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Abstract
In teleoperation, predicting an operator’s intent and providing subsequent assistance have demonstrated great advantages in
reducing an operator’s workload and a task’s difficulty as well as enhancing the task performance. Current research aims
to tackle target-approaching intent, while our work focus on inferring manipulation (task) intent after the user grasps the
object. We model how an object is grasped when being utilized in different manipulation tasks (intents) and then adopt
this object grasping model in teleoperation for the intent inference. Our paper focuses on determining if direct interaction
models can be used for indirect interaction. As the nature of one’s grasping pose may satisfy multiple tasks (intents), we
explore a form of classification modeling known as multi-label classification for multiple broad categories of tasks and
objects. We also comprehensively compare classification techniques to determine the most suitable method for determining
manipulation intent. With knowing the manipulation intent, future robot control algorithms can provide more helpful and
appropriate assistance to facilitate task accomplishment.

Keywords Object manipulation · Human intent · Teleoperation · Robotic assistant

1 Introduction

Teleoperation with a robot as a medium has brought in
many advantages to augment an operator’s physical capa-
bility, including increase motion precision and strength,
and remote access to the work field. Due to these ben-
efits, teleoperation has been widely used in a variety of
applications, such as remote surgery, space exploration,
underwater operation, and manufacturing. However, man-
ually teleoperating a robot to accomplish a task is often
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difficult and complex for a human user due to problems
of 1) disembodiment of indirect physical interaction with
the environment and 2) the physical discrepancy between
the human hands and the remotely controlled robot hands.
In the conventional teleoperation, users input their control
commands through a joystick [1–3] to move or rotate the
robot toward a specific direction while watching visual feed-
back from the work field. This indirect interaction cuts off
the user’s sense of feeling to the physical work including
senses of 3-dimensional sight , hearing, touch and especially
the vestibular and proprioceptive senses [4, 5]. Moreover,
the physical discrepancy between input devices and robot
platforms makes the situation worse. While manually tele-
operating the robot, the user must mentally and physically
transform the desired robot actions to the required input at
the interface. Due to those difficulties, the user easily feels
lost in the virtual feedback work field.

Increasing robots’ intelligence and autonomy levels to
allow them to generate (semi-)autonomous behaviors and
assist in the achievement of a user’s intent has demon-
strated great potentials. The existing research demonstrated
that the shared control between the human operator and the
robot could accomplish the approaching task quickly and
accurately [6, 7]. However, no work has been reported to
study the more complex manipulation process. Successfully
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manipulating an object requires much finer motion than
only approaching an object, which requires fine coordina-
tion between the arm and fingers. Moreover, an object is
generally associated with different tasks, where each task
could require different constraints of the approaching angle,
grasping parts, and applied force. Figure 1 shows the differ-
ences in grasping a power adaptor for plug-in and handover,
that different grasping positions and object covering areas
could be results of the different manipulation tasks. Consid-
ering the inherent difficulties of teleoperation, successfully
moving and orientating the robotic arm to satisfy the fine
motions are very difficult and results in unnecessary and
tedious motion adjustments. Thus, for the consideration of
the task performance and operator workload, there is a great
need for building an intelligent robot agent that can assist in
the manipulation tasks in teleoperation.

Understanding an operator’s manipulation intent is the
first step toward assisting in manipulation, which is more
challenging than understanding the approaching intent. To
the best knowledge of the authors, no work has been
reported regarding the manipulation intent inference in tele-
operation, and our paper will provide the theoretical backing
for the future controller and formulations developed. The
object manipulation occurs after the object approaching,
but we want to infer the manipulation intent before the
approaching completion to achieve the proper grasping with
no or fewer grasping adjustments. This suggests the manip-
ulation intent is hidden behind the observable motions and
there is a large time delay between the approaching motion
and manipulation intent being fully demonstrated. More-
over, the narrow bandwidth of information provided by
the conventional interface limits the information which can
be utilized for intent inference, and the operator could

Fig. 1 a & c The robot considers the task requirement when grasping
an object. b & d The robot grasps an object without task consideration

behave differently in the indirect teleoperation. These char-
acteristics increase the difficulty in modeling operators’
manipulation behaviors and intent inference.

Moreover, the ambiguity between grasping poses and
manipulation tasks could make the modeling more complex,
which can be demonstrated in Fig. 2. An object is often
associated with a variety of tasks, and there is always
flexibility of handling the object for a task. For example,
a human may grasp the handle of a cup when drinking
from the cup or to transfer the cup to another location,
and in the meantime, there is another variety of grasping
poses which can be employed to accomplish the above
two tasks. This unique characteristic has demonstrated the
need to model the manipulation intent inference as a multi-
label classification instead of treating it as a traditional
single-label classification problem. Forcing it to be a single-
label problem could easily confuse the classifier as the
fact that one grasping instance belongs to more than one
class during the classifier training(i.e. one grasp could
satisfy multiple tasks at once). The wrongly inferred human
intent will later direct the robot to improper assistive
motions which will confuse the operator and increase the
workload. Moreover, to ensure the single-label classifier
achieves a reasonable performance, the operator is forced to
behave in a specific way to generate behavior patterns that
can be easily distinguished for minimizing the ambiguity.
However, this forced behavior pattern is not intuitive for the
operator and constrains the operator to carry tasks in one
or several specific ways, which reduces the flexibility in
handling a task and the practicability of the system in open
unstructured environments. This multi-label formulation
will also be beneficial to the later robotic assistance, that
the robot could generate common grasping configurations to
satisfy multiple tasks when none inferred task is dominant
in its inference confidence.

To meet the great need in assisting an operator’s manipu-
lation intent, in this paper we focus on the inference of a
user’s manipulation intent in the remote or indirect teleoper-
ation scenario. We modeled how a human operator grasped
an object for primal tasks–using, transferring, and handing
over the object–to achieve a fundamental understanding of
correlation between grasping configurations and tasks, and
the learned model was adopted to infer the potential manipu-
lation intent(task) in the remote teleoperation. How to model
the real, or direct, object interaction for teleoperation and
how well this grasping model would perform in the indi-
rect teleoperation scenario were open problems. Since this is
the first attempt to model manipulation intent inferencing, a
characterization of different modeling approaches is imper-
ative in determining which overall approach is most appli-
cable to handling this style of inferencing classification.
Three modeling methods, Support Vector Machine (SVM),
Neural Network (NN), and Bayesian Network (BN), were



J Intell Robot Syst

Fig. 2 Grasp modeling with and without consideration of task ambigu-
ity. Even though there are grasping configurations which fit all tasks,
they are not always preferred or applicable within the application of
teleoperation with shared control. In shared teleoperation, the robot
is expected to follow the human operator as much as possible, or the
human operator could easily feel loss of control and result in negative

attitude toward the system. This consideration constrains the poten-
tial grasping configurations and makes it impossible to always choose
the one-fit-all grasping configuration as they are often greatly diffe-
rent from the operator’s original motion inputs. This problem will be
further discussed in our future work when investigating how the robot
could generate action plans for assisting the manipulation intent

examined to thoroughly investigate their performance and
applicability in this manipulation intent inference scenario.

The contribution of this paper can be summarized as:

1. This is the first time to consider a user’s manipulation
intent in teleoperation, and we formulate it as a multi-
label classification problem to ensure the practicality.

2. The grasping model is adopted for the manipulation
intent inference in indirect teleoperation. The effects of
the uncertainties on the model caused by teleoperation
is quantitatively evaluated by comparing the model’s
performance in real-object grasping and teleoperation.

3. The human gaze was introduced as extra information
into the traditional grasp modeling to take advantage of
the human eye-hand coordination for better correlating
the grasping configurations with tasks and to improve
the intent inference performance.

4. Three modeling methods’ applicability were thor-
oughly examined in the tele-manipulation scenario to
investigate each method’s capability.

5. A comprehensive database consisting of ≈20,000
grasping samples is established and is available to share
to allow more researchers to explore the manipulation
intent modeling and inference.

With correctly inferred manipulation intent of a user, the
robot can formulate more helpful assistance to facilitate
complex object manipulation to ensure task success. Thus,
teleoperation performance can be improved, and the user’s
workload can be reduced. The adoption of teleoperation

especially in practical applications will be increased in the
meantime. In the remainder of this paper, we will discuss the
Related Work (Section 2) in the field of teleoperation and
task inferencing; the approach of the formulation, and data
collection in Methods (Section 3); the training, validation,
and testing of the models as well as the posing of hypotheses
in Experiments (Section 4); the specific results of the
key components in the Results (Section 5); then we will
discuss the hypotheses, considerations for multi-labeling
and model suggestions in the Discussion (Section 6); and
lastly summarize the work in the Conclusion (Section 7).

2 RelatedWork

In this section the review summarizes both the current robot
assistance and human intent inference in teleoperation. The
purposes are to point out 1) the lack of consideration of
manipulation-related assistance in teleoperation and 2) the
lack of corresponding technologies for the manipulation
intent inference in teleoperation.

In teleoperation, great attention has been concentrated on
the approaching process, which attempts to solve problems
related to where is an operator’s intended target/location
and how to approach there precisely and quickly. To infer
an operator’s approaching intent, the approaching trajectory
of the robot controlled by the operator is commonly
used. When the motion trajectory is moving toward an
object, the probability of this object being the target
increases [8, 9]. With the known approaching target, robot
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assistance in various formats has been investigated to assist
the approaching process to be accurate and effective. In
[10], virtual boundaries were generated to avoid potential
damages to a beating heart in robotic surgeries while
leaving a cone-shaped envelope to access the operation
target. While in [11], force guidance was provided through
a haptic joystick to pull the operator toward the target.
Other researchers gave the robot agent more authority
to allow them to directly contribute the motion of the
robot platform. In [8, 9, 12], the robot agent shared the
control of the robot platform with the operator, and their
contributions were regulated by a leveraging weight. The
idea is that robot agents take more responsibility when the
task is certain and within the robot’s capability. In [13, 14],
the robot agent was given full autonomy to conduct the
motion after the approaching target had been defined by the
operator. In [12, 15], the robot assisted the operator to not
only approach the target but also firmly grasp the target.
However, the manipulation intent has not been considered,
which means, whether the firm grasp of the target can satisfy
the requirements of a specific task is uncertain.

Even though grasp modeling for autonomous robots
has been studied in literature, and several have considered
task-related grasp planning, how to use grasp modeling
for the intent inference in the setting of teleoperation is
still an open problem. Inference of manipulation intent in
teleoperation is different from the task-dependent grasp
planning, which makes it challenging to directly borrow
the developed technologies of autonomous grasp planning.
Firstly, the manipulation intent inference is an inverse
process, where a human hand’s grasping configuration is
observable, and the manipulation intent of this grasping
configuration needs to be inferred. In contrast, autonomous
grasp planning for a given specific task is often to select
a final grasping configuration from a candidate pool
[16, 17]. The object affordance has often been used to
evaluate whether the grasp can satisfy a task [18, 19],
and the selection metrics varied from grasping stability
[20, 21], skewness [22], and manipulability [23]. Secondly,
the manipulation intent inference needs to be formulated
as a multi-label classification problem when it is based
on the grasping configuration and applied in practical
teleoperation scenarios. How to properly formulate and how
to deal with the ambiguity are open problems. Thirdly,
in teleoperation, the operator uses his/her hand motions
and gestures to steer a robotic arm and hand, where
there is no physical contact between the human hand
and the object but indirect interaction with a ”virtual”
object on the computer screen from the robot’s perspective
as shown in Fig. 3. Indirect, or virtual interaction with
an object can result in different behavior patterns from
the direct, or real object interaction. These differences
introduce uncertainties into the intent inference, and how

Fig. 3 The teleoperation interface where users interact with objects
through the robot as a medium

well the inference performs demands further investigation.
Without this investigation, robot assistance–let alone direct
teleoperation–cannot provide relatively easy to use solutions
as it puts too much of a burden on the operator. The burden
comes with mapping their own hand to the robot end-
effector for tedious fine-tuned manipulation to successfully
and stably grasp the object in the robot environment (which
the remote operator may not fully understand especially
since they are not interacting with a real object) resulting
in higher failure of attempted grasps. Thus, the robot needs
to understand intent and regulate its own motion, ultimately
making this system semi-autonomous.

3Methods

The target application scenario can be demonstrated in
Fig. 3 as a sample for providing assistances in daily living.
A human operator cooperates with the motion planner of a
robotic agent in tele-operating its physical arm (so called
shared control) to perform object-manipulation tasks. A

Fig. 4 The teleoperation interface with hand motion and gesture
tracking and gaze tracking. Corresponding label locations on the hand
are also shown
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marker-based infrared motion tracking system tracks the
operator’s hand motions as shown in Fig. 4, and the hand
motions are converted into control commends to control the
robotic arm. In the meantime, the robotic agent observes
the operator’s eye-hand inputs to infer what manipulation
the operator intents to perform with the object. Based
on the inferred human manipulation intent, the robotic
arm regulates its motion to approach the object from an
appropriate angle and grasp it at appropriate locations, so
that the robot can satisfy the constraints for accomplishing
the specific task whiling avoiding the exhausting, fine
position and angle adjustments. In this section we will
discuss how the general teleoperation gesture control should
be setup (Section 3.1 Hand Motion and Gesture for
Robot Control), human grasp modeling including features
definitions, processing the inputs, and building the model
(Section 3.2 Grasp Modeling), and how to use multi-label
classification for intent inferencing (Section 3.2.1 Intent
Inference with Multi-Label Classification).

3.1 HandMotion and Gesture for Robot Control

Instead of using a common joystick as the input device,
an optical motion tracking system is used to track the
operator’s dexterous hand motion, as shown in Fig. 4, which
is mapped to the robotic hand’s motion. This new interface
can improve the information bandwidth that transmits the
dexterous hand motion and will be intuitive, which requires
less training than the joystick. The optical tracking system
consists of eight cameras, which track the position of
small reflective markers that are attached to the user’s
hand. For a more consistent dataset across subjects, relative
angles of each finger joint were calculated from the marker
positions, and palm features such as palm center and palm
direction were also determined. The mapping between a
human hand and a robotic hand is not discussed in detail
here, as the focus of this paper is on the grasp modeling
and manipulation intent inference from the hand grasping
configuration, however, a general representation of the
teleoperation can be seen in Fig. 3. Moreover, an eye tracker
is integrated to track where the user is looking on the virtual
object on the computer screen. The hand configuration
and the gaze information are combined to improve the
performance of the modeling and inference, which takes
advantage of the eye-hand coordination.

3.2 GraspModeling

How humans grasp an object for various tasks is modeled
using data-driven methods, and the model will be employed
in the teleoperation for the manipulation intent inference.
How well the model performs needs to be investigated
even for the common modeling methods because of

the uncertainties presented in teleoperation interaction.
Three common modeling methods, NN, SVM, and BN,
are examined to investigate their applicability in the
teleoperation scenario. These methods are selected based
on their popularity and capability. BNs are helpful in
understanding how the grasping pose is a result of the
task and object through examining their dependencies.
However, discretization of the continuous raw features into
discrete features normally associates certain information
loss. In contrast, SVM and NN can accept raw data
without information loss but do not provide any insight into
the grasping model and intent inference. These modeling
methods are comprehensively analyzed to examine their
applicability in this intent inference problem. Here, we only
focus on the BN method to describe its data processing and
modeling procedure.

The BN represents the conditional dependencies between
variables through a Directed Acyclic Graph (DAG). Let I

be the set of human intent of manipulating various objects,
O be the set of object-related variables, and G be the
set of hand kinematic variables that represents a grasping
configuration. Thus, the BN grasping model represents the
conditional probability distribution of I given O and G as
Prob(I | O, G). The intent inference is then the process
that determines the most probable intent i∗ that maximizes
the marginal probability as Eq. 1.

i∗ = argmax
i∈I

prob(i|o, g), o ∈ O, and g ∈ G (1)

The Bayesian Network created by using Equation (1) is
considered a discriminative Bayesian Network [24]. It is
possible to adapt this to a generative network by using
Bayes’ rule which relates conditional probability to joint
probability functions. By creating a Bayesian Network in
this manner and by attempting to find the best posterior
probability to determine manipulation intent, maximum-a-
posteriori (MAP) estimation is used.

3.2.1 Feature Definition

Variables O and G are parameterized by a set of features.
O consists of features of object identity (oi), dimensions
(dim), orientation (ori), and object section (p). p indicates
the part on the object the user is looking at when
approaching and grasping the object for a task, and the
division of an object into multiple sections is based on
an object’s geometry and affordance. G represents the
object-centered hand kinematic features, which is collected
when the operator has firmly grasped the object. G
includes features of the palm orientation (pdir), palm
center location (pcen), and fingers’ configurations (fk, k ∈
[1, 3], corresponding to thumb, index, and middle fingers).
Instead of using joints’ positions to represent a finger’s
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configuration, the motion of a finger is represented by
three rotation angles, the proximal phalange’s rotations on
and into the hand plane (fpk) and intermediate phalange’s
rotation into the hand plane (pik). The small rotation
of the distal phalange is not considered. This rotation
representation is more generic to indicate a hand’s absolute
conditions rather than relative positions. The tracking
marker was nominated as Ri ,i[1,23], which also represented
the 3D coordinates of the marker as shown in Fig. 4.
Relative angles for each finger joint were obtained from
vector calculus and inverse kinematics techniques using
markers R1-R16. The palm center was obtained by taking
the average across all 5 palm locations(R17-R21). The palm
direction was computed by fitting a fixed frame to the hand
where out of the palm is the positive z-axis and from the
palm center towards the thumb(R3) was the positive y-axis.
Thus, the x-axis was from the palm center towards the wrist.

3.2.2 Data Processing

It is difficult to integrate discrete and continuous variables
into one BN model, especially for the high-dimension
continuous variables like the grasping configuration. Thus,
continuous variables are discretized with a self-organizing
map (SOM) [25, 26] method. SOM is notated as a special
type of an artificial neural network which is trained
using an unsupervised learning method to produce a low-
dimensional, discretized representation of the input space.
After training, SOM maps the original input data, X ∈ Rn,
onto a two-dimension map of discrete neurons, P ∈ R2,
that resembles the density of the original data. Then, the
neurons are linearly indexed to create a one-dimensional
representation, Q ∈ R, of the original data X, which
indicates which neuron data x ∈ X has been mapped to.

Redundant and irrelevant features may exist in the feature
pool, which makes the grasping model bulky and may
decrease the robustness of the modeling and inference. To
reduce those unnecessary features, the HITON algorithm
[27, 28] was used. This algorithm starts with the Markov
Blanket of the target variable (intent I ) to be classified,
which is a set of variables that are most relevant to the
target variable. Then, the unnecessary variables in the
Markov Blanket are further removed through a greedy
search process.

3.2.3 Model Building

The learning process of a BN model consists of structure
learning and parameter learning. The structure of the model
is critical for the effectiveness of the model, and data-driven
and human-intuition strategies are employed to find the

best BN structure separately. In the data-driven strategy, the
maximum weight spanning tree algorithm [29] is used to
find an oriented tree structure as the initial structure. With
this initial structure, a greedy search algorithm [30] is then
utilized to find the network structure in a neighborhood
of graphs which maximizes the network score. While in
the human-intuition strategy, the BN structure is defined
with human intuition. In the parameter learning procedure,
the joint distribution parameters will be learned using
an Expectation-Maximization approach based on the BN
structure.

3.3 Intent Inference with Multi-Label Classification

Task inferencing models will hold some degree of
ambiguity. The ambiguity between tasks discussed is
shown in Fig. 2, where it may be necessary for a single
grasp configuration to satisfy multiple tasks. Further, it
is natural that the same grasping configuration can be
used for different manipulation tasks, the manipulation
intent inference will be formulated as one multi-label
classification problem to infer the most possible tasks when
the operator attempts to grasp the object in a particular
manner. This multi-label classification problem is tackled
through problem transformation with a binary relevance
method [31, 32]. It transforms the multi-label problem into
a set of simpler binary classification problems, which can
be handled using existing classifiers. Thus, multiple BN
models, BNi, i ∈ I , are built for each type of manipulation
intent to classify whether a certain grasping configuration
could be caused by this type of intent. BNI is used to notate
the set of BN models. In the testing of BNI , each set of
object-related features and grasping configuration features
(o, g) will be labeled with a binary label vector y, where
|y| = |I | = L is the number of manipulation intent type in
I . The element yi , i ∈ I is one if the grasping configuration
g can be used for the manipulation intent i; otherwise it is
assigned as zero. Similarly, a set of binary classifiers, NNI ,
and SV MI , for each task will also be constructed for the NN
and SVM methods separately. For example, one grasping
configuration has been labeled as y = [1, 0, 1], |y| = 3,
and it indicates that this grasping configuration can be used
for the first and third task.

To evaluate the multi-label classification performance,
the following accuracy α is defined (2), where XNOR is the
logic operation whose function is the logical complement of
the exclusive OR (XOR) operation. This accuracy measure
is opposite to the definition of Hamming loss [33], which
has been used in multi-label classification as a common
performance measure. The new criterion is the fraction of
the correctly inferred labels to the total number of labels. Let
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Y indicate the correct labels of the testing samples and Z be
the inference result, which are both a matrix of N by L. N
is the number of the testing samples and is enumerated by j .

α = 1

|I | · N

∑

j∈N

∑

i∈I

xnor(Y j,i , Zj,i ) (2)

4 Experiments

In this section we will discuss the general experimental
design, the direct fair comparisons across methods, and the
hypotheses which will be tested.

To train the grasping model, a database collected from
20 subjects while interacting with four objects, a hammer,
a cup, a power adaptor, and a dishwashing liquid bottle, for
three different tasks of usage, handover to another person,
and transfer to another location, was established. Although
the database consisted of 20,000 samples, the data used is
only a subset from two scenarios, the real-object interaction
scenario–1,200 data points used where 960 are for training
and 240 are for testing–and teleoperation interaction–
where 480 data points were only used for testing. The
subset of data shown in this paper is for one specific
orientation for all objects for a more direct comparison;
since across the 20,000 grasp samples, each object was
placed in eight separate orientations for subjects to grasp 10
times. During the real-object interaction, each object was
presented to the subjects, and they performed a given task
with the object. The motion tracking system was tracking
the motion of the subject’s hand and the object. The part
of the object the subject was looking at was recorded.
Later, the collected data was converted into the object-
related features and hand kinematic features, which are

Fig. 5 Sample photos while a user is interacting with four objects for
various tasks

notated by or and gr separately. Each grasping instant was
associated with an intent label, ir , which was the task the
subject was performing. Ten repetitive trials were performed
by each subject for each task and object to capture the
grasping varieties for the same task. Sample photos while
a user was interacting with the real objects are shown in
Fig. 5. Moreover, sample photos that demonstrate the same
grasping configuration could be associated with various
tasks are shown in Fig. 6. For example, grasping the power
adaptor using the grasping configuration in sample (a) is
applicable of performing the task of usage and transfer, but
it cannot be used for the task of handover as it does not
leave sufficient open space for the receiver. In our modeling
process, the grasping configurations which are not preferred
for a task are labeled as inapplicable.

During the indirect or teleoperation interaction, the setup
shown in Fig. 4 was used to simulate the teleoperation
scenario. Virtual objects were displayed to the subjects in
the robot’s perspective, and they attempted to use the hand
gesture to control the robot arm to grasp the object. The
object-related features, ov , and hand kinematic features, gv ,
were recorded. Each grasping instant was labeled, yv , with
all potential usability by surveying the tasks the grasping
configuration could satisfy. Six repetitive trials were
performed to avoid random uncertainties for each object.

The BNI , NNI , and SV MI were trained using 80%
of the data from the real-object scenario, where the data
was randomly selected. The data used for training has
a single task label, which can be used directly to train
the binary classifiers. During the training, each model
was carefully and iteratively tuned to achieve the best
performance. For NN, its hidden layer number and neuron

Fig. 6 Sample photos which demonstrate one grasping configuration
satisfying various tasks



J Intell Robot Syst

Table 1 Summary of models that achieve the best accuracy in various cases

Best real-object scenario model Best teleoperation scenario model

NN SVM BN NN SVM BN

Without gaze Real 0.74 0.77 0.78 0.67 0.68 0.70

Virtual 0.67 0.56 0.73 0.77 0.85 0.74

With gaze Real 0.74 0.78 0.71 0.67 0.78 0.63

Virtual 0.64 0.62 0.78 0.84 0.87 0.82

The higher accuracy comparing the real-object case with the virtual-object case is in bold

amounts were tuned. The kernel function used for the SVM
varied. For BN, its structure and SOM size were varied.
After training, the grasping models were tested to perform
the intent inference using the rest of the data from the
real-object scenario and the data from the teleoperation
scenario. The accuracy of the models in both scenarios were
compared and analyzed. Additionally, the models that used
and did not use gaze information were separately trained.
The performances from two conditions were compared to
evaluate the improvements that was brought in by gaze.

Through the experiments, the following hypotheses will
be tested.

H1. It is feasible to adopt the real-object interaction model
for the teleoperation interaction.

H2. The learned grasping model performs differently in
the real-object and teleoperation scenarios.

H3. The model achieves the best accuracy in teleoperation
scenario will be different from the model that achieves
the best accuracy in real-object scenario.

H4. Gaze as an extra information resource is helpful to
improve the inference accuracy in both scenarios.

5 Results

In this section we discuss the overall accuracy of the
methods (Section 5.1 Accuracy), the overall tuning effort
across different objects and tasks (Section 5.2 Tuning
Statistics), a comparison across different BN structures
(Section 5.2.1 BN Structures), and details about the
available database of the data collected (Section 5.2.2
Database for Manipulation Intent Modeling).

5.1 Accuracy

Each trained grasping model was tested in both real-object and
teleoperation scenarios, where the teleoperation scenario
is the target application scenario. The best performance
that each modeling method achieved in one scenario and
the corresponding performance in the other scenario are
summarized in Table 1. The top half of Table 1 are those

when the gaze is not used as the extra information, and the
bottom half are those when the gaze is used.

Overall, the three methods’ best performances are at
the similar level, and the SVM achieves the best accuracy,
which was 0.85 and 0.87 without and with gaze as the extra
information. The results show that when the grasp model
functions well for the real-object scenario the model will
not function well in the teleoperation scenario, and vice
versa. Also, the gaze information is very helpful to improve
the inference performance in the teleoperation scenario but
does not show significant improvement to the real-object
scenario.

The performance details of the models that achieved
the best inference accuracy with gaze in teleoperation is
displayed in Table 2. It details each model’s object-specific
and task-specific accuracy. The results show that the SVM
and BN methods both suffer the polarized performance
problem, where the methods function extremely well in
some cases but very poorly in some other cases. For
example, the BN method achieved a 100% accuracy in
adaptor’s transfer and handover inference but a poor
accuracy in the adaptor’s usage and cup’s usage inference.
In contrast, the performance of the NN method is medium,
which does not suffer significant failure in any cases.

Table 2 Performance details of the best models in teleoperation with
gaze

Adaptor Bottle Hammer Cup

NN (0.84) U 0.85 0.88 0.92 0.69

T 0.84 0.67 0.95 0.96

H 0.95 0.62 0.73 1.00

SVM (0.87) U 0.97 0.48 0.90 1.00

T 1.00 0.92 0.98 1.00

H 0.97 0.78 0.46 1.00

BN (0.82) U 0.29 1.00 1.00 0.12

T 1.00 1.00 0.95 0.85

H 1.00 0.65 1.00 1.00

U: Usage, T: Transfer, H: Handover

The lowest accuracy of an object’s intent inference is in bold
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In the results, the accuracies of the three methods are
not sufficiently high, and we believe two factors could have
contributed to this, which all lead to great uncertainties
in our collected data. 1) The differences between grasping
configurations for various tasks are naturally difficult to
capture. It is the nature that a person could grasp an object
in the same way when performing various tasks with that
object. On the other hand, one person could grasp the
same object differently when performing the same task.
Great ambiguities are associated with the grasping across
various objects plus various tasks. While collecting the
grasping data where subjects were freely performing the
tasks the data consisted of the great ambiguity naturally.
In the meantime, subject differences were also increasing
the embedded ambiguity. 2) The data amount was not
sufficient to capture the subtle differences between grasping
configurations for various tasks. Even though a database
consists of ≈20,000 samples were collected, given the
numerous object conditions(i.e. orientations, objects, and
tasks) it is still relatively small since each object condition
set model may only be a few hundred data points. We
collected grasping poses when the object was facing various
directions, and, in each direction, the data amount is
very limited–where ≈80 training samples for each object-
task pair for each object orientation. This limited data
for each condition with great uncertainties makes it very
challenging to capture the commonness of various grasping
configurations for a task and the differences of various
grasping configurations for different tasks.

Given these two possible reasons, in the future, we
could first try to develop an individual grasping model
then generalize it to capture the general grasping behaviors
among humans. In the meantime, more data could be
collected to ensure the data can sufficiently represent the
commonness and differences.

5.2 Tuning Statistics

Even though the SVM achieved the best accuracy shown
in Table 1, it is arbitrary to say the SVM method is the
best approach that should be selected. During the iterative
fine-tuning of each modeling method, each iteration’s
performance was recorded and statistically summarized to
provide a comprehensive understanding of the tuning effort
of each modeling method. Each method has different tuning
space as its parameter’s range, and each tuning iteration
results in a different model. For the NN method, two-
layer and three-layer NN structures were examined, and
the neuron number in each layer ranged from 16 to 96. In
total, there were 811 tuning iterations for the NN method.
There were 6 tuning iterations for the SVM resulting from
different kernel functions. The size of the SOM had been
considered as a tuning factor that affected the modeling
performance, and we attempted combinations of length
and width of 3, 4,5,7,10. For example, the SOM sizes
of 3x3,7x5,10x10 were attempted in the training process.
There are 75 tuning iterations for the BN method when
varying the SOM size and BN structures. For the target
teleoperation scenario, size of 3x5 is recommended without
using gaze information, and size of 7x5 is recommended
when using gaze information.

5.2.1 Average Accuracy Statistics over Iterative Training

The models are separated into two categories based on
in which scenario the model achieves a higher accuracy.
The statistical average accuracy of each model over all
the training iterations are summarized in Table 3. The
models which achieved a higher accuracy in the real-object
scenario are summarized in Table 3. While, the models that
achieved a higher accuracy in the teleoperation scenario

Table 3 Summary of the statistical results of models with mean(standard deviation) and e denotes the tuning effort

NN SVM BN

Best model in the real-object scenario Without gaze Real 0.66(0.034) 0.56(X) 0.72(0.024)

Virtual 0.62(0.027) 0.45(X) 0.70(0.016)

With Gaze Real 0.72(0.024) 0.59(0.035) X(X)

Virtual 0.70(0.031) 0.51(0.004) X(X)

Best model in the tele-operation scenario Without gaze e 0.452 0.004 0

Real 0.58(0.41) 0.55(0.105) 0.66(0.032)

Virtual 0.64(0.024) 0.61(0.069) 0.71(0.021)

With Gaze e 0.020 0.006 0

Real 0.63(0.041) 0.59(0.085) 0.65(0.027)

Virtual 0.73(0.027) 0.68(0.023) 0.79(0.012)

Note, there is no iteration that the BN functions better in real object scenario with gaze

The higher accuracy comparing the real-object case with the virtual-object case is in bold
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Fig. 7 Histograms of the NN
models based on their accuracy.
The blue region is the models
that achieve an accuracy that is
within the 20% range of the best
performance, and the red region
is those that fall off this 20%
range

are summarized in Table 3. The average accuracy and the
standard deviation in brackets are listed.

In addition, we define the tuning effort to achieve a good
accuracy in teleoperation for each modeling method as em =
(Nm − nm)/N , where Nm, m ∈ {NN, SV M, BN} is the
tuning iteration number for a modeling method and N is the
total tuning number for all three methods. nm is the number
of iterations that a method achieved a good accuracy. Here,
we define that a model achieves a good accuracy when its
accuracy is within the 20% range of the average of the three
methods’ best accuracy. Thus, the smaller the tuning effort
is the less failure a modeling method has and the more
robust this method is.1 Figure 7 is the histograms of the NN
models’ accuracy from the iterative tuning process. The blue
region represents the models that achieve an accuracy within
the 20% range. They show that when the gaze information
is used there are more NN models which can achieve an
accuracy within the 20% range.

From Table 1, results show that the BN functions the
best, which has the highest average accuracy. Even though
the SVM method has the highest accuracy (Table 1), this
method has the poorest performance in overall tuning. Also,
the standard deviations of SVM methods are the highest
in most of the cases. Moreover, the tables and histograms
show that the gaze information is very helpful to increase
the inference accuracy in both real-object and teleoperation
scenarios, and this improvement is relatively larger for the
teleoperation scenario.

In both conditions, with and without gaze information,
the BN method has a tuning effort of zero. This means
all BN models in the tuning process achieved an accuracy
that was within the 20% range. The NN method has the
largest tuning effort regarding its large parameter space.

1For example, the average best accuracy is 0.843 = (0.84 + 0.87 +
0.82)/3 when the gaze information was used, and the 20% range
bar is 0.674. For the NN method, there are 793 iterations that the
models achieved an accuracy higher than 0.674 with gaze as the extra
information. Thus, the tuning effort is (811 − 793)/(811 + 6 + 75) =
0.020.

In addition, the gaze information can greatly reduce the
tuning effort (from 0.452 to 0.020 for the NN method). This
demonstrates the helpfulness of the gaze information. The
SVM method’s tuning effort is small due to the large total
tuning number. However, its relative tuning effort is large.
There is only one iteration the SVM got an accuracy that is
within the 20% range when using gaze and two iterations
when not using gaze.

5.2.2 Object-Specific Statistics

During manipulation, objects demonstrate various manip-
ulation patterns due to the object’s size, shape, and affor-
dance. In addition, the modeling method’s capability of
capturing those manipulation patterns varies, which results
in object-specific performance distributions. This perfor-
mance distribution in the teleoperation scenario is shown in
Fig. 8. It shows each modeling method performs variously
for different objects, and the gaze information demonstrates
various improvements for each object. The NN and SVM
methods demonstrate a similar object-specific accuracy dis-
tribution pattern. They both function poorly for the bottle
and hammer with and without gaze information compared
to the adaptor and cup. Moreover, the gaze information is
particularly helpful for the adaptor and hammer as there
is a large accuracy improvement. However, the BN has a
different distribution pattern, where BN functions well rel-
atively for the bottle and hammer, and the gaze information
is greatly helpful for these objects too. The BN method has
the best stability compared to the NN and SVMmethods. In
contrast, the SVM’s stability is the poorest.

5.2.3 Task-Specific Statistics

Figure 9 shows the task-specific manipulation patterns of
various modeling methods. Three methods all function well
for the transfer task relative to usage and handover. The
reason may be the transfer task yields the least constraints.
The NN method demonstrates great stability across all
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Fig. 8 Statistical object-specific
accuracy in the teleoperation
scenario when using different
modeling methods. The
distribution median of the
accuracy of each task is shown

tasks, and the stability of the SVM is still the poorest.
The SVM and BN are relatively aggressive as they provide
chances to achieve a high accuracy but also face chances of
performing poorly. The performance improvement of using
the gaze information is apparent for the transfer task with
the SVM method and transfer and handover tasks with the
BN method.

5.3 BN Structures

The BN structures that were built in the experiment are
shown in Fig. 10. Figure 10a is obtained using the data-
driven strategy. Figure 10b and c were built through the
human-intuition strategy based on different beliefs about
how the hand motion is generated. In the finger-driven
model, it is believed that the fingers are primarily driving
the motion of the hand and arm. While in the palm-driven
model, the palm is believed to be primarily driving the arm
motion, while the fingers are passively opening and closing.
The human-intuition models are more concise than the data-
driven model, as there are less dependency links between

variables. Here, only the BN models with the gaze feature
are displayed. The BN structures, when the gaze feature was
not used, are similar, which have all the dependency links
related to gaze removed.

The data-driven model reflects the correlations of variables
in the collected data and worked the best in the teleoperation
scenario. The best manipulation inference accuracy in
Table 1 was achieved when using the data-driven model.
While the finger-driven model was used to achieve the best
accuracy in the real-object scenario in Table 1.

5.4 Database for Manipulation Intent Modeling

Through the previous experiment, 19600 grasping samples of
real-object interaction and 1440 grasping samples through
the teleoperation interface were collected. Data has been
pre-processed to remove the tracking failures. All data is avail-
able on the authors’ lab website to support other researchers’
exploration and employment of human manipulation intent
in teleoperation. In addition, the 3D models of the studied
objects are provided too. In the work presented in this paper,

Fig. 9 Statistical task-specific
accuracy in the teleoperation
scenario when using different
modeling methods. The
distribution median of the
accuracy of each task is shown
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Fig. 10 Statistical task-specific
accuracy in the teleoperation
scenario when using different
modeling methods. The medians
of each task are shown

1/8 of the real-object interaction data and 1/3 of the tele-
operation interaction data were used, in which the object
was facing one direction. When considering grasping the
object from any arbitrary directions, there is higher compli-
cations for the grasping model. Further investigation of the
NN, SVM, and BN modeling methods and developing new
methods will be conducted in the future, and their compu-
tation complexities in training and usage will be evaluated
following the methods in [34–36].

6 Discussion

In this section we discuss the hypotheses the success of
the earlier presented hypotheses (Section 6.1 Hypothesis
Testing), dealing with ambiguity of multi-label classifica-
tion (Section 6.2 Ambiguity of Multi-Label Classification),
our recommendations for modeling manipulation intent
(Section 6.3 Model Suggestion), and limitations of current
assistance to incorporate manipulation intent (Section 6.4
Assistance to Manipulation Intent).

6.1 Hypothesis Testing

Table 4 shows the testing results of the hypotheses and
the proofs used to derive the conclusion. All hypotheses

are supported by the experimental results. When using
the grasping model built in real-object interaction for the
manipulation intent inference in teleoperation, a reasonably
good inference accuracy is achieved, especially when the
gaze information is used. Thus, it is feasible to adopt real-
object interaction models for teleoperation interaction in
teleoperation (H1 is supported). Even though the adoption is
feasible, the same model’s performance varies and polarizes
in two scenarios. This conclusion is drawn from Tables 1
and 3, which show that when the model functions well in
one scenario, it will very likely function worse in the other
one (H2 is supported). This difference suggests that there
are differences in the essential features in two scenarios for
the same grasping process. This can be demonstrated by the
BN results. The BN model that functions the best in the
teleoperation scenario has the data-driven model structure,
while the finger-driven model structure functions the best in

Table 4 Hypothesis summary

Hypothesis Result Proof

H1 Supported Table II, Table IV, Table VII, and Table IX

H2 Supported Tables I-IV, Tables VI-IX, and Fig. 5

H3 Supported Table I vs. II and Table III vs. IV

H4 Supported Table V vs. VII and Table VI vs. VIII
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the real-object scenario. This structure difference is also a
vivid evidence to support H3.

The H4 is supported with data in Table 3, which adding
the gaze information to the grasp modeling takes advantage
of the eye-hand coordination and improves the inference
accuracy in both scenarios. This accuracy improvement is
apparent in both teleoperation and real-object scenarios.
Moreover, the improvement is larger in the teleoperation
scenario. The possible reason could be that gaze has
lower essentiality in the real-object scenario. In the real-
object scenario, the subjects perform actual grasping on the
object. The hand grasping configuration is explicit and can
clearly demonstrate the grasping correlation. However, in
the teleoperation, the subjects try to grasp a virtual object,
and the hand grasping configuration becomes fuzzy. In
this case, the gaze information still strongly and clearly
indicates which part on the object the subject is looking
at. The essentiality of the gaze information increases in the
teleoperation scenario.

6.2 Ambiguity of Multi-Label Classification

The formulation of the multi-label classification makes the
robot aware of the existence of other possible manipulation
intent. However, there is ambiguity which task the user
intends. One way to further clarify the ambiguity is to
consider the context information and task-related sequential
knowledge when building the intent model. However, this
will require specific knowledge to model the application
scenario, which loses the generality of the current model
that only consists of primitive motions.

Moreover, this intent ambiguity can be handled later
when the robot generates an assistance plan. If the robot
is aware of the ambiguity, it can select an action plan that
can satisfy all the possible types of intent. For example,
if the inferred intent is handover and usage, the robot can
select a grasping plan that can satisfy both tasks. In this way,
the robot can have more flexible reasoning capability and
behaviors. It will also improve the robot’s practicality as it
is able to handle the ambiguity, which is the nature of the
practical scenarios.

6.3 Model Suggestion

We explicitly and comprehensively examined NN, SVM,
and BN methods for the manipulation intent inference in tele-
operation. Each method is scored with 1-3 from five per-
spectives, which is summarized in Table 5. The higher the
score is, the better the model performs. Even though the best
accuracy achieved using the BN method is lower than NN
and SVM methods, it outperforms the other two from other
four evaluation perspectives. In all the tuning iterations, the
BN method’s performance is the highest and very stable.

Table 5 Evaluation scores of the NN, SVM, and BN methods

B-A A-A R T-E H-U Overall

NN 2 2 3 1 1 9

SVM 3 1 1 1 1 7

BN 1 3 3 3 3 12

B-A: Best Accuracy, A-A: Average Accuracy, R: Robustness, T-E:
Tuning Effort, and H-U: Human Understandability

This shows the robustness of the BN method for our appli-
cation. Also, the BN method has the lowest tuning effort.
The visibility of the BN structure makes the BN method
understandable with human intuition. Thus, the BN method
has the highest evaluation score and is suggested for the
manipulation intent inference in teleoperation. Moreover,
the palm-driven model is preferred as it is more compact,
and it achieved a compared accuracy as the data-driven
model. This palm-driven model is from human intuition,
which is easier to understand. In terms of computational
complexity of the three methods implemented, SVM is pro-
portional to both the number of classes and the number
of input features, while the NN can be determined for the
basic connection layers used. Although the layers for our
attempted models did change, the general complexity is a
summation of all the products between each pair of lay-
ers. The BN, however, has more difficult complexity as it
is structure dependent. For instance, a Naive Bayes model,
where each feature is independent of one another, acts as
a single layer NN where it can be calculated as matrix
multiplication. The structure, number of input features, and
classifications all influences the complexity where there is
not a guaranteed manner of determining complexity given
arbitrary inputs. Where once again, further investigation of
the NN, SVM, and BN modeling methods and developing
new methods will be conducted in the future, and their com-
putation complexities in training and usage will be evaluated
following the methods in [34–36].

6.4 Assistance to Manipulation Intent

To assist the achievement of an operator’s motion intent,
assistance formats of boundaries, guiding force, and shared
motion are commonly used, as reviewed in the related work.
It may be challenging to use the same formats of assistance
to assist an operator’s manipulation intent. For example, if
guiding force format is selected, the six-dimensional haptic
force will be needed to push the operator to reach a specific
position with a specific orientation. How to formulate
a robot’s assistance to achieve effective teleoperation of
object manipulation demands further investigation.
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7 Conclusion

In this paper, an operator’s manipulation intent in teleopera-
tion is inferred by modeling the object grasping for various
tasks. This is the first time that an operator’s manipulation
intent in teleoperation has been considered. The differences
between the inference accuracy in real-object interaction
and in teleoperation have been discussed. The manipulation
intent inference was formulated as a multi-label classifica-
tion problem. This formulation makes the robot aware of the
existence of the ambiguity. We validated that the grasping
model that is built through real-object interaction is fea-
sible to be used for interaction in teleoperation. However,
one model that well behaves in the real-object interaction
does not function well at the same degree in the teleop-
eration, vice versa. Thus, training with the consideration
of the application scenario is essential. The experimental
results also show that adding the gaze information is help-
ful to improve the intent inference in teleoperation. With the
inferred manipulation intent, the robot can generate action
plans to assist the sophisticated manipulation-related tasks
in teleoperation rather than just approaching the target loca-
tion or object. This can bring the teleoperation into more
practical applications and increase robot adoption. In the
future, we may consider adding the context information to
reduce the ambiguity, which, however, will reduce the gen-
erality of the current pure grasping model. In the meantime,
we are looking forward to formulate a robust decision-
making engine that considers the intent ambiguity when
generating assistance plans, where the teleoperation perfor-
mance with the robotic assistance in achieving the manip-
ulation intent will be tested by comparing it to traditional
manual control. We will also investigate how manipulation
intent could benefit other open problems in teleoperation,
like the problem of time delay and data loss [37, 38]. With
the capability of understanding and predicting the opera-
tor’s intent, the robot could generate supportive or assistive
execution plans to accomplish the task even loss continuous
input from the teleoperator due to the time delay or data loss.
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