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Many-body systems with random spatially local interactions
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We extend random matrix theory to consider randomly interacting spin systems with spatial locality. We
develop several methods by which arbitrary correlators may be systematically evaluated in a limit where the
local Hilbert space dimension N is large. First, the correlators are given by sums over stacked planar diagrams
which are completely determined by the spectra of the individual interactions and a dependency graph encoding
the locality in the system. We then introduce heap freeness as a generalization of free independence, leading to
a second practical method to evaluate the correlators. Finally, we generalize the cumulant expansion to a sum
over dependency partitions, providing the third and most succinct of our methods. Our results provide tools
to study dynamics and correlations within extended quantum many-body systems which conserve energy. We
further apply the formalism to show that quantum satisfiability at large N is determined by the evaluation of the
independence polynomial on a wide class of graphs.
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I. INTRODUCTION

Consider a system of qudits (N-level degrees of freedom)
interacting with each other through generic interactions. Is it
possible to systematically calculate physical quantities in such
a system? If the qudits are noninteracting, then all correlation
functions can be trivially calculated. At the other extreme, if
all qudits are acted upon by a nonlocal interaction, then many
properties of the system are well described by random matrix
theory.

In this paper, we develop systematic methods to evaluate
trace correlators in randomly interacting many-body systems
with spatial locality, when the dimension N of the qudits is
large. We consider a physical system consisting of n interact-
ing qudits1 whose Hamiltonian is given by

H =
M∑
i

Oi. (1)

Here, the superscript i runs over M interactions, each of which
acts on a subset ∂i of the qudits.2 Each Oi has a fixed spectrum
represented by a diagonal matrix λi which is rotated by Haar
random unitaries U i acting on the local Hilbert space defined
by the ∂i qudits, i.e, Oi = U iλiU i† ⊗ In−ki , where ki = |∂i|
is the degree of the interaction. The primary correlators of
interest are the disorder averaged trace moments

[[· · · ]] ≡ 1

Nn
E[Tr(· · · )] ≡ E[tr(· · · )], (2)

1The Hilbert space has dimension Nn. The generalization to varying
qudit dimensions Nq is straightforward, so we use Nq = N through-
out to simplify the presentation.

2We use superscripts i, j to label interactions and greek subscripts
α, β, μ, ν to label states in Hilbert space.

where E[· · · ] denotes the average over the Haar unitaries
U i and · · · denote general products of the operators Oi.3 To
obtain a nontrivial large-N limit, we take the eigenvalues of
Oi to be O(N0) so that the lowercase trace tr Oi is also O(N0).

The locality structure of Hamiltonians like H can be
represented by an interaction graph G specifying the qudits
q on which each interaction Oi acts. At one extreme, ran-
dom matrix theory describes zero-dimensional many-particle
systems such as nuclei and quantum dots by assuming that
all of the degrees of freedom interact so strongly that the
Hamiltonian can be considered as a single random matrix on
the full Hilbert space [1–3]. This corresponds to a starlike
interaction graph as in Fig. 1(a). Free probability theory
extends this zero-dimensional setting by allowing multiple
independent random interaction terms to act on all of the
degrees of freedom [4,5] [Fig. 1(b)]. Some locality comes into
play by considering k-local interactions—each interaction Oi

acts on at most k qudits. Mean-field models such as those of
Sherrington-Kirkpatrick [6] and Sachdev-Ye-Kitaev [7–9] are
k-local in this sense despite all spins (qudits) interacting with
one another [Fig. 1(c)]. Most physical systems, however, are
spatially local wherein each degree of freedom only interacts
with neighbors in a finite-dimensional geometry [Fig. 1(d)].

The formalism we develop below encompasses all of these
possible locality structures at large N . It is well known that the
1/N expansion for correlators in random matrix theory may
be viewed as a topological expansion in which the leading
diagrams are planar [10,11]. This generalizes to arbitrary
interaction graphs by the introduction of stacked diagrams,
which we define and analyze in Sec. II. The leading contri-
butions at large N are stacked planar and corrections arise as
higher genus diagrams with multiple boundaries.

3With suitable treatment of e−βH and/or e−iHt , such trace moments
include finite temperature and/or dynamical correlators.
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(a) (b) (c) (d)

FIG. 1. Different locality structures represented by interaction graphs G where circles represent qudits q and squares the interactions
Oi. (a) Five qudit degrees of freedom interacting through a single all-body interaction. This is the setting for classical random matrix theory.
(b) Four independent Hamiltonian operators acting on a single qudit—the setting for free probability theory. (c) Four qudits interacting pairwise
(2-local) and all-to-all. (d) Eight qudits interacting pairwise (2-local) on a piece of square lattice, thus having spatial locality.

The stacked planar diagrams permit a crucial simplification
at leading order: their structure and values depend only on
the trace moments [[(Oi )m]] of the individual interaction terms
and the dependency graph DG of the interaction graph G.
The nodes of DG are the interactions (squares) in G with
edges between two interactions whenever they share at least
one qudit in G (Fig. 2). Systems with different interaction
graphs can have the same dependency graph so this is a
nontrivial reduction in the combinatorial data relevant to
compute a correlator. Moreover, this allows us to reformulate
the diagrammatic sum as a sum over dependency partitions,
Eq. (19), which we define. Dependency partitions generalize
the noncrossing partitions endemic to random matrix/free
probability theory [5].

From an algebraic point of view, the dependency graph DG
encodes whether or not the operators Oi commute because
they act on distinct factors of the tensor product Hilbert space.
The dependency partitions allow crossings between operators
which commute but are noncrossing between those which do
not. In Sec. III, we generalize the notion of free independence
of noncommuting random variables to collections of variables
which commute according to a given dependency graph DG
and show that the Oi of Eq. (1) are heap free in this sense at
leading order in large N .

The formulation in terms of heap-free noncommuting ran-
dom variables leads us in Sec. IV to a generalization of the
moment-free cumulant expansion of free probability theory
to heap-free variables. This expansion, Eq. (26), leads to the
most compact combinatorial approach to evaluating the trace
moments of Eq. (2).

1 2

(e)

(a)

(b) (c) (d)

FIG. 2. Top left: The interaction graph G of a two-qudit model
with two interactions, OA and OB. Circles denotes qudits and squares
denote interactions. Top right: Dependency graph DG corresponding
to the interaction graph. Bottom: Dependency graphs corresponding
to interaction graphs in Fig. 1.

Finally, as an application of these results, we show in
Sec. V that the quantum satisfiability problem reduces to
the evaluation of the independence polynomial of DG in the
large-N limit for a large class of graphs. This partially closes
a conjecture of [12] regarding the tightness of the quantum
Shearer bound.

There are several streams of prior work related to this
paper.

The first prominent extension of random matrix theory to
include spatial locality was Wegner’s n-orbital model [13,14].
However, Wegner’s model can be considered as an extension
of Anderson’s model of disordered hopping [15] to n levels
and is thus still only a single-particle problem. Recent work
in the many-body context has focused on understanding the
dynamics arising from time evolution under random unitary
circuits [16–20]. We hope that the tools developed in this pa-
per will provide analytical control of the Hamiltonian version
of these problems.

The Hamiltonian of Eq. (1) with all-to-all interactions [as
in Fig. 1(c)] is closely related to a number of models of much
recent interest in the study of quantum chaotic dynamics,
holography. and scrambling [21–25]. These are the embedded
ensembles [26], Sachdev-Ye [7] and Kitaev [8,9] families of
models describing randomly interacting fermions or bosons.
The connection is simplest in the case of 2-local interactions.
Introducing an Abrikosov fermion cq with N flavors on each
qudit site q, H becomes a quartic theory:

H = −
∑

J pq
αβγ δc†α

p c†β
q cγ

p cδ
q. (3)

Here, the Jqp couplings are matrix elements of the interaction
Oqp between qudits q and p. For Gaussian random interac-
tions, Jqp

αβγ δ is Gaussian with variance J2 ∼ 1/N2 and mean 0.
The Hamiltonian (3) is identical to those mentioned above up
to symmetry. Equation (3) has only a local U (1)n symmetry
corresponding to the single conserved fermion on each site.
The Sachdev-Ye model has precisely the same structure but
with an additional global SU (N ) symmetry as it arises from
the fermion representation of interacting SU (N ) spins. The
embedded ensembles discard all of the symmetry except a
global U (1) corresponding to a fixed number of particles.
The Kitaev model acting on Majorana degrees of freedom
{γp} possesses the least symmetry, having only a global Z2

corresponding to fermion parity
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For reference, the Hamiltonians, symmetries, and number constraints for quartic fermionic variants of the various all-to-all
models are

Kitaev HK = −∑
Jpqrsγpγqγrγs Z2

Embedded ensemble HEE = −∑
Jpqrsc†

pc†
qcrcs U (1)

∑
q c†

qcq = n f

Sachdev-Ye HSY = −∑
Jpqc†μ

p c†ν
p cν

pcμ
q SU (N ) × U (1)n

∑
ν c†ν

q cν
q = n f

Random qudit HRQ = −∑
J pq
αβγ δc†α

p c†β
q cγ

p cδ
q U (1)n

∑
ν c†ν

q cν
q = 1

We expect much of the physics of the these models to show
up in Hamiltonian (3) at large N and n.

Random matrices in the large-N limit realize a non-
commutative algebra described by free probability theory
[4,5]. There has been recent mathematical progress in ex-
tending free probability to algebras with mixtures of clas-
sically independent and freely independent (noncommuting)
variables. This algebraic generalization has been dubbed both
	-freeness [27] and ε-freeness [28]. From this perspective,
the results of Sec. III show that random Hamiltonians of
the type of Eq. (1) on extended interaction graphs provide a
physically motivated realization of a 	-free algebra at leading
order in N . Corrections to this limit can be described using the
stacked diagrams of Sec. II.

II. STACKED PLANAR DIAGRAMS AND REDUCTION TO
THE DEPENDENCY GRAPH

Each interaction Oi can be represented in the n qudit
Hilbert space with a multi-index notation using 2n indices.

For example, if Oi acts on the first k qudits,

Oi
(α1···αn )(β1···βn ) = U i

(α1···αk )(μ1···μk )λ
i
(μ1···μk )(ν1···νk )U

i†
(ν1···νk )(β1···βk )

× δ(αk+1···αn )(βk+1···βn ),

where a summation is implied over repeated indices. The
nontrivial indices correspond to those qudits on which the
interaction acts. In the large-N limit, we take the diagonal
matrices λi to have a well-defined set of trace moments tr(λi)p

corresponding to an O(1) spectrum.
The multi-index notation lends itself naturally to a quantum

circuit representation of moments. Consider a general opera-
tor product Oi1 · · · Oip built from the interactions in H . The
Haar averaged trace moment

[[Oi1 · · · Oip]] ≡ E[tr(Oi1 · · · Oip )] (4)

= 1

Nn
E[Tr(U i1λi1U i1† · · ·U ipλipU ip†)] (5)

may be viewed diagrammatically as the average of a periodic
quantum circuit. For example, with the interaction graph given
in Fig. 2(a),

Here, the semicircle gates represent U i and U i† and the
rectangles represent the diagonal matrix λi. We draw the
lines connecting the unrotated basis of each qudit (outside
conjugation by U i) as dashed while those in the rotated basis
(inside the conjugation by U i) as solid.

A. Diagrammatic averaging over unitary group

To build a set of diagrammatic rules for dealing with the
average over the U i, let us first recall how to average over a
single unitary U ∈ U (N ).

The key formula for averaging matrix elements of U is

E
[
Uα1μ1U

†
ν1β1

· · ·UαpμpU
†
νpβp

]
=

∑
σ, τ∈Sp

Wg(τ−1σ ; N )δα1,βσ1 · · · δαp,βσ pδμ1,ντ1 · · · δμp,ντ p .

(6)

This formula provides an analog of Wick’s theorem which al-
lows us to express the Haar average as a sum over all pairings
τ and σ of inner μ, ν (solid) and outer α, β (dashed) indices
respectively from U to U †. The coefficient Wg(τ−1σ ; N ) is

known as the Weingarten function for the unitary group U (N ).
See [29,30] for more details. For our purposes, the most
important features of Wg are that

(i) Wg only depends on the conjugacy class of the per-
mutation τ−1σ within the permutation group Sp. That is,
Wg(τ−1σ ; N ) only depends on the lengths of the cycles in the
cycle decomposition of τ−1σ . This follows readily from the
commutativity of the matrix elements on the left-hand side of
Eq. (6).

(ii) At leading order in large N , Wg in fact factorizes over
the cycle decomposition,

Wg(τ−1σ ; N ) � N−2p+l (τ−1σ )
∏

π∈Cycles(τ−1σ )

(−1)|π |−1c|π |−1.

(7)

Here, |π | is the length of the cycle π , c|π | is the |π |th Catalan
number, and l (τ−1σ ) is the length of the cycle decomposition
of τ−1σ .

We see that the relative permutation between the dashed
σ and solid τ pairings is crucial for determining the N
dependence of the diagram corresponding to pairing (σ, τ ).
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Consider a single qudit of dimension N with a single
operator O acting on it. Then [[Op]] = [[(UλU †)p]] = tr λp is
actually independent of U , but the diagrammatic expansion is
nontrivial. As a circuit, we can write

(8)

where we have drawn as an example the circuit for p = 3. To
apply Eq. (6), we redraw this periodic circuit as a (counter-
clockwise) oriented circle

(9)

where we replace the U and U † gates with boundary vertices
where each index line turns off the circular boundary and into
the bulk of the circle, . The sum
over σ, τ in Eq. (6) corresponds to summing over all possible
diagrams in which solid and dashed lines at each boundary
vertex are paired across the bulk of the circle, consistent with
the orienting arrows.

Following ’t Hooft [10,31,32], it turns out that keeping
track of the factors of N associated to each diagram is greatly
facilitated by using double line or ribbon notation, in which all
bulk lines must run in pairs which do not separate. It is clear
that this is possible when the relative permutation τ−1σ = 1
is trivial, as this implies that the solid (τ ) and dashed (σ ) lines
pair the indices of a given boundary U to the same destination
U †. The nontrivial relative permutations are accommodated
by introducing a degree 2k “bulk vertex” for each cycle of
length k in τ−1σ . For example, if τ−1σ contains the cycle

(134), we draw (for a p � 4 moment)

(10)

which implements the relevant pairing without separating the
double lines. Notice that every α pairs to the next β by σ while
the ν pairs to μ by τ−1.

Drawing the diagrams using these rules allows us to in-
terpret each diagram in [[Op]] as an oriented surface with
boundary given by the circle. The value of such a diagram
is then given by a product of

N (−1)kck for each degree 2k vertex,
N−1 for each ribbon,
N for each dashed loop,
N tr(λl ) for each solid loop going,

through l boundary squares.

The total N dependence is thus

N f −ebulk+vbulk = N f −(ebulk+eboundary )+(vbulk+vboundary ) (11)

= Nχ , (12)

where χ is the Euler characteristic of the surface, f is
the number of faces (closed loops) and ebulk, eboundary and
vbulk, vboundary are the numbers of bulk and boundary edges and
vertices respectively. We have used the fact that eboundary =
vboundary = 2p. For a surface with a circular boundary, the
Euler characteristic χ � 1 with the maximum obtained for
topological discs; that is, planar diagrams.

For example,

(13)

consists of a single planar diagram, while

(14)
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consists of three planar diagrams at leading order and one
suppressed nonplanar diagram.4

Generalizing these diagrammatics to multiple independent
interactions acting on the same qudit is straightforward. The
Haar average of the matrix elements factors across U i,U i†

with different labels i, so one need simply sum over all
pairings with the same rules as above but which additionally
respect the label i of each boundary vertex. This is represented
in our figures by the color of the boundary vertices and
corresponding bulk ribbons. There are accordingly M colors
labeled by i for moments arising from an interaction graph
with M operators Oi. The N dependence of such a colored
diagram is still given by its Euler characteristic and only pla-
nar diagrams contribute to leading order as N → ∞. In other
words, only the monochromatic subset of planar diagrams, in
which each solid loop is a single color, contribute.

B. Stacked planar diagrams in the multiqudit case

We now return to the multiqudit case. For each interac-
tion of type i, the indices α, β, μ, ν attached to U i

α,μ,U i†
β,ν

in Eq. (6) should now be interpreted as multi-indices α =
(α1α2 · · ·α|∂i|) corresponding to the |∂i| qudits on which Oi

acts. Since,

δαβ = δα1β1δα2β2 · · · δα|∂i|β |∂i| (15)

factors, the pairings σ, τ may be viewed as connecting the
lines on each of the |∂i| layers in parallel. For a given
interaction Oi, the local Hilbert space dimension also factors
across layers. Thus, we have the following rules:

(1) Draw a stack of n boundary circles (corresponding to
each qudit) from the circuit Tr Oi1 · · · Oip . Note the boundary
circle on layer q only has boundary gates λi and boundary
vertices for the Oi which act on that layer.

(2) For each type of interaction Oi (color), draw all possi-
ble bulk pairings with the ribbon and bulk vertex rules locked
together across the relevant layers; i.e., choosing a pairing on
one layer repeats the same pattern on all layers on which the
interaction acts.

If the diagram has Euler characteristic χq on qudit layer q,
then the total N dependence is given by

∏
q Nχq . The leading

diagrams are thus stacks of planar discs with χq = 1 for all
layers q.

Figures 3 and 4 illustrate how to apply the above recipe to
construct the complete set of monochromatic stacked planar
diagrams contributing to [[OAOBOAOB]] for a simple two-
qudit interaction graph.

The full value of a stacked diagram is not quite a product
over layers. Rather, one obtains

(−1)k+1ck for each 2k bulk vertex counting locked layers once,

N for each bulk vertex on each layer,

N−1 for each bulk ribbon on each layer,

N for each dashed loop on each layer,

N |∂i| tr(Oi )l for each solid loop of type i counting locked layers once.

There is one important generalization of the stacked diagrams: since P(Oi ) = P(U iλiU i†) = U iP(λi )U i† for any polynomial
P, the stacked diagram expansion can equally well be applied to moments of the form [[Pi1 (Oi1 ) · · · Pip (Oip )]], with the boundary
gates representing Pij (λi j ) carrying the color i j .

To summarize, at leading order in the large-N limit, disorder averaged trace moments are given by a sum over monochromatic
stacked planar diagrams:

[[Pi1 (Oi1 ) · · · Pip (Oip )]] =
∑

monochromatic
stacked planar

diagrams

⎛
⎜⎜⎜⎝

∏
degree 2k

vertices

(−1)k+1ck

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∏
solid

loops l

tr(Pl1 (Ol1 ) · · · Pl|l| (Ol|l| ))

⎞
⎟⎟⎟⎠. (16)

Though there are far fewer stacked planar diagrams than
the total number of terms in the Weingarten expansion, the
number of diagrams grows rapidly with p (and depends in
detail on DG) and, worse for high-order calculations, they
come with varying signs. Nonetheless, this representation
will allow us to derive several more efficient representations
below.

4We note that the subleading-in-N contributions do not cancel order
by order unless one keeps next-order corrections to the Weingarten
function.

C. Dependency partitions

The 1/N expansion can in principle be organized as a
topological expansion of the stacked diagrams. However, even
the leading stacked planar diagrams are rather complicated
to enumerate and analyze. In this section, we will reorganize
the stacked planar diagrams in terms of certain partitions of
the string of p operators Oi1 · · · Oip . The partitions are both
easier to visualize and encode the data contributing to the trace
moments more compactly. Before we can state the result, we
need a few definitions regarding partitions.

A monochromatic partition of a string of p operators
Oi1 · · · Oip is a decomposition of the operators into disjoint
blocks B such that each block contains only operators of
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B

A=

=

A

A

BB BB

B

Layer 1 Layer 2

FIG. 3. How to construct the diagrammatic representation of
[[OAOBOAOB]] for the interaction graph of Fig. 2 (e). N1 and N2

denote the local Hilbert space of qudits 1 and 2 respectively. Top: The
piece of boundary circle corresponding to OA and OB on layers 1 and
2 (left and right) of the stacked diagram. Here, the gate containing
A (B) corresponds to the diagonal form of OA (OB). Bottom: The
boundary circles for representing the correlator [[OAOBOAOB]] on
layers 1 and 2 (left and right) prior to summing over bulk pairings,
which occurs when doing the disorder average.

one color. Such partitions are conveniently represented by
connections drawn above the string indicating the blocks. For
example, the monochromatic partitions of ABAB are (using
the shorthand A = OA, B = OB)

The first partition has four length-1 blocks; the second has one
length 2 and two length 1, etc. The five partitions of AAA are

where the last partition illustrates a block of length 3. Non-
crossing partitions are those whose connection diagram may
be drawn without any crossings. For example, the monochro-
matic noncrossing partitions of ABAB are

Let us return briefly to the case where there is only one
qudit degree of freedom on which the operator O acts, as
discussed in Sec. II A. The moments [[Op]] can be expanded
as a sum of single-layer planar diagrams with p boundary
operators O. To each planar diagram, we may associate a
noncrossing partition τ of the p operators by grouping them

A B A B

A B A B

A B A B

A B A B

A B A B

A B A B

FIG. 4. Some of the stacked diagrams contributing to
[[OAOBOAOB]] ≡ 1

N1N2
E[Tr(OAOBOAOB )] for the model of Fig. 3.

Only stacked planar diagrams (the first five) contribute at leading
order in large N1. Although we usually take all Nq = N , this example
also shows that not all qudit dimensions need to be taken to be
large to achieve the planar reduction. The associated partitions
are illustrated on the right. The dependency partitions here would
exclude the last crossing partition.

into blocks according to the solid loops which connect them.5

Planarity implies that the solid faces cannot overlap, and that
the relevant partitions are likewise noncrossing. Regrouping
the sum over diagrams by partition τ , we are led to the

5Formally, since the solid loops are given by the cycles of the
permutation τ representing the μ-index pairing, the blocks B in the
partition are given by the cycle decomposition of τ . In fact, since
the solid loops defined by τ are planar, the cycles must be order
preserving [i.e., (135) is an allowed cycle but not (153)]. Thus,
planar τ are actually in one-to-one correspondence with their cycle
decompositions. We slightly abuse notation by using τ to represent
both the μ-index pairing and the corresponding partition.
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representation

[[Op]] =
∑

τ∈NC(p)

Cτ

∏
B∈τ

tr O|B|, (17)

where NC(p) indicates the set of noncrossing partitions of p
objects and

Cτ =
∑

σ |(σ,τ ) is planar

⎛
⎜⎜⎜⎝

∏
degree 2k vertices

in (σ, τ )

(−1)k+1ck

⎞
⎟⎟⎟⎠ (18)

accumulates the Catalan coefficients coming from each planar
diagram (σ, τ ) with the same solid partition τ .

If multiple Oi act on the same single qudit [as in Fig. 1(b)],
the relevant partitions τ are both noncrossing and monochro-
matic, just like the solid loops in the single layer diagrams.

Returning to the general case, the sum over stacked planar
diagrams can be regrouped into a sum over monochromatic
dependency partitions of the string of operators,

[[Oi1 · · · Oip]] =
∑
τ∈DP

Cτ

∏
B∈τ

tr OB1 · · · OB|B| , (19)

or, again generalizing Oi to Pi(Oi ) as in Eq. (16),

[[Pi1 (Oi1 ) · · · Pip (Oip )]] =
∑
τ∈DP

Cτ

∏
B∈τ

tr PB1 (OB1 ) · · · PB|B| (OB|B| ).

(20)

The dependency partitions DP of a given string of p operators
must be

(1) monochromatic—each block only connects operators
of the same color, and

(2) noncrossing between dependent colors (and between
blocks of the same color).

For example, if the operators A, B, C have the dependency
graph

(21)

then the monochromatic dependency partitions of ABCABC
are

The last partition is allowed because A and C are not con-
nected in DG. Crossings between A and B blocks or B and C
blocks are disallowed.

These rules follow directly from stacked planarity: if two
operators are dependent, they act on a shared planar layer and
the corresponding solid faces cannot cross. On the other hand,
the solid faces associated with operators which do not act on
a shared qudit (i.e., are not connected in DG) have no such
noncrossing restriction. Given a stacked planar diagram, one
can read off the corresponding partition τ by “looking down”
at the diagram from above and drawing the skeleton of the
solid faces, recalling that we need only draw the skeleton for
one copy of each solid loop across the stacked layers.

As an example, the five stacked planar diagrams contribut-
ing to [[OAOBOAOB]] in Fig. 4 can be regrouped according to
their partitions as shown in the rightmost column.

The regrouping of the stacked planar diagram sum in (19)
is of limited explicit calculational utility since the coefficients
Cτ are still rather complicated. However, it allows several
general properties to be proven readily, as we will show below
and in the following sections.

For example, the form of Eq. (19) makes clear that the cor-
relators [[Oi1 · · · Oip]] depend only on the dependency graph
DG of the interaction graph G, and the moments tr(Oi)p of
the individual operators. This follows because the dependency
partitions τ are determined by the noncrossing of dependent
colors, as are the dashed line pairings σ which contribute to
the coefficients Cτ . In particular, whenever the interactions Oi

have a fully connected dependency graph DG, the correlators
reduce precisely to those of a collection of interactions acting
on a single qudit even if the underlying interaction graph G is
more complicated.

III. HEAP FREENESS

Random matrices in the large-N limit realize a noncommu-
tative algebra described by free probability theory [4,5]. This
abstraction provides a convenient way to compute moments
directly in the large-N limit without explicitly summing dia-
grams. The central definition is that of free independence: a
collection of non-commuting operators {Oi} is free or freely
independent if all alternating centralized moments involving
them are zero. That is, for all polynomials Pj ,

[[(P1(Oi1 ) − [[P1(Oi1 )]])(P2(Oi2 ) − [[P2(Oi2 )]])

· · · (Pp(Oip ) − [[Pn(Oip )]])]] = 0, (22)

where the operators “alternate,” Oij 	= Oij+1 , for j = 1, . . . , p.
From this property and linearity, all mixed moments of prod-
ucts involving {Oi} are determined in terms of their indi-
vidual moments [[(Oi)p]] recursively. For example, one can
calculate [[O1O2O1O2]] = [[(O1)2]][[O2]]2 + [[O1]]2[[(O2)2]] −
[[O1]]2[[O2]]2 using Eq. (22) recursively. It is well known that a
collection of independently Haar spun random matrices—for
us, a collection of interactions Oi which act on the same
qudit—become freely independent in the large-N limit.

The usual independence of commuting random variables
can also be expressed in terms of certain centralized moments
vanishing. A collection of commuting variables {Oi} is in-
dependent if and only if Eq. (22) holds for all polynomials
Pj , where each i j is distinct from all of the others. Since the
variables commute, this property determines all of the mixed
moments recursively. This condition characterizes the mo-
ments of collections of interactions Oi which act on disjoint
qudits in G, since they commute (at any N).

A. Heaps

In general, the interactions Oi have a dependency graph
which is neither fully connected nor fully disconnected. Ac-
cordingly, the operators are neither freely nor classically inde-
pendent in the large-N limit. Nonetheless, as we will shortly
see, the vanishing of a certain class of centralized moments
still holds: centralized moments of heaps.
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A C

B

B

B

A

C

C2

FIG. 5. Heap representation of a word with the canonical form
�ACBCBA2CB� where A, B, and C have the dependency graph of an
open chain, Eq. (21). The expressions on the right are all equivalent
and produce the same heap on the left.

Heaps provide a canonical representation of operator
strings Oi1 · · · Oip , where some of the operators commute6

[33,34]. Given interactions {Oi} with dependency graph DG,
we construct a heap graphically by the following rules:

(1) View each operator as a brick which overlaps with
bricks of nearest-neighbor operators on DG.

(2) A string of operators Oi1 Oi2 · · · is represented by
dropping the bricks corresponding to each operator in order
into a pile.7

(3) When bricks overlap, they stack on top of each other
to form multiple rows.

(4) When a brick Oi falls on top of another brick rep-
resenting (Oi )m, it merges downward to form a single brick
representing (Oi )m+1.

After all this stacking, we write a canonical form for the
operator string by reading the bricks W j from bottom to
top, with a fixed ordering of the bricks within a given row,
W 1W 2 · · ·W p′

. An example is shown in Fig. 5.
Before moving on, let us point out several important prop-

erties of the heap form of an operator string, W 1W 2 · · ·W p′
.

Each W j = (Oi )m is a monomial built out of a single color of
interaction operator Oi. We may generalize heaps immediately
to allow W j to be an arbitrary nonconstant polynomial in the
operator Oi. If two bricks W j , W l , with j < l , are of the same
color, then there must be a dependent brick W k between them
( j < k < l), holding them apart in the pile (adjacent bricks
cannot be the same color).

B. Vanishing of centralized heaps

We are now prepared to state the main result of Sec. III:
The collection of local interaction operators {Oi} with

dependency graph DG are heap free in the large N limit. That
is, the centralized moments of any canonical heap W 1 · · ·W p′

6Formally, heaps provide a canonical form for the word problem on
freely generated monoids whose only relation is that of commutation
of certain generators [33,34].

7Cf. Tetris.

vanish:

[[(W 1 − [[W 1]]) · · · (W p′ − [[W p′
]])]] = 0. (23)

Since any string of operators built out of the Oi may be
commuted into heap form, the vanishing of centralized heaps
completely determines all mixed moments recursively in
terms of the moments of individual Oi.

The proof of heap freeness follows from the representation
of the moment on the left of Eq. (23) as a sum over depen-
dency partitions τ as in Eq. (20) with Pi(Oi ) = W i − [[W i]].
The term corresponding to τ is proportional to a product over
traces of the blocks B:∏

B∈τ

tr[(W B1 − [[W B1 ]]) · · · (W B|B| − [[W B|B| ]])]. (24)

If any block B ∈ τ has length 1, the corresponding term
vanishes. Observe that every dependency partition τ arising
in the expansion of a heap has a block of length 1: Consider
the first brick W 1. If it lies in a block of length 1, we are done.
If not, then it connects to some brick W l of the same color
with 1 < l � p. Since the W ’s form a heap, there must be a
dependent brick W k of another color with 1 < k < l; assume
k is the least such brick in the heap. Now, repeat this argument
starting with the brick W k . Either the block containing W k

is of length 1 or it connects to another brick at a position
strictly between k and l (because the blocks of dependent
colors cannot cross in the dependency partition τ ). Since the
region where the blocks may lie gets strictly narrower at each
step, repeating this search must end eventually with a block of
length 1. Q.E.D.

We note that heap freeness subsumes both free indepen-
dence and classical independence as special cases. If {Oi}
are freely independent, then DG is fully connected, and the
canonical heaps are alternating, in the sense of Eq. (22).
Similarly, if {Oi} are classically independent, then DG is fully
disconnected and the canonical heaps have exactly one brick
of any given color i. Heap freeness is equivalent to the notion
of 	-freeness [27], also known as ε-freeness [28], developed
as an algebraic generalization of free probability. From this
point of view, our results show that generic Hamiltonians on
extended interaction graphs provide a physically motivated
realization of a 	-free algebra in the large-N limit.

IV. FREE CUMULANT EXPANSION

Consider the evaluation of [[ACBCBA2CB]] from Fig. 5.
We can obtain it by summing over all the planar diagrams as
in Eq. (16) or recursively using heap freeness with Eq. (23).
However, both these methods involve tedious algebra which
can be avoided by using an alternative formulation of the
moments in terms of free cumulants.

Let us briefly review the combinatorial definition of free
cumulants. The pth free cumulant κp of a random variable
O is defined implicitly by an expansion over noncrossing
partitions,

[[Op]] =
∑

τ∈NC(p)

∏
B∈τ

κ|B|(O, . . . , O︸ ︷︷ ︸
|B| times

). (25)
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In terms of connection diagrams representing the partitions,
we can write

and so on. Standard cumulants are defined analogously except
that the sum in the moment-cumulant expansion runs over all
partitions rather than only the noncrossing ones. The pth free
cumulant κp is actually a multilinear functional on the algebra
generated by O. For more details, see [5].

One of the central results of free probability theory is
that collections of freely independent operators {Oi} satisfy
a monochromatic moment-free cumulant expansion,

[[Oi1 Oi2 · · · Oip]] =
∑

τ∈MNC

∏
B∈τ

κ|B|(OB1 , . . . , OB|B| ) (26)

where MNC denotes the set of monochromatic non-crossing
partitions of the p operators. This follows from the general
recursive definition of the free cumulant κk ,

κk (Oi1 , ..., Oik ) = [[Oi1 ...Oik ]]−
∑

τ∈NC(p)

∏
B∈τ

κ|B|(OB1 , . . . , OB|B| )

(27)

as a sum over all noncrossing partitions and the theorem
that mixed (i.e., multicolor) free cumulants vanish for freely
independent operators. This theorem plays a role precisely
analogous to the vanishing of mixed cumulants for classically
independent variables and leads to, for example, algebraic
proofs of a (free) central limit theorem.

For a given collection of operators {Oi} which are heap free
with respect to DG, arbitrary mixed moments [[Oi1 · · · Oip]]
may be expanded in terms of monochromatic free cumulants
by first bringing them to canonical heap form [[W 1 · · ·W p′

]]
and then summing over monochromatic dependency parti-
tions:

[[W 1W 2 · · ·W p′
]] =

∑
τ∈DP

∏
B∈τ

κ|B|(W B1 , . . . ,W B|B| ). (28)

Although the sum over dependency partitions appears naively
similar to that in Eq. (19), the free cumulants on the right
are not the same as the trace moments in Eq. (19). Indeed,
the cumulant expansion has several calculational advantages:
there are no complicated coefficients Cτ depending on DG.
Additionally, for operators with semicircle law distributions,
all of the free cumulants of order k > 2 vanish, further simpli-
fying the expansion.

For example, let A, B,C have an open chain as their
dependency graph [Eq. (21)] and satisfy a semicircle law so
that κ1 = 0, κ2 = 1, κk>2 = 0. Equation (28) leads to easy
evaluation of correlators such as

(29)

As another example, the heap in Fig. 5, [[ACBCBA2CB]],
vanishes because it admits no monochromatic dependency
partitions without length 1 blocks.

The proof of the moment-cumulant formula for heap-free
operators, Eq. (28), follows from the observation that the
right-hand side (RHS) vanishes if the heap is centralized. In-
deed, since W 1 · · ·W p′

is a canonical heap, every dependency
partition τ contains some block of length 1 (by the same argu-
ment sketched in Sec. III B). But κ1(W j ) = [[W j]] = 0 if W j

is centralized; thus, all of the terms in the RHS vanish. Since
the vanishing of centralized heaps and linearity completely
determine all moments recursively, the LHS and the RHS
must coincide.

Although Eq. (28) expands mixed moments in terms of
(monochromatic) free cumulants, it is important to note that
mixed free cumulants of the {W i} need not vanish (unless
DG is fully connected, i.e., all the operators are freely inde-
pendent with respect to each other). It is possible to define
a DG-dependent cumulant functional for which the mixed
cumulants vanish [35], but it is technically more challenging
than the direct proof of Eq. (28) sketched here.

V. QUANTUM SATISFIABILITY AT LARGE N

As a nontrivial application of the theory developed here,
we turn to studying quantum satisfiability (QSAT) at large N .

The QSAT problem generalizes classical constraint satis-
faction problems to a quantum setting [36]: Does the Hamil-
tonian

H =
M∑

m=1

�m (30)

have a zero energy (satisfying) ground state? Here, each
projector �i represents a constraint which must be satisfied
by the subset of n qudits on which it acts, according to a
given interaction graph G. Deciding whether H is satisfiable is
QMA1-complete [37] and thus expected to be algorithmically
intractable even with the aid of a quantum computer.

On the other hand, much progress can be made on generic
QSAT. After fixing the discrete data describing a QSAT
instance—the interaction graph G, dimension of the qudits Nq,
and relative ranks of the projectors pi ≡ R(�i ) = tr �i—the
geometrization theorem [38] asserts that almost all choices of
the �i produce a minimal SAT dimension, R(ker H ). That is,
generic QSAT instances are as frustrated as possible and we
can study average behavior in the Haar randomized projector
model in order to uncover the worst case.

The large Nq = N limit is nontrivial on any given graph G
so long as the relative ranks pi are held fixed as the limit is
taken. It has been conjectured [12] that in this limit

R(ker H ) = Z (DG,−p), (31)

where Z is the partition function for a classical hard-core
lattice gas of particles living on the dependency graph DG at
fugacity −p. For the computer science oriented reader, Z is
also called the Shearer [39] or independent set polynomial.

In the large-N limit, the projectors �i become heap free
with respect to DG and, in principle, all of the moments of H
are determined. To solve QSAT, one needs to compute all of
those moments [[Hk]] to reconstruct the spectral weight of H at
E = 0 corresponding to the satisfying space. This is possible
if one has an analytic approach to managing the calculation,
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(a) (b) (c)

FIG. 6. (a) A dependency graph which is bipartite fully con-
nected, i.e., every blue box is connected to every red box. If the
zero energy space of the blue terms and the red terms are known,
then the free sum rule provides the zero energy space of the full
system. (b) The zero energy space of the 4-cycle can be solved.
(c) Decomposition of a dependency graph into a site i, its neighbors
�(i), and the rest of the system A, with ��(i) and �A satisfying the
free sums property.

for example through convolution theorems and generating
functions. Unfortunately, we have not been able to discover
a general convolution theorem for heap-free variables.

Nonetheless, progress can be made for a large class of
dependency graphs DG (such as those in Fig. 6) using the
following properties:

(1) (Classical combination.) If the subset of operators {�i}
are disconnected in DG, then I = ∑

i �
i has zero energy

space with relative dimension K = ∏
i(1 − pi ).

(2) (Free sums.) If there exist two subsets of operators
{�i} and {� j} such that every operator in the first set is
connected to every operator in the second set (in DG), then
I = ∑

i �
i and J = ∑

j �
j are freely independent variables.

(3) (Free combination.) If I and J have zero spaces with
relative dimension KI = 1 − pI and KJ = 1 − pJ respectively,
then I + J has zero energy space with relative dimension
KI+J = 1

2 (1 − pI − pJ + |1 − pI − pJ |).
The classical combination property is trivially true since

the resulting operators are tensor independent and the com-
bined spectrum follows from a convolution corresponding to
classical random variables.

The free sums property follows from the formalism devel-
oped so far. To prove that I and J are free, we should show that
Eq. (22) holds where the operators are alternatively functions
of I and J . By linearity, it is enough to show that centralized
moments which involve combinations of individual operators
from I and J alternatively are zero. Since every operator in
the first set is connected to every operator in the second set
in DG, the connections of the first set are noncrossing with
respect to those of the second set. Thus, from the arguments
given in Sec. III, there is at least one block of length 1 which
implies centralized moments vanish.

To prove the free combination property, we first note that
quantum satisfiability reduces to determining whether the
spectrum, ρ(z) = [[δ(z − H )]], has weight at E = 0. Equiva-
lently, we are interested in whether the resolvent

G(z) =
[[

1

z − H

]]
= K

z
+ · · · (32)

has a pole at z = 0 with residue K > 0.

Now consider H = I + J where I and J satisfy the second
property. Since the spectrum of each Hamiltonian is semi-
positive and the rank is invariant under deformations of the
positive part of the spectrum which preserve the total weight,
we can choose I and J to be a projectors with relative ranks pI

and pJ respectively. The associated deformed resolvents are

GI (z) = 1 − pI

z
+ pI

z − 1
, (33)

GJ (z) = 1 − pJ

z
+ pJ

z − 1
. (34)

Since I and J are freely independent, the vanishing of the
mixed free cumulants implies that the free cumulants of I and
J are additive. This can be summarized by the additivity of the
free cumulant generating function,

RH (w) ≡
∞∑

k=1

κk (H, . . . , H )wk−1. (35)

We recall that R(w) is related to G(z) by the R transform [5]:

G

(
R(w) + 1

w

)
= w. (36)

This gives us a complex analytic tool with which to extract the
pole in GH at z = 0.

Inverting GI and using that G−1(g) ≈ 1/g for g ∈ R and
g → 0 [where g ≡ G(z)], we get

RI (z) = z − 1 + √
1 + z(z + 4pA − 2)

2z
(37)

and a similar equation for RJ . Since the free cumulants are
additive, we get RI+J (z) = RI + RJ and hence GI+J (z) from
solving Eq. (36). After some algebra, the residue of the pole
at z = 0 is given by

KI+J = 1 − pI − pJ + |1 − pI − pJ |
2

. (38)

If DG can be recursively decomposed using the above
three properties, then we can compute the dimension of the
zero energy space of the resulting Hamiltonian. In particular,
consider a dependency graph DG which can be split into a
fixed vertex i, its neighbors �(i), and the rest of the system A
such that ��(i) and �A satisfy the second property [Fig. 6(c)].
Assume the relative kernels of these subsystems are known
and are equal to the Shearer polynomials 1 − p,Z�(i),ZA on
them respectively and to Z�(i)+A for the combined system
of �(i) and A. Since �i and �A are disconnected, we have
ker(�i + �A) = (1 − p)ZA. From the free sums property, we
have that �i + �A and ��(i) are free. From the free com-
bination property, we have that ker(�i + �A) = Z�(i)+A =
ZA + Z�(i) − 1. Thus, the kernel of the full system (when it
is positive) is given by

ker(�i + ��(i) + �A) = 1 − pI − pJ

= 1 − (1 − Zi+A) − (1 − Z�(i) )

= (1 − p)ZA + Z�(i) − 1

= Z�(i)+A − pZA

= Zi+�(i)+A.
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Here we have used the recursion relation for the Shearer
(independent set) polynomial in the last line. Thus, the kernel
for the combined system reduces to the Shearer polynomial of
the system at large N .

In particular, the Shearer polynomial/hard-core lattice gas
partition function is the exact answer for the dependency
graph of a 4-cycle [Fig. 6(b)]. It has been shown that the
classical Shearer theorem is not tight in this setting [40], so
this constitutes a provable separation between quantum and
classical constraint satisfaction problems.

We note a recent work [41] shows that the critical relative
rank pc beyond which quantum satisfiability on a fixed de-
pendency graph DG can be made unsatisfiable is tightly lower
bounded by the least zero of the Shearer polynomial. This
does not show that the dimension of the kernel is tightly lower
bounded by the Shearer polynomial in the satisfiable regime,
as we have shown here.

VI. DISCUSSION AND OPEN QUESTIONS

We have presented three methods for calculating disorder
averaged trace correlators of random Hamiltonian systems
with spatial locality at large local Hilbert space dimension N .
The stacked diagram expansion organizes the contributions
to such moments by the Euler characteristic ξ of a stack
of n two-dimensional layers. The leading terms in [[· · · ]] =
tr · · · correspond to stacked planar diagrams; the higher genus
corrections vanish as N → ∞. The Euler characteristic ex-
pansion further shows that the trace moments themselves
factorize,

tr W 1 tr W 2 = tr W 1 tr W 2 + O

(
1

N

)
, (39)

for any operators W 1,W 2 constructed from the Oi. This
follows because each trace provides additional circular bound-
aries which reduce the Euler characteristic of the connected
diagrams. This is a form of concentration of measure for
large N .

In the strictly planar limit, we have shown that the oper-
ators Oi become heap free with respect to the dependency
graph DG. This combinatorial result lead us to several com-
pact methods of organizing the calculation of the average
correlators. The most powerful of these expresses the average
moments as a sum over dependency partitions of products

of free cumulants. This also connects the physical theories
described by Hamiltonian (1) to the recent generalizations
of free probability theory to incorporate mixed collections of
commuting and noncommuting operators.

There are many open questions and directions to pursue
building on this work.

(1) In random matrix theory, the 1/N corrections are
universal in the sense that they encode level repulsion and
quantum dynamics on very long timescales. It would be very
interesting to show level repulsion explicitly in the fluctuation
corrections to the full many-body Hamiltonian spectrum of an
extended system. This would operate on an energy scale 1/Nn

corresponding to the many-body level spacing.
(2) How do the results change for random local many-

body Hamiltonians with different symmetry groups?
(3) Hamiltonians of the form Eq. (1) on finite dimensional

lattices should exhibit both energy diffusion and scrambling
of quantum operators. Demonstrating these explicitly and
studying their interplay would be of great interest.

(4) As mentioned previously, the all-to-all version of
Eq. (1) maps onto a fermionic model closely related to the
Sachdev-Ye-Kitaev models. Whether the techniques in this
paper can be used to provide complementary information
regarding these models is an intriguing future direction.

(5) Is it possible to construct a generalized convolution
theorem to obtain the spectrum of a sum of terms involving
a mixture of classically independent and freely independent
variables with a specified dependency graph? It is easy to see
that it cannot be a binary operation, but a ternary operation is
conceivable.

(6) Does the independence polynomial provide the rela-
tive dimension of the quantum satisfying space for QSAT at
large N for all graphs G?
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