Client Insourcing: Bringing Ops In-House for Seamless
Re-engineering of Full-Stack JavaScript Applications

Kijjin An
Software Innovations Lab, Virginia Tech
ankijin@vt.edu

ABSTRACT

Modern web applications are distributed across a browser-based
client and a cloud-based server. Distribution provides access to re-
mote resources, accessed over the web and shared by clients. Much
of the complexity of inspecting and evolving web applications lies
in their distributed nature. Also, the majority of mature program
analysis and transformation tools works only with centralized soft-
ware. Inspired by business process re-engineering, in which remote
operations can be insourced back in house to restructure and out-
source anew, we bring an analogous approach to the re-engineering
of web applications. Our target domain are full-stack JavaScript
applications that implement both the client and server code in
this language. Our approach is enabled by Client Insourcing, a
novel automatic refactoring that creates a semantically equivalent
centralized version of a distributed application. This centralized
version is then inspected, modified, and redistributed to meet new
requirements. After describing the design and implementation of
Client Insourcing, we demonstrate its utility and value in address-
ing changes in security, reliability, and performance requirements.
By reducing the complexity of the non-trivial program inspection
and evolution tasks performed to meet these requirements, our
approach can become a helpful aid in the re-engineering of web
applications in this domain.

CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Dynamic analysis; Automated static analysis.

KEYWORDS

Software Engineering, Re-Engineering, Web Applications, JavaScript,
Mobile Apps, Program Analysis & Transformation, Middleware

ACM Reference Format:

Kijin An and Eli Tilevich. 2020. Client Insourcing: Bringing Ops In-House for
Seamless Re-engineering of Full-Stack JavaScript Applications. In Proceed-
ings of The Web Conference 2020 (WWW °20), April 20-24, 2020, Taipei, Taiwan.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380105

1 INTRODUCTION

Developers often need to re-engineer web applications to address
requirement changes made only after deployment and usage. Re-
engineering captures evolutionary modifications that range from

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °20, April 20-24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380105

179

Eli Tilevich

Software Innovations Lab, Virginia Tech
tilevich@cs.vt.edu

maintenance tasks to architecture-level changes [7]. A re-eng-
ineering effort can involve adding a major feature, protecting against
security vulnerabilities, or removing performance bottlenecks. Mod-
ifying existing web applications requires complex program analysis
and modification operations that are hard to perform and even
harder to verify. One of the main causes of this complexity is the
distributed execution model of web applications.

In this model, a web application’s execution flows across the
separate address spaces of its client and server parts. All remote
interactions are typically implemented by means of middleware
libraries. As a result, the control flow of web applications can be
highly complex, with their business and communication logic inter-
mingled. That complexity hinders all tracing and debugging tasks.
In addition, distributed execution over the network makes web
applications vulnerable to partial failure and non-determinism.

Program analysis is central to software comprehension. The web
is predominated by dynamic languages, which defeat static analysis
techniques. Hence, to comprehend programs written in dynamic
languages, such as JavaScript, requires dynamic analysis. Software
debugging hinges on the ability to repeat executions deterministi-
cally [26, 31]. However, many web applications are stateful, with
certain client server interactions changing the server’s state. It can
be quite laborious and error-prone to restore the original state to
be able to repeat a remote buggy operation [16, 23, 33]. All in all,
it is the presence of both distribution and stateful execution that
makes it so hard to trace and modify web applications.

In this paper, we draw inspiration from business process re-
engineering that can bring remote operations in-house via insourc-
ing. Once the insourced operations are redesigned and restructured,
some of them can be outsourced anew. As argued above, the notion
of local operations being easier to analyze and restructure than
remote ones equally applies to web applications.

Specifically, the approach presented herein first automatically
transforms a web application, comprising a client communicating
with a remote server, to run as a centralized program. The resulting
centralized variant retains to a large degree the semantics of the
original application, but replaces all remote operations with local
ones. The centralized variant becomes easier to analyze and modify
not only because it has no remote operations, but also because
the majority of program analysis and transformation approaches
and tools have been developed for centralized programs. After the
centralized variant is modified to address the new requirements
and the modifications have been verified, it is then redistributed
again into a re-engineered distributed web application. Our target
domain are web applications written entirely in JavaScript, both
the client and server parts; such applications are referred to as full-
stack JavaScript applications. We take advantage of the monolingual
nature of such applications to streamline our implementation.

https://doi.org/10.1145/3366423.3380105
https://doi.org/10.1145/3366423.3380105

WWW °20, April 20-24, 2020, Taipei, Taiwan

In a web application, clients communicate with the server by
means of the HTTP protocol, typically in a request/response pat-
tern. However, from the implementation perspective, the HTTP
functionality can be supported by a variety of middleware libraries
with vastly dissimilar APIs [29]. To be able to identify and replace
the HTTP communication functionality, a web application may
need to be executed multiple times under different inputs. However,
some remote interactions cause the server to change its state. For
example, a client can pass a parameter to the server, which would
store that parameter in the server-side database. In addition, the
non-database state can change as well (e.g., adding the parameter to
the JavaScript list of displayed items). In different states, the server
may respond dissimilarly, thus making it impossible to identify
HTTP middleware API calls, so they can be correctly replaced with
corresponding local calls of the insourced functionalities.

The focal point of our approach is Client Insourcing, a new auto-
matic refactoring that undoes distribution by gluing the local and
remote parts of a distributed application together. Our approach
can precisely identify the functionality of HTTP middleware—
irrespective of its API and in the presence of stateful operations—by
combining program instrumentation, profiling, and fuzzing in a
novel way. Our ideas are realized in our reference implementation—
Java Script Remote Client Insourcing (JS-RCI). We evaluate our
approach’s value, correctness, and utility by applying JS-RCI to
re-engineer a set of real-world web applications.

The contribution of this paper is three-fold:

(1) We introduce a technique that identifies the HTTP middle-
ware functions used to send and receive HTTP commands
in a full-stack JavaScript application. This technique elimi-
nates the need to specialize our approach for the multitude
of HTTP middleware libraries and their APIs.

(2) We create Client Insourcing—a novel automatic refactoring
that creates a semantically equivalent centralized version of a
distributed application by integrating remote functionalities
with local code and replacing middleware communication
with direct function calls. This refactoring moves to the
client not only the server’s business logic implemented in
JavaScript, but also the referenced database functionality,
including the relational database schema in SQL.

(3) We evaluate the wide applicability of Client Insourcing in
re-engineering real-world full-stack JavaScript applications.
Specifically, we apply our approach to re-engineer 10 sub-
ject distributed applications, both two-tier and three-tier
(including the database), to meet new security, reliability,
and performance requirements.

The rest of this paper is structured as follows. Section 2 motivates
and summarizes our approach. Sections 3 and 4 present the design
and implementation specifics of the Client Insourcing refactoring,
respectively. Section 5 reports on how we applied Client Insourcing
to streamline three representative re-engineering scenarios of web
applications. Section 6 discusses various applicability issues per-
taining to our approach. Section 7 compares our approach with the
related state of the art. Section 8 outlines future work directions
and presents concluding remarks.

180

Kijin An and Eli Tilevich

2 RE-ENGINEERING WEB APPLICATIONS

Developers often find themselves having to re-engineer an actively
used application to ensure its continued utility, reliability, and safety.
When interacting with an application in real-world settings, users
may discover and report inefficiencies and imperfections. Users may
request that new features be added to an application to increase its
utility. As users discover existing faults and request new features,
developers can decide to re-engineer the application to deliver
an improved version to the users. Re-engineering modifications
can range from routine maintenance and evolution tasks to major
architectural transformations. Next, we demonstrate two examples
of re-engineering full-stack JavaScript applications.

2.1 Example Apps

The code snippets in Figure 1 come from two third-party full-stack
JavaScript applications realty-rest! (left) and recipebook? (right),
with both of their client and server parts shown. Both applications
rely on the network for their client and server parts to communicate
with each other. The primary user base of realty-rest are real-estate
brokers, licensed professionals that sell and purchase various prop-
erties on behalf of their clients. Due to the nature of their business
operations, real-estate brokers lead highly mobile professional lives,
moving from location to location to show properties to potential
buyers. Hence, as a mobile app, realty-rest is well-aligned with
the needs of its users, who rely on the app to be readily available,
responsive, and reliable. To start using the app, a user selects a prop-
erty from the list of all properties registered with the system. The
selected property can then be updated or deleted, with the app’s
client then sending HTTP commands to the server, (e.g., DELETE
/property/favorite to remove a property from the list of
favorites, etc). The HTTP commands are wrapped into distribu-
tion middleware (angular2/http) with JavaScript API Specifically,
the client invokes HTTP.delete passing a URL parameter, with angu-
lar2/http delivering the invocation to the server and calling function
unfavorite there. This function finds and deletes the passed property,
returning the updated list of favorites to the client. angular2/http
marshals both property and the result-to-return as JSON-encoded
messages. The client unmarshals the returned result to update the
GUL. The recipebook maintains a list of cooking recipes at the server,
so different clients could retrieve and update the maintained recipes.
recipebook uses a different middleware library to wrap its HTTP
commands—angular]S, whose JavaScript API differs from that of
angular2/http. While realty-rest is a two-tier app (JavaScript client
and sever), recipebook is three-tier (adding a database tier).

Next, we present examples of how realty-rest and recipebook may
need to be re-engineered to address new requirements.

2.2 Adapting to Disconnected Operation

Examining the history of realty-rest reveals that some of this app’s
functionalities have been moved between its client and server sites>.
Since scant documentation makes it hard to ascertain the reason
for these moves, we next discuss a typical new feature that enables

distributed apps to continue operation in the absence of a network

!realty-rest (https://github.com/ccoenraets/ionic2-realty-rest)
2recipebook (https://github.com/9bitStudios/recipebook)
3jonic2-realty (https://github.com/ccoenraets/ionic2-realty)

https://github.com/ccoenraets/ionic2-realty-rest
https://github.com/ccoenraets/ionic2-realty

Client Insourcing

//SERVER:server.js
app.delete('/properties/favorites/’

, properties.unfavorite);
//server/properties.js

var favorites = require('./property"').favs;
function unfavomte(r‘eqyest, _pesponse) {

//CLIENT:
unfavorite(event, property){

this. pserv. unfavor‘lté()

app/../property-details.

//Marshalling

ts

var id = [request.bodyl id; //unMarshalling L 0=
for (var i=0; i<fav0rites.length; i++){///
if (favorites[i].id == id){ /,/ 1)HITP Request

favorites.splice(i, 1), - From Client

2)HITP Response
From Server

break;}} HTTP/1.1 200 OK

response. json(i /properties/fav| | content-t: json

} Content-Len: ..
//SERVER: server/property.js {ITTTEaT, g Y

exports.data = [{id: 1,...}];
exports.favs = [{id:2,. }, {315
I:Ichent parameter

{__iserver Return JSCode Performance Bottleneck

WWW 20, April 20-24, 2020, Taipei, Taiwan

//SERVER: api/recipes.js //CLIENT: angular/../RecipeCtrls.js
var db = require('../utilities/SQL"); function init(){ //marshalling
var Auth = require('../utilities/Auth'); r‘ecipe.gEtRe(ipE
app.get('/api/recipes/:id"', Auth.BAuth, .then(function(data

function(req,res){ //unMarshalling
db.query('SELECT * FROM recipes -
WHERE id = [F{reqparans id}j% g
function (results) { .);
if(error) -~
res.status(500).send({" Error/ﬂ),

else {
var data =

ResUlbsnforEach(function(item) {

S
appSync.prepForBroadcast(..);} |
function(error){..}

t 2)HTTP R
From Server

[1; / 1) HTTP
From Client

data.push({'id‘:it/e;n['id'], GET ATTP/1.1 200 OF
'name’ :item['name' 1M /api/recipes Content-t:json
s HOST ..
res. JSOﬂ(gng_é), //Marshalling User-Agent: ..
}});//Query Invocation

1

Figure 1: Motivating Distributed Apps realty-rest/recipebook and highlighted Client-/Server-side code

connection. In particular, if users need to operate a mobile app in
locations with limited or intermittent network connectivity, the
app has to deliver its core business functionality without relying
on any remote services. To enable such offline operations, several
strategies have been proposed [32]. One such strategy is replication,
which replicates a remote component locally, so the local copy
acts as a proxy of its remote counterpart. A consistency protocol
keeps both copies in sync. A naive strategy for replicating a remote
functionality would be just to copy its complete source files to the
client, adapting the copied code by hand as necessary. However,
such complete copying unnecessary replicates functionalities, some
of which become “dead code”

2.3 Enhancing Privacy

Enterprises often find themselves in need to enhance user privacy
in a released application. Consider a request to keep the realty-rest
user’s property browsing histories private from other real-estate
brokers due to business competition reasons. To ensure user pri-
vacy, certain server-side functionalities (e.g., Customer Relationship
Management (CRM)) can be redistributed to a special server that re-
quires authentication before giving access to sensitive information.
In fact, realty-rest indeed has gone through a similar modification,
as evidenced by the existence of realty-salesforce*, which provides
the same business functionality, but takes advantage of third-party
trusted identification and security features. To re-engineer realty-
rest into realty-salesforce, programmers would have to identify and
migrate the relevant functionality to another server, modifying the
client to communicate with different servers (regular and secure).

2.4 Improving Performance

If a substantial subset of users becomes unsatisfied with application
performance, programmers may be asked to identify and remove
performance bottlenecks. The left side of Figure 1 displays the
server function unfavorite, which contains a known performance
bottleneck, rooted in the usage of favorite.splice(i, 1), an inefficient
API for removing collection items. In fact, an actual pull request’
states that Array.splice()’s performance is between 1.5 and 10 times
slower than that of a customized implementation, comprising a for

“realty-salesforce (https://github.com/ccoenraets/ionic2-realty-salesforce)
SPerfective Modification for Array.splice() (https://github.com/nodejs/node/pull/20453)

181

loop iteration and Array.pop(). To be able to identify this particular
source of the experienced performance bottleneck, programmers
either would have to be intimately familiar with the peculiarities of
JavaScript APIs or to rely on detailed execution profiling, typically
available only for centralized programs. recipebook also contains a
similarly inefficient foreach loop®. Notice that the distributed con-
trol flow that invokes these inefficient functions, starting from the
graphical actions at the client, traversing the network through lay-
ers and layers of middleware, and finally executing the functions
at the server. The invocation flows can be interrupted by network
volatility and authentication failures. Hence, it is both complex
control flows and possible failures that make it hard to isolate the
performance of a web application’s function.

2.5 Client Insourcing to the Rescue

Next, we explain how Client Insourcing can facilitate the re-engi -
neering tasks outlined above.

Redistribution Client Insourcing creates a redistributable central-
ized variant devoid of the unnecessary middleware functionality.
Once the variant is modified, it can be redistributed automatically.
Numerous complementary research efforts have focused on au-
tomating the process of distributing centralized applications, with
automatic transformation tools released to the public [19, 21]. Be-
cause the majority of existing refactoring techniques are designed
for regular centralized applications, they can be applied at will to
centralized variants. For example, the Extract Function refactor-
ing can be used to separate some privacy-sensitive code within a
function into a separate function to be executed in a different envi-
ronment. After the sensitive code portions are separated into their
own encapsulation units, the resulting program can be redistributed,
placing the sensitive units to execute in separate privacy-enforcing
server environments.

Isolated Profiling What if business logic can be precisely isolated
from middleware and distribution-related functionality? Then the
isolated code can be easily profiled to ascertain its performance
characteristics and identify any performance bottlenecks. Client
Insourcing enables such isolated profiling by removing middleware
and gluing the remote parts of a web application together.

® A modification request to remove this inefficiency appears here: https://github.com/
elastic/apm-agent-nodejs/pull/1275

https://github.com/ccoenraets/ionic2-realty-salesforce
https://github.com/nodejs/node/pull/20453
https://github.com/elastic/apm-agent-nodejs/pull/1275
https://github.com/elastic/apm-agent-nodejs/pull/1275

WWW °20, April 20-24, 2020, Taipei, Taiwan

Offline Operation Client Insourcing can enable offline operation,
without copying any unnecessary code from the server to the client,
by replicating only the remote functionality’s subset needed at the
client. The replicated subset can include both JavaScript code and
data persisted in a database.

3 DESIGN & REFERENCE IMPLEMENTATION

In this section, we explain our design options and then detail the
specifics of our implementation of the Client Insourcing refactoring.

3.1 Design Overview

We give an overview of the main design decisions behind Client
Insourcing via specific examples. Consider the task of moving the
server functionalities of DEL. /favorite or GET /recipe/

: id to execute at the clients (Figure 1). Instead of invoking these
functions via middleware that handles communication, partial fail-
ures, and authentication, they would become regular local functions
to be called directly. Hence, all middleware-based code would have
to be replaced with direct function calls.

Consider the service DEL /favorite, whose business logic
is encapsulated within the server-side unfavorite function. We want
to insource unfavorite so it can be called as a regular local function.
However, we cannot simply move this function from the server to
the client, as its business logic and middleware functionality are in-
termingled. In addition, the exports. favorite array, referenced in the
body of unfavorite, is declared externally. If unfavorite and exports.
favorite are not moved together, invoking the function locally would
raise an error. Hence, we must move all the referenced externally
declared program elements to the client as well. JS-RCI identifies the
exact boundaries of the server functionality to insource. However,
some dependent business logic of GET /recipe/:1idisnotcon-
fined to JavaScript code only. JS-RCI also transparently insources
code that persists data in a relational database.

//app/../property-details.js
import {j5ga2} from './j5ga2"';
unfavorite { const IS_SYNC = false;
if (IS.SYNC) {//synchronous call
ithis. favoritesi= jsga2(property.id);
return;
} //default: non-blocking call
new Promise((resolve,reject) => {
var out_j5ga2 = j5ga2(property.id);
resolve(out_j5ga2);

}).then(res =>{t
=

//app/../b8f9%a.]js

exports.favs = [{id: 1,city:'B,..}];
//app/../j5ga2.]s

var favorites=require('./b8f9a").favs;
export function j5ga2(input){

var tmpvl = input;

var id = tmpvil;

for (var i=0; i< favorites.length;
i) (- favoritesasprldce(i, 1);.}
tmpve = favorites;

var output = tmpve;

return output;}//extracted function

Figure 2: Transformed and generated code to insource a functional-
ity DELETE /properties/favorite in realty-rest app

3.2 Identifying the Code to Insource

Next, we present our solution for automating the steps above, real-
ized as the Client Insourcing Refactoring. One of our design goals
was to make sure that this domain-specific refactoring is not too
burdensome for the programmer. We assume that the refactored
applications come with a set of standard test cases, and that the ap-
plication of these cases is automated. It is during the application of
such test cases, when JS-RCI detects the marshalling/unmarshalling
points of the functionality to insource at the client invocations. In-
tuitively, the purpose of detecting these marshalling/unmarshalling

182

Kijin An and Eli Tilevich

points in the client code is to identify the entry/exit execution points
of the remote functionality to insource. These points correspond
to the locations in the client code, at which remote invocation pa-
rameters are marshalled to be transferred across the network, and
the remote invocation’s results are unmarshalled to be used in the
subsequent client execution.

To extract all the server code of the remote functionality to in-
source, JS-RCI uses symbolic execution. We assume that the server
is implemented in Node.js and define the execution rules as per-
taining to this framework’s architectural conventions. First of all,
JS-RCI normalizes server code to facilitate to detect entry/exit exe-
cution points and extract the executed JavaScript code. To that end,
JS-RCI additionally introduce temporal local variables and makes
JavaScript Statement to have a single operation (i.e., tmpve and tmpv1
in Figure 2). For symbolic execution, we use z3 [10], parameterized
with our own set of rules and facts. For example, the profiled param-
eters and return results of a remote functionality are added as new
z3 facts. Figure 4 shows the overall process of Client Insourcing.

3.3 Exploiting Asynchrony

Notice that in a distributed client-server application, the remotely
invoked functionalities running at the server, and the client code in-
voking these functionalities, run in separate address spaces that are
not shared (unless the application runs on top of some distributed
shared memory system [35], which is not a standard option for
web applications). The parameters passed to remote invocations
and the invocation results are copied between the client and the
server heaps, always creating a new copy rather than mutating any
existing program state. Hence, in a distributed application that uses
application-layer middleware (e.g., HTTPClient), the client and the
server parts share no mutable state (See Figure 3). Following this ob-
servation, one can conclude that the client and the server parts have
no non-middleware dependencies between them. That is, in such dis-
tributed applications, the only way for the client code to invoke
a server-side functionality is by making a remote invocation via
middleware. To maintain this semantics, our design also provides a
single entry point to invoke the insourced functionality, a function
previously invoked via a middleware API call at the server. It is
these insights that make it possible to safely execute the insourced
code asynchronously, without any need for synchronization! Our
design of Client Insourcing takes advantage of these insights by
executing the insourced functionality asynchronously by default. In
particular, the generated code makes use of the Promise framework
that exposes asynchronous execution via a standardized interface
that uses the programming idioms congruent with the design of
JavaScript.

For a specific example, consider the code listing in Figure 2 that
shows the generated client code for DEL /favorite. Notice that
the default invocation model for this insourced function is asyn-
chronous, a runtime behavior that is put into effect by creating a
new instance of a Promise closure. Once the asynchronous execution
of jsga2 completes, the Promise framework invokes the callback
resolve to handle the successful execution. Since our design aims
for versatility, we provide an option for the insourced functionality
to be invoked synchronously as a regular blocking local call. This

Client Insourcing

After Client Insourcing

Distributed A| Server’s Address Space
PP €55 opa [Client’s Address Space]
Set of Reachable States| ~_|.__-.
Server Part’s & _{server) ,:’m kY set of R(e‘:zngc‘: ;:ti;
Set of Hi \ B E_El
References | ’*E’ El : m §
\ i E=a0|
Client's Address Space] /Middleware| (Centralized Set of Reachable States
Ver.’s Set of igi i
Set of Reachable States |/ i (Original Client)
0 . / -
clentparts Y[P[], (Clen) (TR
Set of) \E “ \E /' A
References Ny !
A mc i o _F
s No Shared Mutable State

Figure 3: Reachable States between Server and Client parts

behavior can be put into effect by setting the value of the boolean
variable IS_SYNC to true.

4 IMPLEMENTATION SPECIFICS

In this section, we provide some additional details pertaining to
our implementation choices.

4.1 Detecting Marshalling Points in
Client/Server Program

In a full-stack JavaScript application, the client interacts with the
server in the request/response pattern, exchanging data in JSON or
XML formats. Client Insourcing determines which middleware API
calls send and receive the HTTP protocol commands through the
following automatic and application-agnostic procedure.

First, the round-trip traffic of the client/server interactions is
recorded. Then, JS-RCI parses the request/response data to obtain
the deserialized values of client parameters and server return. To that
end, JS-RCI captures live network traffic, not only to record/replay
the HTTP interactions, but also to extract the used HTTP com-
mands. To capture business logic (as compared to fault handling
logic), JS-RCI only processes the responses with the status code of
400 (i.e., successful execution).

Next, JS-RCI replays the recorded round-trip execution that in-
vokes the remote functionality to insource. Both the client and
server parts are dynamically instrumented to keep track of values
for (1) arguments and returns of the function invocations (2) read-
ing and writing variables. JS-RCI keeps comparing the values of
the invocations and variables to identify the ones equal to client
parameter and server return. To instrument the invocations and
variable accesses, JS-RCI uses the Jalangi2 callback APIs [42].

To identify the entry points at the server, JS-RCI keeps comparing
the values for recorded client parameter of the remote functionality.
That is, the parameter has been unmarshalled and is about to be
used. To identify the exit point at the server, JS-RCI follows a similar
procedure, but looks for the value recorded as the server return of
executing the remote functionality. Finding an equal value read or
written determines the exit point of the remote functionality. That
is, the return value is about to be marshalled and sent across the
network to the client. One may wonder: how does our approach
determine that the equality comparison indeed identifies the entry
and exit points of the remote functionality rather than some inter-
mediate values that also happen to be equal to the values of client
parameter and server return? To identify the entry and exit points
at the server, our analysis identifies the first instance of the client
parameter equality and the last instance of the server return value

183

WWW 20, April 20-24, 2020, Taipei, Taiwan

equality. Unlike its server-side logic, the analysis identifies the last
instance of the client parameter equality and the first instance of
the server return value equality.

4.1.1 Fuzzing Request/Response Messages. Even with these ar-
rangements in place, it is still possible to misidentify the correct
entry and exit points, particularly if the parameters or return results
are primitive types, such as built-in numbers or strings (i.e., 0 or 1
values of id in findById service). To prevent such misidentification,
JS-RClpopulates the original round-trip content by padding the
HTTP header and body data with random bits. A fuzzing dictionary
is also applied to fuzzable primitives types: string has the possible
values “JSRCIStr” and integer has the possible values from “90,000”
and to “100,000.” For instance, JS-RCI encodes “1” as “90,001”. For
a service without a client parameter (i.e., findAll type services),
JS-RCI fuzzes the request with “JSRCIStr” so JS-RCI can locate the
function block’s begin as the entry point.

4.1.2 Achieving the Idempotency for Record/Replay Executions. De-
spite the stateless nature of the RESTful architecture that guides the
design of WWW, few realistic web applications are truly stateless.
In fact, every HTTP request can change the server’s state. These
changes hinder the precision of our detection of the server’s mar-
shalling points, introducing false-negatives. Even HT TP traffic were
replied with identical requests, a stateful server is likely to behave
differently in 1) marshalling its response output or 2) entering the
remote functionality through a different point (e.g., if a visited entry
is deleted, it cannot be revisited).

Testing web applications deterministically requires that test cases
be isolated [16, 33]. Otherwise, the same test case can yield dissimi-
lar results when executed with the same input. Restoring the server
to its original state by hand would be expensive in realistic web ap-
plications, requiring a manual reset of the relevant database tables
and a fresh restart of the server. In contrast, JS-RCI fully automates
the process to achieve the idempotent execution of all HTTP re-
quests. To maintain the original server’s state, JS-RCI interleaves an
automatically generated restore operation, run between all succes-
sive record or replay executions. Similarly to a prior approach that
checkpoints PHP web application [16], JS-RCI initiates the restore
operation with a special HTTP request. Similarly to manipulating
fuzzed request messages, JS-RCI generates the restore operations by
enhancing original HTTP requests with the new “JSRCIRestore” pa-
rameter. To be able to restore the server state, JS-RCI first saves the
initial values of all server’s global variables, so they can be restored
on demand. Also, as part of its restore operation, JS-RCI executes
transaction control operations between every SQL invocations, so
the database rollbacks to its previous state.

As its specific implementation strategy, JS-RCI uses jalangi2,
whose shadow execution instruments the original JavaScript code,
so the server events can be hooked dynamically. First, JS-RCI detects
all (1) post declarations of global variables (g) and (2) pre/post Call
Expressions of SQL statements (f). Then, it uses two customized
shadow executions at (1), g’ = store(g) to serialize and store the
state of all global variables and restore(g,g’) to reset all global
variables to their original values, hooked by restore HTTP com-
mands. To restore the database state, JS-RCI uses shadow execution
invoke(f, sql_stat), which invokes Call Expression of a SQL state-
ment [with a new SQL clause as the argument. invoke(f,"Start

WWW °20, April 20-24, 2020, Taipei, Taiwan

Kijin An and Eli Tilevich

Database-dep Code

A
Normalization & Restoring ~ Fuzzing
Instrumentation Init State HTTP Cmd
| S

Extracted
Dependency

»

Full-Stack
JS App

Record & Replay Entry/Exit
REQ/RES traffics

—» Remote

Functionality

v

Re-Engineering

+»

Equivalent
Centralized Code

>
Analysis(z3)
Server

{|Client Position
for Remote — P
Invocation

Points AST Rewriter

Figure 4: Overall process for Client Insourcing

TRANSACTION") and invoke(f,"ROLLBACK") are executed at pre
and post invocations of f, respectively. JS-RCI executes these oper-
ations only once for the nested SQL invocations.

4.2 Identifying the Relevant Server Code

One of the factors that complicates the Client Insourcing refactoring
is that the code comprising the functionality of the insourced func-
tionality may not be confined to the boundaries of a single function
or even the same script. While the entry point of the remote exe-
cution can be a JavaScript function, this function can be invoking
other functions or reference variables declared elsewhere. When
insourcing a remote functionality, all this dependent code must be
moved together to the client to create a self-sufficient local call that
no longer relies on any server-based code.

To determine the data dependencies between the entry/exit
points of a distributed application’s remote functionality, we draw
lessons provided by the state-of-the-art JavaScript analysis frame-
works [17, 18, 46]. JSdep [46] logically hypotheses a DATA-DEP
relation between JavaScript statements based on read/write facts, a
point-to-analysis model of GateKeeper [17] and a control flow anal-
ysis [18] . For instance, an assignment statement AsSIGN becomes
a fact that implies READ and WRITE relations for the variables in-
volved. READ and WRITE on the same variable between different
statements imply a DATA-DEP relation at the statement level.

//var v1 = vy; U is variable, stmt, is statement
«— ASSIGN(stmt; v1,02)

«— ASSIGN(stmt,vy,v2)

«— ReAD(stmty,v1) A WRITE(st mip,v1)

ASSIGN(stmty,v1,02)
WRITE(st mty,v1)
READ(stmt,v;)
DATA-DEP(stmty,stmty)

We extend JSdep’s knowledge base with the rules and facts, nec-
essary to model the execution of middleware-based statements. In
particular, we define the UNMARSHAL/MARSHAL rules to identify
the entry and exit points, whose WRITE clauses are inferred from
the logged profiling data. To that end, JS-RCI encodes the REF facts
by using the logged values to symbolically copy the unmarshalled/-
marshalled values (V¥4 jytid

unMar’ Mar’
such as "J5ga2") into the local variables as follows:

u;q is an unique execution id

//the entry point at the server
UNMARSHAL(Stmt1, UunMars v

id
qﬂg/far) <
1
WRITE(stmt1,Vunmar) A REF(Ounmar.Vyniiar)
//the exit point at the server
MARSHAL(Stm[l,‘UMar,Vuiadr) —

Vid)

WRITE(stmi1,UMar) A REF(OMar,Vy, s,

Based on the resulting knowledge base, JS-RCI can query the
executed statements stmt, for the presence of unmarshalled/mar-
shalled values. Predicate EXECUTEDSTMTS is a conjunction of two

184

clauses: the first clause expresses the dependent statements for the
parameter marshalling statement, while the second clause expresses
the dependent statements for the result unmarshalling statement,
both specific to the server execution. Because the DATA-DEP rela-
tion is transitive, one can obtain the executed statements from the
entry/exit points, as expressed by the following set operations:

Yid Yid
EXECUTEDSTMTS(Stml‘n,VunMar,u. Mar) <
(DATA-DEP(Stmt, ,stmt;) A MARSHAL(stmtq,v1, V, ’udr)) A

(—DATA-DEP(stmt,,stmt;) A UNMARSHAL(st miy,vs, Vw;"[{,mr))

4.3 Insourcing Database-Dependent Code

Our approach can also insource code that persists data in a rela-
tional database. To that end, we take advantage of the ubiquity of
SQL. Recall that JS-RCI dynamically instruments string values used
as arguments and return values in all function calls. To identify
the entry point for database-related operations, JS-RCI examines
the function calls whose strings arguments represent the CRUD
operations (Create, Read, Update, and Delete). Consider the code
snippet in Figure 1. JS-RCI detects that the following Call Expression
is a READ operation, as it is a SQL SELECT statement:
db.query("SELECT * FROM recipes WHERE id=id", function(result)..);

Although the server and the client are written in JavaScript and
their respective database engines accept the same SQL statements,
the JavaScript APIs of these engines differ. So it would be impossible
to simply move this Call Expression and its dependent statements
(e.g., var db = require('../utilities/sQL');) to the client. Hence, JS-
RCI adapts the server-side database API to that of the client rather
than copying the database-specific statements verbatim. With these
API calls translated, developers can simply migrate the server-side
data schema and tables. Notice that database engines store their
data in dissimilar proprietary formats.

As a specific example, consider how JS-RCI translates the data-
base API calls of MySQL to those of alasql®.

By extracting the arguments and return values of function calls,
JS-RCI extracts table names and their columns, thereby inferring a
complete data schema of the insourced code. Extracting the actual
table content requires a different approach, as the WHERE clause
and numerical functions, such as COUNT, return only a subset
of table rows. To retrieve all database data, JS-RCI instruments
the server code by using the shadow execution invoke(db.query,
“SELECT * FROM recipes”), which is introduced in Section 4.1.2. To
infer the database schema from the extracted entries, JS-RCI uses
tableschema-py®. Finally, JS-RCI uses the CREATE and INSERT

"https://github.com/mysqljs/mysql
8https://github.com/agershun/alasql
“https://github.com/frictionlessdata/tableschema-py

Client Insourcing

commands with alasql to create tables and insert the extracted data
into them, respectively, for the client-side database.

5 EVALUATION

To determine how feasible and useful our approach is, we conduct
an empirical evaluation driven by the following questions:

¢ RQ1. Effort Saved by Client Insourcing : How much pro-
grammer effort is saved by applying JS-RCI? We measure the
saved effort as the number of lines of code that would need
to be copied and modified by hand. JS-RCI saves this effort
automating these manual source code changes. (Section 5.2)

e RQ2. Correctness of Client Insourcing : Does Client In-
sourcing preserve the business logic of full-stack JavaScript
applications? Are existing standard use-cases still applica-
ble to the centralized variants of the subject applications?
(Section 5.3)

e RQ3. Value for Adaptive Tasks : How much redundant
code can Client Insourcing eliminate by replicating only the
necessary remote functionality? Are our centralized variants
amenable to be redistributed with a third-party automated
distribution tool? (Section 5.4)

e RQ4. Value for Perfective Tasks : How suitable are the
centralized variants of distributed subjects for isolating and
removing common performance bottlenecks? How much
does Client Insourcing reduce the task complexity as com-
pared to the original debugging process? (Section 5.5)

5.1

To evaluate our approach, we have applied it to insource 61 different
remote executions of 10 full-stack JavaScript applications [6, 9, 11,
12, 30, 36-38, 44, 47]. Table 1 summarizes the information about
invoking these remote functionalities for each application. These
remote services differ in their HT'TP methods (e.g., GET, POST, PUT
etc.), types of parameters, return results, and business logic.

To confirm that our approach is widely applicable, we selected
as our evaluation subjects open-source full-stack JavaScript appli-
cations with dissimilar HTTP frameworks used to implement their
client (Tier 1), server (Tier 2) and database (Tier 3) parts: Tier1:
JQuery, Ajax, fetch, axios, Angular]S, and Angular2-TS; Tier2: Ex-
press, koa.js, and Restify, and Tier3: MySql, Postgres, and knex js.

Evaluation Setup

5.2 Saving Effort with Client Insourcing

Although developers can insource remote components by hand,
the resulting program transformations can quickly become labori-
ous and error-prone, especially for functionalities scattered across
multiple script files and database-dependent code appearing in non-
JavaScript files. Hence, the value of JS-RCI lies in automating the
transformations required to insource these components. With JS-
RCI completely automating the refactoring, the programmer would
not have to modify any code by hand. To estimate the effort saved
by JS-RCI, we use the ULOC (Uncommented Lines of Code) that
would have to be copied at the server and pasted to the client as
well as the ULOC that would have to be modified at the client for
each remote service. Thus, modified client code (M) includes the

185

WWW 20, April 20-24, 2020, Taipei, Taiwan

Table 1: Subject Distributed Apps and Client Insourcing Results

Subject Apps . C&P/M
(Tierl{TierZ,%I::ﬁ) HTTP Methods Remote Services ‘ (ULO/C) ‘
GET /recipes 22/45
recipebook GET/PUT/POST/DEL ~ /recipes:id 72/172
) . POST /ingredients 25/48
(AngularJSOExpress | pp gy, /ingredients:id 74/207
©MySQL) POST /directions 26/57
GET/PUT/DEL /directions:id 60/130
GET/POST /donuts 22/88
DonutShop GET/POST/DEL /donuts:id 29/155
. 3 GET/POST /employee 20/71
(Ajax>Express GET/POST/DEL /employee:id 20/138
knex) GET/POST /shops 16/83
GET/DEL /shops:id 19/128
res-postgresql GET/POST /user 22/71
(axiosorestifyPostgres) | GET/PUT/DEL /user 40/120
med-chem-rules GET /hbone 9971/9994
(fetche>koa.js<>knex) GET /molecular 9974/9997
theBrownNode GET /users/search 37/65
(JQuery«>Express) GET /users/search/id 36/64
GET /api/ladywithpet 394/409
GET /api/thedea 394/409
GET /api/theredroom 394/409
Bookworm GET /api/thegift 394/409
(AngularJSeExpress) GET /api/wallpaper 394/409
GET /api/offshore 394/409
GET /api/bigtripup 394/409
GET /api/amont 394/409
GET /properties 284/297
GET /properties:id 287/300
realty_rest GET /brokers 86/99
(Angular2«<>Express) GET /brokers:id 90/103
GET/POST/DEL /prprts/favs 34/73
POST /prprts/likes 291/304
GET /findAllSpeakers 13/66
ConferenceApp GET /findSpeakerById 15/68
(Angular2«<>Express) GET /findAllSessions 43/117
GET /findSessionById 46/119
Employee Dir GET /employees 22/44
(Angular2>Express) GET /employees/id 38/60
shopping-cart GET/POST/DEL /cart-items 79/130
(Angular2<>Express)
Total 61 24.9K/26.6K

copied/pasted code (C&P). For the 61 remote services of 10 applica-
tions, JS-RCI eliminates the need to modify the client code as many
as 26,685 ULOCs in total, 20,073 ULOCs are database code.

5.3 Correctness of Client Insourcing

The applicability of JS-RCI hinges on whether Client Insourcing
preserves the execution semantics (i.e., business logic) of the refac-
tored applications, a property we refer to as correctness. A subject
application’s original and refactored versions are expected to suc-
cessfully pass the same test cases. Some of the tests that come with
our subjects are also distributed, invoking server-side functional-
ities through HTTP middleware. To use their remote parameters
and results as test invariants, we manually transformed these tests
for local execution without middleware. Altogether we ran 61 test
cases against the original and insourced versions of our subject
applications, with all of them successfully passing. It is possible
that for some complex or esoteric cases, the correctness of Client
Insourcing would not be as stellar, but by examining why a test
case failed, the programmer can always correct the insourced code.

5.3.1 The Effectiveness and Correctness of Detecting the Marshalling
Points. Recall that in Section 4, we proposed two search strategies—
Idempotent Execution and Fuzzing—to detect the marshalling points
of a refactored application. To compare and contrast the effective-
ness and correctness of these strategies, we ran our analysis proce-
dure with each of these strategies in isolation.

WWW °20, April 20-24, 2020, Taipei, Taiwan

We observed that Idempotent Execution with its Record/Replay
phases removes the false-negatives in the detected marshalling
points for stateful servers. Our results show that subject applica-
tions with only safe (or read-only) operations are not affected by
the restoring process (20/61). However, we discovered that idem-
potent execution is critical for the majority of our subjects (41/61).
Specifically, having been changed by HTTP PUT/POST/DELETE
requests, global variables were restored correctly in realty-rest and
database entries were restored in other subjects.

In contrast, Fuzzing removes false-positives for detecting mar-
shalling points.

We discovered that Fuzzing proved effective also in twelve cases
of our subjects (12/61). Hence, to infer the correct set of marshalling
points, while removing both false-negatives and positives, JS-RCI
applies both strategies in turn.

Table 2: Correctness affected by Search Strategies

Subject State | Data All w/o w/o
Apps ‘ -less | -Base Fuzzing ‘ Idem_Ex ‘
theBrownNode v X 2/2 0/2 2/2
Bookworm v X 8/8 0/8 8/8
ConferenceApp v X 4/4 4/4 4/4
EmployeeDir v X 2/2 2/2 2/2
shopping-cart X X 3/3 3/3 0/3
realty-rest X X 8/8 6/8 2/8
recipebook X v 13/13 13/13 0/13
DonutShop X v 14/14 14/14 0/14
res-postgresql X v 5/5 5/5 0/5
med-chem-rules v v 2/2 2/2 2/2
Total 100%(61/61) | 80%(49761) | 32%(20/61)

5.4 Insourcing’s Value for Adaptive Tasks

5.4.1 Value of Automated Enabling of Disconnected Operation. In
lieu of Client Insourcing, developers would have to replicate re-
mote functionalities by hand. Unassisted by program analysis, a
programmer remains unaware which specific code entities com-
prise a remote functionality that needs to be replicated. Hence, a
safe option for manually replicating any non-trivial remote func-
tionality would be to first duplicate the entire server-side source
file at the client, and then adapt the duplicated code as necessary.
Notice that such copy-and-modify procedures invariably introduce
some unnecessary code, which is never used but still needs to be
deployed and maintained. Hence, in our evaluation, we count the
number of lines of such unnecessary code that could result from
copying the entire source file from the server to the client.

Table 3: Replication

.) Stoc - SEL
Subject Apps Sroc SIS(I)C (UnnecessarI;/(I?,SC)
theBrownNode 120 76 44
Bookworm 340 299 41
realty-rest 457 420 37
ConferenceApp 78 51 27
EmployeeDir 56 35 21
shopping-cart 48 26 22
recipebook 624 376 126
DonutShop 455 308 147
res-postgresql 73 28 45
med-chem-rule | 10228 9976 252

186

Kijin An and Eli Tilevich

To identify the code portions that are indeed unnecessary to
replicate the remote functionalities under consideration, we first
count the total lines of JavaScript code taken to implement the orig-
inal server parts of each subject app (SLoc). To replicate all remote
functionalities, programmers would copy Spoc to the client and
adapt them as necessary. The copied Sy ¢ are intermingled with
various unnecessary parts, including middleware, fault handling,
or no-longer relevant comments. The values of S; o are computed
by examining the programmer-written files and their dependencies
deplofyed in the Node.js server. In contrast, Client Insourcing ex-
tracts from the server only the lines of code required to implement
the replication disconnected operation (SLC(I) ¢)- For simplicity, we
assume that the entire remote functionality is replicated for each
subject application. To estimate the number of lines of code that
Client Insourcing saves from being replicated unnecessarily, we

subtract Sy o from SLC(I) c as shown in Table 3.

5.4.2 Value of Centralized Variants for Redistribution. Client In-
sourcing creates a redistributable (centralized) application variant
that can be refactored and enhanced using any state-of-the-practice
program transformation tools and then distributed anew using any
state-of-the-art ditribution tools. We applied two JavaScript refac-
toring tools on our centralized variants: Nope-SanpBox!? for se-
curity enhancements and EXTREMEJS [49] for redistribution. NoDE-
SaNDBoX prevents untrusted JavaScript code from executing in-
finite loops or consuming large volumes of heap memory in the
isolated code. However, sanboxing frameworks incur a heavy per-
formance penalty on the isolated code, and as such must be used
sparingly, if the application is to remain usable. Hence, the code
to sandbox is typically isolated from the rest of the application to
run in its own process and address space. EXTREME]S automatically
distributes centralized JavaScript applications at the function level
of granularity.

sanboxed
Appcent Appcent
Appaist — JS-RCI ———— NODE-SANDBoOx
Remote Stub
sanboxed
EXTREMEJS ————— App 7"
Client Stub s
4 [0 14 R
35 ConferenceApp 32 Bookworm 12 Shopping-cart
! v :
3 35 1
25 50 08
2 125
15 % 06
) 15 04
10
05 s $| 0.2
o 1= ol
Before SandBox_exact SandBox_all Before SandBox_part SandBox_all Before SandBox_part SandBox_all
25 6 5
EmployeeDir 14 theBrownNode ionic2-realty-rest
2 12 4
15 1 3
i 08
1 06 2
05 04 1
02
0 01 o+ =
Before SandBox_part SandBox_all Before SandBox_part SandBox_all Bofore SandBox_part SandBox_all

Figure 5: Redistribution with Sandboxing (y-axis:seconds)

In our evaluation, we measure the additional execution time
incurred by sandboxing only a subset of the remote functionality vs.
the entire original remote functionality. This comparison highlights
the importance of isolating only the code that needs to be sandboxed.
Figure 5 shows by how much sandboxing increases the execution
time for two versions of the subject applications: (1) only the needed

1ONode-SandBox (https://github.com/patriksimek/vm2)

https://github.com/patriksimek/vm2

Client Insourcing

subset of the server part is isolated (SandBox_part); (2) the entire
server part is isolated (SandBox_all). The observed differences in
execution time between these two versions are quite striking, clearly
showing that sandboxing the entire server part is impractical.

5.5 Insourcing’s Value for Perfective Tasks

Consider the problem of identifying the source of a performance
inefficiency or bottleneck in a distributed app. First, one has to be
able to exclude the reasons of misconfiguration or network volatil-
ity among the potential causes. Then, one has to make sure the app
is free of known architectural anti-patterns [39]. For example, con-
secutive fine-grained remote invocations can be batched to take ad-
vantage of better progress being made in increasing the bandwidth
as compared to the latency characteristics of modern networks [34].
However, the sources of inefficiency can be more subtle than those
stemming from ill-conceived architectural decisions. At some point,
the debugging focus may need to switch to the programmer-written
code. The JavaScript ecosystem features numerous libraries, so the
same functionality can be implemented in a variety of ways, each of
which may have its own performance characteristics. Choosing one
programming idiom over another can have a dramatic effect on the
overall app performance [14, 15]. Given the divergent performance
characteristics of different JavaScript APIs, several prior work direc-
tions have focused on identifying and removing common sources of
inefficiency. The approach presented in [41] empirically identifies
recurring patterns of inefficient program performance, so they can
be restructured, thereby improving the overall performance. That
kind of restrucuring is a common example of perfective modifica-
tions. However, the majority of the state-of-the-art approaches that
identify and remove performance inefficiencies target centralized
programs. Client Insourcing can make these approaches applicable
to distributed apps.

35 %
Jusersfsearch/fid
" ¥ Jusersfsearch
25
fivotte, - [nefficientloop
20 x""'}api,fthered
/api/big b
DTae®) 1o et % & fapinacy
Jfapiftheg < [api/thed
10 I,.--'X!api,.famnt
3 : misused APls
* fapifoffs
o 5 10 15 20 25 30 35 AT g4, (%)

Figure 6: Scatter Plot and Regression Test for ATy;,; versus AT. .

We applied the approach presented in [41] to the centralized vari-
ants of our subject apps produced by means of Client Insourcing.
Qut of 61 subjects, 11 ended up containing some known patterns of
performance inefficiency. For example, Bookworm repetitively mis-
used unoptimized string API patterns: data.split("...").join("asdf
"y.split(".").join("asdf"). By taking the network and middleware
functionality out of the list of suspected causes of performance
problems, Client Insourcing enables so-called “isolated profiling,”
which isolates the programmer-written code to be used as the
sole target of analysis and optimization efforts. To demonstrate
the value of Client Insourcing, we removed all the pointed-out

187

WWW "20, April 20-24, 2020, Taipei, Taiwan

11 performance bottlenecks from both the original subjects and
their centralized variants. As it turns out, the bottleneck removwvals
improved the performance of both versions (distributed and cen-
tralized) of each subject. Figure 6 summarizes the observed perfor-
mance improvements. For the original distributed subjects (AT ;).
the improvements range between 29.5% and 2.0%. For their cen-
tralized variants (AT,¢p¢), the improvements range between 34.8%
and 1.6%. We also applied a linear regression analysis to compute
how closely AT;;5; and AT¢ep; correlate with each other, resulting
in ATcent = 1.0089 = ATy;.; + 1.556. This equation shows that
AT¢ent and ATy;,; are almost perfectly correlated, so centralized
variants can indeed serve as reliable and convenient proxies for an
important class of performance debugging and optimization tasks.
In addition, Client Insourcing reduces the complexity of the de-
bugging process by streamlining the debugged subject’s execution
flow: from the complexity of distributed execution over the Web to
the simplicity of centralized execution. To quantify the actual value
of debugging the centralized variant of a web application instead
of its original distributed version, we compared the total execution
time taken by invoking distributed functionalities vs. their local
insourced counterparts. We assumed that the debugging task was
identifying performance bottlenecks, so we heavily instrumented
our benchmarks before measuring their execution performance. As
it turns out, insourcing reduces a distributed functionality’s exe-
cution time by more than 90% on average. Given that debugging
typically involves repeated executions, having much faster subjects
to debug should improve the efficiency of the debugging process.

5.6 Threats to Validity

The validity of our evaluation results is subject to both internal and
external threats that we discuss in turn next.

Internal Threats. One of our evaluation criteria is the performance
of the JavaScript code generated by our implementation of the
Client Insourcing refactoring. The performance of JavaScript code
is known to be heavily affected by specific design and implemen-
tation choices. Similarly, our own JavaScript coding practices are
likely to have affected the observed performance characteristics. For
example, rather than directly inject the insourced code segments
into the client source files, we choose to create brand new source
files for each insourced languages declaration, with the new files
simply included in the original files. Client Insourcing could have
been implemented in a variety of other ways, possibly yielding
different software engineering and performance metrics.

External Threats. All our performance measurements were per-
formed on (DELL-OPTIPLEX5050, running the JavaScript V8 En-
gine(v 6.11.2). Due to the popularity of JavaScript, the issue of
maximizing the efficiency of JavaScript engines has come to the
forefront of system design [41]. Although V8 is a state-of-the-art
JavaScript engine, it has its competitors, such as SpiderMonkey.
Hence, the absolute performance of our experiments could differ if
our measurements were run in a different execution environment.

WWW °20, April 20-24, 2020, Taipei, Taiwan

6 DISCUSSION

Our approach works only with relational databases interfaced with
by means of SQL queries. Some non-SQL databases, such as Mon-
goDB, use a distinct syntax in its client API. It should be possible
to support the dissimilar CRUD operations of non-SQL databases,
and we plan to explore such support as a future work direction.

For various reasons, some remote functionalities cannot be in-
sourced to run on the client, thus making it impossible to create
a centralized variant of certain distributed applications. In those
cases in which distribution is inevitable, some application resources,
naturally remote to the rest of the functionality, cannot change their
locality. For instance, news readers display the stories deposited to
some centralized repository. It would be impossible to move the
news functionality away from the repository to the client, with-
out manually creating some mock components that realistically
emulate the appearance of news content locally. In other words,
some remote functionalities may depend on resources that cannot
be easily migrated away from their host environment for reasons
that include relying on server-specific APIs or being dependent on
some hard-to-move infrastructure components.

In addition to standard commands, HTTP also provides a sepa-
rate WebSocket interface that opens a dedicated TCP/UDP connec-
tion after a round-trip handshake. WebSocket-based communica-
tion is fundamentally asynchronous and is used mostly in stream-
ing scenarios. Although Client Insourcing can also help in the
re-engineering of web apps that use WebSocket for non-streaming
scenarios, we left the support for this part as a future work direction.

Some web applications may span across more than two tiers.
Our reference implementation assumes a two-tier client-server
application with a possible server-side SQL database, in which both
tiers are implemented in JavaScript. It should be possible to extend
Client Insourcing to multi-tier applications, perhaps by applying
the two-tier technique pairwise to each respective pair of tiers.
At the same time, flattening tiers may not work well for mobile
execution environments, which are known to be resource-scarce.

7 RELATED WORK

Several prior approaches conquer the complexity introduced by
middleware functionality through abstraction and modeling tech-
niques. A dynamic analysis platform analyzes full-stack JavaScript
applications by abstracting away middleware communication, so
it can be emulated in dynamic profiling scenarios [8]. [1] studies
implicit relations between asynchronous and event-driven entities
that are spread over the client and server sides of a distributed
execution. JS-RCI is unique in its ability to remove the no-longer-
necessary middleware functionality and compute the server-side
dependent source code, which may not even be declared in the
same source file as the insourced functionality’s entry point.

Several recent techniques automatically integrate portions of a
program’s source in another program with systems such as Code-
CarbonReply [45] and Scalpel [5] supporting this functionality for
C/C++ programs. However, these works studied how to integrate
two independent centralized programs.

Our reference implementation of Client Insourcing, JS-RCI, re-
lates to advanced program analysis techniques for JavaScript, due
to its target domain—cross-platform mobile apps. The JavaScript

188

Kijin An and Eli Tilevich

language constructs for programming event-based applications
that communicate asynchronously (i.e., callback, promises) have
been statically analyzed via formal reasoning based on a calcu-
lus [27, 28]. Existing dynamic analysis tools [22, 42] are known
to scale poorly to handle whole JavaScript program analysis. In
dynamic symbolic execution (DSE), a program is symbolically exe-
cuted in place of concrete input values [40]. MultiSE [43] effectively
generates testing input values of a JavaScript program by using a
value summary in Jalangi2 to speed-up dynamic symbolic execu-
tion. JS-RCI is related to re-engineering tools that automatically
transform apps [4, 13, 21, 24, 25]. Guided by zero-knowledge proofs,
the Z@ compiler [13] preserves user privacy by splitting existing
code into multi-tier apps. Cloud offloading [21] improves the energy
efficiency of an app by splitting it into the client and server.
JavaScript debugging is an active research area [3, 20, 48, 50].
BLeak [48] and MemlInsight [20] identify memory leaks by check-
ing for sustained memory growth patterns between consecutive
executions. JSweeter [50] detects performance bottlenecks caused
by JavaScript type mutations. However, these tools work only with
centralized JavaScript apps that are run on a single V8 engine.

8 FUTURE WORK AND CONCLUSION

We designed and implemented our approach with the assumption
that it would be applied to monolingual execution environments,
such as that of full-stack JavaScript applications. However, many
modern distributed applications are multilingual, with the client and
server parts written in different languages, often quite dissimilar. It
might be possible to extend Client Insourcing to such multilingual
environments by supplementing our design with automatic cross-
language translation. In other words, to extend the applicability
of Client Insourcing to multilingual distributed applications, one
can build upon our design and reference implementation by adding
a cross-language translation component to the last phase of the
refactoring process [2]. This new component would automatically
translate the insourced code from the server language to that of the
client. When invoking the insourced translated code, the differences
between the calling conventions would have to be reconciled.

We have presented an approach that facilitates the profiling,
adaptation, and securing of full-stack JavaScript applications. The
approach is enabled by Client Insourcing, a novel automated refac-
toring that integrates remote functionalities with local code, thereby
creating a semantically equivalent centralized variant of a dis-
tributed application. We showed how this centralized version can be
analysed and modified more easily than its distributed counterpart,
to be then redistributed automatically with all the modifications
in place. The pervasiveness of distribution highlights the need for
novel automated techniques for the re-engineering of web appli-
cations, and Client Insourcing can potentially become a useful
building block for such techniques.

Availability. Our reference implementation and all benchmarks are
publically available at: https://github.com/kjproj84/JS-RCL

ACKNOWLEDGMENTS

This research is supported by the NSF through the grants # 1650540
and 1717065.

https://github.com/kjproj84/JS-RCI

Client Insourcing

REFERENCES

(1]

[2

=

(3]
(4]

=
=

(18]

[19]

[23]

[24

[25

Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. 2016. Understanding
Asynchronous Interactions in Full-stack JavaScript. In Proceedings of the 38th
International Conference on Software Engineering (ICSE ’16). 1169-1180.

Kijin An. 2019. Facilitating the Evolutionary Modifications in Distributed Apps
via Automated Refactoring. In Web Engineering. Springer International Publishing,
548-553.

Kijin An and Eli Tilevich. 2019. Catch & Release: An Approach to Debugging
Distributed Full-Stack JavaScript Applications. In Web Engineering. 459-473.
Kijin An and Eli Tilevich. 2020. D-Goldilocks: Automatic Redistribution of Remote
Functionalities for Performance and Efficiency. In 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
251-260.

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke. 2015.
Automated Software Transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA 2015). 257-269.

Bookworm. 2019. https://github.com/davidwoodsandersen/Bookworm.

Eric J Byrne. 1992. A conceptual foundation for software re-engineering. In
Proceedings of the Conference on Software Maintenance. 226-235.

Laurent Christophe, Coen De Roover, Elisa Gonzalez Boix, and Wolfgang
De Meuter. 2018. Orchestrating Dynamic Analyses of Distributed Processes
for Full-stack JavaScript Programs. In Proceedings of the 17th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences
(GPCE 2018). 107-118.

ConfApp. 2019. https://github.com/tkssharma/Ionic-conferenceApp.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Donuts. 2019. https://github.com/VinniiOtchkov/Donuts.

EmployeeDir. 2019. https://github.com/ccoenraets/employee-directory-services.
Matthew Fredrikson and Benjamin Livshits. 2014. Z@: An Optimizing Distribut-
ing Zero-Knowledge Compiler. In 23rd USENIX Security Symposium (USENIX
Security 14). 909-924.

Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-
unfriendly JavaScript Code. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). 357-368.

Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
Dynamically Checking Bad Coding Practices in JavaScript. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis (ISSTA 2015).
94-105.

Marco Guarnieri, Petar Tsankov, Tristan Buchs, Mohammad Torabi Dashti, and
David Basin. 2017. Test execution checkpointing for web applications. In Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 203-214.

Salvatore Guarnieri and Benjamin Livshits. 2009. GATEKEEPER: Mostly Static
Enforcement of Security and Reliability Policies for JavaScript Code. In USENIX
Security Symposium. 78-85.

Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. 2011. Saving the World Wide Web from vulnerable JavaScript. In
Proceedings of the 2011 International Symposium on Software Testing and Analysis.
ACM, 177-187.

Michael Hilton, Arpit Christi, Danny Dig, Michat Moskal, Sebastian Burckhardt,
and Nikolai Tillmann. 2014. Refactoring local to cloud data types for mobile apps.
In Proceedings of the 1st International Conference on Mobile Software Engineering
and Systems. 83-92.

Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chandra. 2015.
MemlInsight: platform-independent memory debugging for JavaScript. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
Y. Kwon and E. Tilevich. 2012. Energy-Efficient and Fault-Tolerant Distributed
Mobile Execution. In 2012 IEEE 32nd International Conference on Distributed
Computing Systems. 586—595.

Guodong Li, Esben Andreasen, and Indradeep Ghosh. 2014. Sym]S: Automatic
Symbolic Testing of JavaScript Web Applications. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2014). 449-459.

Mario Linares-Vasquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous,
evolutionary and large-scale: A new perspective for automated mobile app testing.
In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 399-410.

Yin Liu, Kijin An, and Eli Tilevich. 2018. RT-Trust: Automated Refactoring
for Trusted Execution Under Real-Time Constraints. In Proceedings of the 17th
ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences (GPCE 2018). ACM, 175-187.

Yin Liu, Kijin An, and Eli Tilevich. 2020. RT-Trust: Automated refactoring for
different trusted execution environments under real-time constraints. Journal of
Computer Languages 56 (2020), 100939. https://doi.org/10.1016/j.cola.2019.100939

189

[26

[27

[28

"~
&

[43

[44

[45

[50]

WWW 20, April 20-24, 2020, Taipei, Taiwan

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). 643~
653.

Magnus Madsen, Ondiej Lhotak, and Frank Tip. 2017. A Model for Reasoning
About JavaScript Promises. Proceedings of the ACM on Programming Languages
OOPSLA (Oct. 2017), 86:1-86:24.

Magnus Madsen, Frank Tip, and Ondfej Lhotak. 2015. Static Analysis of Event-
driven Node.Js JavaScript Applications. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2015). 505-519.

Josip Maras, Jan Carlson, and Ivica Crnkovi. 2012. Extracting Client-side Web
Application Code. In Proceedings of the 21st International Conference on World
Wide Web (WWW °12). 819-828.

med-chem rules. 2019. https://github.com/acarl005/med-chem-rules.

James Mickens, Jeremy Elson, and Jon Howell. 2010. Mugshot: Deterministic
Capture and Replay for Javascript Applications. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation (NSDI'10). 11-11.
Marija Mikic-Rakic and Nenad Medvidovic. 2006. A classification of disconnected
operation techniques. In 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO’06). IEEE, 144-151.

Kivan¢ Muslu, Bilge Soran, and Jochen Wuttke. 2011. Finding Bugs by Isolating
Unit Tests. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering (ESEC/FSE °11). 496~
499.

David A Patterson. 2004. Latency lags bandwith. Commun. ACM (2004).

Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. 1996. Distributed shared
memory: Concepts and systems. IEEE Parallel & Distributed Technology: Systems
& Applications (1996).

realty-rest. 2019. https://github.com/ccoenraets/ionic2-realty-rest.

recipebook. 2019. https://github.com/9bitStudios/recipebook.

res-postgresgl. 2019. https://github.com/u4bi-sev/node-postgresql.

Ganesh Samarthyam, Girish Suryanarayana, and Tushar Sharma. 2016. Refac-
toring for software architecture smells. In Proceedings of the 1st International
Workshop on Software Refactoring. ACM, 1-4.

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A symbolic execution framework for JavaScript. In 2010
IEEE Symposium on Security and Privacy. IEEE, 513-528.

M. Selakovic and M. Pradel. 2016. Performance Issues and Optimizations in
JavaScript: An Empirical Study. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). 61-72.

Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-replay and Dynamic Analysis Framework for
JavaScript. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2013). 488-498.

Koushik Sen, George Necula, Liang Gong, and Wontae Choi. 2015. MultiSE:
Multi-path Symbolic Execution Using Value Summaries. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
shopping cart. 2019. https://github.com/ComeAlongErica/full-stack-express-lab-
shopping-cart.

Stelios Sidiroglou-Douskos, Eric Lahtinen, Anthony Eden, Fan Long, and Martin
Rinard. 2017. CodeCarbonCopy. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). 95-105.

Chungha Sung, Markus Kusano, Nishant Sinha, and Chao Wang. 2016. Static
DOM Event Dependency Analysis for Testing Web Applications. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). 447-459.

theBrownNode. 2019. https://github.com/clintcparker/theBrownNode.

John Vilk and Emery D Berger. 2018. BLeak: automatically debugging memory
leaks in web applications. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 15-29.

Xudong Wang, Xuanzhe Liu, Ying Zhang, and Gang Huang. 2012. Migration and
execution of JavaScript applications between mobile devices and cloud. In Pro-
ceedings of the 3rd annual conference on Systems, programming, and applications:
software for humanity. 83-84.

Xiao Xiao, Shi Han, Charles Zhang, and Dongmei Zhang. 2015. Uncovering
JavaScript performance code smells relevant to type mutations. In Asian Sympo-
sium on Programming Languages and Systems. 335-355.

https://github.com/davidwoodsandersen/Bookworm
https://github.com/tkssharma/Ionic-conferenceApp
https://github.com/VinniiOtchkov/Donuts
https://github.com/ccoenraets/employee-directory-services
https://doi.org/10.1016/j.cola.2019.100939
https://github.com/acarl005/med-chem-rules
https://github.com/ccoenraets/ionic2-realty-rest
https://github.com/9bitStudios/recipebook
https://github.com/u4bi-sev/node-postgresql
https://github.com/ComeAlongErica/full-stack-express-lab-shopping-cart
https://github.com/ComeAlongErica/full-stack-express-lab-shopping-cart
https://github.com/clintcparker/theBrownNode

	Abstract
	1 Introduction
	2 Re-engineering Web Applications
	2.1 Example Apps
	2.2 Adapting to Disconnected Operation
	2.3 Enhancing Privacy
	2.4 Improving Performance
	2.5 Client Insourcing to the Rescue

	3 Design & Reference Implementation
	3.1 Design Overview
	3.2 Identifying the Code to Insource
	3.3 Exploiting Asynchrony

	4 Implementation Specifics
	4.1 Detecting Marshalling Points in Client/Server Program
	4.2 Identifying the Relevant Server Code
	4.3 Insourcing Database-Dependent Code

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Saving Effort with Client Insourcing
	5.3 Correctness of Client Insourcing
	5.4 Insourcing's Value for Adaptive Tasks
	5.5 Insourcing's Value for Perfective Tasks
	5.6 Threats to Validity

	6 Discussion
	7 Related work
	8 Future work and Conclusion
	Acknowledgments
	References

