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ABSTRACT
Research on self-regulated learning (SRL) in engineering design is growing.
While SRL is an effective way of learning, however, not all learners can
regulate themselves successfully. There is a lack of research regarding
how student characteristics, such as science knowledge and design
knowledge, interact with SRL. Adapting the SRL theory in the field of
engineering design, this study proposes a research model to examine
the mediation and causal relationships among science knowledge,
design knowledge, and SRL activities (i.e. observation, formulation,
reformulation, analysis, evaluation). Partial least squares modeling was
utilized to examine how the science and design knowledge of 108
ninth-grade participants interacted with their SRL activities in the
process of performing an engineering task. Results reveal that prior
science and design knowledge positively predict SRL activities. They also
show that reformulation and analysis are the two SRL activities that can
lead to an improvement in post science and design knowledge, but
excessive observation can hinder post design knowledge. These results
have important implications for the construction of learning
environments to support SRL based on students’ prior knowledge levels.

ARTICLE HISTORY
Received 17 August 2019
Accepted 24 April 2020

KEYWORDS
Design knowledge;
engineering design; self-
regulated learning; science
knowledge; path modeling

Introduction

Increasing exposure to engineering design in K-12 education can benefit students by providing
opportunities for them to solve real-life problems and apply classroom knowledge (Chiu et al.,
2013). Solving engineering problems requires students to integrate relevant domain knowledge,
such as science, mathematics, and design knowledge, to propose innovative and feasible solutions
in authentic contexts (National Research Council, 2009). Science knowledge and design knowledge
are particularly important in computer-supported engineering design, where computation tools com-
pensate for lack of mathematics knowledge. For example, a task of designing an energy-efficient
house with solar panels, students utilize their science knowledge about solar energy and basic
design knowledge about house construction. Thus, students’ particular science and design knowl-
edge acts as the precedents for success in engineering design activities.

Besides prior science and design knowledge, engineering design activities involve iterative
exploration and refinement of design products through observing, modeling, modifying, analyzing,
and evaluating a project (Crismond & Adams, 2012). To sustain initiative, effort, and persistence in
these iterative processes, students also need to have self-regulated learning (SRL) skills. These
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skills are “self-generated thoughts, feelings, and behaviors that are planned and cyclically adjusted to
attain learning goals” (Zimmerman, 1990). When students self-regulate themselves in the learning
process, they play an active role in adjusting their cognition and behaviors to their ever-changing
learning environments. High self-regulated learners have high levels of metacognitive awareness,
apply complex strategies based on the learning situation, and engage in iterative modification of
learning by integrating self-feedback and external feedback (Chen & Bembenutty, 2018; Zimmerman,
2013). In contrast, low self-regulated learners are reactive. They may not be fully aware of their own
metacognition, get immersed in a simple or single strategy, and avoid further efforts in completing
the learning process. High SRL skills enhance students’ ability to engage in complex learning topics
(Winne & Azevedo, 2014).

Research documents the significance of domain knowledge (i.e. science knowledge and design
knowledge) and SRL, as well as the relationship between them (Mosborg et al., 2005; Song et al.,
2016; Taub et al., 2014). Students who have poor domain knowledge may have limited capacity to
process information, and thus limited their ability to use a variety of SRL processes (Moos &
Azevedo, 2008). However, even though researchers agree that domain knowledge and self-regulation
are essential variables explaining learning processes, few studies have investigated their combined
effects. The current study seeks to build a model to understand how domain knowledge interact
with SRL in complex engineering design activities.

We first discuss the SRL model in the context of engineering design, followed by a research model
that proposes the relationships between domain knowledge and SRL. We then describe how we
examine these relationships and what we find. Finally, we discussed how the findings align with
the literature and contribute to engineering design in a computer-based learning environment.

Theoretical framework and research model

A systemic review of engineering education reveals how urgent it is to reform the teaching and learn-
ing of engineering activities by incorporating theoretically sound frameworks (Karabulut-Ilgu et al.,
2018). SRL theory originates from the social cognitive paradigm and emphasizes the reciprocal
learner-environment interaction (Dinsmore et al., 2008). It illustrates how individual characteristics
interact with their learning environments to consequently influence learning outcomes. Specially,
SRL theory reveals the influencing mechanism between individual characteristics, SRL cognitive
factors, and learning outcomes. In the engineering design environments where technology supports
and tracks students’ learning processes, SRL cognitive factors are the cognitive actions students
perform to solve the task. Individual characteristics refer to students’ prior domain knowledge and
are contextualized as science knowledge and design knowledge in this study. Learning outcomes
are students’ domain knowledge after completing the engineering design task.

Zimmerman (1990, 2013) initiated SRL and described three macro-level phases of SRL: forethought,
performance, and self-reflection. Learners prepare to learn at the forethought phase, use self-control
and self-monitor at the performance phase, and optimize personal reactions to learning outcomes
at the self-reflection phase. To operate SRL factors in the complex processes of engineering design,
we developed a domain-specific model of SRL in engineering design by referencing the existing
model of SRL in a basic science field (Lajoie et al., 2015). As displayed in Figure 1, learners regulate
themselves through five cognitive processes: observation, formulation, reformulation, analysis, and
evaluation. Specifically, learners make observations to understand the task in the forethought
phase. The performance phase is the phase when learners pursue the design task by formulation
(i.e. start the design from scratch), reformulation (i.e. change and modify the project to align with
the intentions at the outset), and analysis (i.e. check the functionality of the design). Finally, learners
evaluate if their current design matches the intended design in the self-reflection phase. All five cog-
nitive processes are iterative and cyclical. This comprehensive SRL model in the domain of engineer-
ing design connects and balances the generality and domain-specificity of SRL processes, which is of
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great importance in illustrating how students self-regulate their learning. These five factors are acting
as a connecting role to interplay with prior domain knowledge and learning outcomes.

Following the assumption of SRL theory, a path model (see Figure 2) was proposed to show how
individuals engaged in SRL and how SRL influenced learning outcomes in engineering design activi-
ties. As displayed in Figure 2, prior science knowledge, prior design knowledge, observation,

Figure 1. SRL processes in engineering design.

Figure 2. Hypothesized research models: H1 to H20 are the research hypotheses.
Note. SPR: Prior Science Knowledge; DPR: Prior Design Knowledge; OB: Observation; FO: Formulation; RE: Reformulation; AN: Analysis; EV: Evaluation;
SPO: Post Science Knowledge; DPO: Post Design Knowledge.
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formulation, reformulation, analysis, and evaluation are exogenous and/ or mediation variables. Post
science knowledge and post design knowledge are endogenous variables. This model not only
directly shows the significant relationships between these constructs (i.e. prior domain knowledge,
SRL cognitive factors, and learning outcomes) but also informs the possible mediating effects of
SRL. The research hypotheses are displayed along with the path model in Figure 2 and will be
explained in detail in the following section.

Prior domain knowledge

Prior domain knowledge is the domain-specific declarative and procedural knowledge that learners
bring to a learning experience (Dochy et al., 1999). Prior domain knowledge plays a primary role in
learning processes and learning achievements through interacting with self-regulation (Hou, 2013;
Song et al., 2016). Learners with higher prior domain knowledge are more likely to connect the
new information with their existing knowledge schema when facing a complex task. They spend
more time engaging in SRL processes and using more strategies, especially cognitive and metacog-
nitive strategies (Taub et al., 2014). When no relevant prior knowledge is stored, learners may search
for a solution randomly without any specific schema (Kalyuga, 2007). In engineering design, students
need to activate their prior interdisciplinary knowledge to complete a design task successfully.
Specifically, science knowledge and design knowledge are the key prior domain knowledge that
could maximize the effects of SRL processes.

Researchers have found prior science knowledge can promote SRL through establishing a
better understanding of science-related tasks. Without sufficient science knowledge, students
cannot engage in SRL processes in a meaningful way. Moos and Azevedo (2008) examined the
relationship between prior science knowledge and SRL processes when students learn the circu-
latory system with hypermedia. They found students’ prior science knowledge was positively
related to their planning and monitoring SRL process, a finding validated by Greene et al.
(2010) in a study using the same learning task. In a long-term self-regulation study, Eilam and
Reiter (2014) analyzed students’ change of science knowledge and SRL in a Biology course.
They found that positive SRL changes are associated with students’ prior science knowledge.
Therefore, prior science knowledge is supposed to influence SRL processes directly. We propose
the following hypothesis:

H1: Prior science knowledge is positively related to the SRL process of observation.

H2: Prior science knowledge is positively related to the SRL process of formulation.

H3: Prior science knowledge is positively related to the SRL process of reformulation.

H4: Prior science knowledge is positively related to the SRL process of analysis.

H5: Prior science knowledge is positively related to the SRL process of evaluation.

In addition to prior science knowledge, prior design knowledge can also be a significant indicator of
SRL processes. In the science of design, design knowledge refers to a collection of visions, proposals,
and tools that designers use to stimulate, develop, and implement design ideas (Manzini, 2009).
Design knowledge can be stored, retrieved, applied, and reused in different design projects and
tasks, indicating that design knowledge is explicit, transferable, and accumulative (Baxter et al.,
2007). Design knowledge allows learners to complete a design project thinking about what they
are doing and what they will do reflectively. It is expected to significantly influence design processes
by helping students reflect and monitor their design projects (Kitamura et al., 2004). All of these attri-
butes of design knowledge reveal the conceptual connections between design knowledge and SRL
even though no empirical studies have examined these relationships. Therefore, in conjunction with
science knowledge, prior design knowledge is expected to influence SRL processes directly. Accord-
ingly, we propose the following hypotheses:
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H6: Prior design knowledge is positively related to the SRL process of observation.

H7: Prior design knowledge is positively related to the SRL process of formulation.

H8: Prior design knowledge is positively related to the SRL process of reformulation.

H9: Prior design knowledge is positively related to the SRL process of analysis.

H10: Prior design knowledge is positively related to the SRL process of evaluation.

SRL cognitive factors

As discussed before, observation, formulation, reformulation, analysis, and evaluation are the five
cognitive processes that students may engage in engineering design. These five SRL cognitive pro-
cesses map the forethought, performance, and self-reflection stages of SRL. Prior studies have shown
that SRL processes or strategies can significantly influence learning outcomes, including learning
capacity, reading comprehension, clinical performance, and grades (Bernacki et al., 2012; Chen &
Huang, 2014; Papamitsiou & Economides, 2019; Sun & Rueda, 2012). SRL processes and strategies
also influence learning outcomes where complex science topics are involved. For example,
Kalyuga (2007) found students who obtained prompts on using SRL strategies had a more sophisti-
cated understanding of the science content. Instead of simply gaining a collection of science facts,
these students improved significantly in learning outcomes, including both content knowledge
and the nature of science that they could use in the next round of the task. In a similar vein, it
seems that SRL cognitive processes will influence post science knowledge and post design knowl-
edge after students complete engineering design tasks. Therefore, we expect positive relationships
between SRL processes and learning outcomes and propose the following hypotheses:

H11: The SRL process of observation is positively related to post science knowledge.

H12: The SRL process of formulation is positively related to post science knowledge.

H13: The SRL process of reformulation is positively related to post science knowledge.

H14: The SRL process of analysis is positively related to post science knowledge.

H15: The SRL process of evaluation is positively related to post science knowledge.

H16: The SRL process of observation is positively related to post design knowledge.

H17: The SRL process of formulation is positively related to post design knowledge.

H18: The SRL process of reformulation is positively related to post design knowledge.

H19: The SRL process of analysis is positively related to post design knowledge.

H20: The SRL process of evaluation is positively related to post design knowledge.

Methods

Research context

This study uses a quantitative design using data gathered from a larger study conducted on Energy
3D, a simulated environment where students can complete home-design projects applying their
science and design knowledge (Xie et al., 2018). Energy3D is an open-source software that provides
middle and high school students a 3D environment to solve worldwide issues, such as building a
house that is environmentally friendly to save energy (http://energy.concord.org/energy3d/). The
tools in Energy 3D allow students to design, construct, analyze, and evaluate buildings in real time
to modify their design towards the optimal solution.
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The participants were 111 ninth-grade students from a suburban high school in the northeastern
United States. Three students’ data were missing and 108 students are remaining. All the
students enrolled in one of five physical science honors classes taught by a teacher who had over
17 years’ experience teaching physical sciences and five years’ experience mentoring engineering
design projects. The age of these students ranged from 14 to 15. Among them, 53 (48.6%) were boys.

The design task consisted of designing a colonial-style zero-energy house that solar panels that
would generate enough electricity to offset the consumption of energy throughout a whole year.
The living space must come to 120–160 square feet, with ceilings 8–10 feet high, and the cost for
materials must not exceed $50,000. Figure 3 shows an example of a student design from different
directions. Students completed the task at class meetings on two consecutive days, spending
50 min on the first day and 80 min on the second on their design. Science knowledge and design
knowledge of students were tested before and after the design activity using the same measures.

Measures

Science knowledge
Science knowledge was measured in the pre-test and post-test using 18 questions about green build-
ing science (Chao et al., 2017). These questions were selected from green building science textbooks
(Hens, 2011; Montoya, 2010). Reflecting the focus of the engineering design task, these questions
covered four types of domain knowledge, namely sun path and insolation, spatial and geometric,
and heat transfer and representations. A panel of green building science experts, high school
science teachers, engineering design professors, and learning scientists reviewed each question to
ensure the validity of the test. Students answered each question by making a choice among
design alternatives of given situations and giving corresponding explanations. Their science knowl-
edge is the sum of their score on each multiple-choice question and its corresponding explanation.
Three researchers independently assigned scores for 20% of all the explanations following a 5-level
rubric. In this rubric, based on the accuracy and scientific relevancy, all the arguments in the expla-
nations were classified into normative (correct and relevant), alternative (incorrect but relevant,
correct but irrelevant), and irrelevant (incorrect and irrelevant). A score ranging from 0 to 4 was
then assigned to each explanation based on the number of normative, alternative, and irrelevant
arguments. For example, if the explanation contained more than three normative arguments
without any alternative ideas, the researcher assigned 4 points. The researcher gave 0 points if stu-
dents left the question blank or provided explanations with only irrelevant arguments. The inter-rater
reliability (ranging from 0.94 to 1) and internal consistency of both pre-test (Cronbach’s alpha = 0.82)
and post-test (Cronbach’s alpha = 0.83) has been established for the measure of science knowledge.
More details can be found in our previous work (Chao et al., 2017).

Figure 3. An example of student design (North and East direction on the left; South and West direction on the right).
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Design knowledge
Design knowledge was assessed by an instrument developed from analyzing experts’ perception of the
engineering design process (Mosborg et al., 2005). Participants were asked to select the fivemost impor-
tant design activities to accomplish a high-quality design from a list of 20 terms. This list consists of a
broad range of terms in design processes models (e.g. evaluating, brainstorming, understanding the
problem), general design activities (e.g. sketching, communicating, iterating), and philosophies of
design (e.g. using creativity, making trade-offs). Based on the perception of experts in prior research
(Mosborg et al., 2005) and the current learning context and importance of SRL, we determined the six
most important design activities as analyzing data, evaluating, planning, reflecting, setting goals, and
understanding the problem. Students received one point for the number of these six they chose.
Design knowledge is the accumulated score of all the most important items students choose.

SRL cognitive factors
Instead of using self-report measures, we used log files to identify the SRL cognitive factors as in our
previous studies (Li et al., 2020; Xing et al., 2019; Zheng et al., 2020). The SRL cognitive factors are the
five cognitive processes that students may engage in to achieve a final design solution. Specifically,
observation, formulation, reformulation, analysis, and evaluation were classified from actions
recorded in the log files of Energy3D (see details in Table 1). For example, observation is represented
by actions students may take to help them understand the learning environment and task require-
ment, such as show heliodon, animate sun, and show shadow.

Analysis

PLS modeling was performed to examine the relationship between science knowledge, design
knowledge, and SRL processes. PLS is a multivariate statistical modeling technique that integrates
multiple regression, path analysis, principal component analysis, and multiple discriminant analysis
without the assumption of normality (Chin et al., 2003; Fornell & Bookstein, 1982; Goggins & Xing,
2016). It is particularly suited to this study because of the small sample size and frequency data
from log files. By defining exogenous variables and endogenous variables, PLS can analyze the
causal order between variables (Xing, 2019) and measure direct, indirect, and mediation effects. In
this study, PLS was used to examine how the prior science and design knowledge can affect students’
post knowledge in both areas via SRL. Table 2 shows the descriptive statistics of all the variables that
will be used for PLS modeling.

Results

The path model results are presented in Figure 4 and Table 3. Figure 2 is a graphical presentation of
all direct effects with path coefficients and significance level. Table 2 lists all the hypotheses, path
coefficients, z-values, and decisions.

Table 1. Coding scheme of SRL processes.

SRL processes Definition Example Actions

Observation understand the learning environment and task requirement Show heliodon, Animate sun,
Show shadow…

Formulation construct the project by including components Add window, Add solar panel
Add roof…

Reformulation change and modify the project to align with the intended design Edit window, Edit solar panel
Edit external factors…

Analysis derive functional information from the structure Energy annual analysis, Solar energy
analysis, Compute energy…

Evaluation compare the current structure and function with the intended design
to assess if the design solution is acceptable

Making notes

INTERACTIVE LEARNING ENVIRONMENTS 7



Structural models: direct effects

As shown in Figure 4 and Table 3, most of the hypotheses are supported. H1-H5 posit that prior
science knowledge impacts the SRL processes. Table 3 shows that H1- H4 are supported. Particularly,
prior science knowledge has an effect on observation (ß = 0.36, p < 0.01), formulation (ß = 0.20, p <
0.05), reformulation (ß = 0.27, p < 0.01), analysis (ß = 0.29, p < 0.01), meaning that students with
higher prior knowledge would be more engaged in these four SRL processes. Surprisingly, H5 is
not supported: prior science knowledge does not significantly influence SRL evaluation. With
regard to the effect of prior science knowledge on SRL, H6, H8, H9, and H10 are confirmed, while
H7 is not confirmed. That is, prior design knowledge significantly influences the observation (ß =
0.30, p < 0.05), reformulation (ß = 0.28, p < 0.05), analysis (ß = 0.22, p < 0.05), and evaluation (ß =
0.38, p < 0.05) processes, but not formulation. Students with higher prior design knowledge do not
necessarily perform a lot of actions that add components to their design. In contrast, they may be
more cautious with every step and more specific as to what they need for a better design.

With respect to the effects of SRL on post science knowledge and post design knowledge (H11 to
H20), not all hypotheses are supported. Specifically, reformulation positively affects post science and
design knowledge (H13 and H18), indicating that students who are engaged in changing and mod-
ifying their projects (i.e. reformulation) are more likely to show an increase in science knowledge (ß =
0.27, p < 0.01) and design knowledge (ß = 0.27, p < 0.01). Moreover, the positive effect of analysis on

Table 2. Descriptive statistics for the measures.

Mean Median SD

Observation 0.35 0.26 0.26
Formulation 0.27 0.22 0.19
Reformulation 0.26 0.18 0.21
Analysis 0.19 0.12 0.19
Evaluation 0.26 0.21 0.25
Science prior 0.49 0.46 0.21
Design prior 0.50 0.50 0.18
Science post 0.58 0.57 0.20
Design post 0.47 0.50 0.23

SPR

OB

FO

RE

AN

EV

0.36
**

0.27
**

0.29
**

-0.01

0.04

-0.01

0.22
*

0.22
*

-0.10

DPR

SPO

DPO

0.30
*

0.09

0.28
*

0.22
*

0.38
*

-0.28**

-0.09

0.31
**

-0.09

0.04

0.20
*

Figure 4. Path analysis results. *p < 0.05, **p < 0.01, ***p < 0.001. “—” supported, “—” not supported, “-·-” oppositely supported.
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post science knowledge (ß = 0.22, p < 0.05) is also supported (H14). The results do not confirm the
remaining hypothesis (H11, H12, H15, H16, H17, H19, and H20). In fact, observation has a negative
effect on post design knowledge (ß =−0.28, p < 0.01): students who spend a lot of effort on under-
standing the environment and task (i.e. observation) actually show less post science knowledge.

Structural models: mediating effects

We further examined the mediating effects in this structural model, focusing on how and to what
extent SRL mediates the impact of the prior domain knowledge on the post domain knowledge. Fol-
lowing the three-step method established by Baron and Kenny (1986), we identified some significant
mediation effects (see Table 4). As indicated in Table 4, prior design knowledge has a significant effect
on both reformulation (ß = 0.30, p < 0.05) and analysis (ß = 0.24, p < 0.05). The link between prior
design knowledge and post science knowledge is also significant (ß = 0.24, p < 0.05). But the link
between prior science and post science knowledge is not significant when reformulation or analysis
is added into the model. Therefore, both reformulation and analysis fully mediate the relationship
between prior science knowledge and post science knowledge. Furthermore, reformulation and
analysis partially mediate the relationship between prior science knowledge and post science knowl-
edge because the relationship between prior science knowledge and post science knowledge is still
significant when reformulation or analysis is added (ß = 0.20, p < 0.05; ß = 0.21, p < 0.05). Furthermore,
we find the model does not support some mediating effects. Although the direct link between prior

Table 3. Hypotheses testing results.

Hypothesis Path Path coefficient (ß) z-value Decision

H1 SPR → OB 0.36** 2.95 Supported
H2 SPR → FO 0.20* 2.21 Supported
H3 SPR → RE 0.27** 2.62 Supported
H4 SPR → AN 0.29** 3.25 Supported
H5 SPR → EV −0.01 −0.04 Not supported
H6 DPR → OB 0.30* 2.04 Supported
H7 DPR → FO 0.09 0.80 Not supported
H8 DPR → RE 0.28* 2.24 Supported
H9 DPR → AN 0.22* 2.06 Supported
H10 DPR → EV 0.38* 2.55 Supported
H11 OB → SPO 0.04 0.48 Not supported
H12 FO → SPO −0.01 −0.05 Not supported
H13 RE → SPO 0.22* 2.33 Supported
H14 AN→ SPO 0.22* 2.01 Supported
H15 EV → SPO −0.10 −1.22 Not supported
H16 OB → DPO −0.28** −2.87 Not supported
H17 FO → DPO −0.09 −0.66 Not supported
H18 RE → DPO 0.31** 2.63 Supported
H19 AN→ DPO −0.09 −0.66 Not supported
H20 EV → DPO 0.04 0.36 Not supported

*p < 0.05, **p < 0.01, ***p < 0.001.

Table 4. Mediating effect tests’ results.

IV M DV IV → M IV → DV

IV + M → DV

Mediating effectIV M

SPR OB DPO 0.37** 0.03 0.09 −0.16 Not supported
SPR RE SPO 0.28** 0.57*** 0.51*** 0.20* Partially mediated
SPR RE DPO 0.28** 0.03 0.05 −0.07 Not supported
SPR AN SPO 0.30** 0.57*** 0.51*** 0.21* Partially mediated
DPR RE SPO 0.30* 0.24* 0.15 0.31** Fully mediated
DPR RE DPO 0.30* 0.21 0.25 −0.11 Not supported
DPR AN SPO 0.24* 0.24* 0.15 0.37** Fully mediated

*p < 0.05, **p < 0.01, ***p < 0.001.
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science knowledge and observation is significant, the link between prior science knowledge and post
design knowledge is not. Thus, observation does not mediate the influence of prior science knowl-
edge on post design knowledge. Similarly, reformulation does not mediate the influence of prior
science knowledge on post design knowledge, and it does not mediate the effects of prior design
knowledge on post design knowledge.

Discussion

The findings on the significant effects of prior domain knowledge on SRL not only reconfirm and
remain consistent with prior studies, but also provide new empirical evidence on the benefits of
science knowledge and design knowledge. Students with higher prior science knowledge tend to
be more engaged in SRL, especially observation, formulation, reformulation, and analysis. This
finding supports Moos and Azevedo’s (2008) study, which found students with higher prior
science knowledge used significantly more planning and monitoring but fewer superficial strategies
(e.g. note-taking, summarizing). Students with higher prior science would use their prior knowledge
to engage in knowledge verification, particularly verifying the discrepancy between what they learn
and their existing knowledge (Moos & Azevedo, 2008). Thus, students repetitively observed in
order to make plans and monitored their design projects through processes of formulation, reformu-
lation, and analysis. Nevertheless, low prior science knowledge students used their working memory
on processing information in knowledge acquisition and therefore had less capacity for self-regulat-
ory processes (Winne, 2001). Contrary to expectations, our path model did not show a relationship
between prior science knowledge and evaluation. One possible explanation is that the frequency
with which students evaluate their design is more related to their design knowledge, which drives
students towards the intended design with efficiency and effectiveness.

As our aforementioned assumption predicted, design knowledge was significantly related to
evaluation, as well as observation, reformulation, and analysis. Consistent with the conclusion that
students with less prior knowledge used less varied strategies (Murphy & Alexander, 2002), we
found less design knowledge lessened students’ effort in SRL. Surprisingly, we did not find a signifi-
cant relationship between design knowledge and formulation, which means that students with
higher design knowledge were not necessarily more engaged in designing the house (Mosborg
et al., 2005). Given high prior knowledge, they were more specific on what their design would
include, spending more time on analyzing and modifying their design. In sum, both prior science
knowledge and design knowledge are critical for SRL in engineering design tasks even though
they may play a slightly different role in the SRL processes. This supports the call for ensuring stu-
dents’ cross-domain knowledge achieves a certain standard before assigning a complex engineering
design project in instructional design.

Not all SRL processes are beneficial for the increase in learning outcomes. Reformulation and
analysis are especially critical SRL processes, given their significant effects on post domain knowl-
edge. This is particularly true when both reformulation and analysis were identified as full mediators
and partial mediators in the relationship between prior domain knowledge and post domain knowl-
edge. Reformulation and analysis reflect students’ high level of thinking in modifying their design
and monitoring their learning process. It is important to better scaffold these two processes in com-
puter-based environments to maximize their learning outcomes. For example, prompts telling stu-
dents how to use a specific reformulation and analysis tool should be added, referring to specific
science or design knowledge. This may increase students’ initiative to use these tools towards
better learning.

Conclusion

The current study expands upon prior research by examining the interactions between science
knowledge, design knowledge, and SRL processes in the context of engineering design. This study
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contributes to the advancement of SRL by theoretically making SRL factors explicit for detailed exam-
ination. Specifically, observation, formulation, reformulation, analysis, and evaluation are the key SRL
factors that we have externalized following the complex engineering design process. Furthermore,
based on this theoretical development, our work demonstrates its methodological strengths by
employing data with multiple modalities. This study built a quantitative path model by relying on
the combination of self-report measures and behavioral data in computer-based learning environ-
ments. This model suggests the significance of SRL as a mediator in engineering design, magnifying
the positive effects of prior science knowledge and design knowledge. Our findings further empha-
size the importance of fostering SRL adaptively in instructional design and learning environments
design.

Although results were consistent with the current literature, the sample size and specific research
context limits the generalizability of this study. It would be interesting to replicate this study with a
larger sample size. Furthermore, the current study does not include many individual factors (e.g.
motivation, personal traits) that might drive the findings. Future studies should include additional
variables to better examine how SRL functions in engineering design. Finally, as the significant
effects of reformulation and analysis are identified in this current study, an extended study examining
the patterns of reformulation and analysis will provide more information about how to better facili-
tate these SRL processes in engineering design.
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