Journal of Computer Languages 56 (2020) 100939

Contents lists available at ScienceDirect

s COMPUTER
LANGURGES

Journal of Computer Languages

journal homepage: www.editorialmanager.com/cola/default.aspx

RT-Trust: Automated refactoring for different trusted execution R

Check for

environments under real-time constraints pates

Yin Liu", Kijin An, Eli Tilevich

Software Innovations Lab, Virginia Tech, 2202 Kraft Drive, Blacksburg, VA 24060, USA

ARTICLE INFO ABSTRACT

Keywords:

Trusted execution

Real-time systems

Declarative meta-programming
Software refactoring

Program analyses

Real-time systems must meet strict timeliness requirements. These systems also often need to protect their
critical program information (CPI) from adversarial interference and intellectual property theft. Trusted ex-
ecution environments (TEE) execute CPI tasks on a special-purpose processor, thus providing hardware pro-
tection. However, adapting a system written to execute in environments without TEE requires partitioning the
code into untrusted and trusted parts. This process involves complex manual program transformations that are
not only laborious and intellectually tiresome, but also hard to validate and verify adherence to real-time
constraints. To address these problems, this paper presents novel program analyses and transformation tech-
niques, accessible to the developer via a declarative meta-programming model. The developer declaratively
specifies the CPI portion of the system. A custom static analysis checks CPI specifications for validity, while
probe-based profiling helps identify whether the transformed system would continue to meet the original real-
time constraints, with a feedback loop suggesting how to modify the code, so its CPI can be isolated. Finally, an
automated refactoring isolates the CPI portion for TEE-based execution, communicated with through generated
calls to the TEE API. The reference implementation of our approach profiles and transforms real-time systems to
isolate their CPI functions to execute on two different TEE platforms: OP-TEE and SGX. Although these platforms
substantially differ in terms of their respective APIs and performance characteristics, our refactoring completely
hides these differences from the developer by automatically synthesizing the correct CPI functionality required
for these dissimilar TEE implementations. We have evaluated our approach by successfully enabling the trusted
execution of the CPI portions of several microbenchmarks and a drone autopilot. Our approach shows the
promise of declarative meta-programming in reducing the programmer effort required to adapt systems for
trusted execution under real-time constraints.

1. Introduction

The execution of mission-critical real-time systems must comply
with real-time constraints. Many such systems also contain vulnerable
critical program information (CPI) (i.e., sensitive algorithms and data)
that must be protected. Failing to satisfy either of these requirements
can lead to catastrophic consequences. Consider using an autonomous
delivery drone to transport packages, containing food, water, medicine,
or vaccines, to remote and hard-to-reach locations. Emergency per-
sonnel and professional nature explorers often depend on drone de-
livery when dealing with various crises. The drone’s navigation com-
ponent has real-time constraints; if it fails to compute the instructions
for the autopilot to adjust the flight’s directions or airspeed in a timely
fashion, the drone may become unable to adjust its trajectory properly
and deviate from the programmed delivery route. Since the cargo often
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must be delivered under strict time requirements, deviating from the
shortest route can cause the entire delivery mission to fail. In addition,
the software controlling module (e.g., navigation) constitutes critical
program information (CPI). If an ill-intentioned entity takes control
over the module’s execution, the entire drone can be misrouted, causing
the delivery to fail. Irrespective of the causes, the consequences of a
failed delivery can be potentially life-threatening.

The vulnerabilities above can be mitigated by isolating CPI func-
tions in a secure execution environment that would also control their
interactions with the outside world. As a way to realize this idea,
hardware manufacturers have started providing trusted execution en-
vironments (TEEs), special-purpose processors that can be used to
execute CPI-dependent functionality. TEE can reliably isolate trusted
code (i.e., in the secure world) from regular code (i.e., in the normal
world); the secure world comes with its own trusted hardware, storage,
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and operating system. A special communication API is the only avenue
for interacting with TEE-based code. With the TEEs being hard to
compromise, isolating CPI in the secure world effectively counteracts
adversarial attacks and prevents intellectual property theft. However,
to benefit from trusted execution, systems must be designed and im-
plemented to use different implementations of the TEE (e.g., OP-
TEE [1], SGX [2]). Adapting existing real-time systems to use the TEE
requires non-trivial, error-prone program transformations, while the
transformed system’s execution must continue to adhere to the original
real-time constraints.

In particular, a developer transforming a system to take advantage
of the newly introduced TEE module requires undertaking the fol-
lowing tasks: 1) Isolate CPI-dependent code; 2) redirect invocations of
CPI functions to TEE communication API calls; 3) verify that the
transformed system continues to meet the original real-time con-
straints. Notice that all of these tasks are hard to perform correctly by
hand.

To complete task 1), a developer not only needs to correctly extract
the CPI-dependent code from the system, but also correctly identify all
the dependencies; due to the potential complexity of these de-
pendencies, some CPI-dependent code cannot be isolated in TEEs. Most
importantly, different TEEs (e.g., OP-TEE and SGX) expose dissimilar
APIs and conventions for isolating CPI functions. A CPI-dependent
function can be isolated in both TEE implementations, only one of
them, or neither of them. To determine how a CPI function can be
isolated, developers must be intimately familiar with both the original
source code and the requirements of each TEE implementation. As is
often the case, developers performing adaptive maintenance are often
not the ones who wrote the original system. To facilitate this difficult
and error-prone process, prior work has proposed automatic program
partitioning, even in the presence of pointer-based function parameters
[3]. However, this prior work leaves out the issues of verifying whether
a given partitioning strategy is valid or whether the partitioned system
would comply with the real-time constraints.

To complete task 2), the developer must write by hand the com-
munication logic required for the normal and secure worlds to talk to
each other, correctly applying suitable TEE APIs that establish custo-
mized communication channels. However, to accomplish this task
correctly, developers must invest a great deal of time and effort to learn
and master both the OP-TEE or SGX implementations: the OP-TEE
provides more than 130 APIs and about 40 data types [4-6], while SGX
provides an Enclave Definition Language (EDL) with more than ten
syntactic categories [7].

To complete task 3), the developer must be willing to develop ad-
ditional test cases that can verify whether the transformed system sa-
tisfies the original real-time constraints. Existing approaches take ad-
vantage of profiling tools, including Pin tool [8] and gperftools [9],
which require that profiling probes be added by hand.

To facilitate the process of adapting real-time systems to protect
their CPI-dependent code using a TEE, this article presents RT-TRUST, a
program analysis and transformation toolset that supports developers in
partitioning C-language systems in the presence of real-time con-
straints. The developer can either specify the TEE implementation (i.e.,
OP-TEE or SGX) as a compiler option, or rely on Rr-TRUST to auto-
matically determine the available implementation by inspecting the
system. Through a meta-programming model, the developer annotates
individual C functions to be isolated into the secure world. Based on the
annotations, the rr-trUsT static and dynamic analyses determine whe-
ther the suggested partitioning strategy is feasible, and whether the
partitioned system would comply with the original real-time constraints
for both the OP-TEE or SGX. A continuous feedback loop guides the
developer in restructuring the system, so it can be successfully parti-
tioned. Finally, rr-trusT transforms the system into the regular and
trusted parts, with custom generated TEE-specific communication
channel between them. If the transformed code fails to meet real-time
constraints, it raises custom-handled exceptions. rr-TrRuUsT reduces the
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programmer effort required to partition real-time systems to take ad-
vantage of the emerging TEEs.
The contribution of this paper is four-fold:

1. A fully declarative meta-programming model for partitioning
real-time systems written in C to take advantage of the TEEs; the
model is realized as domain-specific annotations that capture the
requirements of different partitioning scenarios.

2. Static and dynamic checking mechanisms that identify whether a
system can be partitioned as specified for a given TEE im-
plementation, and how likely the partitioned version is to meet the
original real-time constraints. The analyses integrate a feedback
mechanism that informs developers how they can restructure their
systems, so they can be successfully partitioned.

3. rr-TRUST refactoring, a compiler-based program transformation for
C programs that operates at the IR level, while also generating
customized communication channels and real-time deadline viola-
tion handling.

4. A platform-independent metric for assessing by how much a CPI
function is expected to degrade its performance once moved to the
TEE, and comparing such degradations between different TEEs; we
evaluate the applicability of this metric on five classic security al-
gorithms and two critical functions in a popular drone controller
system.

To concretely realize our approach, we have created rr-TRUST as
custom LLVM passes and runtime support. Our evaluation shows that
RT-TRUST saves considerable programmer effort by providing accurate
program analyses and automated refactoring. rr-trust’s profiling facil-
ities also accurately predict whether refactored subjects would continue
meeting real-time constraints.

This article extends our earlier paper, presented at the 17th
International Conference on Generative Programming: Concepts &
Experience (GPCE 2018) [10]. In comparison to that prior publication,
this article reports on the additional research we have performed to
enable rT-TRUST to support SGX, in addition to the original version that
was limited only to the OP-TEE. Our experiences of designing, en-
gineering, and evaluating our approach to support both of these pop-
ular TEE implementations should be of value and relevance to the au-
dience of this journal.

The remainder of this paper is structured as follows. Section 2
provides the technical background for this research. Section 3 gives an
overview of the rRT-TRUST toolchain. Section 4 details the rr-TRUST meta-
programming model. Sections 5 and 6 further describe the rr-TRUST
mechanisms for profiling and code refactoring, respectively. Section 7
describes our platform-independent metric. Section 8 describes our
evaluation. Section9 discusses the limitations of TEE implementations
and rr-trUsT. Section 10 discusses related work. Section 11 presents
conclusions and future work directions.

2. Background

In this section, we introduce the technical background required to
understand our contributions. We briefly discuss CPI, TEE, and real-
time constraints. Afterward, we discuss known security risks that mo-
tivate this work.

2.1. Critical Program Information (CPI)

Although the concept of critical program information was originally
introduced by the US DoD as representing parts of a system that can
raise the technological superiority for war-fighters [11], the term has
been embraced by all security-sensitive domains. The CPI can include
algorithms, data, and hardware of a security-sensitive system. In our
design, we designate C functions as constituting CPI, if they happen to
contain critical algorithms and manipulate sensitive data. Hence, rt-
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TRUST operates at the function level, including static analysis, profiling,
and code transformation. Our declarative programming model provides
special-purpose annotations for developers to mark the CPI functions
(we detail our programming model in Section 4).

2.2. Trusted Execution Environment (TEE)

TEE [12] offers a standardized hardware solution that protects CPI
from being compromised. First, TEE isolates a secure area of the CPU
(i.e., the secure world for trusted applications) from the normal area
(i.e., the normal world for common applications)’.

That is, the secure world possesses a separate computing unit and an
independent OS that prevents unauthorized external peripherals from
directly executing the trusted tasks. In addition, TEE provides trusted
storage that can only be accessed via the provided API to securely
persist data. Finally, TEE offers an API to the secure communication
channel, as the only avenue for external entities to communicate with
the secure world.

OP-TEE[1] Following the Global Platform Specifications of TEE, OP-
TEE provides a hardware isolation mechanism that primarily relies on
the ARM TrustZone, with three essential features: 1) It isolates the
Trusted OS from the Rich OS (e.g., Linux) to protect the executions of
Trusted Applications (TAs) via underlying hardware support; 2) it re-
quires reasonable space to reside in the on-chip memory; 3) it can be
easily pluggable to various architectures and hardware.

SGX[2] Another implementation of TEE is Intel’s Software Guard Ex-
tensions (SGX). It protects computation integrity and confidentiality by
extending the Intel architecture. In the same way as OP-TEE, SGX requires
that developers divide the original code into two parts: regular and trusted.
The former runs inside of the enclave, a protected area that isolates the
execution resources from the outside environment (kernel, hypervisor,
etc.), in which the latter runs. Furthermore, the regular components can
only access the enclave via special CPU instructions. Hence, if run or
loaded inside the enclave, the application’s CPI becomes invulnerable to
attacks perpetrated from compromised outside environments.

2.3. Real-time constraints

In general, real-time constraints [13] are the restrictions on the
timing of events that should be satisfied by a real-time system; these
restrictions can be classified into time deadlines and periodicity limits
[14]. The former restricts the deadline by which a particular task must
complete its execution. The latter restricts how often a given event
should be triggered. For example, given the periodicity limit of 50 ms
and the time deadline of 20 ms, a drone task must obtain its GPS lo-
cation within 20ms for each 50ms period.

In our case, due to the memory limitation of the TEE, the event’s
memory consumption is another constraint. As we mentioned in
Section 2.2, the TEE should maintain a small footprint by occupying
limited space in memory. Also, if the TEE solution applies eMMC RPMB
[15] as trusted storage only, the memory consumption is limited by the
size of the RPMB partition, due to the persistent objects being stored in
the RPMB.

As determined by how strict the timeliness requirements are, real-
time constraints are categorized into hard and soft. The former con-
straints must be satisfied while the latter can be tolerated with asso-
ciated ranges. For example, a drone’s motor/flight surface control must
respond on time (hard constraint), while its navigation according to
waypoints is expected to be resilient to deviations caused by GPS signal
being temporarily lost or even wind gusts (soft constraint).

! The normal and secure world are the terms commonly used in the TEE realm.
That is, if the code runs in the secure world, it is considered “trusted” (i.e.,
under protection); if it runs in the normal world, then it is considered “un-
trusted” (i.e., without protection and may be compromised).
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2.4. Security risks

Attackers are known to go after compromising CPIL. A large amount
of known relevant security risks have been reported by the Common
Vulnerabilities and Exposures (CVE) [16]. First, without a proper access
control and authentication mechanism for critical functions, attackers
can maliciously access and consume the significant amount of resources
[17-21]. Secondly, the possibility of information leakage sharply rises
by the vulnerable critical functions [22-24], especially the functions
processing sensitive data. For example, by compromising the data
transmitting process, attackers maliciously obtain the current GPS lo-
cations [25]. In addition, arbitrarily exposing critical functions for in-
teraction with external actors can be illegally exploited, which causes
file deletion [26] or credential disclosure [27]. Further, reverse en-
gineering can disclose critical algorithms [28] or expose sensitive data
(e.g., the encryption keys) [29].

3. Solution overview

In this section, we introduce the toolchain of our compiler-based
analyzer and code refactoring tool, and then we describe the input and
output of RT-TRUST.

3.1. Software development process

Fig. 1 describes the software development process of using RT-TRUST
to partition real-time systems to take advantage of TEEs. Given a real-
time system, the developer first specifies the CPI-dependent functions in
the source code using the rr-TRUsT domain-specific annotations (DSA)
(step 1). The annotated source code is then compiled to LLVM inter-
mediate representation (IR). The compilation customizes Clang to
specially process the DSA metadata (step 2). After that, rr-TrRUST de-
termines whether the TEE is implemented as OP-TEE or SGX by in-
specting the execution environment or the build configuration. To
check whether the specified partitioning scenario can be realized, rt-
TRUST statically analyzes the system’s call graph (step 3). Given the
system’s call graph and a partitioning specification, rRT-TRUST constructs
the partitionable function graph (PFG), which contains all the in-
formation required to determine if the specification is valid. While
static analysis determines the semantic validity of a partitioning spe-
cification, a separate dynamic analysis phase estimates whether the
partitioned system would continue complying with the original real-
time constraints. To that end, rr-TRUST instruments the system by in-
serting probes at the IR level (step 4). The inserted probes estimate the
partitioning scenarios’ memory consumption and function invocation
latencies. The system is then exercised under expected loads. The re-
sults are then reported back to the developer (step 5). This prior ana-
lysis and validation routines make it possible for the developer to
modify the original system make it possible to move the CPI functions
to execute in the secure world. Once the developer determines that the
system can be partitioned with satisfying performance, rr-trRUST then
automatically divides the system’s IR into regular and trusted parts
(step 6). The former will be run in the normal world, while the latter in
the secure world. To enable these two portions to communicate with
each other, rT-TRUST generates communication channels customized for
OP-TEE and SGX. In addition, to handle the violations of real-time
constraints, RT-TRUST generates exception handling code (step 7). Notice
that all these code generation processes are configured entirely by the
DSAs applied to the system’s CPI functions. Having undergone a par-
titioning, the system then goes through the final round of verification
by dynamically profiling the partitioned system (step 4). The profiling
identifies the performance bottleneck while estimating whether the
transformed system continues to satisfy the real-time constraints (step
5). Finally, rr-TRUST generates a descriptive report that includes the
outcomes of various profiling scenarios and suggestions for the devel-
oper about how to remove various performance bottlenecks.
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Fig. 1. The rr-TRUST Process.

3.2. Code transformation and generation

Fig. 2 shows rr-TRUST’S code transformation and generation. As
input, rT-TRUST receives the annotated source code. As output, it trans-
forms the IR of the input source and also generates additional code that
is compiled and integrated into the normal and secure world partitions.
For the normal world, rT-TRUST transforms the IR by inserting profiling
probes, exception handlers, and communication channels. All generated
code can be further customized by hand if necessary. The transformed
IR code, generated source code (i.e., RPC client stub for OP-TEE and an
EDL file for SGX), and referenced libraries (e.g., encryption, profiling)
are eventually linked with the normal world’s executable. Similarly, for
the secure world, the trusted IR, RPC server stub (for OP-TEE), and the
referenced libraries are linked with the secure world’s executable,
which can run only in the secure world of TEE.

4. Meta-programming model

To accommodate application programmers, rRT-TRUST follows a de-
clarative programming paradigm, supported by a meta-programming
model. This model makes use of the annotation facility recently in-
troduced into the C language. A C programmer can annotate functions,
variables, parameters, and code blocks to assign a customized seman-
tics. The semantics is realized by the compiler by means of a special
processing plug-in. For example, if a function is annotated with no-
throw, the compiler can check that the function contains no statement
that can raise exceptions; if the check fails, an informative message can
be displayed to the programmer, who then can modify the function’s
code accordingly. Despite the large set of built-in Clang annotations
[301, none of them are designed for real-time systems and TEE.

For our meta-programming model, we design and implement a set
of domain-specific annotations that describe the real-time constraints,

1 1
1 1
E Annotated Source Code i Input
! 1

Normal world

Regular bytecode

Inserted Communication
Callsites

Inserted Profiling Probes

Inserted Exception
Handler Callsites

EDL file Trusted bytecode
RPC client stub

Referenced
Libraries

Secure world

Output

Fig. 2. rr-TRUST’S input and output.
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code transformation and generation strategies required to auto-
matically transform a real-time system, so its subset can be partitioned
to TEE for trusted execution. We call our domain-specific annotations
Real-Time Trust Annotations, or RTTA for short. We integrate RTTAs
with the base Clang annotation system, so the compiler can analyze and
transform real-time systems, as entirely based on the declarative an-
notations, thus reducing the development burden by enabling powerful
compiler-based code analysis and transformation. In this section, we
first describe the general syntax of RTTAs. Then, we introduce each
annotation and its dependencies in turn. Finally, we illustrate how to
use these annotations through an example.

4.1. General syntax

In the code snippet below, RTTA follows the GNU style [31], one of
the general syntaxes supported by Clang. The form of attribute specifier
is _attribute  ((annotation-list)). The annotation list
(<annotation-1list>) is a sequence of annotations separated by
commas. Each annotation contains the annotation name and a par-
enthesized argument list (<annotation-1ist>). An argument list is a
possibly empty comma-separated sequence of arguments.

1 __attribute__((<annotation-list>))

2 <annotation-list> ::= <annotation>,<annotation>*
3 <annotation> ::= name (argument-list)

4 <argument-list> ::= <argument>,<argument>*

5 <argument> ::= various arguments

4.2. Code partition annotation

The code partition annotation informs rr-TrUsT to perform two tasks:
1) Analyze the validity of partitioning for each annotated function, and
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below enable developers to customize 1) a specific communication
mechanism (e.g., RPC) for the normal and secure worlds to talk to
each other, and 2) an exception handler for handling the cases of
violating real-time constraints when executing a partitioned system.
When annotating with rpc, the developer can specify the share-
d memory or socket options as the underlying RPC delivery me-
chanism. The data transferred between the partitions can be specified
to be encrypted or compressed by using the yes and no options. Note
that the rpc annotation applies only to OP-TEE to specify how to
generate RPC stubs. For SGX, rr-TrusT instead generates an EDL file
and proxy functions. By annotating pointer and array parameters with
paramlen, the developer can indicate their length. The <length>
attributes are used by the marshaling and unmarshaling phases on the
communication channels. For the pointer parameters, the <length>
attribute reports the size of the data the pointer is referencing.
Although recent advances in complex static analysis make it possible
to automatically infer the size of pointer-based parameters [3], our
design still relies on the programmer specifying the length informa-
tion by hand. This design choice allows for greater flexibility. The
paramlen annotation makes it possible for the developer to reserve
the required amount of space for the annotated parameters, and then
specify how to generate customized marshaling and unmarshaling
code. If the developer also annotates that function with memsize, the
rT-TRUST dynamic analysis suggests an approximated length value
(details appear in Section 5.2.2). By annotating with exhandler, the
developer can specify how to handle the exceptions potentially raised
by the annotated function. The annotation has three parameters: a
handler function’s name (<method>), the target’s real-time con-
straints (<constraint type>), and the trigger threshold
(<times>) (i.e., the number of times an annotated function can
violate the target constraints before triggering the handler function).
We explain how Rrr-TRUST generates code, as based on these annota-
tions, in Section 6.

1 __attribute__((rpc(<type>, <encryption>, <compression>)))
2 <type> ::= shared_memory | socket

3 <encryption> ::= yes | no

4 <compression> ::= yes | no

5

6 __attribute__((paramlen(<length>)))

7 <length> ::= n (n is integer, n > 0)

8

9 __attribute__((exhandler(<times>, <method>, <constraint_type>)))
10 <times> ::=n (n is integer, n > 0)

11 <method> ::= "default" | method name (string)

12 <constraint_type> ::= exetime | period | memsize

2) extract the annotated functions that can be partitioned from the
source code. The annotation partition can be applied to any de-
clared function in the source code, and takes no arguments, as follows:

1 __attribute__((partition))

4.3. Code generation annotations

Code generation annotations that appear in the code snippet

4.4. Profiling annotations

The annotations in the code snippet below configure the rr-TRUST
profiler to determine if a partitioned system would still meet the ori-
ginal real-time constraints.

4.4.1. Profiling real-time constraints
RTTA provides three annotations for profiling to determine whether
given real-time constraints would remain satisfied: 1) exetime (i.e.,
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execution time), 2) period, and 3) memsize (i.e., memory consump-
tion). The <t ype> argument specifies whether the constraint is hard or
soft. The hard mode means that violating the constraint is un-
acceptable, while the soft mode means such violations, to some ex-
tent, can be accepted. Based on these types, the profiler reports whether
the annotated function can be transformed for trusted execution,
without violating the specified real-time constraints. For the execution
time attribute, the developer can specify the profiling method (i.e.,
timestamping and sampling) and the completion deadline (i.e.,
<deadline> to meet. For period, one can specify the time interval
between invocations of a CPI function. For memory consumption, the
memory size can be limited by setting an upper-bound via the <1imit>
argument.
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the partitions (rpc). In addition, during the marshaling and un-
marshaling procedure, the allocated memory space for the function’s
parameter will be 100 bytes (paramlen). Further, rr-TrRusT Will insert
the measurement code to profile the function’s real-time constraints. It
instruments the function’s execution time with the timestamping
algorithm and hard mode to check whether it meets the deadline (20
ms) (exetime), and checks whether the invocation interval would not
exceed 50 ms (period). It estimates the memory consumption, and
checks whether it exceeds 1024 bytes in the soft mode (memsize).
Finally, if the real-time deadline constraint has been broken more than
once, it will be handled by the exception handler function “myHandler”
(exhandler). The declarative meta-programming model of rRr-TRUST
automates some of the most burdensome tasks of real-time system

1 __attribute__((exetime(<type>, <method>, <deadline>)))
2 <type> ::= hard | soft

3 <method> ::= timestamping | sampling

4 <deadline> ::=n (n is integer, n > 0)

5

6 __attribute__((period(<type>, <interval>)))
7 <type> ::= hard | soft

8 <interval> ::=n (n is integer, n > 0)

9

10 __attribute__((memsize(<type>, <limit>)))
11 <type> ::= hard | soft

12 <1limit> ::= n (n is integer, n > 0)

4.5. RTTA dependencies

As compared to the annotations that can be specified independently
(e.g., partition, rpc, and the profiling annotations), other annota-
tions must be specified with their dependencies. For example, the an-
notation paramlen cannot be specified, unless rpc also appears
among the function’s annotations. The paramlen annotation is used
for generating the marshaling and unmarshaling logic of the commu-
nication channels. Likewise, without annotations specifying real-time
constraints, the exception handling code is unnecessary: exhandler
must come together with real-time constraint annotations. The rr-TrRUST
analysis process checks the adherence to these domain-specific se-
mantics of RTTA and reports the detected violations.

4.6. RTTA in action

Consider the example originally described in Section 1: A drone
navigates, with its autopilot continuously obtaining the current geolo-
cation from the GPS sensor to adjust the flying trajectory in a timely
fashion. The function of obtaining geolocations is CPI-dependent, and
as such should be protected from potential interference by placing it in
the secure world. To that end, the developer annotates that function,
informing RrT-TRUST to transform the code, so the function is separated
from the rest of the code, while also generating the necessary code for
communicating and exception handling. Optionally, the system can be
annotated to be profiled for the expected adherence to the original real-
time constraints after it would be partitioned. The function getGP-
SLocation annotated with RTTAs appears below. Based on these an-
notations, our customized Clang recognizes that the function needs to
be partitioned and moved to the secure world (partition). Mean-
while, rr-trusT will generate a communication channel over shared
memory with the encrypted and compressed transferred data between

profiling and refactoring. In the rest of the manuscript, we discuss some
of the details of the rr-trRUST profiling, code transformation, and code
generation infrastructure.

1 Location loc; // global variable

2 Location getGPSLocation // CPI function
3 (GPsState * __attribute__((paramlen(100))) state)
4 __attribute__(( partition,
5 rpc(shared_memory, yes, yes),
6 exhandler (1, "myHandler", exetime),
7 exetime (hard, timestamping, 20),
8 period(hard, 50),
9 memsize(soft, 1024) )) {...}
10 // adjusting Drone direction
11 void adjustDirection(Location 1) {...}
12 void £f1y() {
13 loc = getGPSLocation(state);
14 adjustDirection(loc);
15 }
16
17 int main() {
18 f£f1y(Q); ... }
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5. Analyses for real-time compliance

The automated refactoring described here has several applicability
limitations. One set of limitations stems from the structure of the system
and its subset that needs to be moved to the trusted partition. Another
set of limitations are due to the increase in latency that results in pla-
cing a system’s subset to the trusted execution zone and replacing direct
function calls with RPC calls. The increase in latency can cause the
system to miss its real-time deadlines, rendering the entire system
unusable for its intended operation. To check if the structure of the
system allows for the refactoring to be performed, rr-TrUST features a
domain-specific static analysis. To estimate if the refactored system
would still meet real-time requirements, rr-Trust offers several profiling
mechanisms, which are enabled and configured by means of RTTAs.

5.1. Static analysis

The TEE implementation in place (i.e., OP-TEE or SGX) determines
whether rr-TRUST can realize a given partitioning scenario. That is, a
scenario may work on the OP-TEE but not on the SGX, and vice versa.
To that end, rr-TRUST NOt only allows the developer to specify the TEE
implementation, but it also automatically inspects the compilation en-
vironment to determine the TEE implementation. After that, rRr-TRUST
checks whether the scenario adheres to the following three rules, re-
ferred to as zigzag, pointers, and global variable. If the code
passes all three checks, rT-trusT can successfully carry out the specified
partitioning scenario. A failed check report identifies why the code
needs to be refactored to make it amenable to partitioning.

5.1.1. Zigzag rule

Consider a set of functions T;, annotated with the partition an-
notation, and another set of functions T,, containing the rest of all the
functions. The zigzag rule defines the restrictions imposed by different
TEEs:

For OP-TEE, the zigzag rule states that functions in T, cannot invoke
functions in T3, as such invocations would form a zigzag pattern. This
restriction is caused by the strict one-way invocation of the functions in
the trusted zone from the normal world. The normal world can call
functions in the trusted zone, but not vice versa. One can fix violations
of the zigzag rule by annotating the offending function, called from the
trusted zone, with partition, so it would be placed in the trusted
partition as well, so it would be invocable via a local function call. Our
assumption of relying on the static version of the call graph is reason-
able for the target domain of real-time systems written in C, in which
functions are bound statically to ensure predictable system execution.

For SGX, the zigzag rule states that even though functions in T, can
invoke functions in T;, such invocations must be restricted to some
small number (i.e., threshold) due to the high communication latency
between the normal and secure worlds. That is, although SGX supports
the zigzag calls, the program performance suffers from the high latency
of such invocations [32]. One can tune the threshold to balance the
trade-off between efficiency and utility. Once the threshold comes to
“0”, the zigzag rule regresses to the one used for OP-TEE.

5.1.2. Global variable rule

Since the partitioning is performed at the function level, the dis-
tributed global state cannot be maintained. As a result, each global
variable can be placed either in the normal or trusted partition and
accessed locally by its co-located functions. Violations of this rule can
be easily detected. One exception to this rule is constant global vari-
ables, which due to being unmodifiable can be replicated across par-
titions.

5.1.3. Pointers rule
The pointers rule restricts the types that can be used as parameters
of the partitioned functions: 1) Function pointers and pointer arrays

Journal of Computer Languages 56 (2020) 100939

cannot be passed as parameters, and 2) struct parameters cannot con-
tain pointer members. For SGX, rr-TRUsT strictly enforces this rule, as the
SGX Enclave Definition Language (EDL) has no support for such pointer
types. However, for OP-TEE, only function pointers cannot be sup-
ported. For their code to abide by this rule, developers can refactor the
target program, so the partitioned functions take no such pointer
parameters. Alternatively, developers can manually implement specia-
lized logic for marshaling/unmarshaling these parameters.

5.1.4. Partitionable function graph

To check the above rules, rr-trusT introduces a partitionable func-
tion graph (PFG). This data structure extends a call graph with special
markings for the functions that can be partitioned. To construct a PFG,
RT-TRUST starts by walking the call graph for the functions annotated
with partition. By checking whether these functions comply with
the zigzag and global variable rules, it removes the function nodes that
break these rules. The resulting graph is the PFG.

Specifically, rT-TRUST sets each function annotated with partition
as the root function, and then traverses its subgraph. During the tra-
versal, rT-TRUsT checks whether all subgraph elements are also anno-
tated with partition. If so, rT-TRUST adds the entire subgraph to the
PFG, and then moves to the next annotated function. After examining
the zigzag rule, the PFG contains several sub-callgraphs of non-zigzag
functions annotated to be partitioned. Next, rr-trRUST collects global
variable information for each function already in the PFG. It then ex-
amines whether the variables are operated by the functions in the PFG
only. If so, rT-TRUST adds these functions to the PFG. Otherwise, RT-TRUST
removes the entire subgraph containing the violating function from the
PFG. The final PFG contains all the necessary information (e.g., global
variables, parameters, and annotations) required to partition the
system. We deliberately chose to exclude any automatically calculated
dependencies of the annotated functions, requiring the programmer to
explicitly specify each function to be placed into the trusted zone in
order to prevent any unexpected behavior.

Recall the example in Section 4.6: If the developer annotates only
function fly as partition, as shown in Fig. 3 (a), the sub-callgraph of
fly is fly — getGPSLocation and fly — adjustDirection. In
that case, placing function fly in the trusted partition leads to zigzag
invocations between the normal and secure worlds (Fig. 3 (b)). If fly
runs in OP-TEE, or in SGX configured for the minimal zigzag call (i.e.,
the threshold of “0”), this partitioning specification violates the zigzag
rule. To fix such violations, the developer can annotate the other two
offending functions (i.e., getGPSLocation and adjustDirection)
with partition, so that both of them will also be placed in the secure
world along with their caller fly. After the zigzag violation is elimi-
nated, rr-Trust then adds fly’s sub-callgraph to the PFG.

Now, suppose the global variable l1oc are accessed not only by
function fly (i.e., the secure world) but also by function main (i.e., the
normal world). Because this scenario violates the global variable access
rule, the entire sub-callgraph of fly should be removed from the PFG. To
fix this violation, the developer can modify function main, so it would
no longer access 1oc (Fig. 3 (c)), or make this global variable constant.
Finally, rr-TrRusT constructs the PFG with all the necessary information
for each function, as shown in Fig. 3 (d).

5.2. Dynamic analyses

rT-TRUST Offers dynamic analyses to help identify how likely the
specified partitioning would meet the original real-time constraints.
Since it would be hard to guarantee whether the profiled execution
produces the worst-case scenario, our analyses are applicable only to
soft real-time systems. Fig. 4 shows how rr-TrusT provides the dynamic
analyses capability. The analyses start with the transformation of the
original LLVM IR program. That is, rr-TrusT inserts profiling code at the
affected call sites of the annotated functions for their corresponding
real-time constraints. Instead of inlining the entire profiling code, rr-
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TRUST inserts calls to special profiling functions, which are made avail-
able as part of shared libraries. Currently, rr-trRUST provides them on its
own, but similar profiling functionality can be provided by third-party
libraries as well. This flexible design enables developers to provide their
custom profiling libraries or add new features to the libraries provided
by rr-TRUST to further enhance the profiling logic. After linking these
shared libraries with the transformed IR program, developers run the
executable to trigger the inserted function calls to invoke the profiling
functions in the shared libraries. These functions measure the real-time
constraints and persist the result data for future analysis. Finally, rt-
trUST analyzes the data, estimating whether the annotated functions can
meet the original real-time requirements, and reporting the results back
to the developer.
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5.2.1. Analyzing time constraints

As mentioned in Section 2, time constraints mainly include the time
deadline and the periodicity limit. The former defines the upper
boundary for a function to complete its execution, the latter restricts the
time that can elapse between any pair of invocations.

To analyze these constraints, rT-TRUST first transforms the original
LLVM IR program via two key steps: 1) Find the correct call sites, and 2)
insert the suitable function calls. In the transformation procedure
below, given a function annotated with exetime, RT-TRUST traverses its
instructions to locate the first instruction in its entry basic-block?, in-
serting the profiling probes and then that starts a profiling session.
Likewise, rr-TRUST locates each return instruction of the annotated
function, inserting the probes that issue the end profiling session, which
stops the profiling.

define i32 Q@function(i8*
entry:
<--- start probe()

%first instruction

<--- stop probe()

1
2
3
4
5
6
7 ret i32 %retval
8

}

Which probe functions are inserted depends on how Rrr-TRUST is
configured by means of RTTAs. The two main configurations are
timestamping and sampling. For timestamping, RT-TRUST inserts probes
that invoke the timestamp functions to retrieve the current system time
by means of gettimeofday() (in the normal world), or
TEE GetREETime () (in the secure world to check the adherence to
real-time constraints post-partitioning). For sampling, rT-TRUST inserts
invocations to the sampling functions of ProfilerStart () and
ProfilerStop (), which make use of gperftools (a third-party profiling
tool). Similarly, to analyze periodicity limits, rr-trusT locates the first
instruction of the function annotated with period, and then inserts
invocations of the functions to record the current system time.

All these measured results are first stored in a hash table, with the
key corresponding to the annotated function’s name and the value to its
profiling record. Finally, the hash table is persisted into an external file
for further exploration.

5.2.2. Memory consumption profiling

Memory consumption is an important issue for trusted execution.
First, TEEs are designed to occupy limited memory space (as discussed
in Section 2). In addition, pointer parameters of the trusted functions
refer to data structures that need to be dynamically allocated as part of
their marshaling/unmarshaling phases (as discussed in Section 4.3). To
ascertain the expected memory consumption requirements of the CPI
functions, rr-TrusT profiles the amount of memory consumed by the
functions annotated with memsize. The profiling comprises the tra-
versal of the functions’ IR instructions to locate all the allocation sites
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(i.e., the alloca instruction). Each allocation site is then instrumented
to keep track of the total amount of allocated memory.

1 %var = alloca 132, align 4
2 <--- function(i32, 4)

The allocated memory volume is continuously monitored as the
profiled system is being executed. The presence of pointers complicates
the profiling procedure. To properly account for all the memory con-
sumed by the data structure referenced by a pointer, rr-TrRUST imple-
ments a heuristic approach based on SoftBound [33]. To provide ef-
fective memory safety checking, SoftBound transforms the subject
program to keep the base and bound information for each pointer as
metadata. This metadata is passed along with the pointer. In other

%param) { // annotated function

words, when passing the pointer as a parameter from one function to
another, the metadata is also be passed. SoftBound makes use of this
metadata to enforce program memory safety.

Based on SoftBound, rr-TRUST inserts invocations to record the
pointer metadata (base and bound) of the annotated function, when-
ever pointers are allocated or accepted as parameters from other
functions. rr-TRUsT calculates each pointer’s length via the formula
length = bound — base. By combining the basic and pointer type’s
lengths, rr-TRUST finally determines the upper boundary of the memory
volume consumed by each annotated function.

5.3. Exception handling

Having annotated a function with real-time constraints, developers
can also specify how to handle the violation of these constraints via the
exhandler annotation. To locate the correct call site for inserting
exception handling code, rr-TrRUST traverses instructions of each defined
function in the original program, finding the invocations to the anno-
tated functions. Then, rr-TRUST inserts “if-then-else” blocks by means of
LLVM API splitBlockAndInsertIfThenElse. The “if-then-else”
blocks include: 1) the block that contains i £ condition, 2) “then” block,
3) “else” block, and 4) the block after “then” and “else” blocks. RT-TRUST
creates an if condition with the annotated threshold for the number of
violations of a given real-time constraint. Then, it inserts the invocation
to the specified exception handling function into the “then” block, and
inserts the invocation to the original function into the “else” block as
follows:

1 Ret = function(Args); // is transforms into:

2 Ret
3

2 Basic-block is a straight-line code sequence. It has no in branches, except at
the entry, and no out branches, except the exit.

(t reaches threshold) ? exhandling_function(Args)

function(Args);

Then, rr-TRUST inserts another invocation before the “if-then-else”
blocks to calculate the number of observed violations of the given real-
time constraint (i.e., “t” in the above code snippet). Finally, the inserted
code logic can automatically switch between the original function and



Y. Liu, et al.

the exception handling function, which can be specified by the devel-
oper or generated by rr-TRUST as a default option.

6. Inter-world communication: Code generation and
transformation

The partitioning process divides the program’s IR into the trusted
and regular parts. Our partitioning strategy is function-based: CPI-de-
pendent functions execute in the trusted partition, while all other
functions execute in the regular one. The TEE isolation mechanisms
make it impossible to directly invoke CPI functions running in the
trusted partition. However, each TEE provides special communication
channels that can be accessed through environment-specific APIs.
Hence, rr-TrUsT replaces the direct CPI function invocations with com-
munication through the TEE channels for both OP-TEE and SGX.

For OP-TEE, rr-trust first generates an RPC client stub (for the
normal world) and a server stub (for the secure world). The client stub
passes the function’s parameters and its unique ID, which identifies the
function to execute in the secure world. The server stub receives this
information and invokes the corresponding CPI function in the trusted
partition. For SGX, rr-TrUST generates a proxy for each CPI functions and
an Enclave Definition Language (EDL) file that provides metadata for
all the CPI functions. By passing the generated EDL file as input to the
Edger8r tool [34], developers then generate the required SGX com-
munication logic for all interactions between the regular and trusted
parts. For both OP-TEE and SGX, rt-TrUST redirects the direct invocation
of a CPI function to its RPC stub (for OP-TEE) or its proxy function (for
SGX).

6.1. Generating RPC stubs for OP-TEE

rT-TRUST generates RPC stubs based on the developer’s configuration
in annotation rpc and paramlen. The argument <type> of rpc spe-
cifies which underlying delivery mechanism (i.e., shared memory or
socket) to generate. This delivery mechanism also depends on the ac-
tual TEE implementation in place. To exchange data between the
normal and secure worlds, OP-TEE provides 4 shared memory buffers,
used as the delivery mechanism. However, rT-TRUST must marshal/un-
marshal function parameters to and from these buffers. This explicit
parameter marshaling makes the generated code suitable for any
communication mechanism.

The client stub includes four code sections: 1) prologue initializes
the TEE context and opens the communication session, 2) epilogue
closes the session and finalizes the context, 3) marshaling allocates
memory space and marshals the function’s parameters, and 4) the RPC
function communicates between the normal and secure worlds by
calling TEE API methods TEEC InvokeCommand. Correspondingly,
the server stub also includes four code sections: 1) the entry points of
opening and closing the communication session, 2) unmarshaling
unmarshals the received data, 3) a dispatcher that receives invocations
and data from the client stub, and forwards it to corresponding CPI

1 Ret =
2 Ret =
3 Ret =

wrapper functions, and 4) the wrapper functions receive the data from
the dispatcher and invoke the actual CPI functions in the trusted par-
tition.

During the code generation, rr-trRUST checks the arguments <en-
cryption> and <compression> of annotation rpc. If the developer
specifies that <encryption> or <compression> is needed, RT-TRUST
encrypts and compresses the data after the marshaling phase in the
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Fig. 5. Format of data transmission.

client stub, and decrypts and decompresses the data before un-
marshaling phase in the server stub. Although rr-TRUST Uses existing
open source libraries for encryption and compression, developers can
switch to using different implementations. Further, when generating
the marshaling component for the client stub, rr-TRUsT checks the
paramlen to determine how much memory to allocate.

For ease of portability, all generated code is compliant with the C
language specification, without any custom extensions. Furthermore,
all the referenced libraries are open source and plug-in replaceable.
Finally, all the TEE APIs in the generated code conform to the Global
Platform Specification of TEE. Thus, developers can either directly use
the generated code for the trusted execution or extend that code in
order to meet some special requirements.

6.2. Generating proxy functions and EDL file for SGX

Based on the partitionable functions’ information in the PFG, rt-
TRUST generates an EDL file, assembling the declarations of trusted
functions into the “trusted” block, and that of regular functions in-
voked from the trusted part in a zigzag pattern into the “untrusted”
block. Most importantly, for each pointer parameter in both the
trusted and untrusted function blocks, rr-TrusT checks the paramlen
annotation to generate the EDL attributes that determine the size of
pointer-based parameters. For each function containing struct
parameters, RT-TRUST generates a complete definition of each struct
in the EDL file. After that, rr-TRUST generates a proxy function file to
initialize/deallocate the communication channel and to handle the
return values for each CPI function. Finally, rr-TRUST executes the
Edger8r tool to generate the required SGX communication logic for
this partitioning scenario.

6.3. Redirecting function calls

As CPI functions are moved to the secure world, their callers need to
be redirected to invoke the original function’s RPC stubs (for OP-TEE)
or proxy functions (for SGX) instead. rr-TrRusT exhaustively examines all
function invocation instructions, locates the ones invoking the CPI
functions, and replaces the callee’s name to the CPI function’s RPC stub
or proxy function. Since CPI functions and their RPC stubs / proxy
functions share the same signature, no other changes are necessary:

original_function(Args); // is transformed into:
RPC_function(Args); // for OP—TEE
un_function(Args); // for SGX

Now, the original function calls become RPC or proxy function in-
vocations that end up calling the partitioned CPI functions in the secure
world. As per the transformation of exception handling in Section 5.3,
the original function can be specified to handle exceptions. That is, if
the violations of real-time constraints reach the threshold, the inserted
exception handling logic can automatically change back to invoking the
original function rather than the function in the secure world:
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// for OP—TEE:
Ret =
// for SGX:
Ret =

[, B VU S

6.4. Data encoding protocols

The normal and secure worlds are represented by distinct system
components, running in separate address spaces. The inter-process
communication facility, through which the worlds interact with each
other, require that all the data passed between them be encoded as an
array of bytes. rr-TrusT has to be able to encode the regular part’s data
structures into this array of bytes, while the corresponding trusted part
has to read these data structures from the array once it is transferred to
the secure world. This problem is not new, and multiple marshaling
mechanisms [35] have been introduced, including major framework
platforms, such as CORBA [36] and gRPC [37]. For SGX, the Edger8r
Tool parameterized with an Enclave Definition Language (EDL) file
[38] automatically generates the required marshaling/unmarshaling
logic. However, OP-TEE provides no such marshaling/unmarshaling
facilities. To solve this problem, rr-TRUST provides a custom marshaling
framework that not only generates the required marshaling/un-
marshaling logic for the parameters of CPI functions, but also in-
troduces a novel space-efficient encoding for data collections. Given
that TEE is frequently used as a secure data storage, this ability to en-
code data collection parameters space-efficiently increases the applic-
ability of RT-TRUST.

Fig. 5 shows how rr-trUST differently encodes parameters that are: a)
primitive types (e.g., int, char, double), and b) complex type (e.g.,
struct, union). The encoding represents all data as a byte array, and
when storing both primitive and complex data, it starts with the same
header that contains the total len (the total length of all the entries
in this encoding), and num (the total number of items in the encoded
collection) fields. These fields are both stored into a 4 bytes integer. The
following entries differ depending on the encoded type. For primitive
types, rr-TRUsT then stores the size of the encoded data type, which is
then followed by the actual data content. For complex types, RT-TRUST
first stores the type header: the total len (the total length of all the
members in this type), and num (the total number of members in this
type) fields, followed by the size of each member and its actual content
in turn. This scheme enables the receiving party to first extract the total
length to be able to allocate the amount of memory required to contain
the entire encoding. The transfer process needs to allocate memory
twice: first in the shared memory, which serves as a delivery vehicle to
the secure world, and then in the trusted part to be able to store the
transferred data.

7. Support forpartitioning decision making

As discussed in Section 4.4, for each function to partition, devel-
opers can indicate whether it must abide by hard or soft real-time
constraints. Hard constraints cannot be violated, while soft ones can
tolerate some violations. Hence, upon detecting a possible violation of a
hard constraint, rT-TrRUST rejects the request to partition the offending
function. For compliant CPI functions and those violating only the soft
constraints, rRT-TRUsT calculates their Function Performance Indicator
(FPI) discussed next.

Function performance indicator. The Function Performance
Indicator (FPI) reflects by how much a CPI function is expected to de-
grade its performance once moved to the TEE. For each appropriate CPI
function, rr-trUST calculates and reports its FPI, upon which developers
can determine whether or not to move the function to TEE. FPI

(reach threshold) ? original_function(Args)

(reach threshold) 7 original_function(Args)
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Ret = RPC_function(Args); //is transformed into:

: RPC_function(Args);
: un_function(Args);

correlates two platform-independent metrics: execution time 1oss (Lexe)
and invocation interval loss (L;,). We calculate the expected perfor-
mance degradation (Tafer/Toefore), and then scale and normalize it by
applying log and tanh functions in turn®.

Finally, we calculate the maximum value of the normalized results
to obtain FPI :

Lexe = aftcr/ Toefore; (Tbefora Tafeer are execution times) (1)

Liny = Iofier/ Trefore; (pefores Lafrer ar€ invocation intervals) (2)

FPI = Max (tanh(log (Ley)), tanh (log (Liny))) (3)

FPI shows the expected performance degradation factor. Notice that
FPI can take upon values that range between 0 and 1. We offer the
following guidelines to developers, as based on the ranges of FPI values:
between 0 and.25, the expected degradation is minimal;, between.26
and.75, the degradation is medium; and between.76 and 1, the de-
gradation is high. Which level of performance degradation is acceptable
for a given application scenario is up to the developer to determine.

For example, a CPI function f is annotated to be moved to TEE.
Before moving £, its execution time and invocation interval are 1 and 5
seconds, respectively. After moving f to TEE, its time and interval be-
come 10 and 20 s, respectively. Hence, £’s Ley, is 10/1 = 10, L, is
20/5 = 4, resulting in FPI of Max(tanh(logl0), tanh(log4)) = 0.76. In
other words, moving £ to TEE would increase its execution costs by a
factor of 0.76. This performance degradation level is in the low range of
high.

As a simple but intuitive metric, FPI provides a convenient heuristic
that can help developers determine whether moving a CPI function to
the TEE would continue satisfying the timeliness requirements. Under
SGX and OP-TEE, FPI can differ for the same CPI functions. So this
metric can also help developers select the most appropriate TEE im-
plementation for a given real-time system.

8. Evaluation
We answer the following research questions in our evaluation:

o Effort: How much programmer effort is saved by applying rT-TRUST?

o Performance: What is the added performance overhead imposed by
performing a rr-TrusT profiling on a representative real-time system?

® Value: How effectively can rr-trRUsT determine whether a planned
refactoring would preserve the original real-time constraints?

e Accuracy: How accurately can our profiling infrastructure predict
the expected performance deterioration caused by a RT-TRUST re-
factoring?

e Limitations: What are some limitations of rr-TrRusT’s applicability?

8.1. Experimental setup

To answer the evaluation questions above, we have concretely im-
plemented rr-TRUsT and assessed its various characteristics in a realistic
deployment scenario, whose experimental setup is as follows.

Software and hardware r1-TRUST integrates RTTAs with the public
release of Clang 4.0 and implements a series of LLVM Passes (e.g., code

3 The log and tanh functions are classic data analysis tools. Here we apply log
to display a large range of quantities in a small scale, and apply tanh to nor-
malize the scaled result to fall within the range of 0 to 1.
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analysis, partition, RPC stubs generation, profiling code insertion) in
LLVM 4.0. Since our memory consumption profiler relies on SoftBound,
which runs only in LLVM 3.4, rr-TRUST implements a separate LLVM Pass
that profiles the memory consumed by specified functions in that earlier
LLVM version. For OP-TEE, the benchmarks that we use for evaluating
RT-TRUST are set up on Raspberry Pi 3 (RPi3), running OP-TEE 3.1.0 on
Linux version 4.6.3, 1.4 GHz 64-bit quad-core ARMv8 CPU, and 1 GB
SDRAM. For SGX, the evaluation environment are set up on a Dell
workstation, running Intel SGX Linux 2.0 Release on Ubuntu 16.04,
3.60GHz 8-core Intel i7-7700 CPU, with 31.2GB memory.

Microbenchmarks and realistic real-time system Real-time systems that
can benefit from rr-TRUST possess two characteristics: 1) Have CPI-de-
pendent functions that should be protected in the secure world, and 2)
have the execution of these functions restricted by some real-time
constraints.

To establish the baseline for the performance behavior of such
systems, we choose several classic algorithms as our microbenchmarks,
which are widely used by existing real-time system. To mimic the real-
time invocations of our microbenchmarks, we have written custom unit
test suites that exercise the CPI-dependent functionality. For example,
we simulate the invocation of a certain algorithm 50 times. The selected
benchmarks are algorithmic in nature and include CRC32, DES, RC4,
PC1, and MDS5. One can imagine realistic application scenarios, in
which the execution of these benchmarks needs to be protected under
real-time constraints. Because both OP-TEE and SGX support only C
code as running in the secure world, we select the C implementations of
these algorithms provided by one of the LLVM test suites [39].

To ascertain the applicability of rr-trusT to an actual real-time
system, we apply it to secure two CPI tasks of an open-source autopilot
PX4 (v1.8.0) [40]: Airspeed and waypoint computations.

Evaluation design As described in Sections 5 and 6, developers can
customize the implementations of profiling, EDL file and RPC stubs.
However, we evaluate only the default options of using RT-TRUST to es-
tablish its baseline performance, thus not unfairly benefiting our im-
plementation.

We evaluate programmer effort as the uncommented lines of code
(ULOC): 1) Those required to write RTTAs, 2) those automatically
generated by rr-trRUsT, and 3) those that the developer is expected to
fine-tune by hand (e.g., some source code may need to be modified to
fix the violations of our partitioning rules, or the parameter’s length in
an RPC stub / EDL file may need to be manually adjusted). Note that rr-
TRUST generates tight code, without any redundancies or unnecessary
features, very similar to what a programmer would write by hand.
Hence, we argue that without rr-TRUST, programmers would be writing
all the generated code by hand. By reporting on the size of this code, we
measure how much programmer effort rr-TRUST Saves.

To evaluate performance, we measure the overhead of rr-TRUST’S
profiling for execution time, invocation interval, and memory con-
sumption. For the former two, rr-TRUST provides different profiling li-
braries, applying TEE (i.e., OP-TEE or SGX) APIs in the secure world. So
we evaluate them in both the normal and secure worlds. For the latter,
memory consumption should be profiled before partitioning and gen-
erating RPC stubs or the EDL file. So, we evaluate it only in the normal
world.

To evaluate value and accuracy, we first apply rr-TrUST to profile the
specified CPI functions before and after moving them to the secure
world. Then, we compare the results reported by the profiling of the
original unpartitioned system with respect to meeting the real-time
constraints with that of its partitioned version.

However, the time measurement’s granularity in the OP-TEE time
API differs from that in the SGX API, which reports the time-elapsed
quantities only at the seconds level of granularity. To effectively mea-
sure the CPI functions’ performance (at the milliseconds level) under
SGX, we modified the source code to repeat each benchmark 1000
times. Despite these repeats, we report the final results at the milli-
second level of granularity by simply dividing them by 1000. By using
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the same measurement unit for both OP-TEE and SGX, our experimental
results provide a realistic comparison of the expected performance
degradation levels imposed by these TEE implementations. Also, by
using FPI, developers can effectively compare the performance of a
given CPI function in different TEE implementations.

Further, by analyzing the performance results, we discuss 1) which
procedure causes the performance deterioration after moving the CPI
function to the secure world, 2) whether we can accurately predict the
specified function’s performance in the secure world by analyzing its
performance in the normal world, and 3) which TEE implementation
can better preserve the timeliness requirements of our evaluation cases.
To explain rr-TrRusT’s limitations by describing several program cases
that require a prohibitively high programmer effort to adjust the gen-
erated RPC stubs.

8.2. Results

We verify the correctness of rT-TrRUST by applying all its LLVM passes
(i.e., code analysis, transformation, and generation) to microbe-
nchmarks. We evaluate rRr-TrUsT as follows.

Effort

Table 1 shows the effort saved by applying rr-trRUST. Generally, the
total number of ULOC automatically generated and transformed by rt-
TRUST (244 ~ 388 ULOC for OP-TEE; 46 ~ 87 ULOC for SGX) greatly
surpasses those required to manually annotate ( < 5 ULOC) and modify
(0 ~ 15 ULOC) the subject programs.

RT-TRUST eliminates the need for the developer to write this code. In
other words, to apply rr-Trust, the developer adds a tiny number of
ULOC, mainly as annotations and minor adjustments of generated code.
The number of annotations is directly proportional to the number of CPI
functions. The manual adaptations are required to remove program
patterns that prevent rr-Trust from successfully partitioning the code,
and to support the pointer parameters of CPI functions.

Specifically, to move the 5 CPI functions of CRC32 to the secure
world requires exactly 5 ULOC of RTTAs. No manual adjustment is
necessary, as the code comes amenable to partitioning and no pointer
parameters are used. In contrast, 15 (for OP-TEE) and 3 ULOC (for SGX)
are required to adjust the generated RPC communication for DES, due
to a CPI function’s pointer parameter pointing to a struct of two char
arrays. In other words, after profiling the amount of consumed memory,
the developer needs to adjust the memory allocation for marshaling/
unmarshaling these pointer parameters. For PC1, 6 additional ULOC are
needed to fix a violated global variable rule.

Overall, the number of generated and adjusted lines of code needed
for SGX is generally fewer than those for OP-TEE. The reason is that, for
SGX, rr-TrUST only needs to generate an EDL file to construct the com-
munication channel, while the developer only needs to modify the size
or count modifiers in the EDL file to adjust the amount of memory al-
located for the pointer parameters.

Performance Table 2 reports on the overhead of rr-TrusT profiling,
which captures and calculates the execution time, invocation intervals,
and memory consumption. Recall that rr-TrRUST profiles systems before
and after refactoring them. The before mode estimates whether the re-
factored system would continue meeting real-time constraints, while

Table 1

Programmer effort (ULOC).
Algorithm RTTAs Generate & Transform Adjust

OP-TEE SGX OP-TEE SGX

CRC32 5 388 87 0 0
PC1 4 344 73 6 6
RC4 3 292 61 3 1
MD5 3 364 86 3 1
DES 2 244 46 15 3
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Table 2 Table 4
Overhead of rr-TrUST profiling (ms). TEE limitations
Algorithm Execution Time Invocation Intervals Memory Limitations OP-TEE SGX
Normal Secure Normal Secure Parameter  Local Language C C/C++
Memory no limit hard limit
OP-TEE 0.442 144 0.418 139 0.051 0.053 Threading no no
SGX 0.2 52 0.212 25.5 Sys./lang. APIs special version special version

the after mode compares the estimated execution characteristics with
those performed on TEE hardware (OP-TEE on a Raspberry Pi3 and SGX
on a Dell workstation). Hardware environments heavily impact the
profiling overhead, with an order of magnitude difference: for OP-TEE,
=~ 0.4ms in the normal world vs. = 140ms in the secure world. For
SGX, = 0.2ms in the normal world vs. = 50ms in the secure world.
This drastic performance difference is mainly due to the differences
between the efficiency of standard Linux system calls and their TEE
counterparts. For example, the standard gettimeofday is more effi-
cient than either TEE GetREETime in the OP-TEE or sgx get -
trusted time in the SGX.

The heavy performance overhead of trusted execution prevents the
profiling of real trusted system operation. When estimating memory
consumption, the overhead of capturing the memory allocated for local
variables and the pointer parameters never exceeds 0.06ms. However,
the overall overhead depends on the total number of local variables and
pointer parameters. For example, if a function allocates memory for n
variables, the total overhead would be = 0.053*n (ms). Thus, to pre-
vent the profiling overheads from affecting the real-time constraints,
the rr-TrRUST profiling is best combined with the system’s testing phase.

Value and accuracy

Table 3 shows the results of profiling the CPI functions, with the
profiling overhead subtracted. The value before “” is the results for the
OP-TEE, and after “/” is that for the SGX. For the execution time, gen-
erally, the time consumed by our micro-benchmarks and the CPI PX4
functions in the secure world (“After” column) is similar to that in the
normal world (“Before” column). Hence, moving the CPI functions to
TEE should not deteriorate their performance. Thus, it is reasonable to
estimate the performance in the secure world based on that in the
normal world. However, the communication channel between the
normal and secure worlds slows down the invoked functions due to the
introduction of two time-consuming mechanisms: connection main-
tenance to the secure world (e.g., initialize/finalize context, open/close
session), and invoking the partitioned functions in the secure world
(e.g., allocate/release shared memory, marshal and unmarshal para-
meters).

Given a real-time deadline to complete the execution of a CPI
function, the post-refactoring profiling helps determine if the deadline
is being met. The source code for PX4’s airspeed calculation sets the
execution timeout to 300 ms. Since the maximum post-refactoring la-
tency of 256.35 (in OP-TEE) is below this deadline, moving this CPI
function to TEE preserves its real-time constraints.

The time spent in the communication channel increases the

Table 3
Value and accuracy of rr-TrUST (ms).

invocation intervals of our micro-benchmarks and the CPI PX4 func-
tions. The micro-benchmarks invoke functions consecutively in a loop.
Thus, in the normal world, each function’s invocation interval (“Before”
column of “Invocation Interval”) is similar to its execution time
(“Before” column of “Execution Time”). However, in the secure world,
these invocation intervals increase, becoming similar to the time con-
sumed by Communication (“Communication” column) plus the time in
the secure world (“After” column of “Execution Time”). For the PX4
autopilot, which computes the airspeed and next waypoint values every
50 ms and 500 ms, respectively, the time spent in the communication
channel increases these invocation intervals to 305 ms
(~ 256.35(communication) + O(execution time) + 50) and 773.67 ms
(~ 264.96(communication) + 0.46 (execution time) + 500) in OP-TEE,
and to 83.29 ms (x~ 32.87(communication) + 0(execution time) + 50)
and 553.32 ms (~ 32.38(communication) + 0(execution time) + 500) in
SGX. Hence, the introduced remote communication between the normal
and secure worlds is the performance bottleneck of trusted execution.

The memory consumption profiling helps determine which func-
tions can be run in the secure world. Based on the profiled memory
consumed, developers can increase the size of TEE’s shared memory.
For example, if the TEE’s memory size is limited to 10¥1024 bytes, and
the MD5’s char pointer parameter requires 20000 bytes, to run MD5 in
the secure world requires modifying the TEE hardware configuration.
The PX4 CPI functions (i.e., airspeed and next waypoint), which per-
form numeric computations, require limited memory (i.e., for the
double / float parameters / variables).

9. Discussion

In this section, we first discuss the limitations of TEE implementa-
tions and rr-TrusT. Then after comparing the OP-TEE with the SGX, we
discuss their most suitable usage scenarios.

9.1. Limitations

TEE limitations. Table 4 shows the limitations of the OP-TEE and
the SGX. For language support, the trusted part for the OP-TEE can only
be written in C; that for the SGX can be written in both C and C+ +,
while the communication channel between the trusted and untrusted
parts can be written only in C. For memory allocation, the OP-TEE has
no fixed size limit, with the upper bound becoming the amount of
physical memory. In contrast, the maximum size of the SGX’s protected
memory is limited by the system BIOS with 64MB or 128MB as the

Alg. Comm. Execution Time Invocation Interval Memory (bytes)
Before After Before After Parameter Local
CRC32 253.17 | 28.91 1.150 | 0.21 1.3 ] = 0.0 1.240 | 0.23 269 | 29.15 40 92
PC1 273.38 | 29.03 68.22 | 7.64 13| 8.95 68.10 | 8.10 314 | 37.67 32 22
RC4 236.96 | 29.62 500.52 | 32.89 447 | 66.00 506.95 | 33.19 705 | 97.10 240 1144
MD5 177.83 | 30.90 267.43 | 49.72 254 | 49.35 267.62 | 51.08 446 | 78.71 20000 316
DES 201.99 | 28.84 24.18 | 2.51 323.18 24.30 | 2.55 224 | 31.56 528 72
airspeed 256.35 | 32.87 =~ 0.0 | 0.01 ~ 00| =0.0 50.16 | 53.75 305.0 | 83.29 12 12
waypoint 264.96 | 32.38 0.400 | 0.05 0.460 | = 0.0 500.75 | 505.98 773.67 | 533.32 40 40
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typical value. Besides, neither the OP-TEE nor the SGX provides any
support for multi-threading in the secure world. That is, one cannot
spawn a thread (e.g., by using pthreads) inside the secure world.
Furthermore, both TEEs re-implement their special versions of the
standard system and C/C+ + libraries. For example, the printf im-
plementation of the OP-TEE cannot print float or double values. Si-
milarly, the SGX provides neither strcpy nor strcat, instead re-
quiring that developers use the provided strncpy and strncat
instead [41].

rT-TRUST limitations. For OP-TEE, consider the scenario of passing a
struct pointer to the specified function. The struct pointer is a linked list
that has 100 elements. Each element has a char pointer as the data
field. In that case, developers need to modify more than 100 ULOC in
the generated RPC stubs to allocate the correct memory size for the
marshaling and unmarshaling operations. In other words, the more
complex pointer-based data structures are, the greater the program-
ming effort is required to adapt generated code. Thus, the utility of r-
trusT diminishes rapidly for refactoring functions with complex pointer
parameters.

For the SGX, rr-TrusT requires that developers write specialized logic
to marshal/unmarshal such complex pointer parameters. If the size of a
pointer-based parameter happens to be larger than the limit set by the
system BIOS, developers need to do extra work. First, modify the source
code to divide the parameter data into several smaller parts and then
write the required code to marshal/unmarshal the divided data to be
transferred across the normal and secure worlds.

For both OP-TEE and SGX, rr-TrUST restricts CPI functions from
having function pointer parameters. Further, rT-TRUST rejects the re-
factoring requests in which a CPI function assigns function pointers
within its body. By inspecting the AllocaInst instructions during the
static analysis phase, rT-TRUST locates function pointers in the bodies of
CPI functions. Upon detecting the presence of a function pointer, rt-
TRUST raises a partition failure. Besides, sometimes dynamically allo-
cated objects can significantly differ in size depending on input. Hence,
systems must be profiled with typical input parameters.

9.2. Choosing between OP-TEE or SGX

Table 5 shows each micro-benchmark’s Function Performance In-
dicator (FPI) for the OP-TEE and the SGX. Overall, the FPI values are
comparable for both TEEs in all benchmarks. The faster the execution
before moving to the TEE, the larger the FPI value (i.e., more perfor-
mance degradation). The reason is that if a function runs fast (e.g.,
1.15 ms for CRC32), the additional costs of the communication channel
(i.e., 253.17 ms for CRC 32) dominate the total execution time. Another
concern is the execution latencies in the secure world. In the case of
RC4, moving the CPI functions to the SGX doubles their execution time.
However, after moving the same functions to the OP-TEE, the execution
time stays similar (as shown in Table 3). Hence, RC4’s FPI for the SGX
(i.e., 0.435) is larger than that for the OP-TEE (i.e., 0.142). To sum up,
developers should always use the TEE with the smallest FPI value.
However, if a CPI function’s execution time is much smaller than the
time taken by the communication channel, then both the OP-TEE and
the SGX impose a comparable high-performance degradation.

Table 5

FPI of OP-TEE and SGX
Algorithm OP-TEE SGX
CRC32 0.982 0.973
PC1 0.581 0.6
RC4 0.142 0.435
MD5 0.218 0.205
DES 0.756 0.803
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10. Related work

RT-TRUST is related to DSLs for real-time systems, execution profiling,
application partitioning, and code refactoring for trusted execution.

DSLs for real-time systems:Real Time Logic (RTL) formalizes real-
time execution properties [42]. Subsequent DSLs for real-time systems
include Hume that helps ensure that resource-limited, real-time systems
meet execution constraints [43]. Flake et al. [44] add real-time con-
straints to the Object Constraint Language (OCL). Several efforts extend
high-level programming languages to meet real-time execution re-
quirements [45-47]. rr-TrusT’s RTTAs can also be seen as a declarative
DSL for real-time constraints, albeit to be maintained when the original
real-time system is refactored to protect its CPI functionality.

Execution profiling:Several existing dynamic profiling tools, such
as Pin tool [8], gperftools [9], and Gprof [48], ascertain program per-
formance behavior. However, Pin and gperftools require that devel-
opers manually add profiling probes. Further, to profile program in
TEE, one would have to pre-deploy their dependent libraries, which
may be incompatible with particular TEE implementations. RT-TRUST
differs by automatically inserting profiling probes into the specified
functions. Further, it estimates TEE-based execution characteristics
without any pre-deployment.

Application partitioning:J-Orchestra partitions the Java bytecode
of a centralized application into a distributed application [49]. Given
programmer annotations, Swift transforms a web application into a
secure web application, in which the server-side Java part and the
client-side JavaScript part interact with each other via HTTP [50]. Z@®
compiles annotated C# code of a centralized application into a dis-
tributed multi-tier version to improve confidentiality and integrity, as
directed by an automatically produced zero-knowledge proof of
knowledge [51]. By enforcing a dynamic information flow control
mechanism, Fission automatically and securely splits a JavaScript
program into the client and server parts [52]. Pyxis automatically
partitions database-backed applications into the application server and
database parts [53]. Yang et al. optimize the code partitioning of mo-
bile data stream applications [54].

Code refactoring for trusted execution:PtrSplit partitions C-lan-
guage systems, while automatically tracking pointer bounds, thus en-
abling the automatic marshaling and unmarshaling of pointer para-
meters in RPC communication [3]. Senier et al. present a toolset that
separates security protocols into several isolated partitions to fulfill
security requirements [55]. Rubinov et al. leverage taint analysis to
automatically partition Android applications for trusted execution [56].
TZSlicer automatically detects and slices away sensitive code fragments
[57]. Lind et al.’s source-to-source transformation framework extracts
subsets of C programs to take advantage of Intel SGX enclaves [58].

As compared with these works, rr-TRUST not only supports the cor-
rect and automatic partitioning of legacy C code, but it also takes the
real-time performance implications of the partitioning into account. By
means of its profiling infrastructure and the FPI metric, RT-TRUST predicts
the degree to which a requested partitioning would decrease the sys-
tem’s real-time performance and also informs developers how to select
between TEE implementations.

11. Future work and conclusion

One future work direction is to reduce the programmer effort re-
quired to provide the code for marshaling and unmarshaling compli-
cated struct pointers with unknown bounds information. Another di-
rection in this area is to automatically detect which functions are CPI-
dependent and need to be protected in the secure world. Finally, we
plan to experiment with symbolic analysis as another way of estimating
the performance of refactored systems.

We have presented rr-TRUST that provides a fully declarative meta-
program-ming model with RTTA, static and dynamic analyses for de-
termining whether the suggested partitioning strategy is reasonable,
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and whether the partitioned system would comply with the original
real-time constraints, and an automated refactoring that transforms the
original system while generating custom RPC communication and ex-
ception handling code. Our approach automatically refactors real-time
systems with CPI-dependent functions for trusted execution under real-
time constraints. The evaluation results of applying RT-TRUST to micro-
benchmarks and a drone autopilot indicate the promise of declarative
meta-programming as a means of reducing the programmer effort re-
quired to isolate CPI under real-time constraints.
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