

[33] L. Pan, S. K. Kim, A. Ghosh, C. M. Morris, K. A. Ross, E.
Kermarrec, B.D. Gaulin, S.M. Koohpayeh, O.
Tchernyshyov, and N.P. Armitage, Nat. Commun. 5,
4970 (2014).

[34] Y. Kato and S. Onoda, Phys. Rev. Lett. 115, 077202
(2015).

[35] V.K. Anand, L. Opherden, J. Xu, D. T. Adroja, A. T. M. N.
Islam, T. Herrmannsdorfer, J. Hornung, R. Schonemann, M.
Uhlarz, H. C. Walker, N. Casati, and B. Lake, Phys. Rev. B
94, 144415 (2016).

[36] S. Petit, E. Lhotel, S. Guitteny, O. Florea, J. Robert, P.
Bonville, I. Mirebeau, J. Ollivier, H. Mutka, E. Ressouche,
C. Decorse, M. Ciomaga Hatnean, and G. Balakrishnan,
Phys. Rev. B 94, 165153 (2016).

[37] Y. Wan, J. Carrasquilla, and R. G. Melko, Phys. Rev. Lett.
116, 167202 (2016).

[38] L. D. C. Jaubert and P. C. W. Holdsworth, J. Phys. Condens.
Matter 23, 164222 (2011).

[39] G. Chen, Phys. Rev. B 96, 085136 (2017).

[40] J. D. Thompson, P. A. McClarty, D. Prabhakaran, I. Cabrera,
T. Guidi, and R. Coldea, Phys. Rev. Lett. 119, 057203
(2017).

[41] Y. Tokiwa, T. Yamashita, D. Terazawa, K. Kimura, Y.
Kasahara, T. Onishi, Y. Kato, M. Halim, P. Gegenwart,
T. Shibauchi, S. Nakatsuji, E.-G. Moon, and Y. Matsuda,
J. Phys. Soc. Jpn. 87, 064702 (2018).

[42] A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim, Phys.
Rev. Lett. 100, 047208 (2008).

[43] N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde,
Phys. Rev. Lett. 108, 067204 (2012).

[44] O. Benton, O. Sikora, and N. Shannon, Phys. Rev. B 86,
075154 (2012).

[45] C.-J. Huang, Y. Deng, Y. Wan, and Z. Y. Meng, Phys. Rev.
Lett. 120, 167202 (2018).

[46] R. Sibille, N. Gauthier, H. Yan, M. Ciomaga Hatnean, J.
Ollivier, B. Winn, U. Filges, G. Balakrishnan, M.
Kenzelmann, N. Shannon, and T. Fennell, Nat. Phys. 14,
711 (2018).

[47] Although it is not clear how neutrons couple to spinons in a
non-Kramers ion like Prt3 [27].

[48] M. Udagawa and R. Moessner, Phys. Rev. Lett. 122, 117201
(2019).

[49] C.S. Coates, M. Baise, A. Simonov, J. W. Makepeace, A. G.
Seel, R. 1. Smith, H. Y. Playford, D. A. Keen, R. Siegel, A.
Schmutzler et al., arXiv:1904.05749.

097204-6


https://doi.org/10.1103/PhysRevB.83.094411
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevLett.108.037202
https://doi.org/10.1103/PhysRevLett.108.037202
https://doi.org/10.1038/ncomms1989
https://doi.org/10.1038/ncomms1989
https://doi.org/10.1038/ncomms2914
https://doi.org/10.1038/ncomms2914
https://doi.org/10.1103/PhysRevX.4.041037
https://doi.org/10.1103/PhysRevX.4.041037
https://doi.org/10.1038/ncomms5970
https://doi.org/10.1038/ncomms5970
https://doi.org/10.1103/PhysRevLett.115.077202
https://doi.org/10.1103/PhysRevLett.115.077202
https://doi.org/10.1103/PhysRevB.94.144415
https://doi.org/10.1103/PhysRevB.94.144415
https://doi.org/10.1103/PhysRevB.94.165153
https://doi.org/10.1103/PhysRevLett.116.167202
https://doi.org/10.1103/PhysRevLett.116.167202
https://doi.org/10.1088/0953-8984/23/16/164222
https://doi.org/10.1088/0953-8984/23/16/164222
https://doi.org/10.1103/PhysRevB.96.085136
https://doi.org/10.1103/PhysRevLett.119.057203
https://doi.org/10.1103/PhysRevLett.119.057203
https://doi.org/10.7566/JPSJ.87.064702
https://doi.org/10.1103/PhysRevLett.100.047208
https://doi.org/10.1103/PhysRevLett.100.047208
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevB.86.075154
https://doi.org/10.1103/PhysRevB.86.075154
https://doi.org/10.1103/PhysRevLett.120.167202
https://doi.org/10.1103/PhysRevLett.120.167202
https://doi.org/10.1038/s41567-018-0116-x
https://doi.org/10.1038/s41567-018-0116-x
https://doi.org/10.1103/PhysRevLett.122.117201
https://doi.org/10.1103/PhysRevLett.122.117201
https://arXiv.org/abs/1904.05749

