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Molecular libraries play an integral role in drug develop-
ment. Some libraries, however, are superior to others, as 
defined by their success in high-throughput screens or 

clinical progression1. Natural product-like attributes, earmarked 
as desirable2,3, can lead to higher hit rates, higher selectivity4 and 
lower toxicity-related attrition, whereas classically flat libraries 
show promiscuity5. Traditional synthetic libraries can be distin-
guished from natural product collections by their low number of 
stereocentres per molecule, high aromatic ring content and low 
fraction of sp3-hybridized atoms (Fsp3)6,7. With respect to ring 
connectivity (Fig. 1a), this difference is illustrated by the abun-
dance in screening sets of biaryl motifs that are formed by sp2–sp2 
cross-coupling methods (Fig. 1b)8–10. The tetrahedral equivalent 
(sp3-hybridized attached-rings5) are instead found in collections of 
isolates (Fig. 1c). Synthetic libraries lack similar motifs because few 
methods can link fully substituted carbon atoms of two rings with 
stereocontrol11,12. This is occasionally referred to as the attached-
ring problem5,13–16.

We report an unusual butenolide dimerization that exhibits high 
heteroselectivity and high stereoselectivity. The reaction joins two 
distinct rings by a sigma bond between fully substituted carbons, 
yet exhibits an unusually high rate that outcompetes proton trans-
fer, even from strong acids. Mechanistic interrogation reveals C–C 
bond formation to be non-rate-determining; computation suggests 
a very low energy barrier due to excellent alignment of secondary 
orbitals and stabilization by π–π stacking (Fig. 1d). In support of 
the idea that natural product character increases hit rate and speci-
ficity, butenolide heterodimers were identified as pathway-specific 
antagonists of cyclic GMP-AMP synthase (cGAS)/stimulator of 
interferon genes (STING) pathway, outcompeting ~250,000 other 
compounds in a high-throughput screen. This study exemplifies 
the close connection between natural product synthesis, reaction  
discovery and biological application.

Results and discussion
Recent total syntheses of jiadefenolide17 and 11-O-debenzoyltashi
ronin18 featured a stereoselective Michael addition that was unusual 
in its fusion of different ring systems at the most-substituted positions 
(Fig. 1e). Although the γ-selective addition of butenolide anion19 or 
siloxyfuran20 to an electrophile was precedented, reaction between 
two substituted partners was not. β,β-Disubstitution of Michael 
acceptors can slow reaction rates by 6,000-fold or more21, yet this 
reaction proceeded quickly even at –100 °C. The low barrier to the 
reaction and its outcompetition of other pathways raised questions 
that were not immediately answerable; for example, we assumed that 
the reaction proceeded by a standard Michael addition, but Kraus 
and Roth19 proposed that reactions between less hindered systems 
might involve a Diels–Alder reaction and fragmentation (4, Fig. 1f). 
Indeed, we isolated only a hetero-Diels–Alder product (3) after acidic 
quench. Also, the reaction exhibited efficient conversion despite a 
potentially fast, competitive proton transfer from the electrophilic 
butenolide, which was calculated to be 10 pKa units more acidic than 
the conjugate acid (Supplementary Fig. 17). One driving force for 
the reaction might have been strain release of 1 due to five sp2 atoms 
embedded in its eight-atom, [3.3.0]-bicyclic framework. The reaction 
would not be general if bond formation were driven by strain.

The reaction instead proved to be very general. Products of 
direct, attached-ring coupling between prochiral ‘electron-rich’ 
butenolide nucleophiles and electron-deficient butenolide electro-
philes are shown in Fig. 2a,b. Heterodimerizations to form these 
hindered attached-rings were diastereoselective and high yielding 
despite apparent steric congestion at the two participating carbon 
centres. Variations in structure (Fig. 2a,b) showed that even coupling 
partners bearing large alkyl groups at the site of bond formation 
(for example, isopropyl, cyclopropyl and cyclopentyl groups) sur-
mounted the barrier to reaction. Strained bicyclic nucleophiles also 
underwent attached-ring coupling, enabling the rapid generation of 
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saturated, polycyclic systems that are characteristic of natural prod-
uct chemical space. A range of electrophiles (Fig. 2b) also formed 
attached-ring products, with a focus on electronically differentiated 
β-aryl butenolides. The value of these substrates related to their use 
in a Hammett plot, principle moment of inertia (PMI) analysis and, 
we later discovered, their privileged activity in a pathway-targeted 
cell-based high-throughput screen. Mutually exclusive reactivity 
was observed between ‘nucleophilic’ and ‘electrophilic’ butenolides. 
As shown in Fig. 2c, both nucleophilic butenolide 5 and electro-
philic butenolide 6 were completely unreactive with themselves, in 
contrast to unhindered butenolides, which readily homodimerize19.

The formation of vicinal fully substituted centres was not limited 
to butenolide heterodimerization, but could be extended to both 
acyclic and cyclic α,β-unsaturated γ-ketoesters (Fig. 2d). Although 
either C2 or C3 can accept nucleophiles, reaction proceeded selec-
tively at the more electron-deficient, but more hindered C2 posi-
tion to form a quaternary carbon. However, a range of electrophiles 
proved completely unreactive (Fig. 2e), illustrating the unusual 
specificity of this reaction.

Formation of these hindered, fully substituted carbons between 
attached-rings proceeded under irreversible, basic conditions and 
at extremely high rates. To underscore this point, fast quenching 
experiments indicated bond formation was complete within 5 s 
under the standard conditions of Fig. 2 and even competed with 
proton transfer from 2 equiv. HCl that was pre-mixed with the 
electrophile (Fig. 3a, entry 3). The fast rate permitted formation 
of attached-ring product 7 in water/THF mixtures, despite use of 
a lithium enolate. Only competition against 10 equiv. of HCl com-
pletely suppressed product formation at –78 °C, allowing us to mea-
sure the reaction rate by rapid quench experiments.

Initially we attempted to define the rate using in  situ infrared 
analysis (Fig. 3b), but the reaction completed in less than 1 s at 0.1 M, 
whereas the maximal signal was reached after 4 s using any analyte. 
As shown in the infrared trace, neither the addition of nucleophile to 
the electrophile nor the reverse addition provided a definitive infrared 
signal for the exogenous reagent, implying that both were consumed 
faster than detection, frustrating rate law determination (see page 66 
of the Supplementary Information). These data at least provided a 
rate ceiling of a slowest bimolecular rate constant of 3.6 ± 0.2 M–1 s–1 
(t1/2 ≤ 2.8 s @ 0.1 M) and a highest free energy of activation (ΔG†) of 
10.8 ± 0.1 kcal mol–1. Next, we turned to rapid injection/rapid quench 
at high dilution. Two 0.1 M solutions of 0.01 mmol 5·Li and 6 were 
simultaneously injected into 100 ml of THF at –78 °C, equivalent to 
a 100 μM final concentration of reaction. After 5 s, methanolic HCl 
was injected (10 equiv. <1 s), followed by 1,3,5-trimethoxybenzene 
as an internal standard. Quadruplicate replication of this experiment 
delivered a yield of 73% ± 8, corresponding to a model bimolecu-
lar rate constant of 5.4 × 103 M–1 s–1, a t1/2 of 1.9 sec at 100 μM and a 
free energy of activation of 7.9 ± 0.2 kcal mol–1 at –78 °C (replication 
at 20 μM produced similar values, Fig. 3c). These rates provided a 
maximum energy barrier for a bimolecular reaction, although the 
extremely fast kinetics prohibited rate law determination. However, 
the rate constant stood out as unusual for a disubstituted lithium 
enolate and a β,β-disubstituted Michael acceptor. For comparison, 
the aldol addition of 4-fluoroacetophenone lithium enolate dimer 
to benzaldehyde at –120 °C exhibited a bimolecular rate constant of 
about 5 M–1 s–1 (ref. 22), prompting the question of why more hin-
dered partners reacted at such high rates.

One answer might be an orthogonal reaction pathway, such as the 
one Kraus’ proposed for Diels–Alder cycloaddition/fragmentation.  
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We turned to heavy atom kinetic isotope effect (KIE) experiments to 
probe this possibility: if a direct Michael addition were operative in 
the rate-determining step, a primary KIE would be observed at C4N 

and C3E, whereas a Diels–Alder/fragmentation mechanism would 
either produce a primary KIE at C1N, C4N, C2E and C3E (cycloaddi-
tion), or just C1N and C2E (fragmentation, see Fig. 3d). We measured 
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13C KIEs (k12C=13C

I
) at natural abundance using Singleton’s method 

for high-precision measurement by NMR23 and were surprised to 
find that the KIEs were near unity at all of the carbon atoms on both 
the electrophile and nucleophile; C–C bond formation is therefore 
not the rate-determining step and the energy barrier for attached-
ring formation is even lower than the maximum value determined 
by rapid quench.

Three competing hypotheses were considered to explain these 
data. First, Li+ coordination could be rate determining. If this  
were the case, electron-rich electrophiles should outcompete  

electron-deficient electrophiles. Instead, a Hammett plot indicated 
the opposite (Fig. 3e). The positive ρ-value of 0.53, albeit small, is 
inconsistent with coordination as rate-determining but also diverges 
from observations on analogous systems such as diethylmalonate 
anion additions to β-aryl Michael acceptors (ρ = 2.35)24. A second 
hypothesis is that single electron transfer (SET) is rate-determining, 
before subsequent rapid C–C bond formation. Previous work sug-
gested that aldol and Michael additions with low ρ-values and no 
k12C=13C

I
 KIEs at the reacting carbons indicated SET as an elemen-

tary step; indeed, 5·Li underwent productive reaction with radical 
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traps such as TEMPO (8) and nitrobenzene (9) at –78 °C, probably 
through a stabilized radical (Fig. 3g). SET could explain the het-
erospecificity, high rate and temperature-independent diastereose-
lectivity (see page 77 of the Supplementary Information). Density 
functional theory calculations, however, showed that SET processes 
are endergonic (Supplementary Scheme 1). Attempts to locate 
open-shell transition states with a variety of density functionals pre-
dicted that only closed-shell structures are significantly more stable 
than open-shell diradical structures, further indicating that radical 
pathways are unfavourable.

Our third hypothesis is that an aggregation state change is rate 
determining. This mechanism would fit the near-unity k12C=13C

I
 

KIE. Lithium enolate 5·Li was determined to exist primarily as its 
cubic tetramer using the method of continuous variation (Job plot), 
as pioneered by Collum (6Li NMR, –78 °C; Fig. 3f). We computed 
transition states for C–C bond formation involving mono-, di- and 
tetrameric lithium enolates, but only the monomer exhibited an 
energy barrier consistent with experimental rates (see Fig. 4 for ener-
getics). Remarkably, the reaction between lithium enolate mono-
mer and a Li+-chelated electrophile exhibited an energy barrier of 
only 4.4 kcal mol–1, which is consistent with its absence in the rate-
determining step. The high-energy process in the overall reaction 
pathway seems to be the dissociation of a cubic tetramer of lithium 
enolate. The thermodynamics of this dissociation becomes more 
favourable with participation of the bidentate electrophile, which 
can complex the nucleophile through π-interactions (strengthened 
with electron-withdrawing substituent, Fig. 4b). These data fit the 
Hammett plot, and energies now begin to approach the observed 

reaction barrier. Remarkably, it seems that π-complexation and not 
Li+ coordination causes deaggregation; furthermore, both theory 
and experiment indicate that C–C bond formation is extremely 
favourable and very sensitive to structure (Fig. 2e, Supplementary 
Scheme 1 and Supplementary Fig. 16): the butenolide pairs are 
exquisitely matched to react, whereas small perturbations cause 
failure. What is the basis for this unusual specificity?

One idiosyncrasy of this system involves the intimate and stabi-
lizing π–π interactions between the conjugated systems of the two 
reacting partners (Fig. 4). The π–π stacking in non-polar systems is 
often controlled primarily by dispersion interactions, whereas polar 
substituents can introduce electrostatic stabilization as well25. In the 
case of the pre-reaction complex and transition states (Fig. 4c), dis-
persion, secondary orbital interactions and electrostatics between the 
complementary HOMO–LUMO orbitals and charges of electrophile 
and nucleophile lead to a considerably reduced energy barrier. We 
compared the activation electronic energy (ΔE) of the Michael addi-
tion step calculated using the dispersion-corrected B3LYP-D3 and 
uncorrected B3LYP functionals to estimate the magnitude of disper-
sion stabilization. A pre-reaction π–π stacked complex of nucleophile 
and electrophile is stabilized by dispersive interactions, which proved 
stronger in the transition state than in the pre-reaction complex, 
resulting in an overall reduction of the barrier by 2.1 kcal mol–1. The 
electronically biased butenolides are almost perfectly predisposed to 
react due to ideal electronic complementarity between nucleophile 
and electrophile; minor deviations from these ideal interactions lead 
to prohibitively high energy barriers (compare with Fig. 2e). In these 
cases, proton transfers outcompete C–C bond formation.
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This electronic complementarity also explains trends in diaste-
reoselectivity (Fig. 4d), with contributions from both attractive and 
repulsive electronic effects (closed-shell repulsion that is unfavour-
able in eclipsed transition states). The major (10) diastereomeric 
transition state exhibits superior HOMO–LUMO and charge align-
ment, where three favourable orbital and electrostatic interactions 
exist between the two reacting partners (C1–C2, C3–C4, C5–O6). 
The minor (11) diastereomeric transition state substantially dis-
rupts this alignment and also possesses unfavourable eclipsing 
interactions about the forming C–C bond (Fig. 4d).

The value of this butenolide heterodimerization and the  
small library displayed in Fig. 2 derived from its orthogonality in 

chemical space to existing synthetic compound collections. Unlike 
many synthetic libraries, the butenolide heterodimers have a large 
number of stereocentres per heavy atom (15% for model 7), low 
aromatic ring content, high Fsp3, high ring content, high oxygen 
content and low nitrogen content7. The PMI metric used to evalu-
ate library shape diversity distinguished the butenolide heterodi-
mers from the ChEMBL database of bioactive molecules developed 
by the European Bioinformatics Institute26 (Fig. 5a also includes 
diversifications of compound 7, see page 84 of the Supplementary 
Information). Compounds in the ChEMBL database were largely 
linear or flat (typical of combinatorial synthetic collections), 
whereas the heterodimers populated a diverse shape space,  
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including highly spherical motifs. As a result, the butenolide dimers 
of Fig. 2 were collected by the California Institute for Biomedical 
Research (Calibr) and added to high throughput screens for thera-
peutically relevant targets.

Four butenolide heterodimers (including compound 13) were 
identified as hits from a cGAS/STING pathway-targeted cell-based 
phenotypic chemical screen of ~250,000 compounds. The cGAS/
STING pathway is an evolutionarily conserved pattern recogni-
tion mechanism, which serves as a sensor for cytosolic nucleic acid 
derived from invading pathogens. In response to double stranded 
DNA, cGAS becomes activated to generate the cyclic dinucleo-
tide cyclic GMP-AMP (cGAMP), which is recognized by STING 
and serves to initiate TBK1/IRF3-dependent interferon-stimulated 
gene expression (Fig. 5b), thereby stimulating innate and adaptive 
immune response mechanisms27,28. Mislocalized cytosolic self-
DNA also leads to aberrant cGAS activation, which is thought to 
play a causative role in autoimmunity disorders29. The ability of 13 
to inhibit cGAS/STING pathway activation was identified from a 
screen involving human THP1 cells, harbouring an IRF-inducible 
reporter construct (THP1-ISRE-Luciferase), transiently trans-
fected with viral dsDNA. Secondary assays, based on cell viabil-
ity and direct versus secondary pathway selectivity (that is IFNβ1 
stimulation), were used to identify pathway-selective non-toxic hits  
(Fig. 5d). Importantly, the physiological relevance of 13 was dem-
onstrated by its observed ability to reduce mRNA levels of CXCL10, 
a critcally important indicator of interferon-stimulated gene expres-
sion, in dsDNA-stimulated THP1 cells at non-toxic concentra-
tions in a cGAS-STING pathway selective manner (Fig. 5e–h). 
Preliminary SAR analysis involving 21 butenolide dimers (see page 
87 of the Supplementary Information) revealed a clear trend consis-
tent with specific site binding and also enabled the identification of 
an inactive analogue (12), which served as a negative control for the 
chemotype. Rapid identification of 13 as a lead for inhibition of the 
cGAS/STING pathway substantiates in a compelling way the value 
of attached-ring motifs within natural product space.

Conclusion
The continued value of natural products derives from the chemi-
cal space they inhabit. In contrast to large combinatorial libraries, 
natural product space tends to include more hydroxyl groups, sp3-
hybridized atoms, rings and stereocentres, and a more spherical 
principal moment of inertia1,7,11. Synthetic libraries are overpopu-
lated with molecules that are easy to synthesize, but their quantity 
does not always translate to quality9. A lack of stereochemistry, 
high planarity and high aromatic character can deliver ‘local min-
ima’ leads: low-quality hits that suffer high attrition rates due to 
promiscuity and toxicity6–10. Although natural product-like space 
is statistically advantageous for lead identification, it is less syn-
thetically accessible and largely absent from synthesized screening 
sets30. Facile access to natural product motifs, however, can alter the 
overall properties of synthetic libraries31. We have demonstrated a 
stereoselective synthesis of fully substituted attached-ring motifs 
driven by near-perfect electronic complementarity of the reactants. 
The small library of compounds diverges from the chemical space 
inhabited by large synthetic libraries according to PMI analysis. The 
value of this small collection was demonstrated in a high-through-
put screen for inhibitors of the cGAS/STING pathway. Heterodimer 
13 was recruited from a field of 250,000 compounds and identified 
as a pathway-selective non-toxic hit for deployment against autoim-
munity disorders. Identification of a stereoselective, heteroselective 
attached-ring coupling opens the door to a rational, mechanisti-
cally driven solution to the attached-ring problem and structural 
expansions along two proximal tetrahedral vector sets. A search 
for viable coupling partners and design principles is now under-
way. We anticipate that similar electronically complementary cou-
pling reactions will extend into areas of chemical space not typically 

reached by synthetic methods or bioorthogonal reactions. Our aim 
is to render these types of reactions combinatorial, blurring the line 
between synthetic and natural product space to harness the power of  
nature’s chemicals.
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