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ABSTRACT. We study the connections between subsurface projections in curve
and arc complexes in fibered 3-manifolds and Agol’s veering triangulation. The
main theme is that large-distance subsurfaces in fibers are associated to large
simplicial regions in the veering triangulation, and this correspondence holds uni-
formly for all fibers in a given fibered face of the Thurston norm.

1. INTRODUCTION

Let M be a 3-manifold fibering over the circle with fiber S and pseudo-Anosov
monodromy f. The stable/unstable laminations A™, A\~ of f give rise to a function
on the essential subsurfaces of .S,

Y o dy (AT, A7),

where dy denotes distance in the curve and arc complex of Y between the lifts of AT
to the cover of S homeomorphic to Y. This distance function plays an important
role in the geometry of the mapping class group of S [MM00, BKMM12, MS13],
and in the hyperbolic geometry of the manifold M [Min10, BCM12].

In this paper we study the function dy when M is fixed and the fibration is
varied. The fibrations of a given manifold are organized by the faces of the unit
ball of Thurston’s norm on Hy(M, 0M), where each fibered face F has the prop-
erty that every irreducible integral class in the open cone R, F represents a fiber.
There is a pseudo-Anosov flow which is transverse to every fiber represented by F,
and whose stable/unstable laminations AT < M intersect each fiber to give the
laminations associated to its monodromy. With this we note that the projection
distance dy (AT, A7) can be defined for any subsurface Y of any fiber in F. We use
dy (AT, A7) to denote this quantity.

Our main results give explicit connections between dy and the veering triangula-
tion of M, introduced by Agol [Agol1] and refined by Guéritaud [Guél5], with the
main feature being that when dy satisfies explicit lower bounds, a thickening of Y is
realized as an embedded subcomplex of the veering triangulation. In this way, the
“complexity” of the monodromy f is visible directly in the triangulation in a way
that is independent of the choice of fiber in the face F. This is in contrast with the
results of [BCM12] in which the estimates relating dy to the hyperbolic geometry
of M are heavily dependent on the genus of the fiber.
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The results are cleanest in the setting of a fully-punctured fiber, that is when the
singularities of the monodromy f are assumed to be punctures of the surface S (one
can obtain such examples by starting with any M and puncturing the singularities
and their flow orbits). All fibers in a face F are fully-punctured when any one is,
and in this case we say that F is a fully-punctured face. In this setting M is a cusped
manifold and the veering triangulation 7 is an ideal triangulation of M.

We obtain bounds on dy (AT, A7) that hold for W in any fiber of a given fibered
face:

Theorem 1.1 (Bounding projections over a fibered face). Let M be a hyperbolic
3-manifold with fully-punctured fibered face F and veering triangulation 7. For any
essential subsurface W of any fiber of F,

a- (dw (A, A1) = B) < |7],

where |T| is the number of tetrahedra in 7, « = 1 and B = 10 when W is an annulus
and o = 3|x(W)| and g = 8 when W is not an annulus.

Note that this means that dy < |7|+ 10 for each subsurface W, no matter which
fiber W lies in. Further, the complexity |x(W)| of any subsurface W of any fiber of
F with dy (AT, A7) > 9 is also bounded in terms of M alone.

In addition, given one fiber with a collection of subsurfaces of large dy, we obtain
control over the appearance of high-distance subsurfaces in all other fibers:

Theorem 1.2 (Subsurface dichotomy). Let M be a hyperbolic 3-manifold with fully-
punctured fibered face F and suppose that S and F' are each fibers in Ry F. If W is
a subsurface of F', then either W 1is isotopic along the flow to a subsurface of S, or

3|x(9)] = dw (A, AT) - B,
where =10 if W is an annulus and B = 8 otherwise.

One can apply this theorem with S taken to be the smallest-complexity fiber in
F. In this case there is some finite list of “large” subsurfaces of S, and for all other
fibers and all subsurfaces W with dy sufficiently large, W is already accounted for
on this finite list.

For a sample application of Theorem 1.2, let W be an essential annulus with core
curve w in a fiber F' of M and suppose that dy (A~,AT) > K for some K > 10.
(We note that it is easy to construct explicit examples of M with dy (A7, AT) as
large as one wishes by starting with a pseudo-Anosov homeomorphism of F' with
large twisting about the curve w.) If w is trivial in Hy(M), then Theorem 1.2 (or
more precisely Corollary 6.7) implies that w is actually isotopic to a simple closed
curve in every fiber in the open cone RiF containing F. When w is nontrivial
in Hy(M) it determines a codimension-1 hyperplane P,, in H*(M) = Ha(M,0M)
consisting of cohomology classes which vanish on w. For each fiber S of R F either
S is contained in P,, in which case w is isotopic to a simple closed curve in S as
before, or S lies outside of P, and |x(S)| = £, We remark that the second

3
alternative is non-vacuous so long as H'(M) has rank at least 2.
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The general (non-fully-punctured) setting is also approachable with our tech-
niques, but a number of complications arise and the connection to the veering tri-
angulation of the fully-punctured manifold is much less explicit. An extension of
the results in this paper to the general setting will be the subject of a subsequent
paper.

Pockets in the veering triangulation. When Y is a subsurface of a fiber X in
F and dy (AT, A7) > 1, we show (Theorem 5.3) that Y is realized simplicially in the
veering triangulation lifted to the cover X x R. If dy (A*, A7) is even larger then
this realization can be thickened to a “pocket”, which is a simplicial region bounded
by two isotopic copies of Y. With sufficiently large assumptions this pocket can be
made to embed in M as well, and this is our main tool for connecting arc complexes
to the veering triangulation and establishing Theorems 1.1 and 1.2:

Theorem 1.3. Suppose Y is a subsurface of a fiber X with dy (A=, \T) > [, where
B =8 ifY is nonannular and 8 = 10 if Y is an annulus. Then there is an embedded
simplicial pocket V in M isotopic to a thickening of Y, and with dy (V—,V*') >
dy()\_,)\+) —B.

In this statement, V't and V'~ refer to the triangulations of the top and bottom
surfaces of the pockets, regarded as simplices in the curve and arc complex A(Y).
Also, dy (V~, V™) denotes the smallest dy-distance between an arc of V™~ and an
arc of V.

The veering triangulation in fact recovers a number of aspects of the geometry of
curve and arc complexes in a fairly concrete way. As an illustration we prove

Theorem 1.4. In the fully punctured setting, the arcs of the veering triangulation
form a geodesically connected subset A(T) of the curve and arc graph, in the sense
that any two points in A(T) are connected by a geodesic that lies in A(T).

Hierarchies of pockets. One is naturally led to generalize Theorem 1.3 from a
result embedding one pocket at a time to a description of all pockets at once. Indeed
Proposition 6.5 tells us that whenever subsurfaces Y and Z of X have large enough
projection distances and are not nested, they have associated pockets V3 and V;
which are disjoint in X x R. These facts, taken together with Theorem 1.4, strongly
suggest that the veering triangulation 7 encodes the hierarchy of curve complex
geodesics between AT as introduced by Masur-Minsky in [MMO00]. We expect that,
using a version of Theorem 1.4 that applies to subsurfaces and adapting the notion of
“tight geodesic” from [MMO00], one can carry out a hierarchy-like construction within
the veering triangulation and recover much of the structure found in [MMO0], with
more concrete control, at least in the fully-punctured setting. We plan to explore
this approach in future work.

Related and motivating work. The theme of using fibered 3-manifolds to study
infinite families of monodromy maps is deeply explored in McMullen [McMO00] and
Farb-Leininger-Margalit [FLM11], where the focus is on Teichmiiller translation
distance.
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Distance inequalities analogous to Theorem 1.2, in the setting of Heegaard split-
tings rather than surface bundles, appear in Hartshorn [Har02], and then more fully
in Scharlemann-Tomova [ST06]. Bachman-Schleimer [BS05] use Heegaard surfaces
to give bounds on the curve-complex translation distance of the monodromy of a
fibering. All of these bounds apply to entire surfaces and not to subsurface projec-
tions. In Johnson-Minsky-Moriah [JMM]10], subsurface projections are considered
in the setting of Heegaard splittings. A basic difficulty in these papers which we do
not encounter here is the compressibility of the Heegaard surfaces, which makes it
tricky to control essential intersections. On the other hand, unlike the surfaces and
handlebodies that are used to obtain control in the Heegaard setting, the foliations
we consider here are infinite objects, and the connection between them and finite
arc systems in the surface is a priori dependent on the fiber complexity. The veer-
ing triangulation provides a finite object that captures this connection in a more
uniform way.

The totally-geodesic statement of Theorem 1.4 should be compared to Theorem
1.2 of Tang-Webb [TW15], in which Teichmiiller disks give rise to quasi-convex sets
in curve complexes. While the results of Tang-Webb are more general, they are
coarse, and it is interesting that in our setting a tighter statement holds. Finally,
we note that work by several authors has focused on geometric aspects of the veering
triangulation, including [HRST11, FG13, HIS16].

Summary of the paper. In Section 2 we set some notation and give Guéritaud’s
construction of the veering triangulation. We also recall basic facts about curve and
arc complexes, subsurface projections and Thurston’s norm on homology. We spend
some time in this section describing the flat geometry of a punctured surface with
an integrable holomorphic quadratic differential, and in particular giving an explicit
description of the circle at infinity of its universal cover (Proposition 2.2). While this
is a fairly familiar picture, some delicate issues arise because of the incompleteness
of the metric at the punctures.

In Section 3 we study sections of the veering triangulations, which are simplicial
surfaces isotopic to X in the cover X x R, and transverse to the suspension flow of
the monodromy. These can be thought of as triangulations of the surface X using
only edges coming from the veering triangulation. We prove Lemma 3.2 which says
that a partial triangulation of X using only edges from 7 can always be extended to
a full section, and Proposition 3.3 which says that any two extensions of a partial
triangulation are connected by a sequence of “tetrahedron moves”. This is what
allows us to define and study the “pockets” that arise between any two sections.

In Section 4 we define a simple but useful construction, rectangle and triangle
hulls, which map saddle connections in our surface to unions of edges of the veering
triangulation. An immediate consequence of the properties of these hulls is a proof
of Theorem 1.4.

In Section 5 we apply the flat geometry developed in Section 2 to control the
convex hulls of subsurfaces of the fiber, and then use Section 4 to construct what we
call 7-hulls, which are representatives of the homotopy class of a subsurface that are
simplicial with respect to the veering triangulations. Theorem 5.3 states that quite
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mild assumptions on dy (AT, A7) imply that the 7-hull of ¥ has embedded interior.
The idea here is that any pinching point of the 7-hull is crossed by leaves of A
and A\~ that intersect each other very little. The main results of both Section 4
and Section 5 apply in a general setting and do not require that the surface X be
fully-punctured.

In Section 6 we put these ideas together to prove our main theorems for fibered
manifolds with a fully-punctured fibered face. In Proposition 6.2 we describe the
maximal pocket associated to a subsurface Y with dy (AT, A™) sufficiently large
(greater than 2, for nonannular Y). We then introduce the notion of an isolated
pocket, which is a subpocket of the maximal pocket that has good embedding prop-
erties in the manifold M. The existence and embedding properties of these pockets
are established in Lemma 6.4 and Proposition 6.5, which together allow us to prove
Theorem 1.3.

From here, a simple counting argument gives Theorem 1.1: the size of the em-
bedded isolated pockets is bounded from below in terms of dy (A", A7) and x(Y),
and from above by the total number of veering tetrahedra.

To obtain Theorem 1.2, we use the pocket embedding results to show that, if Y
is a subsurface of one fiber F' and Y essentially intersects another fiber S, then S
must cross every level surface of the isolated pocket of Y, and hence the complexity
of S gives an upper bound for dy (A", A~). To complete the proof we need to show
that, if Y does not essentially cross S, it must be isotopic to an embedded (and not
merely immersed) subsurface of S. This is handled by Lemma 6.6, which may be
of independent interest. It gives a uniform upper bound for dy (A", A~) when Y
corresponds to a finitely generated subgroup of 71 (S), unless Y covers an embedded
subsurface.

Acknowledgments. The authors are grateful to Ian Agol and Frangois Guéritaud
for explaining their work to us. We also thank Tarik Aougab, Jeff Brock, and Dave
Futer for helpful conversations and William Worden for pointing out some typos in
an earlier draft. Finally, we thank the referee for a thorough reading of our paper
and comments which improved its readability.

2. BACKGROUND

The following notation will hold throughout the paper. Let X be a closed Rie-
mann surface with an integrable meromorphic quadratic differential g. We remind
the reader that ¢ may have poles of order 1. We denote the vertical and horizontal
foliations of ¢ by AT and A~ respectively. Let P be a finite subset of X that includes
the poles of ¢ if any, and let X = X \ P. Let sing(q) denote the union of P with
the set of zeros of q. We require further that ¢ has no horizontal or vertical saddle
connections, that is no leaves of A* that connect two points of sing(g). This situa-
tion holds in particular if A* are the stable/unstable foliations of a pseudo-Anosov
map f : X — X, which will often be the case for us. If P = sing(q) (i.e. P contains
all zeros of q) we say X is fully-punctured.
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Let X denote the metric completion of the universal cover X of X , and note that
there is an infinite branched covering X - X, infinitley branched over the points of
P. The preimage P of P is the set of completion points. The space Xisa complete
CAT(0) space with the metric induced by gq.

2.1. Veering triangulations. In this section let P = sing(q). The veering trian-
gulation, originally defined by Agol in [Agol1] in the case where ¢ corresponds to a
pseudo-Anosov f : X — X, is an ideal layered triangulation of X x R which projects
to a triangulation of the mapping torus M of f. The definition we give here is due
to Guéritaud [Guélb]. (Agol’s “veering” property itself will not actually play a role
in this paper, so we will not give its definition).

A singularity-free rectangle in X is an embedded rectangle whose edges consist of
leaf segments of the lifts of A* and whose interior contains no singularities of X. If
R is a maximal singularity-free rectangle in X then it must contain a singularity on
each edge. Note that there cannot be more than one singularity on an edge since A
have no saddle connections. We associate to R an ideal tetrahedron whose vertices
are OR n P, as in Figure 1. This tetrahedron comes equipped with a “flattening”
map into X as pictured.

%2

FIGURE 1. A maximal singularity-free rectangle R defines a tetra-
hedron equipped with a map into R.

The tetrahedron comes with a natural orientation, inherited from the orientation
of X using the convention that the edge connecting the horizontal boundaries of the
rectangle lies above the edge connecting the vertical boundaries. This orientation is
indicated in Figure 1.

The union of all these ideal tetrahedra, with faces identified whenever they map
to the same triangle in X, is Guéritaud’s construction of the veering triangulation
of X x R.

Theorem 2.1. [Guél5] Suppose that X is fully-punctured. The complex of tetra-
hedra associated to maximal rectangles of q is an ideal triangulation T of X x R,
and the maps of tetrahedra to their defining rectangles piece together to a fibration
7: X xR — X. The action of (X) on ()?, q) lifts simplicially to T, and equivari-
antly with respect to w. The quotient is a triangulation of X x R.

If q corresponds to a pseudo-Anosov f : X — X then the action of f on (X,q)
lifts simplicially and w-equivariantly to ® : X x R — X x R. The quotient is a
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triangulation T of the mapping torus M. The fibers of w descend to flow lines for
the suspension flow of f.

We will frequently abuse notation and use 7 to refer to the triangulation both in
M and in its covers.

We note that a saddle connection ¢ of ¢ is an edge of 7 if and only if o spans a
singularity-free rectangle in X. See Figure 2.

0.

1%

FI1GURE 2. The singularity-free rectangle spanned by ¢ can be ex-
tended horizontally (or vertically) to a maximal one.

If e and f are two crossing T-edges spanning rectangles R. and Ry, note that R,
crosses Iy from top to bottom, or from left to right — any other configuration would
contradict the singularity-free property of the rectangles (Figure 3). If slope(e)
denotes the absolute value of the slope of e with respect to ¢, we can see that R,
crosses Ry from top to bottom if and only if e crosses f and slope(e) > slope(f).
We say that e is more vertical than f and also write e > f. We will see that e > f
corresponds to e lying higher than f in the uppward flow direction.

Indeed we can see already that the relation > is transitive, since if e > f and
f > g then the rectangle of ¢ is forced to intersect the rectangle of e.

e

/’)

I

FiGure 3. The rectangle of e crosses f from top to bottom and we
write e > f.

We conclude with a brief description of the local structure of 7 around an edge
e: The rectangle spanned by e can be extended horizontally to define a tetrahedron
lying below e in the flow direction (Figure 2), and vertically to define a tetrahedron
lying above e in the flow direction. Call these Q_ and @4 as in Figure 4. Between
these, on each side of e, is a sequence of tetrahedra @1, ..., Q. (m = 1) so that two
successive tetrahedra in the sequence QQ_,Q1,...,Qn, Qs+ share a triangular face
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adjacent to e. We find this sequence by starting with one of the two top faces of
Q_, extending its spanning rectangle vertically until it hits a singularity, and calling
()1 the tetrahedron whose projection is inscribed in the new rectangle. If the new
singularity belongs to @+ we are done (m = 1), otherwise we repeat from the top
face of Q1 containing e to find ()2, and continue in this manner. Figure 4 illustrates
this structure on one side of an edge e. Repeating on the other side, note that the
link of the edge e is a circle, as expected.

FIGURE 4. The tetrahedra adjacent to an edge e on one side form a
sequence “swinging” around e

2.2. Arc and curve complexes. The arc and curve complex A(Y') for a compact
surface Y is usually defined as follows: its vertices are essential homotopy classes
of embedded circles and properly embedded arcs ([0, 1],{0,1}) — (Y,dY), where
“essential” means not homotopic to a point or into the boundary [MMO00]. We must
be clear about the meaning of homotopy classes here, for the case of arcs: If Y is not
an annulus, homotopies of arcs are assumed to be homotopies of maps of pairs. When
Y is an annulus the homotopies are also required to fix the endpoints. Simplices
of A(Y), in all cases, correspond to tuples of vertices which can be simultaneously
realized by maps that are disjoint on their interiors. We endow A(Y) with the
simplicial distance on its 1-skeleton.

It will be useful, in the non-annular case, to observe that the following definition
is equivalent: Instead of maps of closed intervals consider proper embeddings R —
int(Y") into the interior of Y, with equivalence arising from proper homotopy. This
definition is independent of the compactification of int(Y"). The natural isomorphism
between these two versions of A(Y) is induced by a straightening construction in a
collar neighborhood of the boundary.

If Y < S is an essential subsurface (meaning the inclusion of Y is mi-injective
and is not homotopic to a point or to an end of S), we have subsurface projections
my (A) which are defined for simplices A < A(S) that intersect Y essentially. Namely,
after lifting A to the cover Sy associated to 71(Y) (i.e. the cover to which Y lifts
homeomorphically and for which Sy = int(Y')), we obtain a collection of properly
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embedded disjoint essential arcs and curves, which determine a simplex of A(Y).
We let 1y (A) be the union of these vertices [MMO00]. We make a similar definition
for a lamination A that intersects Y essentially, except that we include not just the
leaves of A but all leaves that one can add in the complement of A which accumulate
on A. This is natural when we realize A as a measured foliation (as we do in most of
the paper), and need to include generalized leaves, which are leaves that are allowed
to pass through singularities. Note that the diameter of 7wy (\) in A(Y) is at most
2.

Note that when Y is an annulus these arcs have natural endpoints coming from
the standard compactification of S = H2 by a circle at infinity. We remark that my
does not depend on any choice of hyperbolic metric on S.

When Y is not an annulus and A and JY are in minimal position, we can also
identify 7y (\) with the isotopy classes of components of A " Y.

These definitions naturally extend to immersed surfaces arising from covers of
S. Let T be a finitely generated subgroup of 71(S). Then the corresponding cover
St — S has a compact core W — a compact subsurface W < Sr such that Sp ~ W
is a collection of boundary parallel annuli. For curves or laminations A* of S, we
have lifts AT to Sp and define dyy (A, A1) = dg. (A, A*).

Throughout this paper, when A\, \ are two laminations or arc/curve systems, we
denote by dy (A, \') the minimal distance between their images in A(Y'), that is

dy (N, X)) = min{dy (I,I') : l € 7y (N\), 1" € Ty (N)}.
To denote the maximal distance between A and X in A(Y) we write

diamy()\, )\/) = diamA(y)(ﬂ'y()\) o Wy()\/)).

2.3. Flat geometry. In this section we return to the singular Euclidean geometry
of (X,q) and describe a circle at infinity for the flat metric induced by ¢ on the
universal cover X. We identify X with H? after fixing a reference hyperbolic metric
on X. Because of incompleteness of the flat metric at the punctures P, the con-
nection between the circle we will describe and the usual circle at infinity for H?
requires a bit of care. A related discussion appears in Guéritaud [Guél5], although
he deals explicitly only with the fully-punctured case. With this picture of the circle
at infinity we will be able to describe 7y in terms of g-geodesic representatives, and
to describe a g-convex hull for essential subsurfaces of X. In this section we do not
assume that X is fully- punctured

The completion points P in X correspond to parabohc fixed points for 71(X) in
OH2, and we abuse notation slightly by identifying P with this subset of JH?2.

A complete q-geodesic ray is either a geodesic ray r : [0,00) — X of infinite length,
or a finite-length geodesic segment that terminates in P. A complete g-geodesic line
is a geodesic which is split by any point into two complete g-geodesic rays. Our
goal in this section is to describe a circle at infinity that corresponds to endpoints
of these rays.

Proposition 2.2. There is a compactification 6()?) of X on which m (X) acts by
homeomorphisms, with the following properties:
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(1) There is a m (X)-equivariant homeomorphism B(X) — H2, extending the
identification of X with H? and taking P to the corresponding parabolic fized
points in OH?2.

(2) Iflis a complete q-geodesic line in X then its image in H? is an embedded arc
with endpoints on OH? and interior points in H? uP. Conversely, every pair
of distinct points x,y in 55(;{) = ﬂ(y() <X are the endpoints of a complete
q-geodesic line. The termination point in 0H? of a complete q-geodesic ray
is in P if and only if it has finite length.

(3) The q-geodesic line connecting distinct x,y € 8ﬁ()~() is either unique, or
there is a family of parallel geodesics making up an infinite Euclidean strip.

One of the tricky points of this picture is that g-geodesic rays and lines may meet
points of the boundary d8(X) not just at their endpoints.

Proof. When P = ¢ and X is a closed surface, X is quasi-isometric to H? and the
proposition holds for the standard Gromov compactification. We assume from now
on that P # (7.

We begin by setting H2 = H2 U P and endowing it with the topology obtained
by taking, for each p € P, horoballs based at p as a neighborhood basis for p.

Lemma 2.3. The natural identification of)Nf with H? extends to a homeomorphism
from X to H2.

Proof. First note that P is discrete as both a subspace of X and of H2. Hence,
it suffices to show that a sequence of points z; in X = |2 converges to a point
pePin X if and only if it converges to p in H2. This follows from the fact that
the horoball neighborhoods of p descend to cusp neighborhoods in X which form a
neighborhood basis for the puncture that is equivalent to the neighborhood basis of
g-metric balls. ]

Our strategy now is to form the Freudenthal space of X and equivalently H?2,
which appends a space of ends. This space will be compact but not Hausdorff,
and after a mild quotient we will obtain the desired compactification which can
be identified with H2. Simple properties of this construction will then allow us to
obtain the geometric conclusions in part (2) of the proposition.

Let E(X ) be the space of ends of X, that is the inverse limit of the system of path
components of complements of compact sets in X. The Freudenthal space Fr(f( ) is
the union X U e(X ) endowed with the toplogy generated by using path components
of complements of compacta to describe neighborhood bases for the ends. Because
X is not locally compact, Fr(X ) is not guaranteed to be compact, and we have to
take a bit of care to describe it.

The construction can of course be repeated for HQ, and the homeomorphism of
Lemma 2.3 gives rise to a homeomorphism Fr(X) — Fr(H?). Let us work in H?
now, where we can describe the ends concretely using the following observations:

Every compact set K < H? meets P in a finite set A (since P is discrete in H?),
and such a K is contained in an embedded closed disk D which also meets P at A.
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(This is not hard to see but does require attention to deal correctly with the horoball
neighborhood bases). The components of H2 . D determine a partition of E(H2),
which in fact depends only on the set A and not on D (if D’ is another disk meeting
P at A, then D U D’ is contained in a third disk D”, and this common refinement
of the neighborhoods gives the same partition). Thus we have a more manageble
(countable) inverse system of neighborhoods in e(H?), and with this description it
is not hard to see that e(]l:]IQ) is a Cantor set.

For each p € P there are two distinguished ends p*,p~ € E(HQ) defined as fol-
lows: For each finite subset A — P with at least two points one of which is p, the
two partition terms adjacent to p in the circle (or equivalently, in the boundary
of any D < H2? meeting P in A) define neighborhoods in G(HQ), and this pair of
neighborhood systems determines p™ and p~ respectively.

One can also see that p™ (and p~) and p do not admit disjoint neighborhoods,
and this is why Fr(H2) is not Hausdorff. We are therefore led to define the quotient
space

BE?) = Fe(B?)/ ~,
where we make the identifications p~ ~ p ~ p*, for each p € P.
We can make the same definitions in X, obtaining

B(X) =Fr(X)/ ~,
which we rename [ ()N( ). Since the definitions are purely in terms of the topology of
the spaces H2? and X, the homeomorphism of Lemma 2.3 extends to a homeomor-
phism B(X) — B(H?).

Part (1) of Proposition 2.2 follows once we establish that the identity map of H?

extends to a homeomorphism

B(H?) ~ H2.

This is not hard to see once we observe that the disks used above to define neigh-
borhood systems can be chosen to be ideal hyperbolic polygons. Their halfspace
complements serve as nelghborhood systems for points of &HQ\P A sequence con-
verges in H2 to a point p € Pif it is eventually contained in any union of a horoball
centered at p and two half-planes adjacent to p on opposite sides. This is modeled
exactly by the equivalence relation ~.

For part (2), let Dy be a fundamental domain for 71(X) in X, which may be
chosen to be a disk with vertices at points of 75, and of finite ¢g-diameter. Translates
of Dy can be glued to build a sequence of nested disks D,, exhausting X, each of
which meets P in a finite set of vertices, and whose boundary is composed of arcs
of bounded diameter between successive vertices.

A complete g-geodesic ray r either has finite length and terminates in a point of
P, or has infinite length in which case it leaves every compact set of X, and visits
each point of P at most once. Thus it must terminate in a point of e(X ) in the
Freudenthal space. We claim that this point cannot be p* or p~ for p € P. If r
terminates in p*, then for each disk D,, (n large) it must pass through the edge of
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0D,, adjacent to p on the side associated to p™. Any two such consecutive edges
meet in p at one of finitely many angles (images of corners of Dy), and hence the
accumulated angle between edges goes to oo with n. If we replace these edges by
their ¢-geodesic representatives, the angles still go to co. This means that r contains
infinitely many disjoint subsegments whose endpoints are a bounded distance from
p, but this contradicts the assumption that r is a geodesic ray.

The image of r in the quotient 3 ()N( ) therefore terminates in a point of P when
it has finite length, and a point in Jf ()Z' )~ P otherwise. The same is true for both
ends of a complete ¢g-geodesic line [, and we note that both ends of [ cannot land on
the same point because then we would have a sequence of segments [,, c [ of length
going to oo with both endpoints of [, on the same edge or on two consecutive edges
of 0D, a contradiction to the fact that [, is a geodesic and the arcs in ¢D,, have
bounded g-length.

Now let z, y be two distinct points in 05 ()Nf ). Assume first that both are not in P.
Then for large enough n, they are in separate components of the complement of D,,.
If we let x; — x and y; — y be sequences in B(f( ), then eventually z; and y; are in the
same components of the complement of D,, as x and y, respectively. The geodesic
from z; to y; must therefore pass through the corresponding boundary segments
of D,, and in particular through D,, so we can extract a convergent subsequence
as i — o0. Letting n — o and diagonalizing we obtain a limiting geodesic which
terminates in x,y as desired. If = € P or Yy € P the same argument works except
that we can take x; = = or y; = y. This establishes part (2).

Now let [ and I’ be two g-geodesics terminating in « and y. If  and y are in P
then | = I’ since the metric is CAT(0). If ¢ P then both [ and I pass through
infinitely many segments of dD,, on their way to x. Since these segments have
uniformly bounded lengths, [ and [’ remain a bounded distance apart. If y € P then
again CAT(0) implies that [ = I, and if y ¢ P then [ and I must cobound an infinite
flat strip. This establishes part (3). O

With Proposition 2.2 in hand we can consider each complete g-geodesic line [ in
X = H? as an arc in the closed disk H2, which by the Jordan curve theorem separates
the disk H? into at least 2 components. Each component is an open disk whose
closure meets 0H? in a subarc of one of the complementary arcs of the endpoints of
[. We call the union of disks whose closures meet one of these complementary arcs

of the endpoints of I an open side D} of [. The closure of each open side in A is
then a connected union of closed disks, attached to each other along the points of
P that [ meets on the circle. We call the closure of the open side Dy of | in H? the
side D;. Note that DY = int(D; n H?) = D; \ (0H? U I), and if D; and D] are the
two sides of [, then D; n D] = I. See Figure 5.

With this picture we can state the following:

Corollary 2.4. Let a,b be disjoint arcs in H? with well-defined, distinct endpoints on
OH? and let aq, by be q-geodesic lines with the same endpoints as a and b, respectively.
Then by is contained in a single side of aq.
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FIGURE 5. A complete g-geodesic line I ands its endpoints on JH?Z.

FIGURE 6. Disjoint arcs with their ¢-geodesic representatives.

Proof. Letting L and R be the arcs of 0H? minus the endpoints of a, the endpoints
of b must lie in one of them, say L, since a and b are disjoint.

Since a4 and by are geodesics in the CAT(0) space X, their intersection is con-
nected. If their intersection is empty, then the corollary is clear. Otherwise, by \ aq4
is one or two arcs, each with one endpoint on a4 and the other on L. It follows that
by \ a4 is on one open side of a4, and the corollary follows. ]

Subsurfaces and projections in the flat metric. Let Y © X be an essential
compact subsurface, and let Xy = X/m1(Y) be the associated cover of X. (Here
we have identified 71(X) with the deck transformations of X — X and fixed 71 (Y)
within its conjugacy class.) For any lamination A in X, we want to show that the
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projection 7y (\) can be realized by subsegments of the g-geodesic representative of
A. Recall that X is not necessarily fully-punctured.

We say a boundary component of Y is puncture-parallel if it bounds a disk in
X \ Y that contains a single point of P. We denote the corresponding subset of
P by Py and refer to them as the punctures of Y. Let Py denote the subset of
punctures of Xy which are encircled by the boundary components of the lift of Y to
Xy. In terms of the completed space Xy, Py is exactly the set of completion points
which have finite total angle. Let dyY denote the union of the puncture-parallel
components of 0Y and let @'Y denote the rest. Observe that the components of dyY
are in natural bijection with Py and set Y/ =Y ~ dyY.

Identifying X with H2, let A < 0H? be the limit set of m(Y), Q = JHZ ~ A,
and Py < A the set of parabolic fixed points of m(Y). Let C(Xy) denote the
compactification of Xy given by (H? U Q u Py)/m1(Y), adding a point for each
puncture-parallel end of Xy, and a circle for each of the other ends. Now given a
lamination (or foliation) A, realized geodesically in the hyperbolic metric on X, its
lift to Xy extends to properly embedded arcs in C'(Xy ), of which the ones that are
essential give my ().

Proposition 2.2 allows us to perform the same construction with the g-geodesic
representative of A. Note that the leaves we obtain may meet points of 73y in their
interior, but a slight perturbation produces properly embedded lines in Xy which
are properly isotopic to the leaves coming from A.

If Y is an annulus the same construction works, with the observation that the
ends of Y cannot be puncture-parallel and hence C(Y) is a closed annulus and the
leaves have well-defined endpoints in its boundary. We have proved:

Lemma 2.5. Let Y < X be an essential subsurface. If A is a proper arc or lam-
ination in X then the lifts of its q-geodesic representatives to Xy, after discarding
inessential components, give representatives of wy (\).

g-convex hulls. We will need a flat-geometry analogue of the hyperbolic convex
hull. The main idea is simple — pull the boundary of the regular convex hull tight
using g-geodesics. The only difficulty comes from the fact that these geodesics can
pass through parabolic fixed points, and fail to be disjoint from each other, so the
resulting object may fail to be an embedded surface. Our discussion is similar to
Section 3 of Rafi [Raf05], but the discussion there requires adjustments to handle
correctly the incompleteness at punctures.

As above, identify X with H2. Let A « dH? be a closed set and let CH(A) be the
convex hull of A in H2. We define CH,(A) as follows.

Assume first that A has at least 3 points. Each boundary geodesic [ of CH(A) has
the same endpoints as a (biinfinite) g-geodesic [,. By part (3) of Proposition 2.2, [,
is unique unless it is part of a parallel family of geodesics, making a Euclidean strip.

The plane is divided by [, into two sides as in the discussion before Corollary 2.4,
and one of the sides, which we call D;, meets 0H? in a subset of the complement
of A. Recall that D; is either a disk or a string of disks attached along puncture
points. If [, is one of a parallel family of geodesics, we include this family in D;.
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After deleting from X the interiors of D; for all [ in @CH(A) (which are disjoint by
Corollary 2.4), we obtain CHy(A), the g-convex hull.

If A has 2 points then CH,(A) is the closed Euclidean strip formed by the union
of g-geodesics joining those two points.

Now fixing a subsurface Y we can define a ¢-convex hull for the cover Xy, by
taking a quotient of the g-convex hull of the limit set Ay of m1(Y’). This quotient,
which we will denote by CH,(Xy), lies in the completion Xy. Because CHy(Xy)
may not be homeomorphic to Y, we pay explicit attention to a marking map between
Y and its hull.

Let 7 : Y — Xy be the lift of the inclusion map to the cover.

Lemma 2.6. The lift i : Y — Xy is homotopic to a map iq : Y — Xy whose image
is the g-hull CHy(Xy) such that

(1) The homotopy (ht)ie[o,1] from i to iq has the property that hy(Y) < Xy for
all t€[0,1).

(2) Each component of 0oY is taken by iy to the corresponding completion point
Of ﬁy.

(3) If Y is an annulus then the image of iy is either a maximal flat cylinder in
Xy or the unique geodesic representative of the core of Y in Xy .

(4) If Y is not an annulus then each component v of 'Y is taken by iy to a
q-geodesic representative in Xy . If there is a flat cylinder in the homotopy
class of v then the interior of the cylinder is disjoint from i4(Y').

(5) There is a deformation retraction r : Xy — i4(Y). For each component y
of 'Y, the preimage r=1(iy(7)) intersects Xy in either an open annulus or
a union of open disks joined in a cycle along points in their closures.

(6) If the interior int(CHy(Ay)) is a disk then iq is a homeomorphism from
Y' =Y \ QY to its image.

Proof. Let T' = mY and let A = Ay < JH? denote the limit set of I'. As usual,
CH(A)/T' can be identified with Y' = Y ~ 0pY. After isotopy we may assume
i:Y"— CH(A)/T is this identification.

First assume that Y is not an annulus. Form CH,(A) as above, and for a boundary
geodesic | of CH(A) define I, and its side D; as in the discussion above. The quotient
of l4 is a geodesic representative of a component of Y, and the quotient of the open
side D} in Xy is either an open annulus or a union of open disks joined in a cycle
along points in their completion. The ¢-geodesic may pass through points of P, so
that there is a homotopy from [ to I, rel endpoints which stays in H? until the last
instant.

We may equivariantly deform the identity to a map CH(A) — CH,(A), which
takes each [ to l,: since CHy(A) is contractible, it suffices to give a I'-invariant
triangulation of CH(A) and define the homotopy successively on the skeleta. This
homotopy descends to a map from Y’ to CH,(A)/T, and can be chosen so that the
puncture-parallel boundary components map to the corresponding points of Py.
This gives the desired map i, and establishes properties (1-4).
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Using the description of the sides D;, we may equivariantly retract i to CH,(A),
giving rise to the retraction r of part (5).

Finally, if the interior of CH4(A) is a disk, then its quotient is a surface. Our
homotopy yields a homotopy-equivalence of Y’ to this surface which preserves pe-
ripheral structure and can therefore be deformed rel boundary to a homeomorphism.
We let i, be this homeomorphism, giving part (6).

When Y is a (nonperipheral) annulus, Ay is a pair of points and we recall from
above that CH,(A) is either a flat strip in X which descends to a flat cylinder in
Xy, or it is a single geodesic. The proof in the annular case now proceeds exactly
as above. O

Let ¢y : Y — X be the composition of i, with the (branched) covering Xy — X
and set 0, = 14(0'Y). Note that this will be a 1-complex of saddle connections
and not necessarily a homeomorphic image of 0'Y.

2.4. Fibered faces of the Thurston norm. A fibration o: M — S! of a finite-
volume hyperbolic 3-manifold M over the circle comes with the following structure:
there is an integral cohomology class in H'(M;Z) represented by oy : mM — Z,
which is the Poincaré dual of the fiber F'. There is a representation of M as a quotient
F x R/® where ®(z,t) = (f(z),t —1) and f : FF — F is called the monodromy
map. This map is pseudo-Anosov and has stable and unstable (singular) measured
foliations A™ and A~ on F. Finally there is the suspension flow inherited from
the natural R action on F x R, and suspensions AT of A which are flow-invariant
2-dimensional foliations of M. All these objects are defined up to isotopy.

The fibrations of M are organized by the Thurston norm || - || on H'(M;R)
[Thu86] (see also [CCO00]). This norm has a polyhedral unit ball B with the following
properties:

(1) Every cohomology class dual to a fiber is in the cone R, F over a top-
dimensional open face F of B.

(2) If RyF contains a cohomology class dual to a fiber then every irreducible
integral class in R F is dual to a fiber. F is called a fibered face and its
irreducible integral classes are called fibered classes.

(3) For a fibered class w with associated fiber F', ||w|| = —x(F).

In particular if dim H'(M;R) > 2 and M is fibered then there are infinitely many
fibrations, with fibers of arbitrarily large complexity. We will abuse terminology a
bit by saying that a fiber (rather than its Poincaré dual) is in Ry F.

The fibered faces also organize the suspension flows and the stable/unstable fo-
liations: If F is a fibered face then there is a single flow v and a single pair AT of
foliations whose leaves are invariant by 1, such that every fibration associated to
R*F may be isotoped so that its suspension flow is 1 up to a reparameterization,
and the foliations AT for the monodromy of its fiber F are AT n F. These results
were proven by Fried [Fri82]; see also McMullen [McMOO0].

Veering triangulation of a fibered face. A key fact for us is that the veering
triangulation of the manifold M depends only on the fibered face F and not on a
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particular fiber. This was known to Agol for his original construction (see sketch in
[Ago12]), but Guéritaud’s construction makes it almost immediate.

Proposition 2.7 (Invariance of 7). Let M be a hyperbolic 3-manifold with fully-
punctured fibered face F. Let S1 and So be fibers of M each contained in Ry F
and let 71 and 1o be the corresponding veering triangulations of M. Then, after an
isotopy preserving transversality to the suspension flow, 7 = To.

Proof. The suspension flow associated to F lifts to the universal cover M , and any
fiber S in R F is covered by a copy of its universal cover S in M which meets every
flow line transversely, exactly once. Thus we may identify S with the leaf space L of
this flow. The lifts A* of the suspended laminations project to the leaf space where
they are identified with the lifts AT of A* to S.

The foliated rectangles used in the construction of 7 from q on S depend only on
the (unmeasured) foliations A*. Thus the abstract cell structure of 7 depends only
on the fibered face F and not on the fiber. The map 7 from each tetrahedron to
its rectangle does depend a bit on the fiber, as we choose ¢-geodesics for the edges
(and the metric ¢ depends on the fiber); but the edges are always mapped to arcs
in the rectangle that are transverse to both foliations. It follows that there is a

transversality-preserving isotopy between the triangulations associated to any two
fibers. g

Fibers and projections. We next turn to a few lemmas relating subsurface pro-
jections over the various fibers in a fixed face of the Thurston norm ball.

Lemma 2.8. If F is a fibered face for M and Y — S is an infinite covering where
S is a fiber in Ry F and m (YY) is finitely generated, then the projection distance
dy (A7, AT) depends only on F and the conjugacy class of the subgroup m (Y) <
w1 (M) (and not on S).

Note that Y need not correspond to an embedded subsurface of S.

Proof. As in the proof of Proposition 2.7, S can be identified with the leaf space L
of the flow in M. The action of m (M) on M descends to L, and thus the cover
Y = §/m1(Y) is identified with the quotient £/7(Y) and the lifts of AT to Y are
identified with the images of AT in £/ (Y). Thus the projection dy (A*,A™) can
be obtained without reference to the fiber S. O

This lemma justifies the notation dy (A", A7) used in the introduction.
We will also require the following lemma, where we allow maps homotopic to
fibers which are not necessarily embeddings.

Lemma 2.9. Let F be a fiber of M. Let Y < M be a compact surface and let
h: F'— M be a map which is homotopic to the inclusion. Suppose that h(F)nY is

inessential in'Y, i.e. each component of the intersection is homotopic into the ends
of Y. Then the image of m1(Y') is contained in m (F) < w1 (M).
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Proof. Let ¢ be the cohomology class dual to F'. Since h(F') meets Y inessentially,
every loop in Y can be pushed off of h(F') so ¢ vanishes on 7;(Y). But the kernel
of ¢ in w1 (M) is exactly 71 (F), so the image of 7 (Y) is in 71 (F). O

3. SECTIONS AND POCKETS OF THE VEERING TRIANGULATION

In this section the surface X is fully-punctured. A section of the veering triangu-
lation 7 is an embedding (X,T) — (X x R, 7) which is simplicial with respect to an
ideal triangulation 7" of X, and is a section of the fibration 7: X x R — X (hence
transverse to the vertical flow). By simplicial we mean that the map takes simplices
to simplices. The edges of T' are saddle connections of ¢ that are also edges of T
(i.e. those which span singularity-free rectangles), and indeed any triangulation by
T-edges gives rise to a section. We will abuse terminology a bit by letting T" denote
both the triangulation and the section.

A diagonal flip T — T’ between sections is an isotopy that pushes T through a
single tetrahedron of 7, either above it or below it. Equivalently, if R is a maximal
rectangle and @ its associated tetrahedron, the bottom two faces of () might appear
in T, in which case T” would be obtained by replacing these with the top two faces.
This is an upward flip, and the opposite is a downward flip. We will refer to the
transition as both a diagonal flip/exchange and a tetrahedron move, depending on
the perspective.

An edge e of T' can be flipped downward exactly when it is the tallest edge, with
respect to ¢, among the edges in either of the two triangles adjacent to it. This
makes e the top edge of a tetrahedron (i.e. the diagonal of a quadrilateral that
connects the horizontal sides of the corresponding rectangle). Similarly it can be
flipped upward when it is the widest edge among its neighbors. See Figure 7.

4

Ficure 7. The edge e is upward flippable, g is downward flippable,
and f is not flippable.

In particular it follows that every section has to admit both an upward and
downward flip — simply find the tallest edge and the widest edge.
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However it is not a priori obvious that a section even exists. Guéritaud gives an
argument for this and more:

Lemma 3.1 ([Guélb]). There is a sequence of sections --- — T; — Tjxq — -+ sep-
arated by upward diagonal flips, which sweeps through the entire manifold (X xR, 7).
Moreover, when (X xR, T) covers the manifold (M, ), this sequence is invariant by
the deck translation ®.

We remark that Agol had previously proven a version of Lemma 3.1 with his
original definition of the veering triangulation [Agol1].

For an alternative proof that sections exist, see the second proof of Lemma 3.2.
We remark that Lemma 3.1 does not give a complete picture of all possible sections
of 7. In this section we will establish a bit more structure.

For a subcomplex K < 7, denote by T(K) the collection of sections 7" of 7
containing the edges of K. A necessary condition for T'(K) to be nonempty is that
m(K) is an embedded complex in X composed of T-simplices. We will continue to
blur the distinction between K and m(K).

Our first result states that the necessary condition is sufficient:

Lemma 3.2 (Extension lemma). Suppose that E is a collection of T-edges in X
with pairwise disjoint interiors. Then T'(FE) is nonempty.

The second states that T'(K) is always connected by tetrahedron moves. This
includes in particular the case of T'((F), the set of all sections.

Proposition 3.3 (Connectivity). If K is a collection of T-edges in X with pairwise
disjoint interiors, then T(K) is connected via tetrahedron moves.

Finding flippable edges. Let T be a section and let ¢ be an edge of 7, which
is not an edge of T. Any edge e of T crossing ¢ must do so from top to bottom
(e > o) or left to right (e < ), as in Section 2.1, and we further note that all edges
of T that cross o do it consistently, all top-bottom or all left-right, since they are
disjoint from each other.

Lemma 3.4. Let T be a section and suppose that an edge o of T is crossed by an
edge e of T. If e > o, then there is an edge of T crossing o which is downward
flippable. Similarly if e < o then there is an edge of T crossing o which is upward

flippable.

Proof. Assuming the crossings of ¢ are top to bottom, let e be the edge crossing o
that has largest height with respect to q. Let D be a triangle of T" on either side
of e and let f be its tallest edge. Drawing the rectangle M in which D is inscribed
(Figure 8) one sees that R, the rectangle of o, is forced to cross it from left to right.
Hence, the edge f must also cross o. Therefore, f = e by choice of e. It follows that
e is a downward flippable edge. O
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M

i

F1GURE 8. The tallest T-edge crossing o must also be tallest in its
own triangles.

Pockets. Let T and T” be two sections and K their intersection, as a subcomplex in
X xR. Because both sections are embedded copies of X transverse to the suspension
flow, their union T'uT” divides X x R into two unbounded regions and some number
of bounded regions. Each bounded region U is a union of tetrahedra bounded by
two isotopic subsurfaces of T" and T”, which correspond to a component W of the
complement of m(K) in X. The isotopy is obtained by following the flow, and if it
takes the subsurface of 7" upward to the subsurface of T' we say that T lies above
T in U. We call U a pocket over W, and sometimes write Uy,. We call W the base
of the pocket U.

Lemma 3.5. With notation as above, T lies above T' in the pocket Uy if and only
if, for every edge e of T in W and edge €' of T' in W, if e and €' cross then e > €'.

Note that, for each edge e of T in W there is in fact an edge €’ of T in W which
crosses e, since both 7" and T are triangulations, with no common edges in W.

Proof. Suppose that T lies above T in Uy, and let e be an edge of T in W; hence,
it is in the top boundary of U. Let @) be the tetrahedron of 7 for which e is the
top edge. Via the local picture around e (see Section 2.1 and Figure 4), we see
that @ lies locally below T'. Its interior is of course disjoint from 7" and 7" (and
the whole 2- skeleton), hence it is inside U. Let e; be the bottom edge of (). Note
e >ep. If e isin 77, stop (with €’ = e;). Otherwise it is in the interior of U, and
we can repeat with the tetrahedron for which e; is the top edge. We get a sequence
of steps terminating in some €’ in 7”, which must be in the boundary of U, and
conclude e > €’ (by the transitivity of > as in Section 2.1). Now from the paragraph
before Lemma 3.4, the same slope relation holds for every edge of T crossing e,
hence giving the first implication of the lemma. For the other direction, exchange
the roles of T' and 7" in the proof. O

Connectedness of T'(K). We can now prove Proposition 3.3.
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Proof. Let us consider T, 77 in T(K). Let U be one of the pockets, and suppose
T lies above T” in U. Lemma 3.5 together with Lemma 3.4 implies that T has a
downward flippable edge e which crosses an edge of T” that is in W. In particular e
itself is in W. Performing this flip we reduce the number of tetrahedra contained in
pockets. Thus a finite number of moves will take T to T”, without disturbing K. O

As a consequence of Proposition 3.3 and its proof we have:

Corollary 3.6. If K is a nonempty subcomplex of T and T(K) # &, then there
are unique sections TT(K) and T~ (K) in T(K) such that every T € T(K) can be
upward flipped to TT(K) and downward flipped to T~ (K).

Proof. First note that T'(K) is finite: because 7 is locally finite at the edges, there
are only finitely many choices for a triangle adjacent to K. We then enlarge K
successively, noting that there is a bound on the number of triangles in a section.
Thus there exists a section 7" in T'(K) which is not upward flippable in T'(K). For
any two sections T7,T» € T(K) there is a T3 € T(K) obtained as the union of the
tops of the pockets of T7 and 15 and their intersection. Thus T3 is upward flippable
unless 77 = T3, and similarly for T5. This implies that T is the unique section in
T (K) which is not upward flippable, and every other section is upward flippable to
T+. We define T~ analogously. O

The section T"(K) is called the top of T(K) and the section T~ (K) is called the
bottom of T(K). Note that any section obtained from T (K) by upward diagonal
exchanges is not in T'(K).

Extension lemma. We conclude this section with two proofs of Lemma 3.2.

Proof one. Lemma 3.1 gives us, in particular, the existence of at least one section
Ty which is disjoint from E, which we may assume lies above every edge of F.

Then by Lemma 3.4 there is a downward flippable edge e in T. The tetrahedron
involved in the move lies above E, so E still lies below (or is contained in) the new
section T7. We repeat this process, and at each stage every edge of E is either
contained in T; or crosses an edge of T; and lies below it. Thus by Lemma 3.4,
unless £ ¢ T; each T; contains a downward flippable edge that is not contained in
E.

Because 7 is locally finite at each edge, any sequence of downward flips is a proper
sweepout of the region below Tp, and hence must eventually meet every edge of
below Ty. Thus we may continue until every edge of E lies in T;. g

Proof two. Our second proof does not use Lemma 3.1, and in particular it gives an
independent proof of the existence of sections.

Let D be a component of the complement of E which is not a triangle. Let e
be an edge of 0D and consider the collection of 7-tetrahedra adjacent to e. These
contain a sequence QQ_, Q1,...Qm, @+, as in Figure 4, where ()_ is the tetrahedron
with e as its top edge, Q. is the tetrahedron with e as its bottom edge, and the rest
are adjacent to e on the same side as D (if D meets e on two sides we just choose
one). Two successive tetrahedra in this sequence share a triangular face. We claim
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that one of these faces must be contained in D. Equivalently we claim that one of
the triangles is not crossed by any edge of E.

Since each tetrahedron () is inscribed in a singularity free rectangle R, if an edge f
of I crosses any edge of @ its rectangle crosses all of R. It follows immediately, since
the edges of ' have disjoint interiors, that they consistently cross R all vertically, or
all horizontally. Because successive tetrahedra in the sequence share a face it follows
inductively that, if all the faces are crossed by FE, then they are all consistently
crossed horizontally, or all vertically.

However, Q_ can only be crossed vertically by E (since E does not cross e).
Similarly @4 can only be crossed horizontally. It follows that there must be a
triangular face F' that is not crossed by E. Thus F is contained in D. Since D is
not a triangle, at least one edge of F' passes through the interior of D. We add this
edge to E and proceed inductively. ]

4. RECTANGLE AND TRIANGLE HULLS

In this section we discuss a number of constructions that associate a configuration
of 7-edges to a saddle connection of the quadratic differential ¢q. These will be used
later to show that subsurfaces with large projection are compatible with the veering
triangulation in the appropriate sense. As a byproduct of our investigation, we
prove the (to us) unexpected result (Theorem 1.4) that the edges of the veering
triangulation form a totally geodesic subgraph of the curve and arc graph of X.

We emphasize that in Section 4.1 and Section 4.2, the surface X is not necessarily
fully-punctured. Thus by 7 we mean the veering triangulation associated to the
fully-punctured surface X \ sing(q). We will say that a saddle connection of X is a
T-edge if its interior is an edge of this veering triangulation. In particular this means
that its lift to X spans a singularity-free rectangle.

4.1. Maximal rectangles along a saddle connection. Let ¢ be a saddle con-
nection, for the moment in the completed universal cover X. Consider the set R(o)
of all rectangles which are maximal with respect to the property that o passes through
a diagonal. Thus each R € R(o) contains singularities in at least two edges. Let
h(R) be the convex hull in R of the singularities in the boundary of R and let h(!) (R)
denote its 1-skeleton (see Figure 9).

Let

r(o) = {hV(R) : ReR(o)}.

See Figure 10 for an example. Note that all the saddle connections in r(o) are
edges of 7 — each of these arcs spans a singularity-free rectangle by construction.
Moreover, r(o) = {o} if o is itself a T-edge.

The following lemma will play an important role throughout this paper.

Lemma 4.1. If saddle connections o1 and oy have no transversal intersections then
neither do r(o1) and r(o2).

Proof. Say that two rectangles meet crosswise if their interiors intersect, and no
corners of one are in the interior of the other. Note that when two distinct rectangles
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v

FIGURE 9. The eight possible (up to symmetry) convex hulls h(R),
assuming at most one singularity per leaf of A*. The saddle connec-
tion o is in blue.

—

FIGURE 10. Example of r(o) (in red)

meet crosswise, any two of their diagonals intersect. We say that the rectangles
meet properly crosswise if they also do not share any corners, in which case any two
diagonals intersect in the interior.

Let 71 and 72 be saddle connections in r(o1) and r(o2), respectively, and suppose
that they intersect transversely. Hence their spanning rectangles @1 and Q2 must
cross as in Figure 3. Assume that @) is the taller and Q)2 the wider.

Now let Ry and Rs be the rectangles of R(o1) and R(o2) containing @1 and Q2,
respectively. Because of the singularities in the corners of Q1 and @2, Rs is no
taller than Q1 and R; is no wider than Q2. Hence R; and Rs meet crosswise. (See
Figure 11).

If they met properly crosswise then o1 and o would have an interior intersection,
which is a contradiction. Hence R; and Ry share a corner c. But the edges meeting
at ¢ would have to pass through boundary edges of Q1 and @J2. Those edges already
have the singularities of 7 and 7o, and so ¢ cannot be a singularity. Thus if ¢ is the
intersection of the diagonals contained in o1 and o9 it would be in the interior of
both saddle connections, again a contradiction.
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01
01 g1
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\ 02 / o2 //
|
(1) (i1) (iii)
FI1GURE 11. Three examples of the crossing pattern. The rectangles
R; and Ry are in blue, 71 and 7o are in red, and ()1 and Qo are
shaded. In (i) and (i) the crossing is proper. In (i) the corner c is
shared.
We conclude that 7 and 7 cannot cross. (]

An immediate consequence of Lemma 4.1 is that we can carry out the construction
downstairs: If o is a saddle connection in X we can construct r(é) for each of its
lifts 6 to X, and the lemma tells us none of them intersect transversally. Thus the
construction projects downstairs to give a collection of T-edges with disjoint interior.
Moreover if K is any collection of saddle connections with disjoint interiors then r(K)
makes sense as a subcomplex of 7 supported on some section by Lemma 3.2. Hence,
we will continue to use r(-) to denote the corresponding map on saddle connections
of X. We remark that although r(-) takes collections of saddle connections with
disjoint interiors to collections of T-edges with disjoint interiors, it may do so with
multiplicity.

4.2. Triangle hulls. Now let us consider a similar operation that uses right trian-
gles instead of rectangles, and associates to a transversely oriented saddle connection
in the universal cover a homotopic path of saddle connections.

If o is a saddle connection in X equipped with a transverse orientation, let 7 (o)
denote the collection of Euclidean right triangles which are mazimal with respect to
the property that they are attached along the hypotenuse to o along the side given by
its transverse orientation. A triangle ¢ in T (o) must have exactly one singularity
in each of its legs, and so their convex hull h(t) is a single saddle connection. The
set 7(o) must be finite, and its hypotenuses cover ¢ in a sequence of non-nested
intervals, ordered by their left (or right) endpoints. See Figure 12. Let t(o) be the
union of segments h(t) for t € T (o).

Lemma 4.2. Either t(o) = o or o ut(o) is the boundary of an embedded Euclidean
polygon P(c) in X which is foliated by arcs of \*.

Proof. Suppose that t and ¢’ are triangles of T (o) and p € t n ¢’ is in the interior
of t. Let [ and I’ be the vertical line segments in ¢ and t’, respectively, joining
p to the respective hypotenuses (I’ could be a single point). If [ and !’ leave p in
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. ]

FIGURE 12. An example of t(o) and P(o).

opposite directions then [ U’ is a vertical geodesic connecting two points of o, which
contradicts the uniqueness of geodesics in X.If they leave p in the same direction
but are not equal, then their difference is a vertical geodesic with endpoints on o,
again a contradiction.

We conclude that if ¢ and ¢ intersect they do so on a common subarc of their
hypotenuses. This subarc spans a (nonmaximal) right triangle which is exactly tnt'.

Now given t € T (o), the vertical and horizontal legs of ¢ each contain a single
singularity of X; denote these singularities by v; and h;, respectively. By construc-
tion of T (o), there is a unique triangle ¢’ € T (o) such that hy = v, unless v; is
an endpoint of 0. Hence, given an orientation on o, the edges of t(o) come with a
natural ordering induced by moving along o. By our observations above, we see that
t(o) is an embedded arc and meets o only at its endpoints. Since X is contractible,
o and t(o) must be homotopic and hence cobound a disk P(c¢). In fact this disk is
foliated by both A* and A~, as we can see by noting that each edge of t(o) cobounds
a vertical (similarly a horizontal) strip with a segment in 0. Hence P(o) admits an
isometry to a polygon in R2. ]

Let us define a map t} : 0 — t(o) (resp. t, ) which is the result of pushing the
points of o along the vertical (resp. horizontal) foliation to the other side of P(co).

If f: I — X is an embedding of an oriented 1-manifold I that parametrizes some
union of saddle connections, we let

(1) ttf I - X

be the map that sends each p € T to t(f(p)), where o is the saddle connection
containing f(p) with transverse orientation induced by the orientation on I. By
composing with covering maps we can use the same notation for the resulting oper-
ation in quotients X'y or X.

Unlike the rectangle hulls, the edges of t(o) are not necessarily T-edges. (See
the upper-right red saddle connection in Figure 12.) Moreover, the t-version of
Lemma 4.1 is in general not true. That is, the image of t may not project to an
embedded complex in X since o1 and oy can be disjoint while t(o7) and (o) cross.
However, we do have the following;:
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Lemma 4.3. Let 0,0’ be saddle connections in X with disjoint interiors. Let 1 be an
arc of \T with endpoints on o and o', and give o and o' the transverse orientation
pointing toward the interior of . Then the polygons P(c) and P(c') of X (from
Lemma 4.2) have disjoint interiors.

Proof. Suppose towards a contradiction that there is a point p which is in the interior
of each of the polygons P = P(o) and P’ = P(¢’). Since P and P’ are foliated by
AT, let m and m/ be the arcs of A which are properly embedded in P and P’
respectively, and pass through p. Orient m so that it begins in o, and m’ so that
it terminates in o’. These orientations agree at p: if they did not we would obtain
a contradiction by applying Gauss—Bonnet to the circuit passing through m,o,l,0’
and m/.

Thus, the union J = m u m’ is an interval in a leaf of A* with endpoints on o
and o', with p in the interior of m nm’. (If p were in [ already then we would have
J =1.) Orienting J as [y,y'] where y € o and ' € ¢/, we can write m = [y, z] and
m’ = [2/,y'], where z = J n t(0) and 2/ = J n t(c’). These points appear, in order
along J, as y,2',p,z,y .

FIGURE 13. The point p cannot lie in the interior of both P(¢) and P(c¢”).

Let t and t' be the triangles of 7 (o) and 7 (¢’) containing x and 2, respectively.
Then p e t nt’. Let k and £’ be the saddle connections of t(c) and t(¢’) spanning
t and t', respectively (See Figure 13). The fact that the endpoints of k£ and £’ are
disjoint from the intersection of ¢ and ¢’ implies that x N J, which is z, lies below
k' nJ, which is 2’. This contradicts the ordering of the points in J. O

4.3. Retractions in A. In this subsection, X is fully-punctured. Let A(7) < A(X)
be the span of the vertices of A(X) which are represented by edges of 7. We will
construct a coarse 1-Lipschitz retraction from A(X) to A(7). By this, we mean a
coarse map which takes diameter < 1 sets to diameter < 1 sets and restricts to the
identity on the 0-skeleton of A(7) < A(X).

First, let SC(q) < A(X) be the arcs of X which can be realized by saddle connec-
tions of ¢. Hence, A(7) < SC(q) < A(X). For any a € A(X) define s(a) = SC(q)
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as follows: If a, is the g-geodesic representative of a in X, then let s(a) be the set
of saddle connections of ¢ composing a,. If a is a cylinder curve of ¢, then we take
s(a) to be the set of saddle connections appearing in the boundary of the maximal
cylinder of a. Note that if a € A(X) is itself represented by a saddle connection of
q, then s(a) = {a}.

The following lemma shows that s is well-defined and is a coarse 1-Lipschitz
retraction, in the above sense.

Lemma 4.4. For adjacent vertices a,b € A(X), the vertices of s(a) and s(b) are
pairwise adjacent or equal.

Proof. Recall that adjacency of vertices in A(X) corresponds to disjointness of their
hyperbolic geodesic representative, and for vertices realized by saddle connections,
this corresponds to the lack of transverse intersection of their interiors. But if any
arcs of s(a) and s(b) have crossing interiors, Corollary 2.4 implies that the hyperbolic
geodesic representatives of a and b must cross as well. The lemma follows. ([l

Combining this lemma with Lemma 4.1 gives us the proof of Theorem 1.4, which
we restate here in somewhat more precise language:

Theorem 1.4 (Geodesically connected theorem). Let (X, q) be fully punctured with
associated veering triangulation 7. The composition ros: A(X) — A(T) is a coarse
1-Lipschitz retraction in the sense that it takes diameter < 1 sets to diameter < 1
sets, and is the identity on the 0-skeleton of A(tT). Hence, any two vertices in A(T)
are joined by a geodesic of A(X) that lies in A(T).

Proof. Lemma 4.4 says that s : A(X) — SC(q) is a coarse 1-Lipschitz retraction.
Lemma 4.1, interpreted as a statement about the arc and curve complexes, says the
same for r : SC(¢q) — A(7). The theorem follows. O

5. PROJECTIONS AND COMPATIBLE SUBSURFACES

In this section we show that if Y < X is a compact essential subsurface of large
projection distance dy (A1, A7), then Y has particularly nice representations with
respect to, first, the quadratic differential ¢ and, second, the veering triangulation 7.
We emphasize that in this section, the surface X is not necessarily fully-punctured.

5.1. Projection and g—compatibility. Recall the ¢g-convex hull map i4: Y — Xy
constructed in Lemma 2.6. We say that Y is g-compatible if i, is an embedding of
Y' =Y \ dyY, as in part (6) of Lemma 2.6. (Recall that dyY maps to completion
points of 753/) This condition implies a little more:

Lemma 5.1. If Y < X is q-compatible, then
(1) the projection 1, Y — X of iy to X is an embedding from int(Y) into X
which is homotopic to the inclusion, andN
(2) 74(0"Y") does not pass through points of Py .

Recall that d'Y = 0Y \ oY
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FIGURE 14. The image of a g-compatible subsurface Y in Xy under
tq. Open circles are points of Py (corresponding to the image of dpY")
and dots are singularities not contained in 75y. The ideal boundary
of Xy is in blue.

Proof. Recall from Lemma 2.6 that g-compatibility of ¥ is equivalent to the state-
ment that the interior of the g-hull CH,(A) c X is a disk (i.e. it is not pinched
along singularities or saddle connections).

If ¢4:int(Y) — X fails to be an embedding, then it must be that for some
deck transformation g of the universal covering X — X the interiors of CHgy(A)
and g - CHy(A) are distinct and overlap. But then it follows immediately from
Corollary 2.4 that the distinct hyperbolic convex hulls CH(A) and g- CH(A) overlap,
contradicting that Y is a subsurface of X. This proves part (1).

For part (2), let 5 be a component of dyY . Since iy embeds Y ~\ Y, a collar
neighborhood U of §# in Y maps to a neighborhood V' of the puncture p = i,(3).
Now if 7 is a component of 0'Y’, g-compatibility again implies its image must avoid
V'~ p. Since iq(7) cannot equal p, it must be disjoint from it. O

Note that Y is a g-compatible annulus if and only if the core of Y is a cylinder
curve in X. In this case, the corresponding open flat cylinder in X is ¢4(int(Y")). In
general, if Y is g-compatible then one component of X \ 0,Y is an open subsurface
isotopic to the interior of Y; this is the image ¢4(int(Y")) and is denoted int,(Y").

The following proposition shows that mild assumptions on dy (A", A7) imply that
Y is g-compatible.

Proposition 5.2 (¢-Compatibility). Let Y < X be an essential subsurface.

If Y is non-annular and dy (AT, A7) > 0, then Y is q-compatible.

If Y is an annulus and dy (AT A7) > 1, then Y is g-compatible. In this case,
inty(Y) is a flat cylinder.

Proof. We treat the non-annular case first. Suppose that dy (AT, A7) > 0.

Recall from Section 2.3 that we have identified X with H?2, set A < JH? to be
the limit set of ' = 7 (Y), set Q = dH2 \. A, and defined Py — A to be the set of
parabolic fixed points of m1(Y). Note that Py = A nP. Further recall from part
(6) of Lemma 2.6 that the map from Y’ to CHy(Xy ) is an embedding, provided the
interior of CHy(A) is a disk. Since CHy(A) is the result of deleting the interior of
the side D; from X for each hyperbolic geodesic line [ in dCH(A), it suffices to show
that
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(1) for each geodesic line | in dCH(A), the interior of the corresponding ¢-
geodesic [, does not meet O0H? . Dy, and

(2) if I and I’ are distinct geodesic lines in JCH(A) then I, and I;, do not meet
in X.

First suppose that condition (1) is violated for some geodesic line | in dCH(A)
and point p € OH2\D;. Set p to be the image of p in Xy . Letting v be the boundary
component of 0'Y that is the image of [ in Xy, we see that the image of [, in Xy,
which equals v, = 74(7), passes through the point p.

Since [, is a geodesic in X , we see that p is a completion point and so either
ﬁeﬁy 01“]5675\751/.

Assume that p € Py. Then peE Py corresponds to a puncture of Y. Recall that
by Lemma 2.6, the image of the open side D} = int(D; N X ) in Xy is either an
open annulus or a disjoint union of open disks; in either case, set A, equal to the
component which contains p in its boundary. The angle at p in A, between the
incoming and outgoing edges of ~, is at least m, which implies that A, contains a
horizontal and a vertical ray [~, " emanating from p. (Figure 15.)

Z+

Ay

FIGURE 15. When ,(?'Y) passes through a point of Py,
dy (AT, A7) = 0.

These rays are proper g-geodesic lines in Xy (because p is a puncture, not a
point of Xy), and hence by Lemma 2.5 represent vertices of my (A7) and my ("),
respectively. Further, since the rays only intersect within the annulus or disk A,
and Y is itself nonannular, we see that [~ and [T in fact represent the same point in
A(Y). (Actually, if A does not contain a flat cylinder, then the interiors of [~ and
[T are disjoint as we show below). Either way, it follows that

dY()‘+7 A_) =0,
a contradiction.

Next assume that p € P ~ Py. Since p ¢ D; n dH? we may set A to be the
component of the image of D in Xy which contains p € Xy in its boundary. As
before, the angle subtended by 7, at x in the boundary of A is at least 7 (see
Figure 16). A pair of rays I+ emanating from x into A are properly embedded lines

and again represent the same vertex of A(Y), giving us dy (AT, A7) = 0.
We conclude that condition (1) is satisfied.
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FIGURE 16. Y} is pinched at a completion point.

Next suppose that geodesics | and I’ in the boundary of CH(A) violate (2), i.e. [,
and Iy meet in X. Let I =1, Nl < X which, since X is CAT(0), is a connected

subset of each of lq,l;. In general, the intersection in X of two g-geodesic lines
is either a single singularity (possibly a completion point) or a union of saddle
connections. Because [, and lfl meet in X, I contains either a saddle connection or

a singularity which is not a completion point. Let v,~’ ,’yq,'y(’],l , be the images in

Xy of I,I, 1, lfl,f, respectively.

Suppose first that I contains a saddle connection o. In this case, let A be the
component of the image of the open side D} in Xy which contains o in its boundary,
and define A’ similarly. (Note that it is possible that A = A’ and that A and A’
meet along other saddle connections and singularities besides o, but this will not
change the discussion.)

Any point of o is crossed by a pair [7,1” of leaves of A", \™, which as proper
arcs of Xy determine the same vertex of A(Y'). Hence, we conclude once again that

dy (AT, A7) = 0.

l+

FIGURE 17. Y, is pinched along a saddle connection.

Finally, suppose that I contains a singularity x in Xy (i.e. x is not a completion
point). Again, set A to be the component of the image of Dy in Xy which contains
x in its boundary and A’ to be the component of the image of Dj in Xy which
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contains x in its boundary. As before, there is an angle of at least m on the A side of
7vq and on the A" side of 7{1, so we can find pairs of rays ra—r emanating from z on the
A side, and r{ emanating on the A’ side (see Figure 18). The unions I* = rj U, )
and I~ = ry U, 1] are generalized leaves of A™ and A, respectively, and again

determine the same point in A(Y) so we conclude that dy (AT, A7) = 0.

FIGURE 18. Yj is pinched at a singularity which is not a completion point.

We conclude that if Y is nonannular and dy (AT, A7) > 0, then Y is g-compatible.

When Y is an annulus, almost the same argument applies. The difference is
that the arcs [T we obtain are not homotopic with fixed endpoints, and so do not
determine the same vertex of A(Y'). However, in each case we will show they have
disjoint interiors, concluding dy (I*,17) < 1, and so

dy(At, A7) < 1.

To see this, let v denote the core of ¥ and let v, be a geodesic representative in
Xy. Supposing that int,(Y) is not a flat annulus, we first claim the following: For
any singular point p crossed by ~,, if [T and I~ are rays of AT and A™, respectively,
meeting with angle 7/2 at p, then the interiors of [T and [~ do not meet.

To establish the claim, assume that the interiors of I* meet and refer to Figure 19.
Let A, be the complementary region of 7, in Xy containing p’, the interior intersec-
tion of I*. If A, is a disk, then the claim follows immediately from the uniqueness
of geodesics in a CAT(0) space. Hence, we may assume that A, is an annulus. Let
IF Dbe leaf of AT parallel to I* and slightly displaced to the interior of A, so that
the region R bounded by v, and the segments of I~ and [ is an annulus. The total
curvature of the [~} boundary of R is 0 since it is straight except for two right
turns of opposite signs, and the total curvature of -, as measured from inside R is
nonpositive (since each singularity on 7, subtends at least angle = within R). Since
X(R) = 0 and the Gaussian curvature in R (including singularities) is nonpositive,
the Gauss—Bonnet theorem implies that the total curvature of dR is nonnegative.
This implies that the total curvature of ~, is 0, which means that -, bounds a flat
cylinder, contradicting our assumption. This establishes the claim.

We now return to the proof of the proposition. First suppose that -, passes
through a completion point = of Xy. Then, just as in Figure 16, we can find a pair
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FIGURE 19. The g-geodesic v, is the black hexagon. An interior
intersection between [T and [~ contradicts the Gauss—Bonnet theo-
rem.

of rays [* emanating from z into A,. By the claim above, the interiors of these rays
do not meet and so dy (AT, A7) < 1 as desired.

Finally, suppose that v, remains in Xy, i.e. it does not pass through any com-
pletion points. It must still pass through a singularity =, and we note that the total
angle at x is at least 3m. Recall that -, subtends at least angle 7 at x to either of
its sides and we note that some side of vy sees angle at least 37/2 at x. Let A denote
this side of 7, and let A’ denote the other side. Note that A # A’ since Xy is an
annulus which -, separates. The angle of 37/2 tells us there are at least 3 rays of
At emanating into A. Now choose rays T’Oi of AT emanating from x on the A’ side.
Because the 3 (or more) rays of A* emanating from x into A alternate between \™
and A7, we can choose from them two rays rli of A* such that Tar ,rf , T,y are
listed in the cyclic ordering of directions at = (either clockwise or counterclockwise).
The generalized leaves [T = rj U, r{ and I~ = ry U, 7] then represent arcs in the
projections 7y (AT) and my (A7) and after a slight perturbation these leaves have
disjoint interiors. Hence, again we see that dy (AT, A7) < 1.

We conclude that if Y is an annulus with dy (AT, A7) > 1 then Y is g-compatible.

O

5.2. Projections and 7-compatibility. We now show how to associate to a sub-
surface Y of large projection a representative of Y which is “simplicial” with respect
to the veering triangulation. This will later be used to prove that such a subsurface
induces a pocket of the veering triangulation 7.

Informally, we start with a g-compatible subsurface Y < X and homotope 7, by
pushing 0,Y onto 7-edges (this process is depicted locally in Figure 21). Formally,
this is done in two steps using the map t(-) described in Section 4.2, although some
care must be taken in order to ensure that the resulting object gives an embedded
representative of int(Y").
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Call a subsurface Y < X 7-compatible if the map iy : Y — Xy is homotopic rel
0oY to a map i, : Y — Xy which is an embedding on Y/ =Y \ 0y} such that

(1) i, takes each component of @'Y = Y ~ dyY to a simple curve in Xy ~ Py
composed of a union of 7-edges and

(2) the map ¢,: Y — X obtained by composing i, with Xy — X restricts to an
embedding from int(Y") into X.

We will show that when dy (A7, A\T) is sufficiently large, the subsurface Y is 7-
compatible and in this case we set 0.Y = ¢,(0"Y") which is a collection of 7-edges
with disjoint interiors. We call 0;Y the T—boundary of Y and consider it as a 1-
complex of T-edges. Similar to the situation of a g-compatible subsurface, if Y is
T-compatible then one component of X \ ;Y is an open subsurface isotopic to the
interior of Y'; this is the image ¢, (int(Y)) and is denoted int,(Y").

Theorem 5.3 (7-Compatibility). Let Y < X be an essential subsurface.

(1) IfY is nonannular and dy (AT,\7) > 0, then Y is T-compatible.
(2) If Y is an annulus and dy (AT, A7) > 1, then Y is T-compatible.

Proof. Suppose that dy (AT,A\7) > 0 if Y is nonannular and dy (A", A7) > 1 other-
wise. By Proposition 5.2, Y is g-compatible and so i, : ¥ — Xy is an embedding
on Y’. Let Y, denote its image. We first suppose that Y is not an annulus.

Give 'Y the transverse orientation pointing into Y. For any saddle connection o
in 74(0"Y") and any triangle ¢t € T (o) pointing into Y (see Section 4.2 for definitions),
note that the singularities of Xy in 0t are not completion points of Xy, that is they
do not correspond to punctures of X. This is because any completion point lying
in t is the endpoint of leaves I of A\* whose initial segments lie in ¢t. These leaves
correspond to essential proper arcs of Xy which are homotopic giving dy (A\™,AT) =
0, a contradiction.

Similarly, we can conclude that for each saddle connection o in ;4(0'Y") and any
t € T (o) pointing into Y, the triangle ¢ is entirely contained in Y;. Otherwise, similar
to the proof of Proposition 5.2, we find leaves {* and [~ in Xy whose intersection
with Y, is contained in ¢ and hence whose projections to A(Y') are equal. See the
left side of Figure 20. Since dy (A", A7) > 0 this is impossible.

Hence, the map t*(ig|ay) (as defined in (1) in Section 4.2) is homotopic to i4|ay
in Xy \751/ by pushing across the polygonal regions given by Lemma 4.2 along leaves
of AT. This extends to a homotopy of i; to a map : ¥ — Xy which we claim is
still an embedding. (Note that, in the case that X is fully-punctured, i’ = i, since
all singularities of fully-punctured surfaces are completion points.)

To prove that i’ is an embedding, let C' be a component of the preimage of i,(Y”)
in X (using the notation of Section 2.3, C is a translate of CH,(A)). If o is a
geodesic segment in 0C, the triangles used in the hull construction are attached to
a and are contained in C. If such a triangle ¢ intersects a triangle ¢’ from a different
segment o, they overlap as in the right side of Figure 20. Any two arcs [7,1™ of
AT and A\~ passing through a point in the overlap must intersect both « and o'.
These arcs are at distance 0 in A(Y), since they can be isotoped to each other rel
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Y. Hence dy (A7, AT) = 0, contradicting the hypothesis. Therefore, ¢,t cannot
overlap.

i

/ b / s )
el T =T
«
/{ [~
\ % /
/ l+ / l+
FIGURE 20. Left: If t € T (o) (in red) is not contained in Y; then
dy (AT,A7) = 0. Right: An overlap of two hull triangles. Any com-

pletion point in the boundary of a hull triangle does not correspond
to a puncture in Py.

We conclude that the polygonal regions of our homotopy are embedded and dis-
joint, and thus the homotopy can be chosen so that i’ is an embedding. Since the
image of ' is contained in the image of i,, we apply Lemma 5.1 to get that the
projection ¢/: Y — X restricts to an embedding on int(Y).

Now orient @'Y in the opposite direction, pointing out of the surface, and apply
t again, this time to i’(¢'Y"). The triangles in the construction now extend outside
the surface, and the result of the operation is the rectangle hull r(t(i,(¢'Y"))), which
is therefore composed of T-edges. Using the homotopy pushing i’|5y outward along
leaves of AT to t*(#|5y) (again using Lemma 4.2) we obtain our final map i,. See
Figure 21. It remains to show that i;: Y — Xy has the required properties. To
prove this, let us recapitulate the construction in the universal cover.

/

%

FIGURE 21. An inner t followed by outer t yields 7-edges. This
locally depicts the homotopy from i, to ir.

As before, let C' = CHy(A). The map ' lifts to a m(Y)-equivariant homeomor-
phism C — C’, where C’ is obtained by giving each saddle connection x in the
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boundary of C the transverse orientation pointing into C' and removing the poly-
gons P(k) given in Lemma 4.2. This map is equivariantly homotopic to the identity
by pushing along leaves of the vertical foliation.

The outward step of our construction then pushes back along leaves of the vertical
foliation to obtain a m(Y')-equivariant map C’ — C; ¢ X, so that the composition
C — C' — C; is a lift of the map i,: Y’ — Xy. To show that i,: Y/ — Xy is an
embedding, it suffices to show that the composition C' — C; is a homeomorphism.

For every non-singular point p € 0C there is an arc n, in A" such that the
deformation of C' to C' is supported on the union | Jn,, and preserves each n,. Thus
to show that ' — (' is a homeomorphism it suffices to show that n, nn, = &
for each p # p’ in 0C. The interior pieces, n, n C, are already disjoint for distinct
points, by our construction. Thus if n, intersects n,, their union is an interval J in a
leaf of A\ with some subinterval between p and p’ lying outside C. This contradicts
the convexity of C.

To show that ¢, is an embedding when restricted to int(Y’), it suffices to check
that the interior of C is disjoint from all its translations under the entire deck group
m1(X). To see this, take g € m1(X) so that C; and g - C; are distinct and intersect.
Since ¢': int(Y) — X is an embedding, C’ and ¢g-C’" meet only along their boundary.
Further, if o is a saddle connection in 0C’ n d(g - C"), then o is the hypotenuse of a
singularity-free triangle pointing into C’ as well as one pointing into g - C’. Hence,
o is a T-edge and so is fixed under the map C’ — C;.

Now if the interiors of C and g - C; intersect there must be saddle connections
o,k < 0C" such that P(o) and P(g - k) have intersecting interiors. (Here, o,k are
oriented out of C’.) By the previous paragraph, o and g - k are distinct. As C’ and
g-C" meet only along their boundary, o and g - < have disjoint interiors and any arc
[ of A* joining o to g - £ within P(c) u P(g - k) lives outside of C’ and g-C’. In
particular, the chosen transverse orientations on ¢ and ¢ - k point to the interior of
[. However, by Lemma 4.3, in this situation, the interiors of P(o) and P(g - ) do
not intersect. It follows that ¢r: int(Y) — X is an embedding.

It only remains to prove property (1) of the definition of 7-compatible. Since
ir:Y' — Xy is an embedding, it follows that i.|zy is an embedding, and its image
does not meet Py by the same argument used to prove item (2) of Lemma 5.1. By
construction the image i,(0'Y") is composed of 7-edges.

Now suppose that Y is an annulus. Then i,(Y") is the (nondegenerate) maximal
flat cylinder of Xy by Proposition 5.2. Choosing the inward-pointing orientation for
Y, we claim that t™(i4]ay) = i4loy: Otherwise, there must be a saddle connection
o on the boundary of the flat annulus i4(Y’), and a triangle ¢ pointing into the
annulus with hypotenuse on o, which encounters a singularity or puncture x on
the other side of the annulus. The picture is similar to the left side of Figure 20.
A variation on the Gauss—Bonnet argument in the annulus case of Proposition 5.2
then produces vertical and horizontal leaves passing through = which have disjoint
representatives, and hence dy (AT, A7) < 1. Thus the inward step of the process is
the identity, and the outward step and the rest of the proof proceed just as in the
nonannular case. g
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Remark 5.4. From the proof of Theorem 5.3, we record the fact that if X is fully-
punctured and Y satisfies the hypotheses of Theorem 5.3, then t* (i4lay) = igloy
and ' = i,. Hence, in this case we have that 0;Y = r(0,Y).

6. EMBEDDED POCKETS OF THE VEERING TRIANGULATION AND BOUNDED
PROJECTIONS

In this section, let X be fully-punctured with respect to the foliations A% of a
pseudo-Anosov f : X — X, and let M be the mapping torus. Recall that every fiber
associated to the fibered face F of X must also be fully-punctured because they are
transverse to the same suspension flow, and hence that F is a fully-punctured fibered
face.

We now prove our two main theorems on the structure of subsurface projections
in a fully-punctured fibered face, Theorem 1.1 and Theorem 1.2. The main tools
in the proof are the structure and embedding theorems for pockets associated with
high-distance subsurfaces, which we develop below. Recall that diamz(-) denotes
the diameter of 7z(-) in A(Z) and that subsurfaces Y and Z overlap if, up to isotopy,
they are neither disjoint nor nested.

6.1. Projections and 7—compatible subsurfaces. We begin by discussing pro-
jection to 7-compatible subsurfaces.

Lemma 6.1. Let Y and Z be T-compatible subsurfaces of X and let K < X be a

disjoint collection of saddle connections which correspond to edges from 7. Then
(1) If K meets int,(Y), then my (K) # &, and diamy (my (K)) < 1.

(2) If Y and Z are disjoint, then so are int (YY) and int,(Z).

(3) If Y and Z overlap, then diamyz(dY v 0;Y) < 1.

(4) The subsurface int,(Y) is in minimal position with the foliations \*. In

particular, the arcs of int,;(Y) n AT agree with the arcs of Ty (A\T).

3
4

Proof. For item (1), the main point is to show that an edge of K that meets int(Y")
lifts to an essential edge in Xy. This is true for edges meeting int,(Y), using the
local CAT(0) geometry of Xy and the fact that 7,(Y”) is a locally convex embedding.

Thus it will suffice to show that any 7-edge e meeting int,(Y) must also meet
inty(Y"). Suppose, on the contrary, that e meets int,(Y) but not int,(Y). Then e
meets the interior of a polygon P(¢) where o is an outward-oriented saddle connec-
tion in 0,Y (recall from Remark 5.4 that, since X is fully-punctured, the inner t
step in the construction of 7, is the identity, and the outer t is in fact a rectangle
hull). Let R be the singularity-free rectangle spanned by e. If e is contained in
P(o) then R can be extended to a rectangle whose diagonal lies in o, and hence e is
one of the edges of r(co); but this contradicts the assumption that e meets int(Y).
Thus e crosses some edge f of r(o). However, f is contained in a singularity-free
triangle whose hypotenuse lies along o and so ¢ must cross the rectangle R either
top-to-bottom or side-to-side. In either case, we see that e crosses o < J,Y, a con-
tradiction. We conclude that if a 7-edge meets int(Y), then it also meets int,(Y")
and hence has a well-defined projection to Y. The diameter bound in item (1) is
then immediate since K is a disjoint collection of essential arcs of A(X).
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For item (2), first note that when Y and Z are disjoint subsurfaces of X, the
interiors int,(Y') and int,(Z) are also disjoint. This follows from Corollary 2.4 and
the g-hulls construction in Lemma 2.6. More precisely, let Ay and Az be the limit
sets of Y and Z in 0H? (using our identifications from Section 2.3). Since Y and
Z do not intersect, Ay and Az do not link in 0H? and so CH,(Ay) and CH,(Az)
have disjoint interiors by Corollary 2.4. This implies that int,(Y") and int,(Z) are
disjoint in X.

To obtain int,(Y') from int,(Y") we append to each saddle connection o in 04
the (open) polygon P(c), where o is oriented out of Y. We obtain int,(Z) from
inty(Z) by the same construction. Since int,(Y) and int,(Z) are disjoint in X,
it suffices to show that P(¢) and P(k) have disjoint interiors, where ¢ < J,Y and
Kk C 04Z. If 0 = K, then this saddle connection spans a singularity-free rectangle and
P(0) = 0 = k = P(k). Otherwise, o and x have disjoint interiors and Lemma 4.3
implies that P(c) and P(x) have disjoint interiors, as required. This proves item
(2).

Since int-(Y) is an embedded representative of the interior of Y, 0Y has a
representative disjoint from the collection of saddle connections in ¢;Y. Hence
diamyz(0Y v 0;Y) < 1, proving item (3). For item (4), first note that the subsur-
face int,(Y") is in minimal position with the foliations A*. This is immediate from
the local CAT(0) geometry in Xy and the fact that A* are geodesic: any bigon in
Xy between 7,(¢'Y) and a leaf of A* would lift to a bigon in X bounded by two
geodesic segments, a contradiction to uniqueness of geodesics in X. The statement
for int-(Y") then follows from the fact that the homotopy from ;Y to 0;Y can be
taken to move either along vertical or along horizontal leaves, using either t* or t~
as in the proof of Theorem 5.3. O

6.2. Pockets for a 7-compatible subsurface. Suppose that ¥ < X is
T—compatible. By Corollary 3.6, the set T(0.Y) of sections containing 0;Y con-
tains a top and a bottom section, denoted T+ = T7(2,Y) and T— = T~ (0;Y),
which between them bound a number of pockets. See Section 3 for terminology
related to sections and pockets. Our assumption on dy (A~, A7) will imply that
one of these pockets is isotopic to a thickening of Y, as explained in the following
proposition:
Proposition 6.2 (Pockets in 7). Let (X,q) be fully-punctured and ¥ < X an
essential nonannular subsurface.
(1) If dy (A, AT) > 0 then dy (T, A1) =dy(T—,\7) = 0.
(2) If dy (A=, A1) > 2 then TT and T~ bound a pocket Uy whose interior is
isotopic to a thickening of int(Y).
When Y is an annulus,
(1) If dy (A, A7) > 1 then dy (TT, A1) =dy (T—,\7) = 1.
(2) If dy(A\",AT) > 4 then T and T~ bound a pocket Uy whose interior is
isotopic to a thickening of int(Y).

Proof. Begin with the following lemma:
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Lemma 6.3. Suppose that Y < X is T-compatible, let e be an edge of 0;Y and
let f be a T-edge crossing e with f > e. Then dy(f,A\T) < 14 Y is an annulus
and dy (f,A\T) = 0 otherwise. Similarly if f < e then the same statement holds for

dy(f, )\7).

l+

Q

FIGURE 22. Local picture near the 7-edge e of 0, Y with int,(Y) ¢ X
shaded. When f > e, the edge I of Q represents my (A1) and is
disjoint from f. Note that @) is immersed in X.

The key idea of the proof is pictured in Figure 22. Here it is shown that if f
crosses e C 0,Y with f > e, then some component of the intersection of f with
int,(Y) is disjoint from some arc in wy (A"). However, the spanning rectangle @ for
f is immersed in X (rather than necessarily embedded). To handle this issue, we
work in the cover X.

Proof. Let C° be a component of the preimage of int-(Y') under X — X and choose
a saddle connection € in the boundary of C° which projects to e. Further, let f be
any lift of f which crosses €. Since f is a T-edge, jN’spans a singularity-free rectangle
@ whose immersed image in X we denote by Q.

Every T-edge which crosses é does so either top to bottom or side to side. Since
f > e, € must cross @ from side to side (see Section 3). Since all T-edges in 0C° are
disjoint, they all must cross @ from side to side.

Since int,(Y) is in minimal position with A* (Lemma 6.1), C° intersects each leaf
of the vertical foliation in a connected set. Together these observations imply that
@ N C° is a single polygon B , bounded by at least one edge crossing @ from side to
side (which we have called €). See Figure 23.

Claim. B embeds in int,(Y) under the covering X — X.

Proof of claim. Since Bc C°, the image of B is contained in int-(Y). Suppose that
x,y € B map to the same point in int,(Y"), and denote by I, and I, the vertical leaf
segments in X starting at x and y, respectively, and continuing to €. Since B is
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FIGURE 23. T~he 3 possibilities for B. The lightly shaded region is
part of C° in X.

convex, Iy, ly < B. Suppose that [, is no longer than [, and let l; be the subsegment
of l, with length equal to that of I,. Then [, and lg’/ are identified under the map

X — X. But the identification of 0l \ {z} = € and Jlj, \ {y} < BugcCoue
gives a contradiction, unless x = y: the edge € is mapped injectively into X with
image e  0,Y disjoint from the image of C°, which is int,(Y). O

Let § be the vertex of fwhich is on the same side of & as B. Let [ be the vertical
side of @ starting at 3.

Let B be the image of Bin X. By the claim, B is a singularity-free quadrilateral
in X whose interior is contained in int,(Y"). The images in X of fﬂ Band N B are
therefore disjoint proper arcs in int,(Y), which by Lemma 6.1 are representatives
of my (f) and my (A1), respectively. Moreover, these arcs are properly homotopic in
int-(Y) by a homotopy supported in B.

Hence, when Y is nonannular, we conclude that dy (f,AT) = 0. If Y is an annulus,
we project the picture to the annular cover Xy, where we note that the image [ of
[, continued to infinity, cannot intersect f without meeting @), and hence e, again.
Since ! can only meet ;Y once in the annular cover, we conclude it is disjoint from
f and so dy (f,A\") = 1.

The case f < e is similar, so Lemma 6.3 is proved. U

We return to the proof of Proposition 6.2. Let Y be nonannular. Note that by
definition the only upward-flippable edges in Tt must lie in 0,Y. Let e be such an
edge and consider the single flip move that replaces e with an edge f. Then f > e,
so by Lemma 6.3, dy(f,AT) = 0. On the other hand f and e are diagonals of a
quadrilateral made of edges of T'", at least one of which, €', gives the same element
of A(Y) as f. Hence dy (T*,\") = 0.

If Y is an annulus, we note that ¢’ and the vertical leaf in the proof of Lemma 6.3
give adjacent vertices of A(Y), so dy (T*,\") < 1. Note that dy (T*,\") # 0
because no leaf of the foliation A™ has both its endpoints terminating at completion
points.
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To prove the statements about pockets, let K be the common edges of T and
T—, viewed as a subcomplex of X. If int-(Y) contains an edge of K then from
the triangle inequality, together with the first part of the proposition, we obtain
dy (AT,A7) < 2 when Y is nonannular, and dy (A*,A7) < 4 when Y is an annulus.
By our hypotheses this does not happen, so we conclude that T, 7~ € T(2,Y)
have no common edges contained in int,(Y). Hence T+ and T~ bound a pocket Uy
whose base is int,(Y"). This completes the proof. O

6.3. Isolated pockets and projection bounds. Let X be a fiber in R F, and
let Y be a 7—compatible subsurface of X such that dy (A7, A\") > 4. An isolated
pocket for Y in (X x R, 7) is a subpocket V' = V- of Uy with base int-(Y") such that

(1) For each edge e of V' which is not contained in 0,Y,
dy (e, A7) >3 and dy(e,A7) >3

if Y is nonannular, and
dy(e,AT) >4 and dy(e,\7) =4

if Y is an annulus.
(2) Denoting by V£ the top and bottom of V with their induced triangulations,

dy(V=,VT) > 1.

Note that condition (2) guarantees that int(Vy) = int,(Y") x (0, 1) is still a pocket
just as in Proposition 6.2. The next lemma shows that for Y with dy (A7, A™)
sufficiently large, Y has an isolated pocket with dy (V' =, V) roughly dy (A7, A™).

Lemma 6.4. Suppose that'Y is a nonannular subsurface of X with dy (A=, \") > 8.
Then'Y has an isolated pocket V' with dy (V—,VT) = dy (A7, A1) — 8.

If Y is an annulus with dy (A=, A1) > 10, then Y has an isolated pocket V with
dy (V—, V+) > dy (A7, )\+) —10.

Proof. Let ¢ = 4if Y is an annulus and ¢ = 3 otherwise, and assume that dy (AT, A7) >
2¢ + 2. Since the pocket U = Uy is connected (Proposition 3.3), there is a sequence
of sections T~ = Ty, T1,..., Ty =TT in T(0;Y) such that T;,; differs from T; by
an upward diagonal exchange. From Proposition 6.2, we know that dy (T~,A7) < 1
and dy (T, A\%) < 1. Let 0 < a < N be largest integer such that dy (T,—1,\") < ¢;
hence dy (T;, A7) = c for all i > a. Now let b < N be the smallest integer greater
than a such that dy (Ty,1,A") < ¢; then dy (T;,\") = c for all a < i < b.

Note that these indices exist since dy (A7, AT) > 2¢ + 1.

Now let V' be the pocket between T, and T} with base contained in int-(Y) and
note that V is a subpocket of U. Any edge e of V' not contained in 0, Y is contained
in a section T; € T(0,Y) for a < i < b. Since we have dy (T}, \*) > ¢, we have
dy (e, AT) = c. Thus it only remains to get a lower bound on dy (V, V7).

The triangle inequality (and diameter bound on 7T, and T}) gives

dy (V= V) = dy(To, Ty) = dy (A", A7) —2c—2 > 1.
This implies that int,(Y") is the base of V' and completes the proof. O
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The following proposition shows that isolated pockets coming from either disjoint
or overlapping subsurfaces of X have interiors which do not meet.

Proposition 6.5 (Disjoint pockets). Suppose that Y and Z are subsurfaces of X
with isolated pockets Vy and Vz. Then, up to switching Y and Z, eitherY is nested
in Z, or the isolated pockets Vy and Vz have disjoint interiors in X x R.

Proof. If the subsurfaces Y and Z are disjoint, then int,(Y") and int,(Z) are also
disjoint by Lemma 6.1. Hence, the maximal pockets Uy and Uz have disjoint
interiors by definition.
Now suppose that Y is not an annulus. We claim that if ¥ and Z overlap then
either
dy (0, Z, T) <1 or dy(0-Z,\7) < 1.

To see this, first note that there is some edge f contained in int,(Z) such that f
crosses some edges of 0.Y. Otherwise, every triangulation of int,(Z) by r—edges
would contain edges from 0,Y. But then applying this to T%(0,Z) and using Propo-
sition 6.2, we would have that

dz()\_,)\+) <2+ diamz(é’TY) < 3,

contradicting our assumption on the subsurface Z. Now if f intersects an edge e of
0;Y and f > e, then by Lemma 6.3, dy (0, Z, A7) < dy(0:-Z, f) < 1. If f < e then
Lemma 6.3 gives dy (0;Z, A7) < dy(0:Z, f) < 1.

Now suppose that e is an edge of Uy n Uz which is not contained in 0,Y U 0, 7.
Then e, as a T-edge in X, is disjoint from 0, Z and so dy (e, A7) < 2 or dy (e, A7) < 2.
Hence e cannot be contained in Vy. We conclude that Vi n'Vy < 0,Y U 0, 7. This
completes the proof when Y is not an annulus.

When Y is an annulus, then a similar argument using the annular case of Lemma 6.3
shows that if Y and Z overlap then either

dy(aTZ, )\+) <2 or dy(aTZ, )\_) < 2.

Hence, if e is an edge of Uy n Uz which is not contained in 0;Y u 0;Z, then
dy (e, )\J—r) < 3. So again e cannot be contained in V3 and we conclude that Vy NV, <
0-Y U 0;Z as required. O

We next prove that isolated pockets embed into the fibered manifold M. This is
Theorem 1.3, which we restate here in more precise language.

Theorem 1.3 (Embedding the pocket). Suppose Y is a subsurface of a fully-
punctured fiber X with dy (A=, A7) > B, where 8 = 8 if Y is nonannular and 8 = 10
if Y is an annulus. Then Y has an isolated pocket Vy in X x R, and the covering
map X x R — M restricts to an embedding of the subcomplexr Vy — M.

Proof. Let ® be the simplicial isomorphism of X xR induced by f as in Theorem 2.1.
Note that if T is a section of 7, then ®(T') is the section of 7 whose corresponding
triangulation of X is f(T'). Hence, ®(T'(0;Y)) =T(0-f(Y)).

By Lemma 6.4, Y has an isolated pocket V' = Vy-. Note that V embeds into M if
and only if it is disjoint from its translates V; = ®(V) for each i # 0. By the remark
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above, each V; is itself an isolated pocket for the subsurface Y; = f{(Y'), and any two
of these subsurfaces are either disjoint or overlap in X. Hence, by Proposition 6.5
the isolated pockets V; are disjoint as required. ([l

We will now prove Theorem 1.1, whose statement we recall here:

Theorem 1.1 Let M be a hyperbolic 3-manifold with fully-punctured fibered face
F and veering triangulation 7. For any subsurface W of any fiber of F,

a- (dw(A7, A7) = B) < 7],

where |T| is the number of tetrahedra in 7, o = 1 and = 10 when W is an annulus
and o = 3|x(W)| and p = 8 when W is not an annulus.

Proof. Suppose that W is any nonannular subsurface of any fiber F' in Ry F. We
may assume that dy (A7, AT) > 8. Then Lemma 6.4 implies that W has an isolated
pocket Viy in (F x R, 7) such that dy (Vjy, Vii,) = dy (A~,AT) —8. By Theorem 1.3,
the isolated pocket Vi < (F' x R, 7) embeds into (M, 7). Hence |Viy| < |7|, where
|Viv| denotes the number of tetrahedra of Vyr. Now each tetrahedron of Vi corre-
sponds to a diagonal exchange between the triangulations Vj;, and VV[J; of W, and
each diagonal exchange replaces a single edge of the triangulation. There are at
least 3|x ()| + 1 non-boundary edges to each triangulation of W, and the diameter
in A(W) of an ideal triangulation is 1, so we conclude

(2) 17| = |Viy| = #{diagonal exchanges from Vjj; to Vij;}
> 3x(W)| - dw(V—,VT)
> 3x(W)| - (dw (A7, AT) = 8).
This completes the proof when W is nonannular.
When W is an annulus, we use the annular case of Lemma 6.4 to obtain an
isolated pocket Viy in (F x R, 7) such that dw (Vi5,, Vi) = dy (A7, AT) — 10. Noting

that a triangulation of the annulus contains at least 2 (non-boundary) edges, the
same argument implies that

17| = |Viy| = #{diagonal exchanges from Vjj; to V};}
>dw(V—,VT)
> dy (A7, A7) — 10,
as required. O
6.4. Sweeping through embedded pockets. We are now ready to prove Theo-

rem 1.2, whose statement we reproduce below. This theorem relates subsurfaces of
large projections among different fibers of a fixed face.

Theorem 1.2 Let M be a hyperbolic 3-manifold with fully-punctured fibered face
F and suppose that S and F' are each fibers in Ry F. If W is a subsurface of F,
then either W 1is isotopic along the flow to a subsurface of S, or

3IX(S) = dw (A7, A7) = B,
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where 5 =10 if W is an annulus and 8 = 8 otherwise.

Recall from Lemma 2.8 that we can identify dy (A1, A7) with dy (AT, A7), agree-
ing with the statement given in the introduction.

We will require the following lemma, which essentially states that immersed sub-
surfaces with large projection are necessarily covers of subsurfaces. Recall that in
Section 2.2 we defined the distance dy (A1, A7) when W is a compact core of a cover
Xr — X corresponding to a finitely generated subgroup I' < m1(X).

Lemma 6.6 (Immersion to cover). Suppose that (X, q) is a fully-punctured surface.
Let T be a finitely generated subgroup of m1(X) and let W be a compact core of the
cover Xp — X. If W is nonannular and dyw (A", A\T) > 4 or if W is an annulus and
dw (A, AT) > 6, then there is a subsurface Y of X such that W — X is homotopic
to a finite cover W — Y < X.

In particular, T is a finite index subgroup of w1 (Y').

Proof. Suppose that dy (A7,A\") > 4 if W is nonannular and dy (A7, \T) > 6
if W is an annulus. Let p: X — X be a finite cover to which W — X lifts to an
embedding W — X (this exists since surface groups are LERF [Sco78]), and identify
W with its image in X. Lift ¢ along with the veering triangulation to (X x R, T).
By Theorem 5.3, W is a 7—compatible subsurface of X, and by Theorem 5.3 and
Proposition 3.3, Ty (0-W) is nonempty and connected. To prove the lemma, we
show that int,(W) — X covers a subsurface of X. For this, it suffices to prove
that each edge of p~1(p(d,W)) is disjoint from int,(W). Indeed, since W is 7—
compatible, one component of X \ 0, W is int,(W). If p~(p(0,W)) is disjoint from
int, (W), then int, (W) is also a component of X ~. p~!(p(0,W)). As components of
X~p 1 (p(6,W)) cover components of X \p(0, W), this will show that int, (W) — X
covers a subsurface of X.

Hence, we must show that each edge of p~1(p(0,W)) is disjoint from int,(W).
This is equivalent to the statement that no edge of p~1(p(0,W)) crosses o, W nor is
contained in int,(W).

First suppose that W is not an annulus. If T is a section of (X x R,7) with
an edge f such that f > e for an edge e of 0;W, then Lemma 6.3 implies that
dw (T, ") = 0. Similarly if f < e then dy (T, A7) = 0. Hence, if T' is any section of
(X xR, 7) such that dy (T, A\*) > 1, then its lift T = p~(T') to X must contain the
edges of 0, W and so T € Ty (0,W). Moreover, such a section 7 of (X x R, 7) with
dw (T, %) = 1 must exist. This is because by Lemma 3.1, we may sweep through
X x R with sections going from near A~ to near AT. If all sections were to have
dy—distance 0 from either A~ or AT, then there would be a pair T, 7" differing by
a single diagonal exchange such that dw (T, A7) = dw (7', AT) = 0. But this would
imply that dy (A7, A1) < 2, contradicting our assumption on distance.

Putting these facts together, we conclude that there exists a section 7" of (X xR, 7)
with dy (T, A*) > 1, and that for each such section

pH(T) e Tg(p~ ' (p(0-W))).
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Note that this in particular implies that no edge of p~*(p(d.W)) crosses an edge of
o-W.

We claim now that no edge e in p~!(p(,W)) can be contained in int,(W). Such
an edge would have a well-defined projection to A(W) and would necessarily appear
in each section of T (p~!(p(-W))) (by definition of T¢(+)). Using our conclusion
from above, this would imply that dy (p~'(T), e) = 0 whenever dy (T, \T) > 1. But
just as before, by sweeping through X x R with sections going from near A~ to near
At we produce sections Ty, Ty with dy (T, A7) = dw (Te,\") = 1. Since each of
these sections’ preimage in X contains the edge e, we get that dw (A%, e) < 2, which
contradicts our hypothesis that dy (AT, A7) > 4.

This shows that no edge of p~1(p(6,W)) can meet int, (W) and completes the
proof when W is nonannular. When W is an annulus, one proceeds exactly as
above using the annular version of Lemma 6.3. O

Proof of Theorem 1.2. We may assume that W is a subsurface of F' such that
dw (A7, A7) > 3.

First suppose that 71 (W) is contained in 71(S). Then by Lemma 6.6, there
is a subsurface Y of S such that, up to conjugation in m1(S), m (W) < m(Y)
is a finite index subgroup; let n > 1 denote this index. If np: m (M) — Z is
the homomorphism representing the cohomology class dual to F, then ng|m (Y)
vanishes on the index n subgroup 7 (W). Since Z is torsion-free we must have that
7 vanishes on m1(Y’) and hence m1(Y) is contained in m1(F'). However, since the
fundamental group of an embedded subsurface, in this case W < F, can not be
nontrivially finite-index inside another subgroup of m(F'), we see that n = 1 and
m1 (W) = m1(Y). That W is isotopic along the flow in M to Y < S can be seen by
lifting W and Y to the cover S x R — M.

Hence, we may suppose by Lemma 2.9 that the image of any S — M homotopic
to the fiber S intersects any isotope of W < F essentially. Since dy (A™,AT) > 3,
W has a nonempty isolated pocket Viy < F x R which simplicially embeds into
(M, 7) by Theorem 1.3. Let {W;} denote a sequence of sections of Vi from Vj;; to
VVJ[; with W, differing from W; by an upward diagonal flip. Also, fix a simplicial
map f: S — (M, ) which is obtained by composing a section of (S x R, 7) with the
covering map S x R — M.

Note that for each i, f(S) meets at least one edge of the interior of W;. Otherwise,
the image of S in M misses the interior of W; contradicting our assumption. In fact,
even more is true: Call a component ¢ of f(S) n W; removable if the triangles of
f(S) incident to the edges of ¢ lie locally to one side of W; in M. If ¢ is removable,
then there is an isotopy of W; supported in a neighborhood of ¢ which removes ¢
from the intersection f(S) n W;. Hence, if we denote by E; the edges of f(S) n W;
which do not lie in removable components , then F; must be nonempty for each i.

We claim that for each i, F; shares an edge with F;,;. Otherwise, both F; and
FE;1 consist of a single edge and the tetrahedron corresponding to the diagonal
exchange from W; to W;,1 has E; as its bottom edge and F;,1 as its top edge. But
then both of these edges must be removable since pushing the bottom two faces of
the tetrahedron slightly upward makes that intersection disappear, and similarly for
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the top. This contradicts our above observation and establishes that E; and E;1;
have a common edge.
We obtain a sequence in A(W),

Viy © Eo, Ev,....E, < Vi,

having the property that for each edge e; of E; there is an edge e;+1 of E;y; such
that e; and e;1 are disjoint. We conclude that the number of distinct edges in the
sequence o, E1, ..., E, is at least dy (Vyy, VMJ;) Combining this with the fact that
the number of edges in an ideal triangulation of S is 3|x(5)| and Lemma 6.4, we see
that

3Ix(S)| = dw (Vi Vi) = dw (A7, A7) = B,
as required. O

We conclude the paper by recording the following corollary of Lemma 6.6 and the
proof of Theorem 1.2.

Corollary 6.7. Let M be a hyperbolic manifold with fully-punctured fibered face
F. Let W be a subsurface of a fiber F € Ry F such that dy (AT,A7) > 4 if W is
nonannular and dy (AY, A7) > 6 if W is an annulus. If S is any fiber in Ry F such
that m (W) < m1(S), then W is isotopic to a subsurface of S.
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