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Multi-target Detection with
an Arbitrary Spacing Distribution

Ti-Yen Lan, Tamir Bendory, Nicolas Boumal and Amit Singer

Abstract—Motivated by the structure reconstruction problem
in single-particle cryo-electron microscopy, we consider the multi-
target detection model, where multiple copies of a target signal
occur at unknown locations in a long measurement, further
corrupted by additive Gaussian noise. At low noise levels, one
can easily detect the signal occurrences and estimate the signal
by averaging. However, in the presence of high noise, which is
the focus of this paper, detection is impossible. Here, we propose
two approaches—autocorrelation analysis and an approximate
expectation maximization algorithm—to reconstruct the signal
without the need to detect signal occurrences in the measurement.
In particular, our methods apply to an arbitrary spacing distribu-
tion of signal occurrences. We demonstrate reconstructions with
synthetic data and empirically show that the sample complexity
of both methods scales as SNR−3 in the low SNR regime.

Index Terms—autocorrelation analysis, expectation maximiza-
tion, frequency marching, cryo-EM, blind deconvolution.

I. INTRODUCTION

We consider the multi-target detection (MTD) problem [10]
to estimate a signal x ∈ RL from a long, noisy measurement

y = s ∗ x+ ε, ε ∼ N (0, σ2IN ), (1)

where y ∈ RN is the linear convolution of an unknown binary
sequence s ∈ {0, 1}N−L+1 with the signal, further corrupted
by additive white Gaussian noise with zero mean and variance
σ2, and we assume L � N . Both x and s are treated as
deterministic variables. The signal length L and the noise
variance σ2 are assumed to be known. The non-zero entries
of s indicate the starting positions of the signal occurrences
in y. We require the signal occurrences not to overlap, so
consecutive non-zero entries of s are separated by at least L
positions. Figure 1 gives an example of the measurement y
that contains three signal occurrences at different noise levels.

MTD belongs to the wider class of blind deconvolution
problems [25], which have applications in astronomy [24],
[33], microscopy [28], [32], system identification [1], and
motion deblurring [17], [26], among others. The main dif-
ference is that we are only interested in estimating the
signal x: we treat s as a nuisance variable, while most of
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Fig. 1. An example of a measurement in the MTD model corrupted by
additive Gaussian noise with (a) σ = 0, (b) σ = 0.1 (high SNR regime) and
(c) σ = 2 (low SNR regime).

the literature on blind deconvolution aims to estimate both
x and s. This distinction allows us to estimate the signal
at higher noise levels, which are usually not addressed in
the literature on blind deconvolution, specifically because s
cannot be accurately estimated in such regimes. We give a
theoretical argument for this claim below, and corroborate it
with numerical experiments in Section IV.

This high-noise MTD model has been studied in [9], [10]
under the assumption that the signal occurrences either are
well separated or follow a Poisson distribution. In applications,
however, the signal occurrences in the measurement might
be arbitrarily close to each other. In this study, we extend
the framework of [9], [10] to allow an arbitrary spacing
distribution of signal occurrences by simultaneously estimating
the signal and the distance distribution between consecutive
signal occurrences.

The solution of the MTD problem is straightforward at
high signal-to-noise ratio (SNR), such as the case shown in
Figure 1(b). The signal can be estimated by first detecting
the signal occurrences and then averaging. In the low SNR
regime however, this simple method becomes problematic due
to the difficulty of detection, as illustrated by Figure 1(c).
More than difficulty, reliable detection becomes impossible
beyond a critical noise level. This can be understood from [9,
Proposition 3.1], which we reproduce here (the proof is based
on the Neyman–Pearson lemma).

Proposition 1: Consider two known vectors θ0 = x and
θ1 = 0 in RL and a random variable η taking value 0 or 1
with equal probability. We observe the random vector X ∈ RL
with the following distribution:

X ∼

{
N (θ0, σ

2IL) if η = 0

N (θ1, σ
2IL) if η = 1.
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For any deterministic estimator η̂ of η,

lim
σ→∞

p(η̂ = η) ≤ 1

2
,

that is, the probability of success for the best deterministic
estimator of η is no better than a random guess in the limit of
σ →∞.

In our context, this simple fact can be interpreted as follows:
even if we know the true signal x and an oracle provides
windows of length L in the observation y which, with equal
probability, contain either the noisy signal or pure noise,
deciding whether a given window contains one or the other
cannot be done significantly better than a random chance
decision at high noise level. Results similar in spirit (but
distinct in mathematical tools) are derived in [3].

In this work, we suggest to circumvent the estimation
of s by estimating the signal x directly. Specifically, we
propose two different approaches—autocorrelation analysis
and an approximate version of the expectation maximization
(EM) algorithm [18]. Since these methods do not require
estimating s, Proposition 1 does not limit their performance
in the low SNR regime.

Autocorrelation analysis relates the autocorrelations calcu-
lated from the noisy measurement to the signal. The signal
is then estimated by fitting the autocorrelations through least
squares. This approach is efficient as it requires only one
pass over the data to calculate the autocorrelations; this is
of particular importance as the data size grows.

In the second approach, the approximate EM algorithm,
the signal is reconstructed by iteratively maximizing the data
likelihood, which marginalizes over s; importantly, it does not
estimate it explicitly. In contrast to autocorrelation analysis,
the approximate EM algorithm scans through the whole dataset
in each iteration, and hence requires much longer computa-
tional time.

In this study, we demonstrate the reconstruction of the
underlying signal from the noisy measurement using the two
proposed approaches. Our numerical experiments show that
the approximate EM algorithm provides slightly more accurate
estimates of the signal in the low SNR regime, whereas
autocorrelation analysis is considerably faster, especially at
low SNR. It is empirically shown that the sample complexity
of both approaches scales as SNR−3 at low SNR, with details
discussed later in the text. In the high SNR regime, the sample
complexity of both methods scales as SNR−1, the same as
the sample complexity of the simple method that estimates
the signal by first detecting the signal occurrences and then
averaging.

The main contributions of this work are as follows.
1) We formalize MTD for an arbitrary signal spacing distri-

bution, making it a more realistic model for applications.
2) We propose two algorithms to solve the MTD problem.

In particular, our algorithm based on autocorrelations
illustrates why, to recover x, we need not estimate all
of s, but rather only a concise summary of it; and
why it is possible, in principle at least, to solve this
problem for arbitrary noise levels (given a sufficiently
long observation). For our second algorithm, we note

that the popular EM method is intractable, but we
show how to implement an approximation of it, which
performs well in practice.

3) For both algorithms, we design a coarse-to-fine multi-
resolution scheme to alleviate issues pertaining to non-
convexity. This is related to the ideas of frequency
marching which are often used in cryo-electron mi-
croscopy (cryo-EM) [6], [34].

II. AUTOCORRELATION ANALYSIS

In what follows, we discuss autocorrelations of both the
signal x (of length L) and the measurement y (of length N ).
To keep notation general, we here consider a sequence z of
length m, and define its autocorrelations of order q = 1, 2, . . .
for any integer shifts l1, l2, . . . , lq−1 as

aqz[l1, l2, . . . , lq−1] =
1

m

m−1∑
i=0

z[i]z[i+ l1] · · · z[i+ lq−1],

where z is zero-padded for indices out of the range [0,m−1].
We have m = L when z represents the signal x and
m = N when z represents the measurement y. Since the
autocorrelations only depend on the differences of the integer
shifts and are invariant under any permutation of the shifts,
for the second- and third-order autocorrelations we have the
symmetries

a2
z[l] = a2

z[−l], a3
z[l1, l2] = a3

z[l2, l1] = a3
z[−l1, l2 − l1]. (2)

For applications of higher-order autocorrelations and their
symmetries, see for example [4], [22], [31], [35].

In this section, we describe how the autocorrelations of the
noisy measurement y are related to the underlying signal x.
These relations are later used to estimate x without the need
to identify the locations of signal occurrences, which are
nuisance variables and difficult, if not impossible, to determine
reliably at high noise levels. For completeness, we include
a brief discussion of the special case where the signals are
well separated and refer the reader to [9], [10] for details.
The generalization to an arbitrary signal spacing distribution
follows.

A. Well-separated signals
The signals are said to be well-separated when the consec-

utive non-zero entries of s are separated by at least 2L − 1
positions. Under this condition, the autocorrelations of y with
integer shifts l1, l2, . . . , lq−1 within the range [−(L−1), L−1]
are unaffected by the relative positions of signal occurrences.
As a result, these autocorrelations of y provide fairly direct
information about those of x, and therefore about x itself.

Due to the presence of Gaussian noise, the entries of y are
stochastic. Taking the expectations of the first three autocorre-
lations of y with respect to the distribution of Gaussian noise,
we obtain these relations (see Appendix A):

Eε{a1
y} = ρ0a

1
x (3)

Eε{a2
y[l]} = ρ0a

2
x[l] + σ2δ[l] (4)

Eε{a3
y[l1, l2]} = ρ0a

3
x[l1, l2]

+ ρ0a
1
xσ

2(δ[l1] + δ[l2] + δ[l1 − l2]), (5)
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where 0 ≤ l < L and 0 ≤ l1 ≤ l2 < L. Here,
ρ0 = ML/N denotes the signal density, where M is the
number of signal occurrences in y. We assume M grows with
N at the constant rate ρ0/L. The delta functions, defined by
δ[0] = 1 and δ[l 6= 0] = 0, are due to the autocorrelations
of the white Gaussian noise. As indicated by the studies in
phase retrieval [7], [12], [15], in general a 1D signal x cannot
be uniquely determined by its first two autocorrelations. It is
thus necessary (and generically sufficient [10]) to include the
third-order autocorrelations to uniquely determine x.

The expectations of the autocorrelations of y are estimated
by averaging over the given noisy measurement. This data
reduction requires only one pass over the data, which is a great
computational advantage as the data size grows. As shown in
Appendix A, for a given signal x, the average over the noisy
entries of y gives the relations:

a1
y = Eε{a1

y}+ η1

a2
y[l] = Eε{a2

y[l]}+ η2[l]

a3
y[l1, l2] = Eε{a3

y[l1, l2]}+ η3[l1, l2],

where η1, η2[l] and η3[l1, l2] are random variables with zero
mean and variances O

(
σ2/N

)
, O
(
(σ2+σ4)/N

)
and O

(
(σ2+

σ6)/N
)

respectively. For autocorrelations of order q, the
standard deviations scale as σq/

√
N at high noise levels.

Therefore, we need
√
N/σq � 1 in order for the aqy calculated

from the noisy measurement to be a good estimator for
Eε{aqy}, and thus to establish a reliable relation with the
signal x such as (3)-(5). Since the SNR is proportional to
σ−2, the sample complexity therefore scales as SNR−q . We
also expect the error of the reconstructed signal to depend
on the errors of the highest-order autocorrelations used in the
analysis at high noise levels.

We estimate the signal density ρ0 and signal x by fitting the
first three autocorrelations of y via non-linear least squares:

f(ρ̂0, x̂) = (a1
y − ρ̂0a

1
x̂)2 +

1

L

L−1∑
l=0

(a2
y[l]− ρ̂0a

2
x̂[l]− σ2δ[l])2

+
2

L(L+ 1)

L−1∑
l2=0

l2∑
l1=0

(
a3
y[l1, l2]− ρ̂0a

3
x̂[l1, l2]

− ρ̂0a
1
x̂σ

2(δ[l1] + δ[l2] + δ[l1 − l2])

)2

. (6)

The weights are chosen as the inverse of the number of
terms in the respective sums. Since the autocorrelations have
symmetries, as indicated in (2), the summations above are
restricted to the non-redundant shifts. Due to the errors in
estimating Eε{a3

y} with a3
y , we expect the root-mean-square

error of the reconstructed signal x̂,

RMSE(x̂) =
||x̂− x||2
||x||2

,

to scale as σ3 in the low SNR regime.
We mention that there exist alternative methods to fit the

observed autocorrelations. One possibility is to reformulate
the problem as a tensor sensing problem: the autocorrelations
are then linear functions of an (L + 1) × (L + 1) × (L + 1)

tensor. Such an approach has been proven to be effective for
the related problems of multi-reference alignment [5], [29]
and phase retrieval [16]. Similar formulations are also found
in tensor optimization [2], [30]. Nevertheless, this method
requires lifting the original problem to a higher-dimensional
space, which increases the computational burden and scales
poorly with the dimension of the problem. In contrast, our
least-squares formulation operates in the ambient dimension of
the problem and thus might be applicable to high-dimensional
setups.

B. Arbitrary spacing distribution

The condition of well-separated signals can be further
relaxed to allow arbitrary spacing distribution by assuming
that the signal occurrences in any subset of y follow the same
spatial distribution. To this end, we define the pair separation
function as follows.

Definition 1: For a given binary sequence s identifying M
starting positions of signal occurrences (that is,

∑
i s[i] = M ),

the pair separation function ξ[l] is defined as

ξ[l] =
1

M − 1

M−1∑
k=1

δ[sk−1 + l − sk], (7)

where sk indicates the index of the kth non-zero entry of the
sequence s. It is not hard to see that

∑
l ξ[l] = 1.

In particular, we force ξ[0] = · · · = ξ[L− 1] = 0 since we
exclude overlapping occurrences; then ξ[L] is the fraction of
pairs of consecutive signal occurrences that occur right next
to each other (no spacing at all), ξ[L + 1] is the fraction of
pairs of consecutive signal occurrences that occur with one
signal-free entry in between them, etc.

In contrast to the well-separated model, autocorrelations of
y may now involve correlating distinct occurrences of x, which
may be in various relative positions. The crucial observation is
that these autocorrelations depend only indirectly on s, namely,
through L − 1 entries of the unknown ξ, which have much
smaller dimensions than s. As shown in Appendix A, for a
given signal x, the autocorrelations of the given measurement
y gives the relations:

a1
y = Eε{a1

y}+ η′1 = ρ0a
1
x + η′1 (8)

a2
y[l] = Eε{a2

y[l]}+ η′2[l]

= ρ0a
2
x[l] + ρ0

L+l−1∑
j=L

ξ[j]a2
x[j − l] + σ2δ[l] + η′2[l] (9)

a3
y[l1,l2] = Eε{a3

y[l1, l2]}+ η′3[l1, l2]

= ρ0a
3
x[l1, l2] + ρ0

L+l2−l1−1∑
j=L

ξ[j]a3
x[j − l2, j + l1 − l2]

+ ρ0

L+l1−1∑
j=L

ξ[j]a3
x[l2 − l1, j − l1] + ρ0a

1
xσ

2
(
δ[l1]

+ δ[l2] + δ[l1 − l2]
)

+ η′3[l1, l2], (10)

where 0 ≤ l < L and 0 ≤ l1 ≤ l2 < L. The random
variables η′1, η′2[l] and η′3[l1, l2] have zero mean and vari-
ances O

(
σ2/N

)
, O

(
(σ2 + σ4)/N

)
and O

(
(σ2 + σ6)/N

)
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respectively. Note that (8)–(10) reduce to (3)–(5) when ξ[L] =
ξ[L+1] = · · · = ξ[2L−2] = 0, as required by the condition of
well-separated signals. Expressions (8)–(10) further simplify
upon defining

ρ1[i] = ρ0ξ[i+ L], i = 0, 1, . . . , L− 2. (11)

After calculating the first three autocorrelations of y from
the noisy measurement, we estimate the signal x and the
parameters ρ0 and ρ1 by fitting the autocorrelations of y
through the non-linear least squares

f(x̂, ρ̂0, ρ̂1) = (a1
y − ρ̂0a

1
x̂)2

+
1

L

L−1∑
l=0

(
a2
y[l]− ρ̂0a

2
x̂[l]− σ2δ[l]−

L+l−1∑
j=L

ρ̂1[j − L]a2
x̂[j − l]

)2

+
2

L(L+ 1)

L−1∑
l2=0

l2∑
l1=0

(
a3
y[l1, l2]− ρ̂0a

3
x̂[l1, l2]− ρ̂0a

1
x̂σ

2
(
δ[l1]

+ δ[l2] + δ[l1 − l2]
)
−
L+l2−l1−1∑

j=L

ρ̂1[j − L]a3
x̂[j − l2, j + l1 − l2]

−
L+l1−1∑
j=L

ρ̂1[j − L]a3
x̂[l2 − l1, j − l1]

)2

. (12)

Numerically, we find that this problem can often be solved,
meaning that, even though s cannot be estimated, we can
still estimate x and the summarizing statistics ρ0 and ρ1.
As discussed in Section II-A, the RMSE of the reconstructed
signal is expected to scale as σ3 in the low SNR regime owing
to the errors in estimating Eε{a3

y} with a3
y .

C. Frequency marching

To minimize the least squares in (6) and (12), we use
the trust-regions method in Manopt [13] over the product
of the Euclidean manifold with the constraints that ρ̂0 and
ρ̂1 are positive. However, as the least squares problems are
inherently non-convex, we observe that the iterates of the trust-
regions method used for minimization are liable to stagnate in
local minima. To alleviate this issue, we adopt the frequency
marching scheme [6] in our optimization. The idea behind
frequency marching is based on the following heuristics:

1) The coarse-grained (low-resolution) version of the orig-
inal problem has a smoother optimization landscape so
that it is empirically more likely for the iterates of the
optimization algorithm to reach the global optimum of
the coarse-grained problem.

2) Intuitively, the global optimum of the original problem
can be reached more easily by following the path along
the global optima of a series of coarse-grained problems
with incremental resolution.

Our goal is to guide the iterates of the optimization algorithm
to reach the global optimum of the original problem by
successively solving the coarse-grained problems, which are
warm-started with the solution from the previous stage.

The coarse-grained problems are characterized by the order
of the Fourier series, nmax = 1, 2, . . . , bL/2c, used to express
the low-resolution approximate x(nmax) by

x(nmax)[l] = c0+

nmax∑
n=1

cn cos

(
2πnl

L

)
+dn sin

(
2πnl

L

)
, (13)

where l = 0, 1, . . . , L−1. Instead of the entries of x, the least
squares are minimized with respect to the Fourier coefficients
in our frequency marching scheme. The order nmax is related
to the spatial resolution by Nyquist rate:

∆x =

{
1 if nmax = (L− 1)/2,

L/2nmax otherwise.

The spatial resolution subdivides the signal x into L′ = L/∆x
units and represents the “step size” of the shifts for the coarse-
grained autocorrelations.

We define the coarse-grained autocorrelations of x(nmax) of
order q for integer shifts l1, l2, . . . , lq−1 as

bq
x(nmax) [l1, l2, . . . , lq−1]

= aq
x(nmax) [bl1∆xe, bl2∆xe, . . . , blq−1∆xe],

where b·e rounds the argument to the nearest integer. The
coarse-grained autocorrelations of y are given by sub-sampling
the original autocorrelations calculated from the full mea-
surement. With b[l] denoting the bin centered at l∆x, where
l = 0, 1, . . . , L′ − 1, we estimate the coarse-grained autocor-
relations of y by

b1y = a1
y

b2y[l] = B−1
2

∑
i∈b[l]

(
a2
y[i]− σ2δ[i]

)

b3y[l1, l2] = B−1
3

∑
i1∈b[l1]
i2∈b[l2]
i1≤i2

(
a3
y[i1, i2]

− a1
yσ

2
(
δ[i1] + δ[i2] + δ[i1 − i2]

))
,

where 0 ≤ l < L′, 0 ≤ l1 ≤ l2 < L′, and B2 and B3 represent
the number of terms in the respective sums.

Following the discussion in Section II-B, we relate the first
three autocorrelations of y to those of x(nmax), as defined in
(13), by

b1y ≈ ρ0b
1
x(nmax)

b2y[l] ≈ ρ0b
2
x(nmax) [l] +

L′+l−1∑
j=L′

ρ
(nmax)
1 [j − L′]b2x(nmax) [j − l]

b3y[l1, l2]} ≈ ρ0b
3
x(nmax) [l1, l2]

+

L′+l2−l1−1∑
j=L′

ρ
(nmax)
1 [j − L′]b3x(nmax) [j − l2, j + l1 − l2]

+

L′+l1−1∑
j=L′

ρ
(nmax)
1 [j − L′]b3x(nmax) [l2 − l1, j − l1].

The autocorrelations are related by approximation instead
of equality to reflect the errors due to the low-resolution
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approximation. Above, we define ρ
(nmax)
1 as the product of

the signal density ρ0 and the coarse-grained pair separation
function:

ρ
(nmax)
1 [i] = ρ0ξ

(nmax)[i+ L′], i = 0, 1, . . . , L′ − 2, (14)

where ξ(nmax) is defined as

ξ(nmax)[i] =

b(i+1/2)∆xe−1∑
l=max{0,b(i−1/2)∆xe}

ξ[l]. (15)

In each stage of frequency marching, we estimate the Fourier
coefficients, which are related to x(nmax) through (13), and the
parameters ρ0, ρ

(nmax)
1 by fitting the coarse-grained autocorre-

lations of y through the non-linear least squares

f({ĉ0, . . . , ĉnmax}, {d̂1, . . . , d̂nmax}, ρ̂0, ρ̂
(nmax)
1 )

= (b1y − ρ̂0b
1
x̂(nmax))

2 +
1

L′

L′−1∑
l=0

(
b2y[l]− ρ̂0b

2
x̂(nmax) [l]

−
L′+l−1∑
j=L′

ρ̂
(nmax)
1 [j − L′]b2x̂(nmax) [j − l]

)2

+
2

L′(L′ + 1)

L′−1∑
l2=0

l2∑
l1=0

(
b3y[l1, l2]− ρ̂0b

3
x̂(nmax) [l1, l2]

−
L′+l2−l1−1∑

j=L′

ρ̂
(nmax)
1 [j − L′]b3x̂(nmax) [j − l2, j + l1 − l2]

−
L′+l1−1∑
j=L′

ρ̂
(nmax)
1 [j − L′]b3x̂(nmax) [l2 − l1, j − l1]

)2

.

Our frequency marching scheme increments the order nmax

from 1 to bL/2c, and the computed solution of each stage is
used to initialize optimization in the next stage.

III. EXPECTATION MAXIMIZATION

In this section, as an alternative to the autocorrelations ap-
proach, we describe an approximate EM algorithm to address
both the cases of well-separated signals and arbitrary spacing
distribution. A frequency marching scheme is also designed to
help the iterates of the EM algorithm converge to the global
maximum of the data likelihood.

A. Well-separated signals

Given the measurement y that follows the MTD model (1),
the maximum marginal likelihood estimator (MMLE) for the
signal x is the maximizer of the likelihood function p(y|x).
Within the EM framework [18], the nuisance variable s is
treated as a random variable drawn from some distribution un-
der the condition of non-overlapping signal occurrences. The
EM algorithm estimates the MMLE by iteratively applying
the expectation (E) and maximization (M) steps. Specifically,
given the current signal estimate xk, the E-step constructs the
expected log-likelihood function

Q(x|xk) =
∑
s

p(s|y, xk) log p(y, s|x),

where the summation runs over all admissible configurations
of the binary sequence s. The signal estimate is then updated
in the M-step by maximizing Q(x|xk) with respect to x.
The major drawback of this approach is that the number
of admissible configurations for s grows exponentially with
the problem size. Therefore, the direct application of the EM
algorithm is computationally intractable, even for very short
measurements.

In our framework of the approximate EM algorithm, we first
partition the measurement y into Nd = N/L non-overlapping
segments, each of length L, and denote the mth segment
by ym. Overall, the signal can occur in 2L− 1 different ways
when it is present in a segment. The signal is estimated by the
maximizer of the approximate likelihood function

p(y0, y1, . . . , yNd−1|x) ≈
Nd−1∏
m=0

p(ym|x), (16)

where we ignore the dependencies between segments. Our ap-
proximate EM algorithm works by applying the EM algorithm
to estimate the MMLE of (16), without any prior on the signal.
As we will see in Section IV, the validity of the approximation
is corroborated by the results of our numerical experiments.

Depending on the position of signal occurrences, the seg-
ment ym can be modeled by

ym = CRlmZx+ εm, εm ∼ N (0, σ2IL).

Here, Z first zero-pads L entries to the left of x, and Rlm
circularly shifts the zero-padded sequence by lm positions,
that is,

(RlmZx)[l] = (Zx)[(l + lm) mod 2L],

where lm = 0, 1, . . . , 2L − 1 and is treated as a random
variable. The operator C then crops the first L entries of the
circularly shifted sequence, which are further corrupted by ad-
ditive white Gaussian noise. In this generative model, lm = 0
represents no signal occurrence in ym, and lm = 1, . . . , 2L−1
enumerate the 2L− 1 different ways a signal can appear in a
segment.

In the E-step, our algorithm constructs the expected log-
likelihood function

Q(x|xk) =

Nd−1∑
m=0

2L−1∑
l=0

p(l|ym, xk) log p(ym, l|x) (17)

given the current signal estimate xk, where

p(ym|l, x) ∝
L−1∏
i=0

exp

(
− (ym[i]− (CRlZx)[i])2

2σ2

)
, (18)

with the normalization
∑2L−1
l=0 p(ym|l, x) = 1. From Bayes’

rule, we have

p(l|ym, xk) =
p(ym|l, xk)p(l|xk)∑2L−1

l=0 p(ym|l, xk)p(l|xk)
, (19)

which is the normalized likelihood function p(ym|l, xk),
weighted by the prior distribution p(l|xk). In general, the prior
distribution p(l|xk) is independent of the model xk and can
be estimated simultaneously with the signal.
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Denoting the prior distribution p(l) by α[l], we rewrite (17)
as (up to an irrelevant constant)

Q(x, α|xk, αk) =

Nd−1∑
m=0

2L−1∑
l=0

p(l|ym, xk)

×
(

log p(ym|l, x) + logα[l]

)
.

We note that the dependence of Q(x, α|xk, αk) on the current
prior estimates αk lies in p(l|ym, xk) through (19). The M-
step updates the signal estimate and the priors by maximizing
Q(x, α|xk, αk) under the constraint that the priors lie on the
simplex ∆2L:

xk+1, αk+1 = arg max
x,α

Q(x, α|xk, αk) s.t. α ∈ ∆2L. (20)

As shown in Appendix B, we obtain the update rules

xk+1[j] =

∑Nd−1
m=0

∑j+L
l=j+1 p(l|ym, xk)ym[j + L− l]∑Nd−1
m=0

∑j+L
l=j+1 p(l|ym, xk)

, (21)

where 0 ≤ j < L, and

αk+1[l] =
1

Nd

Nd−1∑
m=0

p(l|ym, xk), (22)

where 0 ≤ l < 2L. We repeat the iterations of the EM
algorithm until the estimates stop improving, as judged within
some tolerance.

B. Arbitrary spacing distribution

We extend the approximate EM approach to address arbi-
trary spacing distribution of signal occurrences by reformulat-
ing the probability model: each segment ym can now contain
up to two signal occurrences. In this case, the two signals can
appear in L(L − 1)/2 different combinations in a segment,
which is explicitly modeled by

ym = CRlm1 Zx+ CRlm2 Zx+ εm, εm ∼ N (0, σ2IL),

where L < lm1 < 2L and 0 < lm2 ≤ lm1 − L. Given the signal
estimate xk and the shifts lm1 = l1, l

m
2 = l2, the likelihood

function p(ym|l1, l2, xk) can be written as

p(ym|l1, l2, xk) ∝
L−1∏
i=0

exp

(
− 1

2σ2

×
[
ym[i]− (CRl1Zxk)[i]− (CRl2Zxk)[i]

]2)
, (23)

and we have the normalization condition

2L−1∑
l=0

p(ym|l, xk) +

2L−1∑
l1=L+1

l1−L∑
l2=1

p(ym|l1, l2, xk) = 1.

Incorporating the terms with two signal occurrences, the E-
step constructs the expected log-likelihood function as

Q(x, α|xk, αk)

=

Nd−1∑
m=0

[ 2L−1∑
l=0

p(l|ym, xk)

(
log p(ym|l, x) + logα[l]

)

+
2L−1∑
l1=L+1

l1−L∑
l2=1

p(l1, l2|ym, xk)

×
(

log p(ym|l1, l2, x) + logα[l1, l2]

)]
, (24)

where the prior p(l1, l2) is denoted by α[l1, l2].
Under the assumption that the signal occurrences in any

subset of y follow the same spatial distribution, we can
parametrize the priors with the pair separation function ξ (see
Definition 1). Recall that (M − 1)ξ[l] is the number of pairs
of consecutive signal occurrences whose starting positions are
separated by exactly l positions. The priors α[l1, l2] can be
related to the probability that two signal occurrences appear
in the combination specified by (l1, l2) in a segment of length
L selected from the measurement y, which is estimated by

α[l1, l2] =
(M − 1)ξ[l1 − l2]

N − L+ 1
≈ M

N
ξ[l1 − l2], (25)

where L < l1 < 2L and 0 < l2 ≤ l1−L. Here, (M−1)ξ[l1−
l2] is the number of segments that realize the configuration
of signal occurrences specified by (l1, l2), and N − L + 1
indicates the total number of segment choices. The priors α[l]
can similarly be related to the probability that a signal occurs
in the way specified by l in a segment of length L:

α[l] = α[2L− l]

=
(M − 1)ξ[2L− l] + (M − 1)ξ[2L− l + 1] + · · ·

N − L+ 1

≈ M

N

∞∑
j=2L−l

ξ[j], (26)

where 0 < l ≤ L. An interesting observation is that the
number of signal occurrences M can be estimated by

α[L] ≈ M

N

∞∑
j=L

ξ[j] =
M

N
,

since the signal occurrences are required not to overlap. The
value of the prior α[0] is determined by the normalization

2L−1∑
l=0

α[l] +
2L−1∑
l1=L+1

l1−L∑
l2=1

α[l1, l2] = 1. (27)

From (25), (26) and (27), we see that the priors are uniquely
specified by the positive parameters α[0], α[1], ρ1[0], ρ1[1],
. . . , ρ1[L−2], with ρ1 defined in (11). Therefore, the normal-
ization (27) can be rewritten as

α[0] + (2L− 1)α[1] +
L−2∑
i=0

i+ L

L
ρ1[i] = 1. (28)



7

In the special case of well-separated signals, where ξ[i] = 0
for L ≤ i ≤ 2L− 2, we have α[1] = α[2] = · · · = α[2L− 1]
and the normalization α[0] + (2L− 1)α[1] = 1.

In the M-step, we update the signal estimate and the
parameters α[0], α[1], ρ1 by maximizing Q(x, α|xk, αk) under
the constraint that (28) is satisfied:

xk+1, αk+1[0], αk+1[1], {ρ1}k+1

= arg max
x,α[0],α[1],ρ1

Q(x, α|xk, αk) s.t. (28) is satisfied. (29)

As shown in (24), Q(x, α|xk, αk) is additively separable for
x and α, so the constrained maximization (29) can be reached
by maximizing Q(x, α|xk, αk) with respect to x and the pa-
rameters α[0], α[1], ρ1 separately. Maximizing Q(x, α|xk, αk)
with respect to x yields the update rule (see Appendix C for
derivation)

xk+1[j]

=

[Nd−1∑
m=0

( j+L∑
l=j+1

p(l|ym, xk)ym[j + L− l]

+

j+L∑
l1=L+1

l1−L∑
l2=1

p(l1, l2|ym, xk)ym[j + L− l1]

+

2L−1∑
l1=L+j+1

l1−L∑
l2=j+1

p(l1, l2|ym, xk)ym[j + L− l2]

)]

×
[Nd−1∑
m=0

( j+L∑
l=j+1

p(l|ym, xk) +

j+L∑
l1=L+1

l1−L∑
l2=1

p(l1, l2|ym, xk)

+
2L−1∑

l1=L+j+1

l1−L∑
l2=j+1

p(l1, l2|ym, xk)

)]−1

, (30)

where 0 ≤ j < L. To update the parameters α[0], α[1], ρ1,
we note that the function Q(x, α|xk, αk) is concave with
respect to these parameters and the constraint (28) forms a
compact convex set. Therefore, the constrained maximization
is achieved using the Frank-Wolfe algorithm [20].

C. Frequency marching

Because the iterates of the EM algorithm are not guaranteed
to converge to the maximum likelihood, we develop a fre-
quency marching scheme to help the iterates converge to the
global maximum. Recall that frequency marching converts the
original optimization problem into a series of coarse-grained
problems with gradually increasing resolution. The coarse-
grained version of the EM algorithm is characterized by the
spatial resolution

∆x = max(1, L/2nmax),

where nmax = 1, 2, . . . , b(L + 1)/2c. This spatial resolution
models the signal shifts in the coarse-grained problem, with

the corresponding expected likelihood function given by

Q(nmax)(x, α(nmax)|xk, α(nmax)
k )

=

Nd−1∑
m=0

[ 2L′−1∑
l=0

p(bl∆xe|ym, xk)

(
log p(ym|bl∆xe, x)

+ logα(nmax)[l]

)
+

2L′−1∑
l1=L′+1

l1−L′∑
l2=1

p(bl1∆xe, bl2∆xe|ym, xk)

×
(

log p(ym|bl1∆xe, bl2∆xe, x) + logα(nmax)[l1, l2]

)]
,

where L′ = L/∆x. This likelihood function is equal to the
original one shown in (24) restricted to the rounded shifts, so
the signal can be updated with (30) by ignoring the terms with
irrelevant shifts.

Mimicking (25) and (26), we construct the expressions for
the priors in the coarse-grained problem as

α(nmax)[l1, l2] ≈ M

N
ξ(nmax)[l1 − l2]

α(nmax)[l] = α(nmax)[2L′ − l] ≈ M

N

∞∑
j=2L′−l

ξ(nmax)[j],

where L′ < l1 < 2L′, 0 < l2 ≤ l1 − L′, 0 < l ≤ L′,
and ξ(nmax) is defined in (15). Since the priors are uniquely
specified by the positive parameters α(nmax)[0], α(nmax)[1],

ρ
(nmax)
1 [0], ρ

(nmax)
1 [1], . . . , ρ

(nmax)
1 [L′ − 2], with ρ

(nmax)
1 de-

fined in (14), we can update the priors by maximizing
Q(nmax)(x, α(nmax)|xk, α(nmax)

k ) with respect to these parame-
ters under the constraint that the parameters lie on the simplex
defined by

α(nmax)[0] + (2L′ − 1)α(nmax)[1] +

L′−2∑
i=0

i+ L′

L′
ρ

(nmax)
1 [i] = 1.

Incrementing from nmax = 1 to nmax = b(L + 1)/2c,
the estimated signal and priors in each stage of frequency
marching are used to initialize the optimization problem in
the next stage.

IV. NUMERICAL EXPERIMENTS

This section describes the construction of our synthetic
data and the performance of the two proposed methods.1 A
measurement is generated by first sampling M integers from
[0, N −L], with the constraint that any two samples differ by
at least L+W entries, for some integer W . We use W = L−1
for the case of well-separated signals, while W = 0 is chosen
to test our methods for arbitrary spacing distribution of signal
occurrences. The sampling is done by generating the random
integers uniformly one by one, rejecting any integer that would
violate the constraint with respect to previously accepted
samples. The M integers indicate the starting positions of
the signal occurrences, which are recorded as the non-zero
entries of the binary sequence s. The noisy measurement y is
given by the linear convolution of s with the signal x, with

1The code for all experiments is publicly available at https://github.com/
tl578/multi-target-detection.
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Fig. 2. (a) The signal used to generate our synthetic data, with the `2 norm
scaled to

√
L. (b), (c) Signals corrupted by additive white Gaussian noise

with zero mean and standard deviations σ = 1 and σ = 2.

each entry of y further corrupted by additive white Gaussian
noise of zero mean and variance σ2. Our synthetic data all
have length N = 106, and are constructed with the signal
shown in Figure 2(a), which has length L = 10. Also shown in
Figures 2(b) and 2(c) are examples of the corrupted signals by
different levels of noise. The number of signal occurrences M
is adjusted so that the signal density ρ0 = ML/N is equal to
0.3 and 0.5 for the cases of well-separated signals and arbitrary
spacing distribution respectively. Figure 3 shows the resulting
pair separation function for our test case of arbitrary spacing
distribution.

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

ξ[
ℓ]

ℓ

Fig. 3. Pair separation function to test arbitrary signal spacing distributions.

For both cases of signal spacing distribution, we reconstruct
the signal from synthetic data using the two proposed methods
with the frequency marching scheme over a wide range of σ.
When the frequency marching scheme is not implemented, we
observe that the algorithms usually suffer from large errors
due to the non-convexity of the problems. A total of 20
instances of synthetic data are generated for each value of
σ, and each instance is solved by the two methods using the
frequency marching schemes. For our autocorrelation analysis
methods, we run the optimization with 10 different random
initializations and retain the one that minimizes the cost
function, as defined in (6) or (12). For the EM approach, we
also use 10 random initializations and retain the solution with
the maximum data likelihood. Given the signal estimate xk, we
approximate the data likelihood for the cases of well-separated
signals and arbitrary spacing distribution by

p(y|xk) ≈
Nd−1∏
m=0

2L−1∑
l=0

p(ym|l, xk)α[l]

and

p(y|xk) ≈
Nd−1∏
m=0

( 2L−1∑
l=0

p(ym|l, xk)α[l]

+
2L−1∑
l1=L+1

l1−L∑
l2=1

p(ym|l1, l2, xk)α[l1, l2]

)
respectively. This is the same approximation we use to formu-
late the EM algorithm.

10−1.5 10−1 10−0.5 100 100.5

10−4

10−3

10−2

10−1

100

AA
EM
deconv
known s

RM
SE

σ

slope = 3

slope = 1

Fig. 4. The RMSEs of the reconstructed signal from data generated with well-
separated occurrences. We show performance of our autocorrelation analysis
(AA) and of expectation-maximization (EM). Also shown are the RMSEs of
the signal estimated by the oracle-based deconvolution algorithm ‘deconv’
described in Section IV and the RMSEs of the estimated signal when the
binary sequence s is known.

The RMSEs of the reconstructions for the case of well-
separated signals are shown in Figure 4. As predicted in
Section II-A, the RMSE for autocorrelation analysis scales
in proportion to σ at high SNR, and to σ3 at low SNR.
Interestingly, the EM algorithm exhibits the same behavior,
which empirically shows that the two approaches share the
same scaling of sample complexity in the two extremes of
noise levels. Figure 5(a) and 5(b) show an instance of the
signals reconstructed from data generated with σ = 100.3 and
σ = 100.5 respectively. The same scaling is not observed for
the reconstructed signal density ρ0 (not shown), although the
relative errors are generally well below a few percents even
in the noisiest cases.

0 3 6 9
0.0
0.5
1.0
1.5
2.0

0 3 6 9 0 3 6 9 0 3 6 9

(a) (b) (c) (d)

ground truth autocorrelation analysis EM

Fig. 5. (a), (b) An instance of the reconstructed signals from data generated
with well-separated occurrences for σ = 100.3 and σ = 100.5 respectively.
(c), (d) An instance of the reconstructed signals from data generated with an
arbitrary spacing distribution for σ = 100.3 and σ = 100.5 respectively.

Figure 6 shows the RMSEs of the reconstructed signal
for an arbitrary spacing distribution displayed in Figure 3.
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Fig. 6. The RMSEs of the reconstructed signal from data generated with an
arbitrary spacing distribution. We show performance of our autocorrelation
analysis (AA) and of expectation-maximization (EM), both under the (incor-
rect) assumptions of well-separated signals (ws) and the (correct) arbitrary
spacing distribution model (asd). Also shown are the RMSEs of the signal
estimated by the oracle-based deconvolution algorithm ‘deconv’ described in
Section IV and the RMSEs of the estimated signal when the binary sequence
s is known.

As a comparison, we also run the estimation algorithms
under the (incorrect) assumption of well-separated signals on
the same datasets. We first see that autocorrelation analysis
assuming well-separated signals obtains poor reconstruction at
all noise levels. Although the EM approach that assumes well-
separated signals produces more accurate estimates, the nearly
constant RMSEs at high SNR indicate the systematic error
due to model misspecification. By contrast, the algorithms that
assume an arbitrary spacing distribution achieve much better
reconstruction, and the resulting RMSEs have the same scaling
behaviors at the two extremes of SNR as shown in Figure 4.
An instance of the signals reconstructed from data generated
with σ = 100.3 and σ = 100.5 are shown in Figure 5(c)
and 5(d) respectively.

One of the premises of this paper is that, at high noise levels,
detection-based methods are destined to fail because detection
cannot be done reliably. To support this theoretical argument
further, in Figures 4 and 6 we display the performance of
the following oracle, named ‘deconv’. This method is given
a strictly simpler task to solve: it must estimate x given
the observation y, the noise level σ and the number of
signal occurrences M , as well as the `2-distance between the
ground truth x and every single window of length L in the
observation y. Precisely, the oracle has access to the vector
z ∈ RN−L+1 defined for i = 0, . . . , N − L by

z[i] =
L−1∑
l=0

(x[l]− y[i+ l])
2
.

The vector z provides this estimator the advantage of finding
the likely locations of signal occurrences. If the norm of x
is known, this oracle advantage is equivalent to knowledge of
the cross-correlation between x and y. Then, the oracle-based
estimator ‘deconv’ proceeds as follows: it selects the index i
corresponding to the lowest value in z, excludes other indices
too close to i as prescribed by the signal separation model

under consideration, and repeats this procedure M times to
produce an estimator of s: the M starting positions of signal
occurrences in y. The signal x is then estimated by averaging
the M selected segments of y, effectively deconvolving y by
the estimator of s. To our point: despite the unfair oracle ad-
vantage, this estimator is unable to estimate x to a competitive
accuracy when the noise level is large.

Also plotted in Figures 4 and 6 are the RMSEs of the
estimated signal when the binary sequence s is known. In this
case, the RMSEs scale as σ and serve as the lower bounds of
any algorithm. We can see that, at the low noise levels, our
approximate EM algorithm performs nearly as well as the case
when s is known.

10−1.5 10−1 10−0.5 100 100.5
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EM
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Fig. 7. The (relative) RMSEs of the reconstructed values of ρ1 as defined
by (11), for the case of arbitrary spacing distribution.

Figure 7 shows the RMSEs of the reconstructed values of
ρ1 for the experiments “AA-asd” and “EM-asd” shown in
Figure 6. Although our methods are not able to reconstruct
ρ1 to high precision, the results shown in Figure 6 indicate
the necessity to include the pair separation function in the
model to achieve good signal reconstruction.
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arbitrary spacing distribution:
autocorrelation analysis
arbitrary spacing distribution: EM
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Fig. 8. The average run time to solve an instance of synthetic data for the
two methods in both cases of signal spacing distribution.

Figure 8 shows the average computation time for the main
methods in Figures 4 and 6. EM is slower because it cross-
correlates all the observed segments with the signal estimate
in each iteration. This issue becomes especially prominent in
the case of arbitrary spacing distribution. On the other hand,
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autocorrelation analysis requires shorter computation time by
summarizing the data as autocorrelation statistics with one
pass over the data. We note that the distinct computational
speeds for autocorrelation analysis and the EM algorithm
is also observed in the related problem of multi-reference
alignment [8], [14]. The difference in run time and the
similar reconstruction quality of the two methods at low SNR
make autocorrelation analysis the preferred approach for large
datasets.

V. DISCUSSION

In this study, we have presented two approaches—
autocorrelation analysis and an approximate EM algorithm—
to tackle the MTD problem without the need to detect the
positions of the underlying signal occurrences. By incorporat-
ing the notion of pair separation function, we generalize the
solution of the MTD problem from the special case of well-
separated signals to allow an arbitrary spacing distribution
of signal occurrence. It is empirically shown that the two
methods have the same scaling of sample complexity in the
two extremes of noise levels, in particular, SNR−3 at high
noise level. Since the optimizations in both methods are non-
convex, computing schemes based on frequency marching are
designed to help the iterates converge to the global optimum.

Our study of the MTD model is primarily motivated by
the goal to reconstruct the structures of small biomolecules
using cryo-EM [11], [21]. In a cryo-EM experiment, individual
copies of the target biomolecule are dispersed at unknown 2D
locations and 3D orientations in a thin layer of vitreous ice,
from which 2D tomographic projection images are produced
by an electron microscope. To minimize the irreversible struc-
tural damage, it is necessary to keep the electron dose low.
As a result, the projection images are considerably noisy, and
high-resolution structure estimation requires averaging over a
large number of noisy projections. In particular, as the size
of the molecule gets smaller, the SNR of the data drops
correspondingly.

Currently, the analysis workflow of cryo-EM data is roughly
divided into two steps: The first step, known as particle
picking, detects the locations of the biomolecules in the noisy
projection images. The 3D structure of the biomolecule is
reconstructed in the second step from the unoriented particle
projections. When the sizes of biomolecules get smaller, how-
ever, reliable detection of their positions becomes challenging,
which in turn hampers successful particle picking [3], [9].
It is estimated from first principles that, in order to obtain
a 3 Å resolution reconstruction, the particle size should be at
least 45 Å so that the particle occurrences can be accurately
detected [23]. The results of [9], [10] and this work suggest
that it is possible to bypass the need to detect particle positions
but still reconstruct the structure at high resolution.

A key feature of cryo-EM that the MTD model fails
to capture is that the “signals” are actually 2D projections
of the underlying biomolecules at random 3D orientations,
and the orientation distribution is usually non-uniform and
unknown. This distinction makes the direct application of
our approximate EM algorithm prohibitive, because each

observed window now needs to cross-correlate with model
projections with all possible 2D in-plane translations and
3D orientations, let alone the case where multiple copies of
biomolecules may appear in a window. Further approximations
such as representing the data and model projections in low-
dimensional subspaces [19], [27] seem necessary to push
this approach forward. We note that the use of frequency
marching in the MTD problem is also related to this idea: the
signal is mapped to low-dimensional subspaces with growing
dimensions specified by nmax.

On the other hand, the autocorrelations calculated from
the noisy measurements in cryo-EM involve averages over
both the 3D orientations and 2D in-plane translations. It
was pointed out that the 3D structure reconstruction problem
by fitting the first three autocorrelations of a biomolecule
might be ill-conditioned [9], so information from higher-
order autocorrelations seems required. We also expect the
cross-terms between 2D projections of different copies to
further complicate the reconstruction problem. The resolution
of these technical challenges may help extend the use of
cryo-EM to smaller biomolecules that are currently believed
insurmountable, and is the subject of our ongoing studies.
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APPENDIX A
DERIVATIONS OF RELATIONS (3)–(5) AND (8)–(10)

With the noisy measurement y defined in (1), we express
its first order autocorrelation as

a1
y =

1

N

N−1∑
i=0

(s ∗ x)[i] +
1

N

N−1∑
i=0

ε[i]

=
M

N

L−1∑
i=0

x[i] +
1

N

N−1∑
i=0

ε[i] = ρ0a
1
x +

1

N

N−1∑
i=0

ε[i].

Taking the expectation of a1
y with respect to the distribution

of Gaussian noise, we obtain

Eε{a1
y} = ρ0a

1
x,

with variance O(σ2/N). We note that this expression applies
to both the cases of well-separated signals and arbitrary
spacing distribution.

The second order autocorrelation of y with shifts l =
0, 1, . . . , L− 1 can be written as

a2
y[l] =

1

N

N−1∑
i=0

y[i]y[i+ l]

=
1

N

N−1∑
i=0

(
(s ∗ x)[i](s ∗ x)[i+ l] + (s ∗ x)[i]ε[i+ l]

+ ε[i](s ∗ x)[i+ l] + ε[i]ε[i+ l]

)
= a2

s∗x[l] +
1

N

N−1∑
i=0

ε[i]ε[i+ l]
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+
1

N

M−1∑
k=0

L−1∑
i=0

x[i](ε[sk − l + i] + ε[sk + l + i]), (31)

where a2
s∗x[l] denotes the second order autocorrelation of the

linear convolution s ∗ x with shifts l, and sk indicates the
index of the kth non-zero entry of the sequence s. Taking the
expectation of a2

y[l] with respect to the distribution of Gaussian
noise, we have

Eε{a2
y[l]} = a2

s∗x[l] + σ2δ[l].

The term that scales as O
(
ε2
)

in (31) contributes to the
variance by O

(
σ4/N

)
, while the terms that scale as O

(
ε
)

contribute to the variance by O
(
Mσ2/N2

)
. Since we assume

that M grows with N at a constant rate, the resulting variance
scales as O

(
(σ2 + σ4)/N

)
.

For well-separated signals,

a2
s∗x[l] =

M

N

L−1∑
i=0

x[i]x[i+ l] = ρ0a
2
x[l],

and we obtain the relation in (4). For arbitrary spacing
distribution, we need to include the correlation terms between
consecutive signal occurrences:

a2
s∗x[l] = ρ0a

2
x[l] +

M

N

L+l−1∑
j=L

ξ[j]

L−1∑
i=0

x[i]x[i+ j − l]

= ρ0a
2
x[l] + ρ0

L+l−1∑
j=L

ξ[j]a2
x[j − l],

which gives the relation in (9). The quantity ξ[j] denotes
the number of consecutive 1’s that are separated by exactly
j entries in the sequence s, divided by M − 1 so that∑
j ξ[j] = 1.
As for the third order autocorrelation of y with shifts 0 ≤

l1 ≤ l2 < L, we have

a3
y[l1, l2] =

1

N

N−1∑
i=0

y[i]y[i+ l1]y[i+ l2]

=
1

N

N−1∑
i=0

(
(s ∗ x)[i](s ∗ x)[i+ l1](s ∗ x)[i+ l2]

+ (s ∗ x)[i](s ∗ x)[i+ l1]ε[i+ l2] + (s ∗ x)[i]ε[i+ l1]ε[i+ l2]

+ ε[i](s ∗ x)[i+ l1](s ∗ x)[i+ l2] + ε[i](s ∗ x)[i+ l1]ε[i+ l2]

+ (s ∗ x)[i]ε[i+ l1](s ∗ x)[i+ l2] + ε[i]ε[i+ l1](s ∗ x)[i+ l2]

+ ε[i]ε[i+ l1]ε[i+ l2]

)
= a3

s∗x[l1, l2] +
1

N

N−1∑
i=0

ε[i]ε[i+ l1]ε[i+ l2]

+
1

N

M−1∑
k=0

L−1∑
i=0

(
x[i]
(
x[i+ l1] + ε[sk + l1 + i]

)
ε[sk + l2 + i]

+ ε[sk − l1 + i]x[i]
(
x[i+ l2 − l1] + ε[sk + l2 − l1 + i]

)
+
(
x[i− l2] + ε[sk − l2 + i]

)
ε[sk − l2 + l1 + i]x[i]

)
, (32)

where a3
s∗x[l1, l2] denotes the third order autocorrelation of

the linear convolution s ∗ x with shifts (l1, l2), and x is zero-
padded for indices out of the range [0, L− 1].

Taking the expectation of a3
y[l1, l2] with respect to the

distribution of Gaussian noise, we obtain

Eε{a3
y[l1, l2]}

= a3
s∗x[l1, l2] +

M

N
σ2
(
δ[l1] + δ[l2] + δ[l1 − l2]

) L−1∑
i=0

x[i]

= a3
s∗x[l1, l2] + ρ0a

1
xσ

2
(
δ[l1] + δ[l2] + δ[l1 − l2]

)
.

As for the variance, the term that scales as O
(
ε3
)

in (32)
contributes to the variance by O

(
σ6/N

)
, while the terms that

scale as O
(
ε
)

contribute to the variance by O
(
Mσ2/N2

)
.

Since we assume that M grows with N at a constant rate, the
resulting variance scales as O

(
(σ2 + σ6)/N

)
.

For well-separated signals, we have

a3
s∗x[l1, l2] = ρ0a

3
x[l1, l2],

and we obtain the relation in (5). By including the correlations
between consecutive signal occurrences, we expand a3

s∗x[l1, l2]
for the case of arbitrary spacing distribution as

a3
s∗x[l1, l2] = ρ0a

3
x[l1, l2]

+
M

N

L+l2−l1−1∑
j=L

ξ[j]

L−1∑
i=0

x[i+ j − l2]x[i+ j + l1 − l2]x[i]

+
M

N

L+l1−1∑
j=L

ξ[j]
L−1∑
i=0

x[i+ j − l1]x[i]x[i+ l2 − l1]

= ρ0a
3
x[l1, l2] + ρ0

L+l2−l1−1∑
j=L

ξ[j]a3
x[j − l2, j + l1 − l2]

+ ρ0

L+l1−1∑
j=L

ξ[j]a3
x[l2 − l1, j − l1],

which gives the relation in (10).

APPENDIX B
DERIVATION OF (21) AND (22)

The constrained maximization in (20) can be achieved with
the unconstrained maximization of the Lagrangian

L(x, α, λ) = Q(x, α|xk, αk) + λ

(
1−

2L−1∑
l=0

α[l]

)
,

where λ denotes the Lagrange multiplier. We note that the
constraints in (20) involve the inequalities that the priors
are non-negative. Such constrained maximization in general
cannot be achieved by maximizing the Lagrangian, for the
inequalities might be violated. As we will see later, however,
these inequalities are automatically satisfied at the computed
maximum (or local maximum) of the Lagrangian, which
justifies this approach.
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Since Q(x, α|xk, αk) is additively separable for x and α,
we maximize L(x, α, λ) with respect to x and α separately.
At the maximum of L(x, α, λ), we have

0 =
∂L
∂x[j]

=

Nd−1∑
m=0

2L−1∑
l=0

p(l|ym, xk)
∂ log p(ym|l, x)

∂x[j]
, (33)

where 0 ≤ j < L. With p(ym|l, x) give by (18), we can write

∂ log p(ym|l, x)

∂x[j]

= − ∂

∂x[j]

L−1∑
i=0

(ym[i]− (CRlZx)[i])2

2σ2

= − ∂

∂x[j]

L−1∑
i=0

(ym[i]− (Zx)[(i+ l) mod 2L])2

2σ2

= − 1

σ2

L−1∑
i=0

(
ym[i]− (Zx)[(i+ l) mod 2L]

)
× δ[(i+ l)− (j + L)]. (34)

Substituting this expression into (33), we obtain

Nd−1∑
m=0

j+L∑
l=j+1

p(l|ym, xk)(ym[j + L− l]− x[j]) = 0.

Rearranging the terms gives the update rule shown in (21).
In order to update the priors, we maximize L(x, α, λ) with

respect to α:

0 =
∂L
∂α[l]

=
1

α[l]

Nd−1∑
m=0

p(l|ym, xk)− λ,

where 0 ≤ l < 2L. We thus obtain the update rule for α as

α[l] =
1

λ

Nd−1∑
m=0

p(l|ym, xk),

and we can immediately solve λ = Nd from the normalization∑2L−1
l=0 α[l] = 1.

APPENDIX C
DERIVATION OF (30)

As shown in (24), Q(x, α|xk, αk) is additively separable
for x and α. Moreover, the constraint (28) only involves the
values of the parameters α[0], α[1], ρ1, so the maximization
of Q(x, α|xk, αk) is unconstrained on x. At the maximum of
Q(x, α|xk, αk), we have

∂Q(x, α|xk, αk)

∂x[j]
= 0

=

Nd−1∑
m=0

[ 2L−1∑
l=0

p(l|ym, xk)
∂ log p(ym|l, x)

∂x[j]

+

2L−1∑
l1=L+1

l1−L∑
l2=1

p(l1, l2|ym, xk)
∂ log p(ym|l1, l2, x)

∂x[j]

]
, (35)

where 0 ≤ j < L. With p(ym|l1, l2, xk) given by (23), we
obtain
∂ log p(ym|l1, l2, x)

∂x[j]

= − ∂

∂x[j]

L−1∑
i=0

(ym[i]− (CRl1Zx)[i]− (CRl2Zx)[i])2

2σ2

= − 1

2σ2

∂

∂x[j]

L−1∑
i=0

(
ym[i]− (Zx)[(i+ l1) mod 2L]

− (Zx)[(i+ l2) mod 2L]

)2

= − 1

σ2

L−1∑
i=0

(
ym[i]− (Zx)[(i+ l1) mod 2L]

− (Zx)[(i+ l2) mod 2L]

)
×
(
δ[(i+ l1)− (j + L)] + δ[(i+ l2)− (j + L)]

)
. (36)

Substituting (34) and (36) into (35), we obtain

0 =

Nd−1∑
m=0

[ j+L∑
l=j+1

p(l|ym, xk)(ym[j + L− l]− x[j])

+

j+L∑
l1=L+1

l1−L∑
l2=1

p(l1, l2|ym, xk)(ym[j + L− l1]− x[j])

+
2L−1∑

l1=L+j+1

l1−L∑
l2=j+1

p(l1, l2|ym, xk)(ym[j + L− l2]− x[j])

]
.

Rearranging the terms, we obtain the update rule in (30).
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