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Steerable ePCA: Rotationally Invariant Exponential
Family PCA

Zhizhen Zhao Member, IEEE, Lydia T. Liu, and Amit Singer

Abstract—In photon-limited imaging, the pixel intensities are
affected by photon count noise. Many applications require an
accurate estimation of the covariance of the underlying 2-D
clean images. For example, in X-ray free electron laser (XFEL)
single molecule imaging, the covariance matrix of 2-D diffraction
images is used to reconstruct the 3-D molecular structure.
Accurate estimation of the covariance from low-photon-count
images must take into account that pixel intensities are Poisson
distributed, hence the classical sample covariance estimator is
highly biased. Moreover, in single molecule imaging, including
in-plane rotated copies of all images could further improve the
accuracy of covariance estimation. In this paper we introduce an
efficient and accurate algorithm for covariance matrix estimation
of count noise 2-D images, including their uniform planar
rotations and possibly reflections. Our procedure, steerable ePCA,
combines in a novel way two recently introduced innovations.
The first is a methodology for principal component analysis
(PCA) for Poisson distributions, and more generally, exponential
family distributions, called ePCA. The second is steerable PCA,
a fast and accurate procedure for including all planar rotations
when performing PCA. The resulting principal components are
invariant to the rotation and reflection of the input images. We
demonstrate the efficiency and accuracy of steerable ePCA in
numerical experiments involving simulated XFEL datasets and
rotated face images from Yale Face Database B.

Index Terms—Poisson noise, X-ray free electron laser, steer-
able PCA, eigenvalue shrinkage, autocorrelation analysis, image
denoising.

I. INTRODUCTION

X-ray free electron laser (XFEL) is an emerging imaging
technique for elucidating the three-dimensional structure of
molecules [1], [2]. Single molecule XFEL imaging collects
two-dimensional diffraction patterns of single particles at
random orientations. The images are very noisy due to the
low photon count. The detector count-noise follows an ap-
proximately Poisson distribution. Since only one diffraction
pattern is captured per particle and the particle orientations
are unknown, it is challenging to reconstruct the 3-D struc-
ture at low signal-to-noise ratio (SNR). One approach is
to use expectation-maximization (EM) [3], [4], but it has a
high computational cost at low signal-to-noise ratio (SNR).
Alternatively, assuming that the orientations of the particles
are uniformly distributed over the special orthogonal group
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SO(3), Kam’s correlation analysis [5]–[12] bypasses orienta-
tion estimation and requires just one pass over the data, thus
alleviating the computational cost. Kam’s method requires a
robust estimation of the covariance matrix of the noiseless 2-
D images. This serves as our main motivation for developing
efficient and accurate covariance estimation and denoising
methods for Poisson data. Nevertheless, the methods presented
here are quite general and can be applied to other imaging
modalities involving Poisson distributions.

Principal Component Analysis (PCA) is widely used for
dimension reduction and denoising of large datasets [13], [14].
However, it is most naturally designed for Gaussian data, and
there is no consensus on the extension to non-Gaussian settings
such as exponential family distributions [13, Sec. 14.4]. For
denoising with non-Gaussian noise, popular approaches reduce
it to the Gaussian case by a wavelet transform such as the
Haar transform [15]; by adaptive wavelet shrinkage [15],
[16]; or by approximate variance stabilization such as the
Anscombe transform [17]. The latter is known to work well
for Poisson signals with large parameters, due to approximate
normality. However, the normal approximation breaks down
for Poisson distributions with a small parameter, in the case
of photon-limited XFEL [18, Sec. 6.6]. Other methods are
based on alternating minimization [19]–[21], singular value
thresholding (SVT) [22], [23] and Bayesian techniques [24].
Many of aforementioned methods such as [19] are com-
putationally intractable for large datasets and do not have
statistical guarantees for covariance estimation. In particular,
[21] applied the methodology of alternating minimization [19]
to denoise a single image by performing PCA on clusters of
patches extracted from the image. However, this approach is
not suitable for our problem setting, where the goal is to simul-
taneously denoise a large number of images and estimate their
covariance. Recently, [25] introduced exponential family PCA
(ePCA), which extends PCA to a wider class of distributions.
It involves the eigendecomposition of a new covariance matrix
estimator, constructed in a deterministic and non-iterative way
using moment calculations and shrinkage. ePCA was shown to
be more accurate than PCA and its alternatives for exponential
families. It has computational cost similar to that of PCA,
substantial theoretical justification building on random matrix
theory, and interpretable output. We refer readers to [25] for
experiments that benchmark ePCA against previous methods.

In XFEL imaging, the orientations of the particles are
uniformly distributed over SO(3), so it is equally likely
to observe any planar rotation of the given 2-D diffraction
pattern. Therefore, it makes sense to include all possible in-
plane rotations of the images when performing ePCA. To
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this end, we incorporate steerability in ePCA, by adapting
the steerable PCA algorithm, which avoids duplicating rotated
images [26]. The concept of a steerable filter was introduced
in [27] and various methods were proposed for computing data
adaptive steerable filters [28]–[31]. We take into account the
action of the group O(2) on diffraction patterns by in-plane
rotation (and reflection if needed). The resulting principal
components are invariant to any O(2) transformation of the
input images.

The new algorithm, to which we refer as steerable ePCA,
combines ePCA and steerable PCA in a natural way. Steerable
ePCA is not an iterative optimization procedure. All steps
involve only basic linear algebra operations. The various steps
include expansion in a steerable basis, eigen-decomposition,
eigenvalue shrinkage, and different normalization steps. The
mathematical and statistical rationale for all steps is provided
in Section II.

We illustrate the improvement in covariance matrix esti-
mation by applying our method to image denoising in Sec-
tion III. Specifically, we introduce a Wiener-type filtering
using the principal components. Rotation invariance enhances
the effectiveness of ePCA in covariance estimation and thus
achieves better denoising. In addition, the denoised expansion
coefficients are useful in building rotationally invariant image
features (i.e. bispectrum-like features [32]). Numerical exper-
iments are performed on simulated XFEL diffraction patterns
and a natural image dataset—Yale Face Database B [33], [34].
As is the case for standard PCA, the computational complexity
of the steerable ePCA is lower than that of ePCA.

An implementation of steerable ePCA in MATLAB is
publicly available at github.com/zhizhenz/sepca/.

II. METHODS

The goal of steerable ePCA is to estimate the rotationally
invariant covariance matrix from the images whose pixel inten-
sities are affected by photon count noise. To develop this esti-
mator, we combine our previous works on steerable PCA with
ePCA in a novel way. The main challenge in combining ePCA
with steerable PCA is that steerable PCA involves a (nearly
orthogonal) change of basis transformation from a Cartesian
grid to a steerable basis. While multidimensional Gaussian
distributions are invariant to orthogonal transformations, the
multidimensional Poisson distribution is not invariant to such
transformations. Therefore, steerable PCA and ePCA cannot
be naively combined in a straightforward manner. Algorithm 1
details the steps of the combined procedure that achieves the
goal of estimating a rotationally invariant covariance matrix
from Cartesian grid images with pixel intensities following
a Poisson distribution. The following subsections explain the
main concepts underlying ePCA and steerable PCA, and how
they are weaved together in a manner that overcomes the
aforementioned challenge. In the following subsections, we
detail the associated concepts and steps for steerable ePCA.

A. The observation model and homogenization

We adopt the same observation model introduced in [25].
We observe n noisy images Yi ∈ Rp (i.e., p is the number

of pixels), for i = 1, . . . , n. These are random vectors
sampled from a hierarchical model defined as follows. First,
a latent vector—or hyperparameter—ω ∈ Rp is drawn from
a probability distribution P with mean µω and covariance
matrix Σω . Conditioning on ω, each coordinate of Y =
(Y (1), . . . , Y (p))> is drawn independently from a canonical
one-parameter exponential family,

Y (j)|ω(j) ∼ pω(j)(y), Y = (Y (1), . . . , Y (p))>, (1)

with density

pω(j)(y) = exp[ω(j)y −A(ω(j))] (2)

with respect to a σ-finite measure ν on R, where the jth

entry of the latent vector, ω(j) ∈ R, is the natural parameter
of the family and A(ω(j)) = log

∫
exp(ω(j)y)dν(y) is the

corresponding log-partition function. The mean and variance
of the random variable Y (j) can be expressed as A′(ω(j)) and
A′′(ω(j)), where we denote A′(ω) = dA(ω)/dω. Therefore,
the mean of Y conditioning on ω is

X := E(Y |ω) = (A′(ω(1)), . . . , A′(ω(p)))> = A′(ω),

so the noisy data vector Y can be expressed as Y = A′(ω) +
ε̃, with E(ε̃|ω) = 0 and the marginal mean of Y is EY =
EA′(ω). Thus, one can think of Y as a noisy realization of
the clean vector X = A′(ω). However, the latent vector ω is
also random and varies from sample to sample. In the XFEL
application, X = A′(ω) are the unobserved noiseless images,
and their randomness stems from the random (and unobserved)
orientation of the molecule. We may write1 Y = A′(ω) +
diag[A′′(ω)]

1/2ε, where the coordinates of ε are conditionally
independent and standardized given ω. The covariance of Y
is given by the law of total covariance:

Cov[Y ] = Cov[E(Y |ω)] + E[Cov[Y |ω]]

= Cov[A′(ω)] + E diag[A′′(ω)]. (3)

The off-diagonal entries of the covariance matrix of the
noisy images are therefore the same as those of the clean
images. However, the diagonal of the covariance matrix (i.e.,
the variance) of the noisy images is further inflated by the
noise variance. Unlike white noise, the noise variance here
often changes from one coordinate to another (i.e., there is
heteroscedasticity). In ePCA, the homogenization step is a
particular weighting method that improves the signal-to-noise
ratio [25, Section 4.2.2]. Specifically, the homogenized vector
is defined as

Z = diag[EA′′(ω)]−1/2Y = diag[EA′′(ω)]−1/2A′(ω) + ε.
(4)

Then the corresponding homogenized covariance matrix is

Cov[Z] = diag[EA′′(ω)]−1/2Cov[A′(ω)] diag[EA′′(ω)]−1/2+I.
(5)

This step is commonly called “prewhitening” in signal and
image processing, while the term “homogenization” is more
commonly used in statistics. The terms “prewhitened” and
“homogenized” are synonyms in the context of this paper. In

1diag[x] for x ∈ Rp denotes a p × p diagonal matrix whose diagonal
entries are x(j) for j = 1, · · · , p.
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Section II-C, we discuss how to estimate the homogenized
rotationally invariant covariance matrix.

For the special case of Poisson observations, where Y ∼
Poissonp(X) and X ∈ Rp is random, we can write Y =
X + diag(X)

1/2ε. The natural parameter is the vector ω with
ω(j) = logX(j) and A′(ω(j)) = A′′(ω(j)) = exp(ω(j)) =
X(j). Therefore, we have EY = EX , and

Cov[Y ] = Cov[X] + diag[EX]. (6)

In other words, while the mean of the noisy images agrees with
the mean of the clean images, their covariance matrices differ
by a diagonal matrix that depends solely on the mean image. If
we homogenize the observations by Z = diag(E[X])−1/2Y ,
then Eq. (6) becomes,

Cov[Z] = diag(E[X])−1/2Cov[Y ] diag(E[X])−1/2

= diag(E[X])−1/2Cov[X] diag(E[X])−1/2 + I. (7)

We can estimate the covariance of X from the homoge-
nized covariance Z according to Eq. (7), i.e. Cov[X] =
diag(E[X])1/2(Cov[Z] − I) diag(E[X])1/2. In Sec. II-E, we
detail the corresponding recoloring step to estimate Cov[X].

In Alg. 1, Steps 1 and 5, with Dn = diag[Ȳ ], correspond to
the homogenization procedure in ePCA. We provide more de-
tails on how to estimate the homogenized rotationally invariant
covariance matrix (Steps 1–5) in Sec. II-B and Sec. II-C.

B. Steerable basis expansion

Under the observation model in Sec. II-A, we develop a
method that estimates the rotationally invariant Cov[X] effi-
ciently and accurately from the image dataset Y . We assume
that a digital image I is composed of discrete samples from a
continuous function f with band limit c. The Fourier transform
of f , denoted F(f), can be expanded in any orthogonal basis
for the class of square-integrable functions in a disk of radius
c. For the purpose of steerable PCA, it is beneficial to choose
a basis whose elements are products of radial functions with
Fourier angular modes, such as the Fourier-Bessel functions, or
2-D prolate functions [35]. For concreteness, in the following
we use the Fourier-Bessel functions given by

ψk,qc (ξ, θ) =

{
Nk,qJk

(
Rk,q

ξ
c

)
eıkθ, ξ ≤ c,

0, ξ > c,
(8)

where (ξ, θ) are polar coordinates in the Fourier domain (i.e.,
ξ1 = ξ cos θ, ξ2 = ξ sin θ, ξ ≥ 0, and θ ∈ [0, 2π); Nk,q =
(c
√
π|Jk+1(Rk,q)|)−1 is the normalization factor; Jk is the

Bessel function of the first kind of integer order k; and Rk,q
is the qth root of the Bessel function Jk. We also assume that
the functions of interest are concentrated in a disk of radius R
in real domain. In order to avoid aliasing, we only use Fourier-
Bessel functions that satisfy the following criterion [26], [36]

Rk,q+1 ≤ 2πcR. (9)

For each angular frequency k, we denote by pk the number
of components satisfying Eq. (9). The total number of compo-
nents is p =

∑kmax
k=−kmax

pk, where kmax is the maximal possible

Algorithm 1: Steerable ePCA (sePCA) and denoising
Input: Image data Y that contains n images of size

L× L
Output: Rotationally invariant covariance estimator of

noiseless images and denoised images
1 Compute the sample mean Ȳ = 1

n

∑n
i=1 Yi (ePCA)

2 Estimate the support size R and band limit c for the
mean image (sPCA)

3 Compute the Fourier-Bessel expansion coefficients of
F (Ȳ ) and estimate the rotationally invariant sample
mean f̄ as in Eq. (14) (sePCA)

4 Compute the variance estimate Dn = diag[f̄ ] (sePCA)
5 Prewhiten the image data Z = D

−1/2
n Y (ePCA)

6 Estimate the band limit c for whitened images (sPCA)
7 Compute the truncated Fourier-Bessel expansion

coefficients of F (Z) and form the coefficients matrices
A(k), for k = 0, . . . , kmax (sPCA)

8 for k = 0, 1, . . . , kmax do
9 Compute the prewhitened sample covariance matrix

S
(k)
h as in Eq. (16) and its eigendecomposition
S
(k)
h = ÛΛÛ∗ (ePCA)

10 Shrink the eigenvalues S(k)
h,ηγk

= Ûηγk(Λ)Û∗ of top
rk eigenvalues according to Eq. (19) (ePCA, sPCA)

11 Compute the recoloring matrix B(k) in eq. (23) and
D(k) in eq. (26) (sePCA)

12 Recolor the covariance matrix
S
(k)
he =

(
B(k)

)∗ · S(k)
h,γk
·B(k) (sePCA)

13 Compute the scaling coefficients α̂ in Eq. (27) and
keep components with α̂ > 0 (sePCA)

14 Scale the covariance matrix

S
(k)
s =

∑
α̂
(k)
i v̂

(k)
i

(
v̂
(k)
i

)∗
, where the

eigendecomposition of S(k)
he is

∑
v̂
(k)
i

(
v̂
(k)
i

)∗
(ePCA)

15 Denoise {A(k)}kmax
k=0 as in Eqs. (29) and (30) (sePCA)

16 end
17 The rotationally invariant covariance matrix estimator
Ŝ((x, y), (x′, y′)) = G(0)(x, y)S

(0)
s G(0)(x′, y′)∗ +

2
∑kmax
k=1G

(k)(x, y)S
(k)
s G(k)(x′, y′)∗. (sPCA)

18 Reconstruct the denoised image using Eq. (31) (sPCA)

value of k satisfying Eq. (9). We also denote γk = pk
2n for

k > 0 and γ0 = p0
n .

The inverse Fourier transform (IFT) of ψk,qc is

F−1(ψk,qc )(r, φ) =
2c
√
π(−1)qRk,qJk(2πcr)

ık(2πcr)2 −R2
k,q

eıkφ

≡ gk,qc (r)eıkφ, (10)

where gk,qc (r) is the radial part of the inverse Fourier transform
of the Fourier-Bessel function. Therefore, we can approximate
f using the truncated expansion

f(r, φ) ≈
kmax∑

k=−kmax

pk∑
q=1

ak,qg
k,q
c (r)eıkφ. (11)
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The approximation error in Eq. (11) is due to the finite
truncation of the Fourier-Bessel expansion. For essentially
band-limited functions, the approximation error is controlled
using the asymptotic behavior of the Bessel functions, see [37,
Section 2] for more details. We evaluate the Fourier-Bessel
expansion coefficients numerically as in [26] using a quadra-
ture rule that consists of equally spaced points in the angular
direction θl = 2πl

nθ
, with l = 0, . . . , nθ − 1 and a Gaussian

quadrature rule in the radial direction ξj for j = 1, . . . , nξ with
the associated weights w(ξj). Using the sampling criterion
introduced in [26], the values of nξ and nθ depend on the
compact support radius R and the band limit c. Our previous
work found that using nξ = d4cRe and nθ = d16cRe results in
highly-accurate numerical evaluation of the integral to evaluate
the expansion coefficients. To evaluate ak,q , we need to sample
the discrete Fourier transform of the image I , denoted F (I),
at the quadrature nodes,

F (I)(ξj , θl) =
1

2R

R−1∑
i1=−R

R−1∑
i2=−R

I(i1, i2)

× exp (−ı2π(ξj cos θli1 + ξj sin θli2)) , (12)

which can be evaluated efficiently using the the nonuniform
discrete Fourier transform [38], and we get

ak,q ≈
nξ∑
j=1

Nk,qJk,q

(
ξj
c

)
F̂ (I)(ξj , k)ξjw(ξj), (13)

where F̂ (I)(ξj , k) is the 1D FFT of F (I) on each concentric
circle of radius ξj . For real-valued images, it is sufficient to
evaluate the coefficients with k ≥ 0, since a−k,q = a∗k,q . In
addition, the coefficients have the following properties: under
counter-clockwise rotation by an angle α, ak,q changes to
ak,qe

−ıkα; and under reflection, ak,q changes to a−k,q . The
numerical integration error in Eq. (13) was analyzed in [26]
and drops below 10−17 for the chosen values of nξ and nθ.

The steerable basis expansion are applied in two parts of
the steerable ePCA: (1) the rotationally invariant sample mean
estimation in Step 3 of Alg. 1 and (2) the expansion of the
whitened images in Step 7 of Alg. 1.

C. The sample rotationally-invariant homogenized covariance
matrix

Suppose I1, . . . , In are n discretized input images sampled
from f1, . . . , fn. Here, the observation vectors Yi for ePCA
are simply Yi = Ii. In ePCA, the first step is to prewhiten
the data using the sample mean as suggested by Eqs. (4)
and (6). However, the sample mean Ȳ = 1

n

∑n
i=1 Yi is not

necessarily rotationally invariant. With the estimated band
limit and support size in Step 2, we compute the truncated
Fourier-Bessel expansion coefficients of F (Ȳ ), denoted by
āk,q . The rotationally invariant sample mean can be evaluated
from āk,q ,

f̄(r, φ) =
1

2π

∫ 2π

0

1

n

n∑
i=1

fi(r, φ− α)dα ≈
p0∑
q=1

ā0,qg
0,q
c (r).

(14)

The approximation error in Eq. (14) follows directly from
that of Eq. (11). The rotationally invariant sample mean is
circularly symmetric. We denote by Ā a vector that contains
all the coefficients ā0,q ordered by the radial index q. Although
the input images are non-negative, the finite truncation may
result in small negative values in the estimated mean, so
we threshold any negative entries to zero. As mentioned in
Sec. II-A, the expected covariance matrix of the Poisson
observations differs from the covariance matrix of clean data
by a diagonal matrix, where the diagonal entries are equal
to the mean image. Therefore, in Step 4 of Alg. 1, we have
Dn = diag[f̄ ] and it is used in Step 5 to compute the
homogenized vectors, similar to Eq. (4).

We prewhiten the images by the estimated mean im-
age to create new images Z1, . . . , Zn as Zi(x, y) =
f̄(x, y)−1/2Yi(x, y), when f̄(x, y) > 0, and Zi(x, y) is 0
otherwise. The whitening step might change the band limit.
Therefore, we estimate the band limit of the whitened images
in Step 6. Combining Eqs. (9) and (13), we compute the
truncated Fourier-Bessel expansion coefficients aik,q of F (Zi).
Let us denote by A(k) the matrix of expansion coefficients with
angular frequency k, obtained by putting aik,q into a matrix,
where the columns are indexed by the image number i and the
rows are ordered by the radial index q. The coefficient matrix
A(k) is of size pk × n.

We use Z̄ to represent the rotationally invariant sample
mean of the whitened images. Under the action of the group
O(2), i.e. counter-clock wise rotation by an angle α ∈ [0, 2π)
and reflection β ∈ {+,−}, where ‘+’ indicates no reflection
and ‘−’ indicates with reflection, the image Zi is transformed
to Zα,βi . Since the truncated Fourier-Bessel transform is al-
most unitary [26], the rotationally invariant covariance kernel
S ((x, y), (x′, y′)) built from the whitened image data with all
possible in-plane rotations and reflections, defined as,

S ((x, y), (x′, y′)) =
1

4πn

n∑
i=1

∑
β∈{+,−}

∫ 2π

0

(
Zα,βi (x, y)

−Z̄(x, y)
) (
Zα,βi (x′, y′)− Z̄(x′, y′)

)
dα, (15)

can be computed in terms of the IFT of the Fourier-Bessel
basis and the associated expansion coefficients. Subtracting
the sample mean is equivalent to subtracting 1

n

∑n
j=1 a

j
0,q

from the coefficients ai0,q , while keeping other coefficients un-
changed. Therefore, we first update the zero angular frequency
coefficients by ai0,q ← ai0,q − 1

n

∑n
j=1 a

j
0,q . In terms of the

expansion coefficients, the rotationally invariant homogenized
sample covariance matrix is Sh =

⊕kmax
k=−kmax

S
(k)
h , with

S
(k)
h =

1

n
Re
{
A(k)

(
A(k)

)∗}
. (16)

We further denote the eigenvalues and eigenvectors of S(k)
h by

λ
(k)
i and û(k)i , that is,

S
(k)
h =

pk∑
i=1

λ
(k)
i û

(k)
i (û

(k)
i )∗. (17)

The procedure of homogenization for steerable ePCA is
detailed in Steps 1–5 in Alg. 1. Step 9 of Alg. 1 computes the
rotationally invariant homogenized sample covariance matrix.
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D. Eigenvalue shrinkage

For data corrupted by additive white noise (with noise vari-
ance 1 in each coordinate), previous work [39]–[42] showed
that if the population eigenvalue ` is above the Baik, Ben
Arous, Péché (BBP) phase transition, then the corresponding
sample eigenvalue lies to the right of the Marčenko-Pastur
distribution of the “noise” eigenvalues. The sample eigenvalue
will converge to the value given by the spike forward map as
pk, n→∞, and pk/n = γk:

λ(`; γk) =

{
(1 + `)

(
1 + γk

`

)
if ` >

√
γk,(

1 +
√
γk
)2

otherwise.
(18)

The underlying clean population covariance eigenvalues can
be estimated by solving the quadratic equation in Eq. (18),

ˆ̀= ηγk(λ)

=


(
λ−1−γk+

√
(λ−1−γk)2−4γk

)
2 , λ > (1 +

√
γk)2,

0 λ ≤ (1 +
√
γk)2.

(19)

Shrinking the eigenvalues improves the estimation of the
sample covariance matrix [43]. Since the homogenized sample
covariance matrix Sh is decoupled into small sub-blocks S(k)

h ,
the shrinkers are defined for each frequency k separately. The
shrinkers ηγk(λ) set all noise eigenvalues to zero for λ within
the support of the Marčenko-Pastur distribution and reduce
other eigenvalues according to Eq. (19). Then the denoised
covariance matrices are

S
(k)
h,η =

rk∑
i=1

ηγk

(
λ
(k)
i

)
û
(k)
i (û

(k)
i )∗, (20)

where rk is the number of components with ηγk(λ) > 0. The
empirical eigenvector û(k) of S(k)

h is an inconsistent estimator
of the true eigenvector. We can heuristically quantify the in-
consistency based on results from the Gaussian standard spiked
model, even though the noise is non-Gaussian. Under this
model, the empirical and true eigenvectors have an asymptot-
ically deterministic angle: (

(
u(k)

)∗
û(k))2 → c2(`; γk) almost

surely, where c(`; γk) is the cosine forward map given by [41],
[42]:

c2(`; γk) =

{
1−γk/`2
1+γk/`

if ` >
√
γk,

0 otherwise.
(21)

Therefore, asymptotically for the population eigenvectors be-
yond the BBP phase transition, the sample eigenvectors have
positive correlation with the population eigenvectors, but this
correlation is less than 1 [44]–[46]. We denote by ĉ an estimate
of c using the estimated clean covariance eigenvalues ˆ̀ in
Eq. (19) and ŝ2 = 1− ĉ2.

In short, Step 10 of Alg. 1 improves the estimation of the
rotationally invariant homogenized covariance matrix through
eigenvalue shrinkage.

E. Recoloring

Homogenization changes the direction of the clean eigen-
vectors. Therefore, after eigenvalue shrinkage, we recolor (het-
erogenize) the covariance matrix by conjugating the recoloring

(a) clean (b) noisy

Fig. 1: Sample clean and noisy images of the XFEL dataset.
Image size is 128× 128 with mean per pixel photon count=
0.01.

(a) Estimate R (b) Estimate c

Fig. 2: Estimating R and c from n = 7× 104 simulated noisy
XFEL diffraction intensity maps of lysozyme. Each image is of
size 128×128 pixels. (a) The radial profile of the rotationally
invariant sample mean image. The radius of compact support
is chosen at R = 61. (b) Mean radial power spectrum of the
whitened noisy images. The curve levels off at σ2 = 1.

matrix B with Sh,η: She = B∗ ·Sh,η ·B. The recoloring matrix
is derived as,

Bk1,q1;k2,q2 =

∫ R

0

∫ 2π

0

√
f̄(r)F−1

(
ψk1,q1c

)
(r, θ)

×
(
F−1

(
ψk2,q2c

)
(r, θ)

)
rdrdθ

=

∫ R

0

√
f̄(r) gk1,q1c (r) gk2,q2c (r) rdr

×
∫ 2π

0

eı(−k1+k2)θdθ

= δk1,k2

∫ R

0

√
f̄(r)gk1,q1c (r) gk2,q2c (r)rdr,

(22)

which has a block diagonal structure and is decoupled for each
angular frequency, B =

⊕kmax
k=−kmax

B(k), with

B(k)
q1,q2 =

∫ R

0

√
f̄(r) gk,q1c (r) gk,q2c (r) rdr. (23)

The radial integral in Eq. (23) is numerically evaluated using
the Gauss-Legendre quadrature rule [47, Chap. 4], which
determines the locations of nr = d4cRe points {rj}nrj=1 on the
interval [0, R] and the associated weights w(rj). The integral
in Eq. (23) is thus approximated by

B(k)
q1,q2 ≈

nr∑
j=1

√
f̄(rj) g

k,q1
c (rj) g

k,q2
c (rj)rjw(rj). (24)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 3: Eigenimages estimated from noisy XFEL data using PCA, steerable PCA (sPCA), ePCA, and steerable ePCA (sePCA),
ordered by eigenvalues. Input images are corrupted by Poisson noise with mean photon count 0.01 (shown in Figure 1b).

The recoloring step is also decoupled for each angular
frequency sub-block. The heterogenized covariance estimators
are

S
(k)
he =

(
B(k)

)∗
· S(k)

h,ηγk
·B(k). (25)

Similar to Eq. (23), we define D(k) which will be used to scale
the heterogenized covariance matrix estimator (see Eq. (27))
and denoise the expansion coefficients (see Eqs. (29) and (30)),

D(k)
q1,q2 =

∫ R

0

f̄(r) gk,q1c (r) gk,q2c (r) rdr

≈
nr∑
j=1

f̄(rj) g
k,q1
c (rj) g

k,q2
c (rj)rjw(rj). (26)

In Alg. 1, Steps 11 and 12 summarize the recoloring proce-
dure.

F. Scaling

The eigendecomposition of S
(k)
he gives S

(k)
he =∑rk

i=1 v̂
(k)
i

(
v̂
(k)
i

)∗
. The empirical eigenvalues are t̂ = ‖v̂(k)‖2

which is a biased estimate of the true eigenvalues of the clean
covariance matrix ΣX . In [25, Sec. 4.2.3], a scaling rule was
proposed to correct the bias. We extend it in Steps 13 and 14
in Alg. 1 to the steerable case and scale each eigenvalue of
S
(k)
he by a parameter α̂(k),

α̂(k) =

{
1−ŝ2τ (k)

ĉ2 , for 1− ŝ2τ (k) > 0 and ĉ2 > 0

0 otherwise
(27)

where the parameter τ (k) = trD(k)

pk
· ˆ̀

‖v̂(k)‖2 . The scaled
covariance matrices are

S(k)
s =

rk∑
i=1

α̂
(k)
i v̂

(k)
i

(
v̂
(k)
i

)∗
. (28)

The rotationally invariant covariance kernel
S((x, y), (x′, y′)) is well approximated by∑kmax
k=−kmax

G(k)(x, y)S
(k)
s

(
G(k)(x′, y′)

)∗
, where G(k)

contains IFT of all ψk,qc with angular frequency k (see
Step 17) in Alg. 1). The computational complexity of
steerable ePCA is O(nL3 + L4), same as steerable PCA,
and it is lower than the complexity of ePCA which is
O(min(nL4 + L6, n2L2 + n3)).

In summary, Step 14 scales the heterogenized covariance
matrix She. The covariance matrix in the original pixel domain
is efficiently computed from S

(k)
s in Step 17.

G. Denoising

As an application of steerable ePCA, we develop a method
to denoise the photon-limited images. Since the Fourier-Bessel
expansion coefficients are computed from the prewhitened
images, we first recolor the coefficients by multiplying B(k)

with A(k) and then we apply Wiener-type filtering to denoise
the coefficients. For the steerable basis expansion coefficients
A(k) with angular frequency k 6= 0,

Â(k) = S(k)
s

(
D(k) + S(k)

s

)−1
B(k)A(k). (29)
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(a) (b)

Fig. 4: Error of covariance matrix estimation, measured as the (a) operator norm and (b) Frobenius norm of the difference
between each covariance estimate and the true covariance matrix. The sample size n ranges from 100 to 140,000.

Fig. 5: The estimated number of signal principal components
using PCA, sPCA, ePCA and sePCA. Images are corrupted
by Poisson noise with mean per pixel photon count 0.01.

For k = 0, we need to take into account the rotationally
invariant mean expansion coefficients,

Â(0) = S(0)
s

(
D(0) + S(0)

s

)−1
B(0)A(0)

+D(0)
(
D(0) + S(0)

s

)−1
Ā1>n . (30)

The denoised image sampled on the Cartesian grid (x, y)
in real domain are computed from the filtered expansion
coefficients âik,q ,

X̂i(x, y) =

p0∑
q=1

âi0,q g
0,q
c (rx,y)

+ 2Re

[
kmax∑
k=1

pk∑
q=1

âik,q g
k,q
c (rx,y)e−ıkθx,y

]
, (31)

where rx,y =
√
x2 + y2 and θx,y = tan−1

(
y
x

)
.

In essence, we first denoise the recolored steerable expan-
sion coefficients in Step 15 of Alg. 1 according to Eqs. (29)
and (30) and then reconstruct the image using Eq. (31) in
Step 18 of Alg. 1.

Fig. 6: The runtime for computing the principal components
using PCA, sPCA, ePCA and sePCA. Images are corrupted
by Poisson noise with mean per pixel photon count = 0.01.

(a) Clean (b) Noisy

Fig. 7: Sample clean and noisy images of randomly rotated
Yale Face Database B. Image size is 64 × 64 with mean
intensity 2.3 photons per pixel.

III. NUMERICAL RESULTS

We apply PCA, ePCA, steerable PCA, and steerable ePCA
to a simulated XFEL dataset and compare the results for
covariance estimation and denoising. The algorithms are im-
plemented in MATLAB on a machine with 60 cores, running
at 2.3 GHz, with total RAM of 1.5TB. Only 8 cores were used
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 8: Eigenimages estimated from noisy rotated Yale Face Database B using PCA, sPCA, ePCA, and sePCA, ordered by
eigenvalues. Input images are corrupted by Poisson noise with mean intensity 2.3 photons per pixel (shown in Fig. 7b).

in our experiments.
We simulate n = 140, 000 noiseless XFEL diffraction

intensity maps of a lysozyme (Protein Data Bank 1AKI) with
Condor [48]. The average pixel intensity is rescaled to be
0.01 for image size 128 × 128 pixels such that shot noise
dominates [49]. To sample an arbitrary number n of noisy
diffraction patterns, we sample an intensity map at random,
and then sample the photon count of each detector pixel from a
Poisson distribution whose mean is the pixel intensity. Figs. 1a
and 1b illustrate the clean intensity maps and the resulting
noisy diffraction patterns.

We estimate the radius of the concentration (R) of the
diffraction intensities in real domain and the band limit (c)
in Fourier domain from the noisy images in the following
way. The data variance is proportional to the sample mean.
The region with non-zero rotationally invariant sample mean
contains the object of interest. We show the radial profile of the
estimated sample mean in Fig. 2a, which is also the variance
map of the dataset averaged in the angular direction. At large
r, the radial part of the rotational invaraint sample mean levels
off at 0. We compute the cumulative variance by integrating
the radial sample mean over r with a Jacobian weight rdr. For
the XFEL data, the fraction of the cumulative mean exceeds
η =99.9% at r = 61, and therefore R was chosen to be 61 (see
Fig. 2a). We compute the whitened projection images using the
rotationally invariant sample mean. To estimate the parameter
c for the whitened images, we compute the angular average of
the mean 2D power spectrum. With a large number of images,
a region in the Fourier domain contains signal information,
if the corresponding radial mean power spectrum values are
larger than the noise variance σ2 = 1. The curve in Fig. 2b

levels off at the noise variance σ2 = 1 when ξ is large. We
use the same method as before to compute the cumulative
radial power spectrum. The fraction reaches η =99.9% at
ξ = 0.08, therefore the band limit is chosen to be c = 0.08.
The band limit c and support radius R are used in both
steerable PCA and steerable ePCA. Both parameters can be
chosen by the user through either setting the values of R and
c directly, or controlling the threshold value η. The proposed
parameter selection procedure leads to good empirical results
for covariance estimation. The impact of different choices of
c and R on denoising is illustrated in Fig. 13.

A. Covariance estimation and principal components

Fig. 3 shows the top 12 eigenimages for clean XFEL
diffraction patterns (Fig. 3e), and noisy diffraction patterns
with mean photon count per pixel 0.01 (Figs. 3c–3i) using
PCA, steerable PCA, ePCA, and steerable ePCA. The true
eigenimages in Fig. 3e are computed from 70000 clean diffrac-
tion patterns whose orientations are uniformly distributed over
SO(3). Figs. 3a–3d are computed from 1000 noisy images.
Since the number of samples is much smaller than the size of
the image and the noise type is non-Gaussian, PCA can only
recover the first two or three components. ePCA improves the
estimation and is able to extract the top 7 eigenimages. More-
over, steerable PCA and steerable ePCA achieve much better
estimation of the underlying true eigenimages for a given
sample size. Steerable ePCA achieves the best performance
in estimating both the eigenvalues and eigenimages.

Furthermore, we compare the operator norms and Frobenius
norms of the difference between the covariance estimates and
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(a) Single Image NLPCA, MSE= 0.0013 (b) PCA, n = 1000, MSE= 1.29× 10−4 (c) sPCA, n = 1000, MSE= 5.43× 10−5

(d) ePCA, n = 1000, MSE= 1.38× 10−4 (e) sePCA, n = 1000, MSE= 2.98× 10−5 (f) PCA, n = 70000, MSE= 1.85× 10−4

(g) sPCA, n = 70000, MSE= 5.19× 10−5 (h) ePCA, n = 70000, MSE= 4.16× 10−5 (i) sePCA, n = 70000, MSE= 2.97× 10−5

Fig. 9: Sample denoised images of the XFEL dataset illustrated in Fig. 1 using NLPCA, PCA, sPCA, ePCA, sePCA. Image
size is 128× 128.

Fig. 10: Comparing the denoising quality of the XFEL dataset
(p = 16384) with various number of images.

the true covariance matrix. Fig. 4 shows that steerable ePCA
significantly improves the covariance estimation, especially
when the sample size is small.

For experiments using ePCA, we use a permutation
bootstrap-based method to estimate the rank of the covariance
matrix, following e.g. [50]. By randomly permuting each

column of the mean-subtracted data matrix, we completely
destroy structural information including linear structure, while
the noise statistics remain the same (see [51], [52] for an analy-
sis). Singular values of the randomly permuted matrices reveal
what should be the largest covariance matrix eigenvalues that
correspond to noise, up to a user-selected confidence level ρ.
This can replace the other rank estimation methods that assume
Gaussianity when the noise model is non-Gaussian, such as in
our case. Empirically, we observe that ρ = 0.1 gives the best
performance in covariance estimation. For steerable ePCA, we
estimate the number of components using the right edge of
the Marčenko-Pastur distribution for homogenized covariance
matrices S(k)

h and include only the components whose scaling
factor α̂(k) are above zero.

Steerable ePCA is able to recover more signal principal
components from noisy images than PCA, steerable PCA,
and ePCA (see Fig. 5). When the sample size n = 1000,
the mean number of estimated components is 11 and 49 for
ePCA and steerable ePCA respectively. For n = 70000, the
estimated number of components is 59 and 81 for ePCA
and steerable ePCA respectively. Fig. 6 shows that steerable
ePCA is more efficient than ePCA and PCA. Because steerable
ePCA contains extra steps such as prewhitening, recoloring,
and scaling, its runtime is slightly longer than steerable PCA.



10

(a) Single Image NLPCA, MSE= 7.43 (b) PCA, n = 210, MSE= 0.523 (c) sPCA, n = 210, MSE= 0.311

(d) ePCA, n = 210, MSE= 0.509 (e) sePCA, n = 210, MSE= 0.237 (f) PCA, n = 215, MSE= 0.255

(g) sPCA, n = 215, MSE= 0.307 (h) ePCA, n = 215, MSE= 0.239 (i) sePCA, n = 215, MSE= 0.223

Fig. 11: Sample denoised images from Yale Face Database B illustrated in Fig. 7 using NLPCA, PCA, sPCA, ePCA, and
sePCA. Image size is 64× 64. The intensity range is [0, 2.6] for (a), and is [0, 11.1] for (b)–(i).

When n = 140000, steerable ePCA is 8 times faster than
ePCA.

In addition to the XFEL diffraction intensity data, we
include a natural image dataset–Yale Face Database B [33],
[34]–to illustrate the efficacy of the proposed method. The
database contains 5760 single light source images of 10
subjects with 9 poses. For every subject in a particular pose,
64 images were captured under different ambient illumina-
tions. The original images of a single face under different
lighting conditions inhabit an approximately 9-dimensional
linear space [53]. In the experiments, we take one subject
at a particular pose with 64 different illumination conditions.
We downsample the original images to the size of 64 × 64
pixels and scale the intensity such that the mean photon count
for the whole dataset is 2.3 photons per pixel (i.e., “faces
in the dark”). Since we need to rotate the images, we mask
images by a disk of radius R = 32. We uniformly sample n
clean images from the original images and apply a random
in-plane rotation to each sample. Fig. 7 shows 12 samples of
the clean data and the corresponding noisy observations. The
corresponding principal components are illustrated in Fig. 8.
The true eigenimages are evaluated using the clean images
rotated at every 0.7 degrees.

B. Denoising

We compare the denoising effects of steerable ePCA with
PCA, steerable PCA, ePCA, and patch-based single image
non-local PCA (NLPCA) [21], by the mean squared error,
MSE:= (pn)−1

∑n
i=1 ‖X̂i − Xi‖2. We perform “ePCA de-

noising” using the empirical best linear predictor (EBLP) [25],
which had been shown to outperform “PCA denoising,” i.e.,
orthogonal projection onto sample or ePCA / heterogenized
eigenimages, as well as the exponential family PCA method
proposed by [19]. Note that in our implementation of ePCA
Wiener-type filtering, to avoid inverting a singular matrix
(when some coordinates have 0 sample mean and sample
variance), we compute diag[Ȳ ] + Ss with regularization,
diag[Ȳ ] + Ss ← Ss + (1 − ε) diag[Ȳ ] + εmI where ε = 0.1,
m = 1

p Ȳ ·1, and I is the p×p identity matrix. The number of
components are estimated by the permutation rank estimation
as described in the previous section.

Fig. 9 shows some examples of denoised XFEL images for
sample size n = 1000 and 70000. For robustness, we repeated
the numerical experiment for another dataset simulated from
the small protein chignolin (Protein Data Bank entry 1UAO)
and obtained qualitatively similar results. Steerable ePCA is
able to recover the images with lower MSEs compared to PCA,
steerable PCA, and ePCA (see Fig. 10), especially when the
sample size n is small.
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Fig. 12: Comparing the denoising quality of the Yale Face
Database B (p = 4096) with various number of images.

(a) XFEL images (b) Rotated Yale Face Database B

Fig. 13: Sensitivity of the denoising performance over the
parameters c and R. For Yale Face Database B, we cropped
the images by the disc of radius R = 32.

Fig. 11 shows examples of the denoised face images for
sample size n = 210 and 215. We use the permutation rank
estimation described in the previous section with confidence
level ρ = 0.1 for PCA, sPCA, and ePCA. In this example,
we see that when the number of images is small, PCA and
ePCA can only recover rough contours of the faces, whereas
sPCA and sePCA are able to recover finer details in the faces.
The MSEs of the denoised images with varying number of
samples are plotted in Fig. 12. In this experiment, the data
only contains 64 unrotated clean images and the mean photon
count is 2.3 per pixel. Compared to the diffraction patterns
with mean photon count 0.01 per pixel. Therefore, sePCA is
able to sufficiently capture the clean data subspace with only
a small number of images, resulting in a much flatter MSE
curve with respect to the number of images.

We also test how sensitive our method is to the choice
of parameters, i.e. the band limit c and the support radius
R. For the diffraction intensity data, we use n = 10000
diffraction patterns with mean photon count 0.01 per pixel.
The underlying clean diffraction patterns are very smooth. We
vary the band limit from c = 0.06 to 0.5 and the support
radius R ranges from 50 to 63. With the chosen parameters
indicated in Fig. 2, the MSE for the denoised image is small
(see Fig. 13a). Although the MSEs vary when we increase
the parameter c above the chosen band limit and change R

within the range of 50 to 63, the errors are still relatively
small (2.9 − 3.5 × 10−5), compared to above 5 × 10−5 with
ePCA and sPCA. For the face data, we compare the results
with n = 8192 noisy images with 2.3 photons per pixel. Since
we crop out the region within a disk of radius R = L/2, the
parameter R is fixed to be 32 and we vary the band limit c
from 0.1 to 0.5. We observe that choosing c = 0.5 provides
the best denoising performance (see Fig. 13b), and this agrees
with the fact that the face images contain more high-frequency
information than the XFEL data.

IV. CONCLUSION

We presented steerable ePCA, a method for principal com-
ponent analysis of a set of low-photon-count images and
their uniform in-plane rotations. This work has been mostly
motivated by its application to XFEL, but is relevant to other
low-photon-count imaging applications. The computational
complexity of the new algorithm is O(nL3 + L4), whereas
that of ePCA is O(min(nL4 +L6, n2L2 +n3)). Incorporating
rotational invariance allows more robust estimation of the
true eigenvalues and eigenvectors. Our numerical experiments
showed that steerable ePCA more accurately estimates the co-
variance matrix and achieves better denoising results. Finally,
we remark that the Fourier-Bessel basis can be replaced with
other suitable bases, for example, the 2-D prolate spheroidal
wave functions (PSWF) on a disk [54], [55]. Nevertheless,
our method has certain limitations. For example, if the noise
distribution is not specified in advance, it is hard to estimate
the noise covariance E diag[A′′(ω)], which will affect the
homogenization step of the proposed method. In addition,
the optimal shrinkage function for the covariance estimation
depends on how we measure the error, for example using
Frobenius norm, operator norm, or other criteria. The corre-
sponding theoretical guarantee in the non-Gaussian case is still
an open problem. Thus, the statistical optimality is beyond
the scope of this paper. For future work, we will study how
sensitive the proposed method is to the misspecification of
the noise distribution and the statistical optimality of our
procedure in the non-Gaussian case.
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