A Survey of Intrusion Detection Systems Leveraging
Host Data

ROBERT A. BRIDGES, TARRAH R. GLASS-VANDERLAN, MICHAEL D. IANNACONE,
and MARIA S. VINCENT, Cyber & Applied Data Analytics Division, Oak Ridge National Laboratory
QIAN (GUENEVERE) CHEN, Electrical & Computer Engineering, University of Texas, San Antonio

This survey focuses on intrusion detection systems (IDS) that leverage host-based data sources for detecting
attacks on enterprise network. The host-based IDS (HIDS) literature is organized by the input data source,
presenting targeted sub-surveys of HIDS research leveraging system logs, audit data, Windows Registry,
file systems, and program analysis. While system calls are generally included in audit data, several publicly
available system call datasets have spawned a flurry of IDS research on this topic, which merits a separate
section. To accommodate current researchers, a section giving descriptions of publicly available datasets is
included, outlining their characteristics and shortcomings when used for IDS evaluation. Related surveys
are organized and described. All sections are accompanied by tables concisely organizing the literature and
datasets discussed. Finally, challenges, trends, and broader observations are throughout the survey and in
the conclusion along with future directions of IDS research. Overall, this survey was designed to allow easy
access to the diverse types of data available on a host for sensing intrusion, the progressions of research using
each, and the accessible datasets for prototyping in the area.

CCS Concepts: « General and reference — Surveys and overviews; « Security and privacy — Intrusion
detection systems;

Additional Key Words and Phrases: Intrusion detection, host, anomaly detection

ACM Reference format:

Robert A. Bridges, Tarrah R. Glass-Vanderlan, Michael D. Iannacone, Maria S. Vincent, and Qian (Guenevere)
Chen. 2019. A Survey of Intrusion Detection Systems Leveraging Host Data. ACM Comput. Surv. 52, 6, Article
128 (November 2019), 35 pages.

https://doi.org/10.1145/3344382

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725 with the U.S. Department
of Energy (DOE). The U.S. government retains and the publisher, by accepting the article for publication, acknowledges that

the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for U.S. government purposes. DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

The research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Ad-
vanced Research Projects Activity (IARPA), via the Department of Energy (DOE) under Contract No. D2017-170222007. The
views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon.

Authors’ addresses: R. A. Bridges, 1 Bethel Valley Road, PO Box 2008, MS 6418, Oak Ridge, TN 37831; email: bridgesra@
ornl.gov; T. Glass-Vanderlan; email: unbreakinglass@gmail.com; M. Iannacone; email: iannaconemd@ornl.gov; M. Vincent;
email: vincentms@ornl.gov; Q. Chen; email: geunevereqian@utsa.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2019/11-ART128 $15.00

https://doi.org/10.1145/3344382

ACM Computing Surveys, Vol. 52, No. 6, Article 128. Publication date: November 2019.

RIGHTSE LI MN iy


https://doi.org/10.1145/3344382
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
mailto:permissions@acm.org
https://doi.org/10.1145/3344382

128:2 R. A. Bridges et al.

1 INTRODUCTION

Intrusion detection research began in 1972, when James Anderson published a United States Air
Force report discussing the need to detect security breaches of computing systems [5]. Manual
investigations of logs and audit data were widely adopted by computer security operators (or sys-
tem administrators) in the early age of I'T technology, yet IDSs that fully depended on experienced
security experts could not meet the new requirements of the developing computing technology. In
response, automated IDS research emerged—Anderson’s 1980 work [6] focused on automating IDS
by isolating abnormal behavior in system’s audit data, and work of Denning and Neumann [27]
developed the first real-time detection system based on expert-written rules in 1985. This early
research laid the groundwork for modern intrusion detection, comprised of manual techniques,
algorithms, and commercial products all geared towards one thing, continual monitoring of com-
puting assets for signs of compromise [15, 75].

Increasingly over the past 30 years, networked computing systems have emerged as ubiquitous
assets on which state, personal, and industrial infrastructure critically depend. Moreover, the threat
of cyber security breaches has risen, with adversaries now fueled by a profitable underground
cyber-crime economy and nation-state ambitions [3, 136]. Consequently, breaches ranging from
personal computers to large enterprises and governmental networks are now commonly reported,
and governmental assistance, in terms of IDS tutorials, guidelines, and case studies have resulted
[130]. Through the authors’ ongoing collaborations with multiple security operations, we note that
many operations now have widespread collection and query capabilities for logs and alerts. Yet,
detection in practice has focused on signature and rule-based detection, often at the network or file
levels, complemented by manual analysis of logs [12, 13, 18]. These rule-based IDSs are accurate
for detecting known system cyber attacks but cannot identify unknown, novel, or polymorphic
cyber threats. In addition, their computational overheads (i.e., time, CPU, and memory costs) are
usually high. This has motivated parallel developments in the research literature for a wide va-
riety of automated, fast, and efficient IDSs. From expert-crafted rules to sophisticated statistical
learning algorithms, publications explore and push detection accuracy metrics and performance
on a variety of data sources and locations within the network (see Sections 3-7 below).

1.1 IDS Components, Types, and Challenges

In general, all intrusion detection systems (IDSs) have three main components.

e Data collection: They ingest one or many data types, e.g., system calls or network flows.

e Conversion to select features: Some predefined unit of data, e.g., system calls in a process or
flows in a time window, is represented as a list of attributes, called a feature vector.

e Decision engine: An algorithm or heuristic to decide if the given data, as represented as a
feature vector, is believed to be an attack or not.

Common research for IDS development involves testing supervised classifiers and unsupervised
anomaly or one-class detectors as the decision engine algorithm. The decision engine can then be
configured to inform a user or some automated response system.

The decision engine can be categorized as misuse, anomaly, or a hybrid detector. Misuse
intrusion detection uses predefined attack patterns, e.g., signatures of known malware or
expert-crafted rules, to flag matching events. Consequently, zero-day attacks, i.e., novel attacks
or attacks exploiting previously unknown vulnerabilities, generally bypass misused detection
algorithms. Misuse detection systems dominate IDS use in practice, as they have been the main
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focus of commercially-driven detection products. Host-based anti-virus such as McAfee! and
Kasperski? and network-level rule-based systems such as Snort®> are examples of very popular
misuse detection systems. Generally, the first line of defense, misuse detection relies on an
database of attack signatures, which is generally large, constantly growing, can be cumbersome
to use efficiently and necessitates regular updates. However, misuse detection generally realizes
a relatively low number of false positives, but a high number of false negatives.

In anomaly detection, a description of normal or expected behavior is learned from observa-
tions and a sufficient deviation from this normal profile is flagged as a potential attack; thus, the
detection of never-before-seen attack patterns is possible. Anomaly detection systems that up-
date in near real time can evolve models with the slowly changing system [33, 53]. The primary
downside of anomaly detection is detection accuracy, most notably, that these techniques suffer
from higher quantities of false alarms. Moreover, attacks can hide in the noise floor of ambient
data if training data (from which normal behavior is learned) exhibits large variance. Similarly, if
attacks are present in training data, detectors will potentially be trained to regard such behavior
as normal [135].

Hybrid systems are also often studied; these take into account previous knowledge but seek to
generalize to unseen data. For example, systems are proposed that seek to complement misuse
detection with anomaly detection, using them in tandem [149]. When datasets with labeled in-
trusions are available, research will often experiment with combinations of feature selection and
supervised learning algorithms. Supervised learning classifiers are generally less rigid than tra-
ditional misuse detection systems, as they are trained to generalize previously seen attack and
non-attack examples.

Feature selection is influential on both accuracy and performance of IDS classifiers. In many
applications, the number of features can grow to enormous quantities, but as feature vectors gain
length so does the computational complexity, quantity of training data, and time needed for both
training and inference. Additionally, poor features both decrease performance and add noise, re-
ducing accuracy of the classifier while contributing to expense. To combat these factors, methods
of dimension reduction seek to identify redundancy and find correlations in features, thereby re-
ducing the number of features without losing information. This careful choice of features is the
focus of many detection efforts. Where progressions of research built on the same datasets exist
(e.g., see Sections 4), research generally trends from using raw data as features, to considering
cost-to-accuracy benefits of various hand-crafted features, to data-driven techniques for dimen-
sion reduction and feature selection/creation.

Biased classes, in our case where non-attack data is in far more abundance than attack data, are
a perennial problem for classifiers and a looming issue in the intersection of machine learning and
intrusion detection. Much research seeks to use hybrid methods, ensembles, and advanced feature
selection algorithms to circumvent the problem.

While incomplete training data (in particular, not having representative attack data available)
is an issue for misuse supervised detectors, noisy training data is a common problem especially
for anomaly detectors, which often characterize normal data from a history of the data. Most
notably, if unknown attacks exist in training data, the detector may regard similar future attacks
as normal. Robust statistical methods have been used to discard outliers when fitting anomaly
detection models, which can help address these problems. As our survey is organized by data
source, unique approaches to these challenges are pointed out in the sections in which they occur.

1See www.mcafee.com.
23ee www.kaspersky.com.
3See www.snort.com.
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1.2 IDS Location

An IDS is most often categorized based on the information source utilized by the IDS and its
position within the network architecture. Since an IDS’s capabilities depend largely on what
data it has available [105], location is a critical architectural decision. This can be viewed most
coarsely as network-based IDS (NIDS) versus host-based IDS (HIDS). Host-based IDSs are gener-
ally a software component located on the system being monitored and typically monitor a sin-
gle system. This gives HIDS excellent visibility into the system state but poor isolation from
the system, meaning that an attacker with access to the system can either mislead or disable
the HIDS. Additionally, host-based data is often context-rich, allowing deeper understanding of
processes and activities, but comes with added costs of requiring access to the host, configu-
ration of distributed clients, and often requires collecting and managing potentially large and
sensitive datasets from these hosts. Network IDSs are generally physically separate devices, lo-
cated on the network “upstream” of the system being monitored, and they generally monitor
many separate systems on a common network. The NIDS is often completely transparent to the
systems being monitored, which provides good isolation and makes NIDSs much less suscepti-
ble to any interference from an attacker. However, these systems have little or no information
available about the internal state of the systems they are monitoring, which can make detection
more difficult. Further, network traffic is increasingly encrypted, potentially posing problems for
NIDS [12, 122], although we note that “break-and-inspect” capabilities are becoming prevalent
in practice to allow encryption of all traffic while giving visibility to network appliances, e.g.,
https://www.symantec.com/products/ssl-visibility-appliance.

Hybrid and distributed IDSs (DIDS) combine information from multiple sources into one sys-
tem. Hybrid IDSs combine both host-based and network-based data, generally with the goal of
achieving more complete visibility of a host. Distributed IDSs combine data from multiple sensor
locations into a combined decision-making or combined alerting process; this may use information
from host-based sensors, network-based sensors, or both.

The use of virtualized resources, e.g., cloud computing environments, provide opportunities for
monitoring virtualized hosts from different locations, with trade offs in visibility and capabilities.
For example, traditional IDSs can reside inside the virtualized host, or one can gain isolation from
infections or compromises of the host, at the cost of poorer visibility into the host, by monitoring
host data at the hypervisor-level to perform detection of one or many guest Operating Systems
(OSs). Virtual machine monitor (VMM) IDSs involve monitoring a virtual machine’s (VM) OS (or
in some cases, its applications or services) from a logically external location on the same physi-
cal machine. Several of the above IDS techniques have been utilized within cloud environments.
These cloud IDSs can include network-based data, host-based data, or both, and, while cloud in-
frastructure relies heavily on VMs, these systems do not necessarily include the same techniques
as VMM IDSs.

Among HIDS, most systems can be categorized as either a program-level or OS-level IDS.
Program-level IDSs focus on monitoring a single application, using information such as source
code, byte code, system calls invoked, static or dynamic control flow, and other information on
the application’s state. Much of this relies significantly on research in related topics, such as vul-
nerability detection and malware analysis/detection, but here we focus on works that take these
techniques and apply them to detecting intrusions or anomalies in applications at run-time.

OS-level IDSs monitor the overall system state, and may monitor the combined behavior of
all processes, to distinguish between normal and abnormal behavior at the OS level. This can
involve collecting data from system logs, Windows Registry data, system calls invoked, file system
monitoring, or other sources. System calls have been well utilized for the detection of normal and
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anomalous behavior. While sequences of system calls for a single application can be used in a
program-level IDS, these are often combined, by monitoring all system calls of all processes, for
use in an OS-level IDS. System call traces, the sequence of system calls of a given process, are used
to find repeated patterns of system calls, enabling anomaly detection and misuse detection during
execution [84].

Finally, we note that side-channel detection—detectors leveraging physical characteristics such
as power consumption, electromagnetic radiation, vibrations, timing statistics, and so on—has
gained traction in cyber-physical IDS research [20, 21, 42, 62, 67, 129] but is a growing area of
research for traditional computers using host-level (albeit physical) data [25, 67]. For most of these
works, the primary advantage is the detectors’ physical separation from the host, which prevents
software intrusions from tampering with the detector, and the fact that malicious changes to host
necessarily induces physical changes from normal behavior. These researches are considered out
of scope for the current survey.

1.3 Scope and Organization

This survey focuses on HIDSs, and attempts to capture and organize the variety of data sources
used, methods tested, and general trends in the HIDS research. Because of the large volume of work
in this area, we cannot comprehensively cover all relevant works. We prioritize a broad coverage
each host-based data source and its use for intrusion detection, and we discuss research trends
over time for each of these data sources. While VMM-IDSs and DIDSs leverage host-level data,
their contributions generally focus on new architectures, instead of the analysis itself, and for this
reason they are not included.

Section 2 describes several other IDS surveys. The following sections are sub-surveys of HIDS
research, each for a different input data type. Section 3 focuses on system logs and audit data.
While system calls are considered audit data, a flurry of targeted detection research brought on by
labeled data sets merited their own section, Section 4. Section 5 gives, to the best of our knowledge,
a comprehensive description of the few IDS works leveraging Windows Registry data. Section 6
reviews works leveraging file system monitoring for identifying malicious files, while Section 7
discusses a few works that leverage information about processes or stored binaries on a host for
detection. To assist current research, the publicly available datasets and databases referenced in
the literature for IDS validation are collected in Section 7. Our final section gives conclusions.

Overall, this survey organizes the diverse data sources available on a host that have been used
for detecting intrusions, the literature developing IDS on each data source, and those open-source
datasets needed for testing research in the area. All sections are accompanied by one or many
tables, itemizing the discussed references and presenting their key characteristics for comparison.
By organizing the literature by data source, we hope that current researchers (1) quickly see the
panorama of data sources available for HIDS research, (2) for a given data source of interest, elicit
progressions in the literature and identify gaps, trends, or novel directions for future contributions,
and (3) can more quickly identify datasets needed for evaluating novel ideas.

2 RELATED SURVEYS

Several surveys provide discussions on existing IDS research, and we review the recent, related
ones in this section. Table 1 presents a quick comparison, as it details many discussion topics and
attributes of the surveys.

Axelsson [8] surveys anomaly and misuse papers pre-2000 and organizes the research by sorting
on the proposed problem’s level of difficultly.

Patcha and Park [115] perform an in-depth review of anomaly and hybrid-based intrusion de-
tection papers spanning from 2000 to 2006. The papers are organized based on the classification
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Table 1. Existing IDS Survey Comparison

Survey IDS Types IDS Location  Datasets Data Source  Feature Selection
This Survey HIDS, NIDS Discussed Discussed  Discussed Discussed
Axelsson’00 [8] HIDS, NIDS NA NA Discussed Discussed
Patcha and Park’07 [115] HIDS, NIDS NA Discussed  Discussed Discussed
Kabiri and Ghorbani’05 [70]  NIDS NA NA NA Discussed
Lazarevic et al.’05 [91] HIDS, NIDS, DIDS NA NA Discussed NA
Sabahi et al.’08 [126] HIDS, NIDS Discussed Discussed  Discussed NA
Mehmood et al.’13 [102] HIDS, NIDS, DIDS, VMM  Discussed NA Discussed Discussed
Liao et al.’13 [96] HIDS, NIDS, DIDS, VMM NA NA Discussed NA

Modi et al.’13 [105] HIDS, NIDS, DIDS, VMM Discussed NA NA NA
Kumar and Gohil’15 [89] HIDS, NIDS, DIDS Discussed NA NA NA

Kahn et al.’16 [78] HIDS, NIDS Discussed NA NA NA
Chiba et al.’16 [19] HIDS, NIDS, DIDS, VMM  Discussed NA NA NA
Buczak and Guven’16 [16] NIDS NA Discussed  Discussed NA
Mishra et al.’17 [104] VMM Discussed NA NA NA

algorithm used and discussed in terms of existing challenges, such as high false alarm rate. Addi-
tionally, numerous open challenges, such as failure to scale to gigabit speeds, are discussed.

Kabiri and Ghorbani [70] primarily focus on NIDS, but discuss the importance of feature se-
lection with respect to dimension reduction, importance of the features, and their relation to one
another in the feature space, which is neglected as its own topic in other surveys.

Lazarevic et al. [91] extensively cover attack types and categorizes them into classes. A generic
architecture is defined for an IDS. The survey provides an overview on IDS taxomony and dis-
cusses information sources, including system commands, accounting, and logs as well as secu-
rity audit processing. However, user-level logs, process profiling, file system, registry, and raw
pages/introspection are excluded.

Sabahi et al. [126] provide a very brief survey of different IDS systems including HIDS, NIDS,
and DIDS, covering data sources used to conduct detection and detection methods, such as misuse
detection, protocol analysis and anomaly detection. They mention that detection can be conducted
online or offline and provide examples of both centralized and distributed architectures.

Mehmood et al. [102] provide an overview of different intrusions for cloud-based systems and
analyze several existing cloud-based IDSs with respect to their type, positioning, detection time,
detection technique, data source, and attacks detection capabilities. The analysis also provides
limitations of each technique to evaluate whether each fulfills the security requirements of the
cloud computing environment.

Liao et al. [96] present a comprehensive survey of IDSs concentrating on signature-based,
behavior-based, and specification-based methods. These detection methods are further divided
into “statistics-based, pattern-based, rule-based, state-based, and heuristic-based” approaches.

Modi et al. [105] offer recommendations for IDS/IPS placement within cloud environments to
reach common security goals in next-generation networks.

Kumar and Gohil [89] discuss traditional attack types and analysis techniques used for HIDSs,
NIDSs, and DIDSs.

Khan et al. [78] briefly discuss HIDSs and NIDSs, and discuss their architecture and applicability,
as well as highlighting shortcomings, such as the high communication and computational over-
head of some approaches. A parametric comparison of the threats being faced by cloud platforms
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is performed, which incorporates a discussion of how various intrusion detection and prevention
frameworks can apply to various common security issues.

Chiba et al. [19] discuss cloud-based IDSs and analyze the systems based on their various types,
positions, detection type, and data source. Strengths and weaknesses are discussed to determine
the IDSs validity in a cloud computing environment.

Buczak and Guven [16] provide a survey of machine learning approaches for IDSs. Their work
provides brief descriptions of important algorithms, including a table with algorithmic time com-
plexity. This non-comprehensive survey primarily includes examples of NIDS research, with se-
lection criteria for influential works to include examples of each classification algorithm used for
an IDS. Similarly, a few data sources, e.g. packets, are discussed in detail, along with several open
source datasets.

Mishra et al. [104] heavily focus on virtual machine introspection (VMI) and hypervisor in-
trospection (HVI) as IDS techniques, and compares cloud security with network security. Cloud-
specific threats and vulnerabilities are discussed via an attack taxonomy. Challenges are briefly
discussed including availability of data sets, IDS position, performance, and IDS limitations. Par-
allel programming and the usage of GPUs are mentioned for performance improvement.

This survey provides an in-depth discussion of IDS work that leverages host-based data sources
for attack detection. We organize works based on their data source with the goal of giving the
interested reader a panoramic view of the different avenues for detection. Furthermore, this work
provides an in-depth introduction to available host-level data sources, and discusses and their
uses and limitations. Works that focus on algorithmic development, but are tested on network-
level data, are included where they apply to HIDS. Additionally, a supplementary includes a list
of publicly available datasets used in the research literature for evaluating IDSs, outlining their
characteristics and shortfalls. This survey of HIDS research literature complements our concurrent
work reporting results of interviews with security operators on how and what host data and tools
they employ [12].

3 SYSTEM LOG AND SYSTEM AUDIT DATA IDSs

Log files are a collection of system-generated records that detail the sequence of events of a server,
an OS, or an application. The log files are processed or stored for various analyses or forensics.
Most programs and applications generate separate individual log files, associated with activities
conducted by those programs’ processes. As an example, a system log file is usually associated
with records produced by the OS, including but not limited to warnings, errors, and system fail-
ures. Individual applications may produce log files associated with user sessions containing login
time, authentication result, user-program interactions, and so on. While an OS-produced log file is
considered a system log file, files produced by individual applications or users are considered audit
data. Examples include successful and failed authentication logs, system calls, or user command
logs.

Since such data sources document the sequence of events of the system or programs, they are a
promising resource for detecting intrusions, as an HIDS can leverage the data to profile behavior of
an individual user or system. Conversely, the downside to high fidelity audit data is the collection
cost. Below, we survey literature leveraging system logs and audit data for intrusion detection.
Table 2 itemizes the System Log IDS works surveyed. We note that system calls can be considered
a subset of audit data, but because there is a rich progression of research that considers them
independently, system-call-based IDSs merit their own section, Section 4.

3.1 System Logs IDSs

With any IDS, the goal is to perform in a cost-effective, adaptable, intelligent, and real-time manner.
ACM Computing Surveys, Vol. 52, No. 6, Article 128. Publication date: November 2019.

RIGHTSE LI MN iy



128:8 R. A. Bridges et al.

Table 2. HIDS with System Logs

IDS Reference Technique Dataset Classifier ~ Learning Classes
Ryan et al.’98 [125] Anomaly  NA NN Unsupervised Binary
Reuning’04 [124] Anomaly  DARPA99  TF-IDF Unsupervised Binary
Zhaojun and Chao’10 [165] Anomaly  NA NN Supervised Binary
Tchakoucht et al.’15 [144] Anomaly  Simulation Clustering Unsupervised Binary
Wang and Zhu’17 [154] Anomaly  KDD99 C5.0 DT Supervised Binary
Verma and Bridges’18 [150]  Misuse NP NN Supervised Binary

This is especially challenging when analyzing system logs, which can be CPU intensive and
typically requires human expertise. System log analysis requires that all performed actions by the
OS be stored, and then feature extraction and classification can then be performed.

The following papers focus on analyzing system logs and various ways to achieve this goal. We
break them into two subcategories—those focusing on detection accuracy, and those focusing on
IDS architecture.

Due to the extensiveness of the topic, not all papers could be included in this survey. Other
notable works include, but are not limited to, the References [29, 123, 151, 152].

3.1.1 System Log IDS Research. Reuning [124] describes an anomaly detection system based
on Bayesian probability theory and the term frequency inverse document frequency (TF-IDF) in-
formation retrieval technique. TF-IDF is applied to event log messages, treating each entry as an
individual document. First, system training is required, in which data over a chosen time interval is
collected and indexed into hash table, where each term is mapped to its TF-IDF weight. Messages
with high scores, defined as the sum of the TF-IDF scores of the messages’ terms, are detected.
Results of the experiment on the DARPA99 dataset suggest that using log data solely produces a
high false-positive rate and many undetected attacks, but it can become a valuable component of
a larger and more complex IDS.

Tchakoucht et al. [144] improve upon the IDS of Yacine et al. [11]. The goal is to help decrease
User-to-Root (U2R) and Remote-to-Local (R2L) attacks that exploit operating system or software
vulnerabilities. User activity is audited based on LoginFlow, LoginFails, SessionDuration, Session-
CPU, FormatCounter, AccessFails, DataVolume, and QuotaOverloadFails, which provide a feature
vector representation for each user’s behavior over a given time period. To characterize user be-
havior, k-means clustering identifies groups of similar user behavior. Euclidean distance is calcu-
lated to compare new user behavior to the reference profile in the detection phase. An experiment
was conducted with a health information system consisting of three users, a patient, doctor, and
an administrator, including their behavior over 30 days. The experiment resulted in significant
improvements during learning and testing over Yacine et al.’s previous work [11] with a sizable
increase in successfully identifying users and a large decline in false positives. Achieving good re-
sults, Tchakoucht et al. identify two constraints that can affect accuracy, change in user behavior
and the system’s inability to handle large datasets.

Verma and Bridges [150] consider host logs, and note that while such logs are collected by se-
curity operation centers, they are high volume and only semi-structured (individual entries are
sparse but there are a large amount of possibly, and many field types are strings) making infor-
mation extraction from log streams tedious. To automate use of logs, in particular for intrusion
detection, Verma and Bridges build a general metric space structure for the logs allowing distance
to be computed between single log entries as well as sequences of logs (e.g., streams of logs from
a host). This distance is claimed to preserve semantic meaning; that is, logs close to each other
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in the metric report similar events. To test efficacy of this metric space, Windows Even Logs are
analyzed with three use cases. (1) After building a behavior-based IDS from a first instance of
ransomware on a host, the method shows high accuracy detection of three polymorphic copies of
this ransomware and a handful of log streams with no infection. The detection simply compares
a sequence of logs with the known bad sequence under the new distance metric (1 NN detection).
Authors note that detection occurs faster than a standard AV tool. (2) Clustering of users based
on log streams provides a data driven process to identify user types. (3) Informed visualizations of
a user’s daily activities permits anomaly detection. Authors note that this metric space is formu-
lated in generality to apply to other databases (not just host logs), and that the three experiments
presented used real network data, but limited in quantity—more extensive testing is required.

3.1.2  System Log IDS Architecture Research. Early work using system logs includes a neural
network (NN) of Ryan et al. [125] trained to predict the distribution of commands employed by a
user over a fixed time window. Hence, the output of the supervised NN framework is compared
against the users current command use to detect anomalies, an unsupervised detector. Initial ex-
periments using random vectors as ground truth anomalies produced anomaly detection rate of
96%, false alarm rate of 7%. Building on the NN framework of Ryan et al., Guan et al. [44] introduce
KIT-1, an architecture for an IDS using system log data. Log data is stored in a secure server, so
even if the computer is compromised, an intruder would not have the ability to modify log files to
cover attack traces. The system consists of two modules, a transferring module and a neural net-
work (NN) module. The transferring module is used to transfer log data at defined intervals from
a client to a remote logging server via a secure channel, which is implemented using SSL of Java
and Certificate Authority for client to server authentication. The NN module is used to analyze
received log files for abnormal behavior. No experiments are presented by Guan et al.

Zhaojun and Chao [165] propose an HIDS based on system logs. The architecture contains five
modules—log collection and pre-processing, saving and updating, search and analysis, statistics
and analysis, and alarming. During execution of the first four modules, system logs are collected
and turned into records containing fields extracted from three parts of the system logs, namely, a
priority with “Facility” and “Severity” fields, a header with “Timestamp” and “Hostname” fields,
and a message with “Tag” and “Content” fields. A constructed record is stored in a MySQL data-
base and filtered using regular expressions to extract important records. For the decision engine,
records from the database are transformed into numerical values and then passed through a back-
propagation NN (BPNN) model for analysis. Once analysis is complete, the alarm module deter-
mines how to inform the user, if necessary.

Wang and Zhu [154] propose a centralized HIDS architecture for private cloud computing, with
the main goal to reduce usage of system resources. Their model is built on OpenStack,* an open-
source infrastructure platform for cloud computing, and consists of three nodes, compute, con-
troller, and network nodes, and four modules, data collection, data pre-processing, detection, and
alarm modules. The collection module uses Logstash® to gather system logs from all VMs and
stores it into Elasticsearch® for farther analysis by the detection center, which uses a C5.0 decision
tree (DT). If an anomalous event is detected, then the detection center alert to victim VM. This
model was tested using the KDD99 dataset and compared to a traditional HIDS. Comparing the
new centralized HIDS with a traditional HIDS shows that a centralized HIDS CPU utilization is
approximately 14% lower, memory consumption is about 2% less, and the detection rate of 94% is
about the same with a slightly longer detection time.

4See www.openstack.org.
>See https://www.elastic.co/products/logstash.
6See https://www.elastic.co/products/elasticsearch.
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Table 3. HIDS with Audit Data

IDS Reference Technique  Dataset Classifier Learning Classes
Ilgun’93 [64] Misuse NA Rule inference NA Multi
Ye et al.’01,’02 [160, 161] Misuse, DARPA98 + DT, T? test, y? test, Both Binary
Anomaly simulation Markov model
Botha and Von Solms’03 [10]  Misuse Self made Rules + Fuzzy logic = NA Multi
Li and Manikopoulos’04 [95]  Anomaly Self made OCSVM Unsupervised — Binary
Shavlik and Shavlik’04 [133] ~ Anomaly Self made Winnow, NB Unsupervised — Binary
Mehnaz and Bertino’17 [103]  Anomaly Self made FSA rule-mining Unsupervised ~ Multi

3.2 Audit Data IDSs

In this survey, audit logs will refer to more granular information than system logs, collected with
the goal of providing a chronological, detailed record of user activities. For example, audit logs
allow visibility into network connections (e.g., source/destination bytes, protocols, etc.), command
line actions (e.g., number of shells opened), privilege escalations, and changes to files. System calls
are included in the audit logs, but the wealth of IDS research using them is discussed separately
in the next section. Audit logs are high volume and costly to collect and manage, but they give
higher fidelity for forensics and detection. Table 3 itemizes audit log IDS works surveyed.

Ilgun [64] illustrates a real-time IDS for UNIX operating system called USTAT (State Transition
Analysis Tool for UNIX), which is the UNIX version of STAT described by Porras et al. [120]. Tt
is a rule-based IDS and works by matching known patterns to the sequences of audit data gath-
ered by the audit collection mechanisms of the OS. Some of the aims of USTAT are to automate
a matching process and make patterns more flexible to adopt to different instances of equivalent
attacks. This proposed IDS is able to detect attacks that involve cooperation of multiple user sec-
tions or accounts. USTAT analysis is based on state changes, where state is “the collection of all
volatile, permanent, and semi-permanent data stores of the system at a specific time” and changes
are called actions; therefore, an attack pattern is defined as a sequence of attacker actions. There
are four main components, the data pre-processor, the knowledge-base component (containing
fact-based data of objects of the system and rule-based data of state transitions), the inference en-
gine (used to infer all states of the system and detect attacks), and a decision engine (used to chose
an action and inform the user about results from inference engine). The conducted experiment
was not focused on detection accuracy but instead on resources utilization running USTAT with
other processes. This resulted in a limitation of disk throughput when running both USTAT and
an audit daemon that collects audit trails.

Ye et al. [161] study data attributes for intrusion detection. Attributes include: (1) individual
event occurrences (e.g., “audit events, system calls, user commands”), frequencies (e.g., “number
of consecutive password failures”), and durations (e.g, “CPU time of a command, duration of a
connection”), (2) event combinations, (3) multiple events frequency and distribution, and (4) event
sequence/transition. They compare the intrusion detection performance of four methods—a su-
pervised DT and three unsupervised anomaly detection algorithms utilizing both Hotelling’s T2
test (T2 test) and the y-squared distance (y? test)—both multivariate statistical analysis methods,
and a first order Markov model—for intrusion detection in their experiments with the DARPA98
dataset and simulated attacks. The Markov chain based on an ordering property showed superior
performance. This verifies that the ordering and frequency of audit events provides useful infor-
mation to detect intrusions. Follow-up work by Ye et al. [160] presents more results comparing
T? test and the y? test, on audit trails to detect anomalous behavior. The proposed techniques are
better in session-wise analysis (an entire session is considered an intrusion if it contains a single
intrusive event), and overall performance of y? is better than T2
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Botha and Von Solms [10] implement a hybrid IDS based on comparing user actions with intru-
sion actions using fuzzy logic. These actions are interpreted as phases of an intrusion, which they
describe using their own schema: “probing,” “initial access,” “super-user access,” “hacking,” “cov-
ering,” and “backdoor.” These are represented as a graph for comparison using fuzzy logic. The
authors developed a working prototype, and testing was done with the help of 12 users, where ten
users were conducting both “legal” and “illegal” (presumably normal and unauthorized) activities
and two users were conducting only legal activities. The system correctly identified both users
conducting “legal” activities by assigning intrusion probabilities of 0%, while the remaining users
had probabilities of intrusive activities between 12% and 48%. Output of the HIDS upon an alert
gives probabilities for a variety of attacks, e.g., data loss, denial of service, and so on, likelihood.

Li and Manikopoulos [95] model user profiles with one-class support vector machines
(OCSVMs), an unsupervised support vector machine (SVM) technique for detecting anomalies.
The OCSVM approach requires the user’s legitimate sessions to build the user’s profile, specifi-
cally using a year of Windows audit data. Authors focus on masquerade detection. This approach
allows for easier user management, such as adding and removing users, rather than multi-class
classification methods. Results show the two-class training achieves a detection rate of 63% with
a 3.7% false alarm rate and one-class training shows a 66.7% detection rate with a 22% false alarm
rate. Even though the one-class training approach results in increased false alarms, this is offset
by easier management and a reduction in training time.

Subsystems can monitor an abundance of system actions in the Windows OS. An anomaly de-
tection system is presented by Shavlik and Shavlik [133] that performs statistical profiling of users
and system behavior on Windows 2000. Measurements taken from 200 Windows 2000 attributes
at one second intervals generate approximately 1,500 features. Examples of features are encodings
of CPU utilization, data input-output quantities, process information, and differences and aver-
ages of current versus historical values, among others. The features are fed into Winnow [98], a
supervised algorithm in which each non-zero feature has a weighted vote for the positive class.
The weighted votes are then compared against a threshold to determine if there is an intrusion. To
train the weights, other users’ activity is labeled as anomalous and mixed with the current users’
data to create a binary labeled training set; hence, by using others’ activity as ground-truth anom-
alies, the overall detector is unsupervised, as no labeled “attack” data is needed. During training,
Winnow changes the weight of features that fired on incorrectly labeled instances, similar to per-
ceptron training. Winnow, is tested against a Naive Bayes (NB) classifier. Self-collected data from
multiple hosts is used for gathering a baseline for normal users, and the same from a held-out set
of hosts is labeled “intrusions,” with the motivation of identifying insider threats. Winnow yields
a 95% detection rate with a low false-alarm rate (under one per day per computer), while NB has
a 59.2% detection rate and has 2 false alarms per day.

Mehnaz and Bertino [103] present Ghostbuster, a HIDS that profiles users based on their file-
system access patterns and detects anomalies. The Linux utility blktrace’ is used to extract se-
quences of file access events. During the profile creation phase for each user, a feature vector is
created by encoding file access by sizes (with blocks as units), frequencies, and patterns of files ac-
cessed. Statistical outliers of file access size and frequencies are a cause for alerts, and a finite state
automata (FSA) for access patterns defines rule-based anomaly detection with six classes of anom-
alies. Performance evaluation is given for actual file accesses of 77 users for 560 target files over
eight weeks, four for training and four for testing. Results are given for many simulated attacks,
and overall high detection rates and low false-positive rates are reported; overhead is reported at
2%.

’See https://linux.die.net/man/8/blktrace.
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We note that research for utilizing audit log data for intrusion detection in a cloud environment
is a budding area of research, but is outside of the scope of this work [92, 109, 159, 163].

4 SYSTEM CALL IDSs

System call data is a popular choice for HIDS research, because they are a primary artifact of the
OS kernel; that is, there is no filtering, interpretation, or processing (such as, in the production
of log files) that can obfuscate events [24]. Often the unit of data used for detection is a system
call trace, a sequence of all calls invoked by a single process in a given time window. Hence,
these IDS developments sit at an OS-level, but the object of modeling is program level. System
calls can be collected for example with the “strace” utility, although there are many other ways to
collect this same information. Some common calls include “open,” “close,” “read,” “write,” “wait,”
“exit,” “mmap,” among many others. Modern OSes often have hundreds of syscalls, for example,
the “syscalls” Linux manual page lists over 300. Drawbacks of system-call-based approaches in-
clude the large computational overhead needed for harvesting and analysis and the large possible
variations that potentially lead to false positives [7].

Because each process produces a sequence of system calls, language modeling techniques are
prevalent for system call-based HIDSs. In particular, many variations on n-gram features and
Markov models (MMs) of sequences of calls are configured to produce normal/attack classifica-
tions. See Forrest et al. [34] for a more detailed survey of pre-2008 works leveraging system calls.
Critical insights from this section are as follows:

e While research has shown that normal processes can be profiled using system calls, wide
variations occur across processes, or for fixed processes across different user environments,
installation configurations, and so on.

e Detection results are quite sensitive to the length of sequence-based features with six- to
eight-grams being strong choices.

e Short sequences provide less computation during training but are easier to bypass than
longer sequences.

e Augmenting calls with other information, such as arguments of the calls, program counters,
and addresses, can yield higher accuracy with less overhead.

Overall, general trends indicate that features that model sequences are more costly than simple
frequency counts of individual features, but yield better detection. Finally, meta-trends show that
as labeled datasets become popular, a flurry of research ensues allowing IDS comparisons across
papers and testing of many standard machine learning algorithms to flourish. See Table 4, which
itemizes the system log works surveyed.

4.1 Sequential Features (n-Grams)

Early work of Forrest and Longstaff [35] provide preliminary HIDS results by characterizing nor-
mal (frequent) and then identifying abnormal (infrequent) short sequences of System calls. One
way to conceptualize the main idea is that System calls are “words,” sequences of calls form
“phrases.” The general trend incurs relatively large computational expense for feature extraction
and/or model training, but reap strong detection metrics.

Other anomaly detectors based, similarly, on modeling n-grams of system calls were explored
by others, but without statistically modeling their frequencies [58, 84]. Helman and Bhangoo [55]
rank system call traces by the likelihood of n-grams in normal versus attack scenarios. Ye et al. [162]
use set theory to design an algorithm that learns rules defining normal system call sequences, then
detect anomalies based on votes from the rules, although no testing is presented.
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Table 4. HIDS Leveraging System Calls
IDS Reference Technique Dataset Classifier Learning Classes
Forest et al.’96 [35] Anomaly  Simulated Rules Unsupervised Binary
Kosoresow et al.’97 [84] Anomaly  Self made FSA Unsupervised Binary
Hofmeyr et al.’98 [58] Anomaly  Simulated + Self made FSA Unsupervised Binary
Ghosh et al.’99 [39, 40] Hybrid DARPA 99 NNs Both Binary
Warrender et al.’99 [155] Hybrid UNM, DARPA98 Rules, HMM Unsupervised Binary
Sekar et al.’01 [132] Anomaly  Simulated + Self made FSA Unsupervised Binary
Wagner and Dean’01 [153] NA Self made Static Analysis NA Binary
Liao and Vemuri’'02 [97] Hybrid DARPA98 k-NN + Signatures Both Binary
Abad et al.’03 [1] Hybrid Self made RIPPER Both Binary
Feng et al.’03 [32] Anomaly  Simulated + Self made FSA Unsupervised Multi-class
Hoang et al.’03,’09 [56] Hybrid UNM HMM + Rules Unsupervised Binary
Kruegel et al.’03 [87] Anomaly  DARPA 99 BN Unsupervised Binary
Kruegel et al."03 [88] Anomaly  DARPA 99 Probability models Unsupervised Binary
Jha et al.’04 [66] Anomaly UNM Filtering, MM Unsupervised Binary
Tandon and Chan’05,’06 Anomaly  UNM, DARPA98 Rules Unsupervised Binary
[141, 142]
Han and Cho’05 [52] Anomaly  DARPA99 ENN Unsupervised Binary
Zhang et al.’05 [164] Hybrid DARPA98 k-NN, Robust SVM, Both Binary
SVM, OCSVM
Gao et al.’06 [37] Anomaly  Self made HMM-based distance ~ Unsupervised Binary
Hu et al.’09 [60] Anomaly  UNM, DARPA98 HMM Unsupervised Binary
Ahmed et al.’09 [2] Hybrid UNM RBFNN Supervised Binary
Tong et al.’09 [145] Hybrid DARPA RBFNN + ENN Supervised Binary
Ye et al.’10 [162] Anomaly NA Rules Unsupervised Binary
Jewell and Beaver’11 [65]  Anomaly  Self made Rules Unsupervised Binary
Elgraini et al.’12 [30] Anomaly UNM NB with a MM Unsupervised Binary
Xie et al.’13,’14 [156, 157,  Anomaly =~ ADFA-LD k-NN, OCSVM, Unsupervised Binary
158] k-Means
Creech and Hu’14 [24] Anomaly  UNM, ADFA-LD, KDD98 ELM NN Supervised Binary
Anandapriya and Anomaly  ADFA-LD SVM, ELM NN Supervised Binary
Lakshmanan’15 [4]
Gupta and Kumar’15 [45]  Misuse UNM Rules Unsupervised Binary
Haider et al.’15 [50] Anomaly  ADFA-LD k-NN Unsupervised Binary
Rachidi et al.’16 [122] Anomaly  DARPA99 Silhouette, NB, MM Supervised Binary
Mouttagi et al.’17 [108] Anomaly  UNM, ADFA-WD NB, MM, Adaboost Supervised Binary

For each process, Jewell and Beaver [65] consider variable length sequence of system calls, de-
fined as an observed sequence of system calls for which no call occurs twice. Comparing this with
other sequential features, e.g., n-grams, they observe that the counts of the observed system call
sequences plateau for normal user activity faster than other definitions and that the counts spike
upon novel activity. With the goal of identifying malicious data exfiltration activities in real-time,
an experiment in which researchers were challenged to exfiltrate three file collections on a given
set of machines over two days is used to collect malicious and normal system call data, which is
used to validate the approach.

Elgraini et al. [30] estimate the probability of a sequence of calls conditioned on the class (nor-
mal/attack) using a first order Markov model (MM) —P(s1, sz, ...|C) = P(s1|C)P(sz2|s1,C).... Finally,
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a NB approach is used to find the most likely class. Results are compared to many other previous
classifiers on data from the University of New Mexico (UNM), finding that this method performs
similarly.

Creech and Hu [24] make two innovations for a HIDS based on kernel level system call traces,
(1) creating semantic features of system call sequences (phrases) by defining a context free gram-
mar and (2) using an extreme learning machine (ELM)—a neural network (NN) classifier of Huang
et al. [61]. This approach takes per-host training that is computationally costly, taking days or
weeks, although once trained, labeling (or decoding) is fast and accuracy results are very strong,
reported via the Receiver Operating Characteristic (ROC) curve using the Darpa98® and ADFA-
LD datasets. Anandapriya and Lakshmanan [4] also test anomaly detection results using semantic
features with the ELM on the ADFA-LD dataset.

Gupta and Kumar [45] define a signature for a program as the admissible bigrams of calls, specif-
ically those seen in training. This allows lightweight detection of programs with a variety of new
two-sequences of calls that gives highly accurate results as tested on the UNM dataset. Their work
discusses implementation for cloud infrastructure using multiple VMs.

Mouttagqi et al. [108] implement a Naive Bayes classifier on the older (2004) UNM dataset show-
ing very strong detection results, yet similar testing on the newer ADFS-WD dataset reveals se-
verely less impressive detection capabilities with all accuracy metrics (F1, detection rate, AUC,...)
20-40% worse. Markov models (MMs) of order 1-3, and Adaboost ensemble of MMs are also tested,
showing themselves drops in efficacy between UNM and ADFS-WD datasets, but exhibiting much
more impressive results. Authors’ conclude that the third order MMs are the best of the tested
models as it has the lowest error (2.4%), false alert rate (8.5%), and best detection rate (100%) on
the ADFS-WD data set.

4.2 Frequency-based Features: A Cheaper Alternative

In response to the costly but effective sequence-based features, research to develop and test more
computationally inexpensive, frequency-based features from system call traces finds, at least for
the AFDS-LD dataset, that such features still produce strong accuracy results.

Liao and Vemuri [97] regard traces as documents represented with the vector of TF-IDF scores
for each word (system call). The k—nearest neighbor (k-NN) with cosine similarity distance is used
for anomaly detection. If a process is classified as intrusive, then the whole session it belongs to is
also considered an attack session. Liao et al. performed the experiment using the names of System
calls recorded in Basic Security Module’ (BSM) audit data from DARPA9S dataset; they exhibited
over 90% TPR with under 2% FPR. The second experiment preempted this TF-IDF anomaly de-
tector with signature verification. First, each process is compared to a set of abnormal processes
using cosine similarity, and, if they match, the process is marked as intrusive. Otherwise, the k-NN
anomaly detection process is used to classify the process. This two-stage workflow produced 91.7%
detection rate and 0.59% false-positive rate with threshold of 0.8. This method is computationally
efficient, with complexity O(N), with N as the number of processes.

Continuing the system call/trace interpretation as words or documents, respectively, Zhang
et al. [164] propose two novel techniques to lower false positives. First, a modified TF-IDF score is
crafted from system call traces; second, the authors build a detector using supervised training with
Robust SVMs to battle noisy training data, OCSVMs for unsupervised training, and k-NN. Online-
training of the SVMs is used to decrease training time while preserving accuracy of intrusion
detection. Clean and noisy datasets are generated from system calls of privileged processes in the

8Darpa98 is sometimes referred to in other literature as KDD98.
9See https://docs.oracle.com/cd/E19457-01/801-6636/801-6636.pdf.
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DARPAUY9S dataset, these are used to compare each classifier with and without their modifications.
Results showed that the detection accuracy of the modified classifiers is the same or higher than
the baseline, when tested with both the clean and noisy datasets, while the training time ratio for
the modified SVM over the original is between 51.61% and 66.67% (i.e., retraining is significantly
faster).

Xie and Hu and Xie et al. [156-158] consider simple features such as a trace’s length, and the
relative frequency of each call in that trace, and achieve “acceptable” detection results (i.e., ROC
curves) in their testing with the ADFA-LD dataset, using simple one-class classifiers; namely, k-
NN, OCSVM, and k-means algorithms.

Haider et al. [50] propose using different, but still inexpensive, statistical features on system call
traces of the ADFA-LD dataset, with the same goal of fast performance of transforming data to
features without sacrificing accuracy of detection. Four features, namely, the least/most repeated
and the minimum/maximum values in a trace, are used to represent a trace to detect attacks, and
three supervised learning algorithms, SVM with linear and radial basis kernels and k-NN, are used.
Results show k-NN receives a 78% TPR, average(FPR, FNR) = 21%. These results increased the TPR
over works of Xie & Hu, and Xie et al. [156-158], for similar false-positive metrics, but are far less
accurate than the computationally expensive work of Creech et al. [24]. Although this set of work
used the same dataset, it is not clear from the authors’ treatment if the experiments provide a fair
comparison across papers.

4.3 Hidden Markov Models (HMMs) for System Call Modeling

HMMs are a natural data model for sequential data and many other works employ HMMs for
system-call-based IDSs. Warrender et al. [155] compare four methods of detection based on n-
grams of system call traces: list-and-lookup of observed sequences, relative frequencies, RIPPER
rule induction algorithm of Cohen [22], and HMMs. Their conclusions indicate that sufficiently ac-
curate detection results are achievable by more computationally efficient algorithms than HMMs,
and that accuracy results are more dependent on test datasets than the algorithm chosen.

Gao et al. [37] create a novel HMM-based metric that reports better IDS results than their pre-
vious “evolutionary distance (ED)” metric, while also obtaining 6% faster performance.

Hoang et al. [57] develop a hybrid detection scheme that uses both a HMM to model system call
sequences and a “normal” database, which includes the frequency of each observed database short
sequence. Fuzzy rules are defined to classify a newly observed sequence and take into account the
sequence’s probability (computed via the HMM) and frequency in the normal database.

HMM training is performed using an incremental method in conjunction with an initial param-
eter optimization method to reduce the high cost incurred during computation. Validation on the
AFDA-LD dataset exhibit a lowering of false-positive rate of 48% while indicating greater anom-
aly detection than a “normal-sequence database scheme and a two-layer scheme.” In addition, the
HMM training time realized a 75% reduction while simultaneously decreasing the memory usage.
This hybrid approach follows their earlier work [56], where first the “normal” database is used
to determine frequency, and second HMM-likelihood is computed detect anomalies of only those
sequences of system calls that are rare or unseen in training. Experiments on the UNM’s dataset
(only using sendmail program traces) prove that this approach is better in detecting anomalous
behavior of programs in terms of accuracy and response time than a conventional single layer
approach; however, the HMM model training is expensive. The integrated system is able to pro-
duce higher levels of anomaly signals as soon as an intrusion occurs. Known problems include
storage requirements, reducing the training cost of the HMM, and determining the parameters of
the model automatically.
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Hu et al. [60] propose a pre-processing and training approach for HMMs that halves train-
ing time of traditional HMMs with “reasonable” accuracy, i.e., with some adverse effect to the
false detection rate as tested on UNM and DARPA98 datasets. In general, the work breaks train-
ing sequences into many small sequences, and train many “small” HMMs, and finally take take a
weighted average.

4.4 Other System Call IDS Works

Jha et al. [66] introduce a novel statistic-based anomaly detection algorithm for system call se-
quences. They observe that after Markov models (MMs) are learned from observed sequences of
System calls, an observed sequence is assumed to be a mixture of the learned models and a chaotic
model. Bayesian techniques are used to optimized the mixing parameter, and if it is greater than a
specified threshold, an alert is raised. By using mixtures of Markov chains, their filtering approach
can model mixtures of system call traces from multiple users, potentially in cases involving mul-
tiple users cooperating. Additionally, the filtering-based approach can address the masquerade-
detection problem, allowing for the identification of the user that generated a given execution
trace based on usage patterns. Results for many configuration parameters are given on the UNM
data set. Comparing this technique to HMMs, one finds that Markov chain training is O(m), with
m the length of the trace, while HMM training has complexity O(n = m?), where n denotes the
number of HMM states.

Ghosh et al. [39, 40] test artificial neural networks (ANNs) for misuse (supervised) and anomaly
detection (unsupervised) using the DARPA99 dataset. For anomaly detection, a NN is trained using
normal data and randomly generated data (for simulated attacks). ROC curves are given showing
strong results, notably, a TPR of 77.3% and a FPR of 2.2%.

Han and Cho [52] introduce an IDS utilizing evolutionary neural networks (ENNs) to simulta-
neously calculate the NN’s structure and weights. For labeled training data, ambient system call
sequences are labeled normal (non-attack) and randomly generated sequences are labeled anoma-
lous (attack) at a rate of 2-to-1. Experiments with an ENN produced a 0.0011% false-alarm rate
while obtaining a 100% detection rate using the DARPA99 data set. Performance shows that train-
ing the ENNs takes about an hour; in comparison, this is about order of magnitude longer than
training any single, comparably structured NN, but about an order of magnitude less than a grid
search over many traditional NNs.

Tong et al. [145] propose a new hybrid IDS using Radial Basis Function (RBF) NN with Elman
NN (EINN) for both anomaly and misuse detection. RBFNN classifies events in real time, pass-
ing output as an input into the EINN. Positively (respectively, negatively) detected events by the
RBFNN increase (respectively, decrease) a context weight in the EINN, which improves accuracy
and decreases the false-positive rate. This technique is advantageous due to its memory of prior
seen sequences—it is robust to sparse occurrences of misuse or anomalies but will detect high
temporal density of anomalies and misuse—and it exhibits faster training time, as compared to the
Multilayer Perception (MLP) NN IDS of Ghosh et al. [39]. Evaluations with the DARPA dataset
resulted in an anomaly detection accuracy of 93%, false-positive rate of 2.6%, and a misuse de-
tection accuracy of 95.3% with a 1.4% false-positive rate. Results were compared to [39] and [69],
ultimately producing higher accuracy and lower false-positive rates.

Ahmed and Masood [2] test radial basis function NNs on the UNM dataset, exhibiting accurate
detection. Explicitly, they optimize y(x) = 3N w;¢,, (x — 11;), for a spherical radial basis function ¢
centered at y; with variance 0'1.2 (ie., ¢o, (x) = exp(—cfi_z lx?)) to learn w;, o;, i, and they augment
the training algorithm to also learn N, the number of basis functions.

Wagner and Dean [153] use static analysis to automatically derive three models of application’s
system call behavior. Immediate detection of a program’s wrongful behavior allows for the
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detection of intrusions. More generally static analysis is a large area of research that is outside
the scope of this HIDS survey. See other static analysis surveys [63, 106].

Kruegel et al. [87] create anomaly detectors modeling four features of system calls. These four
detectors outputs are dependent nodes in novel Bayesian network (BN), along with dependent
nodes for the four detectors confidence, and a single independent node for the classification. Re-
sults show perfect detection rates with a 0.2% FPR. Training time is costly (NP-hard), but labeling
is O(N) with N as the number of nodes in the network.

4.5 Using System Call Arguments and Additional Data

In addition to modeling the system calls, incorporating the arguments of the calls or memory
pointers has garnered IDS results.

Abad et al. [1] describe an IDS based on correlating network traffic to system calls and aiming
to increase the detection rate and decrease the false-positive rate for both misuse and anomaly
detection. Two approaches were taken, top-down, where attacks’ behavior is analyzed to identify
which logs can contain evidence of attack, and bottom-up, where multiple logs are analyzed to
detect a specific attack. The bottom-up approach finds attacks through log correlation, and since
logs may have millions of entries, the RIPPER data-mining tool is used for record filtration. To con-
duct the experiment, the authors used RIPPER, a rule mining algorithm that attempts to “predict
the next system call,” combined with log correlation using both System calls and network traffic.
These ideas follow from work of Lee and Stolfo [93]. Results show an increased detection rate and
a decreased false-positive rate.

For each system call (e.g., read, write, etc.) for each process (e.g., sendmail), Kruegel et al. [88]
build models of normal arguments’ string lengths, characters, and structure. Similar features found
in Kruegel et al. [87] are used on system calls, not arguments. For anomaly detection, arguments
with sufficiently different features are flagged, and the detector exhibits strong detection accu-
racy. Overhead is investigated, showing about 5 Kb of memory is required, and 18% (of a 2003
era) processor was used. Follow-up research of Mutz et al. [110] uses the same Bayesian network
of Kruegel et al. [87] to combine these system call argument feature anomaly detectors into an
ensemble.

Tandon and Chan [141, 142] develop an anomaly detection system based on rule learning tech-
niques that leverage both system calls and their arguments. Results show gains over using just
System calls, but at significant computational expense (an order of magnitude higher). Similarly,
other works leveraging the arguments of System calls to enhance system-call-based detectors be-
came prevalent at this time; e.g., see Bhatkar et al. [9] and Sufatrio and Yap [138].

Sekar et al. [132] use finite state automata (FSA) to model the programs’ code path by combin-
ing System calls (transitions between states) with program counter information (to learn states).
This is a computationally cheaper approach than the HMM and n-gram techniques, and also im-
proves accuracy over these techniques. To create a model of the virtual path between calls, Feng
et al. [32] incorporate dynamic extraction of return addresses in addition to the FSA approach,
yielding additional accuracy without increased cost.

Rachidi et al. [122] consider a novel pre-processing approach of clustering the attributes
(arguments, permission artifacts, domain knowledge from rules) of system calls in each process
to obtain canonical system call + attribute representations. More specifically, for a given process
and system call, all collections of attributes that occur with an instance of the given system call
in an instance of the given process are clustered. Cluster centers then give a canonical system call
+ attribute representation, and the sequence of system calls constituting a process are replaced
by their representative. Much of the work for this representation is in defining metrics on the
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Table 5. Registry Anomaly Detection Systems

IDS Reference Technique Performance Cost Memory Cost Classes
Apap et al. ‘02 [7] PAD O(v*d?) O (vd?) Binary
Heller et al. ‘03 [54] OCSVMs  O(dL?) O(d(L+T))  Binary
Stolfo et al. ‘05 [137] OCSVMs  O(dL?) OWd(L+T)) Binary

Topallar et al. ‘04 [146] SOM

Here v denotes number of unique records, d the number of features, L the number of training records,
and T the number of testing records.

attributes. Finally, Naive Bayes and Markov models are used as a supervised classifier on the
DARPA99 dataset. Accuracy results are reported per classifier, per program.

4.6 System Call Mimicry Attacks

Finally, we note that system-call IDS developments are met with research designing attacks to
evade such measures, with key ideas including “mimicry” attacks, where null-effect calls pad the
malicious sequence of effective calls [41, 71-73, 86, 153] or malicious call sequences are sufficiently
small to evade detection [139, 140].

5 WINDOWS REGISTRY IDSs

Windows Registry is the OS’s key-value database containing configuration settings for all pro-
grams and hardware on that host. This database is heavily used during computer operation. All
processes use the Registry, including malware that also often modify the Registry to achieve their
aim [59]. Consequently, Registry monitoring has been leveraged by many researcher efforts for
forensic analysis [17, 28, 101]. Below, we survey the few works that build HIDS from Registry
data. See Table 5 for the anomaly detection systems using Registry data.

Initial work by Apap et al. [7] proposed the Registry Anomaly Detection (RAD) system, con-
sisting of three components, an audit sensor to log Registry activities, a model of normal behavior,
and a real-time anomaly detector. RAD extracts five raw features from Registry accesses, namely:
(1) the process accessing the registry, (2) the query type requested, (3) the key used, (4) its value,
and (5) the outcome (e.g., success, error) called the response. Importantly, any anomaly detection
algorithm that can accommodate these sparse feature vectors is applicable. In this initial work,
the probability of each feature (5 distributions), and conditional probability of pairs of features (20
distributions) are estimated following Friedman and Singer [36], and the detection system alerts if
any of the 25 estimates are below a threshold. An advantage of this estimation is that models are
continually updated without any user interaction.

Heller et al. [54] and a follow-up publication of Stolfo et al. [137] both test OCSVMs for the
anomaly detection component of RAD with three different kernels and conclude that the prob-
abilistic anomaly detector (PAD) of Apap et al. is much more accurate. Computational analysis
is also given. PAD takes time O(v%d?) and space O(vd?) where v denotes the number of unique
records, and d denotes number of record components (dimension). The OCSVM takes time O(dL?)
and space O(d(L + T)) where L, T denote the number of training records, and testing records, re-
spectively. The comparison of algorithms was conducted on Pentium Celeron with 512MB RAM
with memory usage of under 3 MB, and 3%-5% of CPU usage.

Topallar et al. [146] refer to the RAD system, but propose the use of Self-Organizing Maps (SOM),
a NN model, as an algorithm for anomaly detection. The abstract claims their results demonstrate
a low false-positive rate in comparison to other IDSs (paper is in Turkish preventing a detailed
summary).
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Table 6. File System Detection Systems

IDS Reference Name Rule Base

Kim and Spafford’94 [81]  Tripwire Checksum

Griffin et al.’03 [43] Disk-Based IDS Policy

Pennington et al.’03 [117]  Storage-based IDS  Checksum and policy
Patil et al.’04 [116] I°FS Checksum and policy

6 FILE SYSTEM IDSs

This section surveys work that propose or test IDSs that monitor host file-systems for detection.
File systems have visibility to stored data, executables, and metadata used to service file requests.
Malicious actions often involve modifying or adding new files or metadata (e.g., to allow unautho-
rized future access or remove evidence of previous access), leveraging file systems to monitor files,
access to files, or determine legitimacy of any requests to the file system is a promising avenue for
intrusion detection and prevention. Since file-system IDSs are logically separate from the OS, they
are harder to disable and allow monitoring after compromise. The primary drawback of storage-
based IDSs is their limited visibility. Table 6 gives the file system detection works surveyed.

First available in 1992, Tripwire,!* from Kim and Spafford [81], is perhaps the most notable
file-integrity tool. Tripwire is an open-source and now commercially available IDS for detection
and remediation of malicious file and configuration changes originally designed for the UNIX
system. A checklist of information about important files is created periodically and compared
against previous versions to detect unexpected or unauthorized file changes. Details of the original
system implementation and use are reported in the publication cited above. Notably, the system
was deployed and in use before the publication.

Griffin et al. [43] implement “IDS functionality in the firmware of workstations’ locally attached
disks,” where the majority of system files lie. The Intrusion Detection for Disks (IDD) system
monitors the file system for suspicious file manipulations, such as unauthorized reads, writes,
file meta-data modifications, suspicious access patterns, compromises of file integrity, or other
events that may indicate an intrusion. Since this IDS is required to run on separate hardware, it is
protected even if the system it is monitoring has been compromised, so long as the storage device
and administrative computer are uncompromised. The system has four main design requirements:
specifying access policies, securely administrating the IDD, monitoring, and responding to policy
violations. The system’s architecture consists of three main components: (1) the bridge process
on the host computer, to connect the administrator and IDD, (2) the request de-multiplexer, to
differentiate administrative requests from other requests, and (3) a policy manager on the IDD,
to monitor the system for violations and generate alerts. An evaluation using a prototype disk-
based IDS into a SCSI (Small Computer System Interface) disk emulator and using PostMark trans
and SSH-build filesystem benchmarks indicates that it is feasible to include IDS functionality in
low-cost desktop disk drives, in terms of CPU and memory costs.

Pennington et al. [117] propose an Intrusion Detection on Disk, a rule-based IDS embedded in
the storage interface and monitoring the file system. The system prototype uses a set of rules to
monitor important files and binary changes (following Tripwire [81]) and rules to detect patterns
of changes to the file system. Testing on 16 rootkits and two worms shows that 15 are identified
by the IDS, and three of the detected 15 modify the kernel to hide from other file-system integrity
checkers (e.g., Tripwire). Examples of alerting activities include “modifying system binaries, adding
files to system directories, scrubbing the audit log, or using suspicious file names.” The overhead

10See www.tripwire.org.
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Table 7. Program Analysis for Detection Works

IDS Reference Data Source Classifier Learning Classes
Schultz et al.’01 [131] Binaries, DLL, calls RIPPER, NB, MNB  Supervised Binary
Newsome and Song’05 [111]  Binaries Signatures Unsupervised  Binary
Moscovitch et al.’07 [107] Program resource utilization DT, NB, BN, ANN  Supervised Binary
Khan et al.’16,’17 [79, 80] Process network utilization =~ AdaBoost Supervised Binary
Vaas and Happa’17 [148] Binary

of the system is investigated, and results show under 2 MB of memory is needed. The primary
advantages of this storage-based IDS are its independence from the host (if the host system is
compromised, extra steps are necessary to disable this IDS), and that modifications to the storage
device are necessary if any malware is to persist across reboots.

Patil et al. [116] describe I°FS, an In-kernel Integrity checker and Intrusion detection File Sys-
tem; this is an IDS based on real-time, in-kernel, on-access integrity file checking. The proposed
IDS is modular and can be mounted on any file system. The main goal is to restrict access and
notify administrators if an intrusion is detected. The system is compared against Tripwire [81]
and can overcome its limitations—intruder tampering, large performance overhead, and inability
of real-time detection. I’FS uses security policies and cryptographic checksums of files computed
using MD5, and stores both in four in-kernel Berkeley databases: policy, checksums, checksum
metadata, and access counter databases. IDS security is implemented by adding an authentication
mechanism that allows for file calls interception and by using policies and previously computed
checksums to determine file integrity to allow or deny access to those files and possibly alerting
system administrators. I°FS is primarily designed to prevent replacement of legitimate files with
files containing malicious content, unauthorized modification of data, and data corruption. The
system was tested using CPU, I/O, and custom read benchmarks. Results indicate that performance
overhead under normal user workload is 4%, and can be modified by setting system parameters
and changing system policies.

File system monitoring is frequently used in HIDSs that leverage virtual environments. Quynh
and Takefuji [121] propose monitoring a system by implementing sniffing and forwarding file sys-
tem call logs (e.g., map, open, write) to a privileged VM. Ko et al. [83] design a “file-centric logger”
that watches file accesses and transfers and can be implemented in cloud VMs and physical envi-
ronments. A tool is provided for the end user to verify personal file tampering. Gupta et al. [46, 47]
describe a lightweight and platform independent HIDS based on monitoring file system integrity
while running as privileged VM. Jin et al. [68] implement VMFence, which includes file integrity
monitoring, among other (network-oriented) features.

Distributed and more comprehensive IDS architectures leveraging file-integrity for detection
exist as well, see Demara et al. [26]. Their work also provides a short survey of existing frameworks
for file-system IDSs.

7 PROGRAM ANALYSIS AND MONITORING TECHNIQUES

This section focuses on a few works that leverage information about processes, process trees,
or specific binaries on a host for detection. We note that this has significant overlap with other
security sub-fields, such as dynamic malware analysis and application vulnerability analysis. A
detailed survey of these related topics is out of scope for this survey. See Table 7, which itemizes
the works using program analysis for detection.

Schultz et al. [131] describe a framework for automatic detection of malicious executables before
they run. Different data-mining algorithms are explored to determine the best algorithm for new
binaries.
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Table 8. Schultz et al. [131] Results

Algorithm  Feature Type TPR FPR
Signatures Bytes 33.75% 0%
RIPPER DLLs 57.89% 9.22%
RIPPER DLLfunction calls 71.05% 7.77%
RIPPER DLLs with counted function calls  52.63% 5.34%
NB Strings 97.43% 3.80%
MNB Bytes 97.76% 6.01%

Here TPR is true-positive rate and FPR is false-positive rate.

Experiments used three data-mining algorithms; RIPPER, NB, and Multi-Naive Bayes (MNB),
and five types of features—Dynamically Loaded Libraries (DLL) used by the binary, DLL function
calls made by the binary, number of unique function calls within each DLL, strings extracted from
binary files, and byte sequences. To conduct the experiment, a dataset of malicious and benign
executables were created from McAfee’s virus scanner. Results were compared to conventional
signature-based detectors and are summarized in Table 8.

Developed by Newsome and Song, TaintCheck [111] is a system that marks data as “tainted”
if it comes from an untrusted source, tracks movement of data dynamically during execution of
programs, and uses signatures to alert when tainted data is used inappropriately. Data originating
from or influenced by any input, e.g., memory addresses and format strings that are not supplied by
the code itself, i.e., are supplied by external inputs or mathematical computation, are considered
tainted, and when used unsafely indicates likely vulnerable code. TaintCheck identifies tainted
code, then monitors instructions that manipulate it (e.g, MOVE, LOAD, PUSH instructions), and
finally identifies if the data is used in a manner that violates set policies (e.g., as input to a system
call). It reliably detects most types of exploits while producing no false positives, and it permits
semantic analysis using signatures.

Moscovitch et al. [107] test four machine learning techniques: DT, NB, BN, and ANN. Each has
different feature subsets to detect unknown malware based on characteristics of known malware,
in particular worms, using computer measurements, such as memory usage, disk usage, CPU us-
age, and so on. To examine worm behavior, the authors used five known worms, which all perform
port scanning and other actions. A variety of configurations were created, using machines with
different hardware and using different levels of activity from background tasks and user tasks.
Four hypotheses were tested: the method can reach detection accuracy of known malware above
90% and detection accuracy of unknown worms above 80%; the computer configuration and back-
ground activities have no significant influence on detection; furthermore, at most 30 features are
needed to attain the same accuracy as full set. All goals were achieved, with BNs consistently
producing accurate results.

Khan et al. [80] introduce using fractal dimension theory [82] to analyze parent/child process
counts as a feature for detecting malware. Follow-up work by Khan et al. [79] models polymorphic
malware with fractal analysis of the process tree and build an anomaly detection HIDS based on a
modified AdaBoost ensemble classifier, which assigns higher weights to weak classifiers and puts
emphasis on misclassified samples to improve their estimation. A host sensor is utilized to collect
the network profile of processes (process ID, time started, and the process’s network connection
information) and modules on Windows 7 OS. To conduct the experiment, authors collected 333,692
data samples for one hour and used malware detected by three out of 54 antivirus companies,
according to VirusTotal.'! To build a classifier, the dataset was partitioned into 70% and 30% as

See www.virustotal.com.
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training and testing sets, respectively. Results indicate that the proposed AdaBoost algorithm
reduces the error 60% more than the traditional algorithm with 30 less iterations. A comparison
shows an improvement in detecting true positives from 93.93% to 95.27% and a reduction of
false negatives from 6.06% to 4.73%; however, detection of true negatives decreased from 100% to
97.14% and false positives increased from 0.0% to 13.7%. A similar fractal approach by many of the
same authors, Siddiqui et al. [134] uses k-NN with a fractal weighting approach on network data
for detection.

Vaas and Happa [148] design a client-server architecture that observes process’ memory con-
sumption. Snapshots of each process are collected over a time window containing its resource
utilization and timestamp, with the goal of identifying anomalous behavior of a machine’s pro-
cesses on a per-application basis. The method consists of three phases: acquisition, learning, and
production. A memory fingerprint is gathered during the acquisition phase. During the learning
phase, a model of each application is computed from the fingerprint and the model is used to cre-
ate an anomaly detector. During the production phase, the quality of the model is assessed. The
model is then tested with user process data, and results indicate an ability to distinguish processes
by their virtual memory fingerprints. To increase efficiency during the learning phase, to make
application models available more quickly, parallel machine learning techniques are utilized.

DATASETS

Intrusion detection evaluation datasets are important resources for validation, comparison, and
experimentation. Popularity of a labeled dataset among researchers allows comparison of detec-
tion metrics or performance across publications, and in many cases has stimulated a flurry of IDS
research on a particular data source. Common pitfalls of such datasets are artificial artifacts cor-
related with targets, unrealistic attacks, and redundant or missing data, among others.

To assist researchers, we have compiled the datasets commonly used in the HIDS research liter-
ature with a brief description of their contents, and noteworthy advantages or drawbacks. Table 9
gives itemized information at a glance, and the website for each data source is at the conclusion
of its description in the text.

Information Marketplace for Policy and Analysis of Cyber-Risk and Trust (IMPACT)
The Department of Homeland Security maintains the IMPACT database.!? Formerly
known as PREDICT, the “Protected Repository for the Defense of Infrastructure Against
Cyber Threats,” IMPACT contains recent network operations data contributions from de-
velopers around the world aiming to improve cyber-risk research and development. The
cyber-related dataset repository is publicly available.

Digital Corpora Computer forensics education research data including disk images, memory
dumps, network packet captures, and so on, is publicly usable in this database. Addition-
ally, Digital Corpora provides a research corpus of worldwide, real data; however, usage
is limited.

DARPA Intrusion Detection 1998, 1999, and 2000 The “Cyber Systems and Technology
Group” of MIT Lincoln Laboratory, working with DARPA (Defense Advanced Research
Projects Agency) and AFRL (Air Force Research Laboratory), created the first public,
standard corpora intended for evaluation of computer network intrusion detection sys-
tems [90].

The 1998 dataset is a widely-used collection of known attacks, and consists of sys-
tem call-based audit data and network data, including full packet capture. The data is

12See https://www.impactcybertrust.org.
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Table 9. Datasets and Public Datasets and Dataset Collections

Name/Abbreviation Data Source Attack Class Website

IMPACT NA Various http://www.impactcybertrust.org

Digital Corpora Database NA Various http://digitalcorpora.org

DARPA’98,’99,"00 Network traffic, DOS, U2R, R2L, http://www.ll.mit.edu/mission/communications/

System calls PROBE cyber/CSTcorpora/ideval/data

KDD99 Network traffic DOS, U2R, R2L, https://kdd.ics.uci.edu/databases/kddcup99/
PROBE kddcup99.html

NSL-KDD Network traffic DOS, U2R, R2L, http://www.unb.ca/cic/research/datasets/nsL.html
PROBE

GURE-KDD PCAPs DOS, U2R,R2L,  http://aldapa.eus/res/gureKddcup
PROBE

UNM System calls Buffer overflows, http://www.cs.unm.edu/~immsec/systemcalls.htm
symbolic link,
trojans

ADFA-LD, ADFA-WD, System calls Exfiltration, https://bit.ly/2GDWrM]

ADFA-WD:SAA DDoS, other

Active DNS Project
SecRepo

Malware Traffic Analysis
NETRESEC
CTU 13

Malware Capture Facility
Project

The Honeynet Project

VAST Challenge 2013

DNS PCAPs

malware, NIDS, host

logs, PCAPs
Malware, PCAPs
PCAP DBs list

Network flow,
PCAPs

PCAPs

Malware, PCAPs,
logs

Network flows, logs

Malware, spam,
phishing, other

Various

Malware
Various
Botnet

Botnet, Various
Various

DOS, FTP exfil.,
other

https://www.activednsproject.org
http://www.secrepo.com

www.malware-traffic-analysis.net
www.netresec.com/?page=PCAPFiles
https://goo.gl/iYWQq3

https://www.stratosphereips.org/datasets-malware
http://honeynet.org/challenges

http://vacommunity.org/VAST+Challenge+2013

VAST Challenge 2012 Network logs Botnet, scanning, http://vacommunity.org/VAST+Challenge+2012
exfil.

UNSW-NB15 PCAPs Fuzzers, https://www.unsw.adfa.edu.au/
backdoors, DoS, australian-centre-for-cyber-security/
exploits, recon, cybersecurity/ADFA-NB15-Datasets/
other

CAIDA PCAP headers, other Unlabeled http://www.caida.org/data

internet data

Unified Host and Network and host Unlabeled https://csr.lanl.gov/data/2017.html

Network Dataset audit data

Comprehensive Authentication, DNS, unspecified https://csr.lanl.gov/data/cyber1/

Processes, Network  red-team events

flows

Mulit-Source Cyber-
Security Events

User-Computer None
Authentication Assoc-

iations in Time

Authentication logs https://csr.lanl.gov/data/auth/

comprised of praudit!® and 1list files, as well as packet captures from tcpdump; The
attacks conducted to generate this dataset were not automated, and they are considered
high footprint attacks by subsequent researchers [51].

13See https://docs.oracle.com/cd/E19253-01/816-4557/auditref-76/index.html for description of the praudit command.
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Numerous issues have been documented with this dataset [14, 99, 100]. Brugger and
Chow [14] noted several issues with the dataset including inability to accommodate the
latest attack trends, and the majority of malicious connections consisting of denial of
service attacks and probing activity.

The 1999 dataset consists of a series of network packet dumps and BSM system call
records. The data has been widely used in the intrusion detection and networking com-
munity, even though it is known to have a number of artifacts of its creation, including
the lack of damaged or unusual background packets and uniform host distribution [99].

KDD Cup 1999 (KDD99) This dataset was created by processing the tcpdump!* portions of
the DARPA98 dataset. It provides labeled data for intrusion detection and contains four
attack types; DoS (denial of service), U2R, R2L, and PROBE [114]. However, evaluating
machine learning algorithms, such as DTs [94, 119], NNs [74], and SVMs [31], with KDD99
substantiates that it is not possible to accurately detect U2R and R2L attacks. Sabhnani
and Serpen [127] investigated the KDD dataset deficiencies and concluded that for the
U2R and the R2L attack categories no trainable pattern classification or machine learning
algorithm can achieve an acceptable level of misuse detection performance on the KDD
testing data subset if classifier models are built using the KDD training data subset. This
is due to the omission of attacks and their records from the training data subset.

NSL-KDD The NSL-KDD dataset was created to improve upon the shortcomings of the
KDD?99 dataset. KDD99’s record redundancy hinders an algorithm’s ability to learn by
causing a bias against infrequent records and, in turn, overlooking harmful attacks. This
issue was resolve with the removal of duplicate records in both the training and testing
sets. Consequently, the reduction makes it feasible to run the experiments on the full set
without requiring random subset selection [143].

GureKddcup and GureKddcup6percent GureKddcup consists of the KDD99 connections
with added network packet payload that allows for direct extraction by learning algo-
rithms. The GureKDDcup dataset is generated by following the same steps as the KDD99
dataset and consists of numerous redundant entries. Bro-IDS is used for processing the
tcpdump files to acquire connections along with their attributes. All connections are la-
beled with MIT’s “connections-class” files [128]. The original dataset size is 9.3 GB, and
the 6% dataset size is 4.2 GB [118].

University of New Mexico dataset (UNM) In 2004, the UNM dataset was released consist-
ing of four datasets of systems calls executed by active processes; “Synthetic Sendmail
UNM, Synthetic Sendmail CERT, live lpr UNM, and live Ipr MIT” [30]. Several programs
are included “(e.g., programs that run as daemons and those that do not), programs that
vary widely in their size and complexity, and different kinds of intrusions (buffer over-
flows, symbolic link attacks, and Trojan programs)” [113]. The dataset consists of both
“synthetic” and “live” traces, and a trace consists of a list of a unique process’ system
calls. The UNM dataset is as antiquated as the KDD data and focuses on individual pro-
cesses rather than the entire OS [23].

ADFA IDS datasets (ADFA-LD, ADFA-WD, and ADFA-WD:SAA) Since performance on
the Darpa98 and KDD99 datasets does not represent true performance against contem-
porary attacks, ADFA was developed as a modern benchmark for HID. The ADFA IDS
labeled dataset is the successor of the KDD collection using the latest publicly available
exploits and methods. There are three groups of data with raw system call traces: training,

14See https://danielmiessler.com/study/tcpdump/ for a tutorial on the tcpdump command/tool.
ACM Computing Surveys, Vol. 52, No. 6, Article 128. Publication date: November 2019.

RIGHTSE LI MN iy


https://danielmiessler.com/study/tcpdump/

A Survey of Intrusion Detection Systems Leveraging Host Data 128:25

testing normal, and testing attack. The dataset is designed for use with an anomaly-based
IDS so there are no attack traces used during training.

All training and validation data traces were gathered under normal host operations,
during activities varying from browsing the web to LaTeX document generation. The
ADFA dataset contains more similarities between attack data and normal data than either
the Darpa98 or the KDD99 datasets. This allows for a more accurate portrayal of cyber
attacks and better assessment of IDS performance [23].

Two Windows OS specific datasets were generated to protect from zero-day attacks,
stealth attacks, data exfiltration, and DDoS attacks. ADFA-WD is comprised of known
“Windows-based vulnerability oriented zero-day attacks” and ADFA-WD:SAA is an ex-
pansion used for resistance validation of prospective HIDS [49].

Active DNS Project Over a terabyte of “unprocessed DNS packet captures” (PCAPs) along
with a plethora of daily de-duplicated DNS records [85].

Security Repo (SecRepo) The SecRepo is a compilation of security data including mal-
ware, NIDS, Modbus, and system logs. Additionally, it consists of several of the following
datasets.

Malware Traffic Analysis Samples of malware binaries and PCAPs are provided along with
an active campaign listing.'®

NETRESEC Data This data provides a list of publicly accessible packet capture repositories
via the Internet.

CTU 13 The data contains 13 datasets,'® each containing a malware binary, a network flow
.csyv file from the ARGUS flow sensor,!” and PCAP file(s) with botnet traffic. Included in
every dataset is a readme file providing information for which IPs are infected or attacked
and how [38].

Malware Capture Facility Project This dataset is an extension of the CTU 13 dataset,
and consists of the similar information from around 350 attacks pertaining to malicious
PCAPs.

The Honeynet Project Consists of a variety of data from all of the challenges, including
PCAP, malware, and logs.

VAST Challenge 2013 Mini-Challenge 3 This is a cybersecurity challenge that includes
data related to network flow, network status, and intrusion prevention systems. However,
there are sizable data gaps.

VAST Challenge 2012 This challenge consists of two smaller tasks. The first involving sit-
uational awareness (e.g., metadata and intermittent status reporting) and the second in-
volving forensics (e.g., Firewall and IDS logs).

UNSW-NB15 A comprehensive dataset for NIDS containing nine attacks types: Fuzzers, Anal-
ysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. The AR-
GUS flow sensor and Bro-IDS'® tools are used along with the development of twelve al-
gorithms for the generation of 49 features with the class label.

Center for Applied Internet Data Analysis (CAIDA) The CAIDA Anonymized Internet
Traces 2016 annual dataset consists of anonymized traffic traces with a single trace gen-
erated quarterly. The internet traffic contains “application breakdown, security events,
topological distribution, and flow volume and duration.” Software capable of reading

15See http://www.malware-traffic-analysis.net/2018/index.html.

16See https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled- dataset-with-botnet-normal-and-background-traffic.html.
17See http://qosient.com/argus.

18See https://www.bro.org/sphinx/broids/index.html.

ACM Computing Surveys, Vol. 52, No. 6, Article 128. Publication date: November 2019.

RIGHTSE LI MN iy


http://www.malware-traffic-analysis.net/2018/index.html
https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-botnet-normal-and-background-traffic.html
http://qosient.com/argus
https://www.bro.org/sphinx/broids/index.html

128:26 R. A. Bridges et al.

Table 10. DARPA Attack Classes

0

Normal
1 Probe
2 DoS
Compromises
3 U2R
4 R2L

packet captures (PCAPs) in tcpdump format can read the traces. All traces are made
anonymous with the same key using “CryptoPan prefix-preserving anonymization” and
there is a complete packet payload removal. There is a negligible quantity of packet lost
for some data [112].

Unified Host and Network Dataset The “Unified Host and Network Dataset” consists of
both network and host event data gathered from Los Alamos National Laboratory (LANL)
over approximately ninety days. The host event logs come from Microsoft Windows OS
machines and the network event data comes from “router network flow records.” Al-
though there is overlap in the Windows OS machines use for both the network and host
datasets, the network dataset also utilizes additional machines running other OSs [147].

Comprehensive, Multi-Source Cyber-Security Events This dataset contains anonymized
authentication logs, flows, processes, and DNS records that are from LANL’s network.
A separated set of the authentication logs from a red-team event are included, although
further details, such as attack methods used or exactly what red-team records are indeed
a malicious attempt are not provided [76, 77].

User-Computer Authentication Associations in Time This is a real, anonymized dataset
of over 7M authentication logs from LANL’s network [48].

7.1 Common Attack Types in Publicly Available Datasets

The records in the DARPA- and KDD-related datasets include attack types and can be classified
into one of five classes: Probe, DoS, U2R, R2L, and Normal.

Many papers included in this survey refer to the traditional attack classes by the numbering
convention provided in Table 10. The table and definitions provided below can be used as a quick
reference.

The last two classes are considered compromises and occur when an attacker gains privileged
access to host access after hacking into the system through insecure points. Compromises are
separated into two classes depending based on the source of the attack.

(1) Probing (surveillance, scanning): Attacker tries to gain information about the target host,
e.g., port scanning. These attacks collect lists of potential vulnerabilities through network
scans that can be utilized later in an attack against the machine or service.

(2) Denial of Service (DoS): Attacker tries to prevent legitimate users from using a service,
e.g., using SYN flood. These attacks an occur on both the operation system; targeting bugs,
or in the network; exploiting protocols and infrastructure limitations.

(3) User to Root (U2R): The attack is derived from within the system. An attacker who has
local access to the victim machine tries to gain root access by exploiting a vulnerability,
e.g., local buffer overflow attacks.
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(4) Remote to Local (R2L): The attack is derived from outside the system, over the network.
The attacker does not have access to any legitimate account on the victim machine; there-
fore, the attacker tries to gain access. This is commonly achieved through the Internet
using password-guessing attacks or exploits allowing remote code execution.

8 CONCLUSION

This survey provides an overview of IDS types including various locations and types of IDSs.
Related surveys are identified, and focus is given to HIDSs. To organize works and itemize the
available data sources, the HIDS literature is presented per input data source. In particular, sys-
tem logs, audit data, Windows Registry, file systems, and program analysis detection works are
sub-categories investigated. Specific sections are allocated for system call IDS and another for al-
gorithmic research tested on network-level data but applicable to host data. A large number of
works fall into these two categories because of the publicly available labeled datasets with these
types of data. We conclude with a subsection outlining limitations and budding directions for
HIDS research. Additionally, this survey compiles a supplementary list of many publicly available
datasets, with descriptions of their characteristics and shortcomings.

8.1 Suggested Future Directions

Although there is a wealth of IDS literature, successfully transitioned-to-practice HIDS techniques
are rare, with OCSEC and Tripwire as outstanding counter examples. This is due to a number of
factors that point to directions for future progress in HIDS research.

First, IDS research is constrained by limited available datasets and “in vitro” development (where
test environments fail to capture the complexities of real networks). For many data sources, there
are either no datasets publicly available, or those that are available are outdated, low-quality, lack-
ing in attack diversity, or contain other serious flaws. This leads to researchers often simulating or
otherwise building datasets that often lacks fidelity, complexity, or realistic benign activity. Alter-
natively, when real data is recorded and used, it is generally not sharable due to privacy or security
concerns, and may still contain many of the limitations above (e.g. lack of attack diversity.) As evi-
denced by the explosion of IDS research spawned by the few well-adopted datasets (DARPA, KDD,
UNM, ADFA, most notably), these facilitate quantifiable comparison of techniques across publica-
tions and provide accessible data to the hands of eager researchers, in spite of their many flaws.
Up-to-date efforts to curate and publicize realistic, attack-labeled, and ideally multi-source host
and network data sets will likely be met with a similarly large response from the IDS research
community. Moreover, for supervised learning techniques, addressing the question of training for
actual operational use is a necessity, e.g., providing a validated method for generating training
data that combines a real host’s/network’s data with labeled attacks.

Second, HIDS research is preoccupied with (admittedly important) detection metrics at the ex-
pense of understandability of alerts. Indeed, for adoption of an HIDS, gaining the user’s trust
in terms adequate testing to establish an acceptable true-to-false-positive balance is a necessity.
However, the myriad of publications that flex their statistical prowess and claim success upon in-
criminating detection rates often fail to provide actionable results to the operator. This “semantic
gap” problem is perhaps first established by the famous Sommer and Paxson work [135]. Security
information and event management (SIEM) tools, which correlate alerts and logs from diverse sys-
tems in real-time to enhance operators understanding, are emerging in the commercially available
tools, and research providing open-source options also are developing, e.g., see Stucco.'” Research
is needed to leverage the many diverse but related data sources available to an HIDS, (not only

9See https://github.com/stucco.
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to increase detection accuracy, but) to provide a contextual, situational awareness along with an
accurate alert is needed to operationalize much of the work surveyed here.

We note that the new Unified Host and Network Data set of Turcotte et al. [147] contributes to
these first two directions by providing real network and host data for researchers. Further, efforts
such as Ilgun [64] provide an automated component to present the alerts to the user in a smart
way.

Finally, while many researchers provide adequate investigations of the computational burden
of their IDS, this is a known inhibitor of HIDS deployment. Research to dynamically change the
IDS for dual optimization of increased security and decreased overhead is needed. Examples may
include dynamic algorithms to adjust detector alert thresholds, change computational require-
ments, adjust data sources collected, or change the position or security posture of the host, based
on current conditions to provide a more effective tradeoff between resources and security. Some
works have begun these investigations, in particular, for cloud applications [92] and for threshold
tuning [13].

Overall, we hope our treatment of the HIDS literature provides an organized panorama for
researchers to gain insights, identify opportunities, and more quickly progress in advancing HIDSs.
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