

The sample complexity of multi-reference alignment*

Amelia Perry[†], Jonathan Weed[†], Afonso S. Bandeira[‡], Philippe Rigollet[†], and Amit Singer[§]

Abstract. The growing role of data-driven approaches to scientific discovery has unveiled a large class of models that involve latent transformations with a rigid algebraic constraint. Three-dimensional molecule reconstruction in Cryo-Electron Microscopy (cryo-EM) is a central problem in this class. Despite decades of algorithmic and software development, there is still little theoretical understanding of the sample complexity of this problem, that is, number of images required for 3-D reconstruction. Here we consider multi-reference alignment (MRA), a simple model that captures fundamental aspects of the statistical and algorithmic challenges arising in cryo-EM and related problems. In MRA, an unknown signal is subject to two types of corruption: a latent cyclic shift and the more traditional additive white noise. The goal is to recover the signal at a certain precision from independent samples. While at high signal-to-noise ratio (SNR), the number of observations needed to recover a generic signal is proportional to $1/\text{SNR}$, we prove that it rises to a surprising $1/\text{SNR}^3$ in the low SNR regime. This precise phenomenon was observed empirically more than twenty years ago for cryo-EM but has remained unexplained to date. Furthermore, our techniques can easily be extended to the heterogeneous MRA model where the samples come from a mixture of signals, as is often the case in applications such as cryo-EM, where molecules may have different conformations. This provides a first step towards a statistical theory for heterogeneous cryo-EM.

Key words. Multi-reference alignment, method of invariants, bispectrum, cryo-EM

AMS subject classifications.

1. Introduction. Sample complexity is a concept at the cornerstone of statistics and machine learning with far reaching implications for experimental design and data collection strategies, ranging from polling voters for election prediction to training speech recognition systems. Loosely speaking, the sample complexity is the number of measurements needed to estimate model parameters at a prescribed accuracy. Perhaps the most fundamental question associated to sample complexity is its scaling with respect to signal-to-noise ratio (SNR) of the problem at hand. This question is of prime importance especially in modern problems arising in data-driven science that often feature a very low SNR.

In many traditional models, the sample complexity scales as $1/\text{SNR}$, but this question

*Submitted to the editors September 10, 2018.

Funding: AP is supported in part by NSF grant DMS-1541100, NSF CAREER Award CCF-1453261 and a grant from the MIT NEC Corporation. JW is supported in part by NSF Graduate Research Fellowship DGE-1122374. ASB was partially supported by NSF grants DMS-1317308, DMS-1712730, and DMS-1719545. Part of this work was done while ASB was with the Mathematics Department at MIT. PR is supported in part by NSF grants CAREER DMS-1541099, DMS-1541100, DMS-1712596 and DMS-TRIPODS-1740751; DARPA grant W911NF-16-1-0551, ONR grant N00014-17-1-2147, a grant from the MIT NEC Corporation, grant 2018-182642 from the Chan Zuckerberg Initiative DAF and the MIT Skoltech Seed Fund. AS was partially supported by ARO grant W911NF-17-1-0512, Award Number R01GM090200 from the NIGMS, FA9550-17-1-0291 from AFOSR, Simons Investigator Award and Simons Collaboration on Algorithms and Geometry from Simons Foundation, and the Moore Foundation Data-Driven Discovery Investigator Award.

[†]Massachusetts Institute of Technology, Cambridge, MA (jweed@mit.edu, rigollet@math.mit.edu).

[‡]Courant Institute of Mathematical Sciences, New York University, New York, NY (bandeira@cims.nyu.edu).

§Princeton University, Princeton, NJ (amits@math.princeton.edu).

31 remains elusive in more complex models that feature latent variables in order to account for
 32 heterogeneity in the data. In this paper, we examine the sample complexity of such complex
 33 models in which the signal undergoes two types of corruption: a latent linear transformation
 34 and noise addition. Of particular interest in applications are linear transformations that cor-
 35 respond to a group action. For example, in estimating a two-dimensional image from multiple
 36 arbitrarily rotated noisy copies, every measurement corresponds to an unknown element of
 37 the group of planar rotations $\text{SO}(2)$ that acts linearly on the data. Another example is the
 38 reconstruction problem in cryo-EM [16], a fundamental imaging technique that won the 2017
 39 Nobel Prize in Chemistry. In cryo-EM, the goal is to estimate the three-dimensional struc-
 40 ture of a molecule from many two-dimensional noisy tomographic projection images taken at
 41 unknown viewing angles. Here to every projection image corresponds an unknown element of
 42 the 3D rotation group $\text{SO}(3)$ and the linear transformation is a composition of a tomographic
 43 projection in a fixed direction with the group action of rotating the molecular structure (we
 44 ignore possible in-plane translations and other imaging effects). Other estimation problems
 45 of similar nature arise in many other scientific and engineering disciplines, such as structure
 46 from motion (SfM) in computer vision [3], simultaneous localization and mapping (SLAM)
 47 in robotics [28], X-ray free electron lasers (XFEL) in structural biology [12, 17], crystalline
 48 simulations [33], and shape matching and image registration and alignment problems arising
 49 in geology, medicine, and paleontology, to name a few [14, 15, 30].

50 Multi-reference alignment (MRA) [6] is one of the simplest models that is able to capture
 51 fundamental aspects of this class of problems, rendering it ideal for theoretical study. In this
 52 model one observes n independent data points y_1, \dots, y_n given by

53 (1.1)
$$y_i = R_{\ell_i} \theta + \sigma \xi_i,$$

54 where R_{ℓ_i} is a cyclic shift by an unknown number ℓ_i of coordinates: the j th coordinate of
 55 $R_{\ell_i} \theta \in \mathbb{R}^d$ is given by $(R_{\ell_i} \theta)_j = \theta_{j+\ell_i} \pmod{d}$. We assume isotropic Gaussian noise $\xi_i \sim$
 56 $\mathcal{N}(0, I_d)$ i.i.d. and independent of ℓ_1, \dots, ℓ_n . We make no assumptions on the shifts ℓ_1, \dots, ℓ_n ;
 57 however, by applying an independent and uniform random cyclic shift to each observation,
 58 we can always reduce the MRA model to the case where ℓ_1, \dots, ℓ_n are drawn i.i.d. uniformly
 59 from $[d]$. We therefore focus on this case for simplicity and generality. The goal is to estimate
 60 the unknown vector $\theta \in \mathbb{R}^d$.

61 The MRA model is illustrated in Figure 1. We refer to $\|\theta\|_2^2/\sigma^2$ as the SNR; without
 62 loss of generality we assume in the sequel that $\|\theta\|_2 = 1$, implying $\text{SNR} = 1/\sigma^2$. The latent
 63 transformations R_{ℓ} in MRA correspond to the action of the cyclic group $\mathbb{Z}/d\mathbb{Z}$ on real-valued
 64 signals of length d . The simplicity of MRA in the class of problems mentioned earlier stems
 65 from the following facts: (i) the group $\mathbb{Z}/d\mathbb{Z}$ is finite (has exactly d elements) and commutative
 66 (i.e., $R_{\ell}R_m = R_mR_{\ell}$ for all ℓ, m), and (ii) no further linear operation (such as projection as
 67 in cryo-EM) is involved.

68 In this paper, we study the sample complexity of MRA, that is, the number of observations
 69 needed to recover a generic signal with a given accuracy as a function of the SNR. Our results
 70 reveal a striking difference between the high and low SNR regimes. On the one hand, the
 71 picture at a high SNR is fairly standard in signal processing: the sample complexity scales
 72 proportionally to $1/\text{SNR}$. On the other hand, using information theoretic arguments, we show
 73 that the presence of the latent cyclic shifts has a profound effect on the sample complexity

74 at low SNR, where the optimal sample complexity becomes proportional to $1/\text{SNR}^3$. Twenty
 75 years ago, in a seminal paper by Sigworth [31] that introduced maximum likelihood estimation
 76 to the cryo-EM field, an analogous phenomenon was empirically observed (without theoretical
 77 explanation) in two-dimensional multi-reference alignment (Figure 2), where the group of
 78 transformations are planar rigid motions. Our results shed light on the fundamental reasons
 79 behind this behavior of the sample complexity.

80 More specifically, our results on the sample complexity of MRA highlight the role of the
 81 *third moment tensor* (known in signal processing as the *bispectrum*) in the estimation task.
 82 From this analysis, we not only show that the $1/\text{SNR}^3$ dependence is unavoidable for any
 83 method in the low-SNR regime, but also give a very simple algorithm based on the third
 84 moment tensor, which achieves the optimal sample complexity efficiently and provably.

85 By establishing the correct sample complexity for the MRA model, this work represents
 86 the first step towards determining the sample complexity of the reconstruction problem in
 87 cryo-EM and other applications involving more complicated group actions. In fact, we com-
 88plement our results on MRA by showing that a simple extension of our algorithm applies to
 89 the heterogeneous case where θ in (1.1) is randomly drawn from a finite family of linearly inde-
 90 pendent vectors. Using ideas initiated in the present paper, follow-up work [5] has confirmed
 91 that similar phenomena arise for molecule reconstruction in cryo-EM, at least in a slightly
 92 weaker sense than the one presented in this paper.

93 **2. Overview.** In this section, we give an overview of our contributions and how they fit
 94 in the existing literature.

95 **2.1. Existing methods.** The difficulty of the multi-reference alignment problem resides in
 96 the fact that both the signal $\theta \in \mathbb{R}^d$ and the shifts $\ell_1, \dots, \ell_n \in \mathbb{Z}_d$ are unknown. If the shifts
 97 were known, one could easily estimate θ by taking the average of $R_{\ell_i}^{-1} y_i, i = 1, \dots, n$. In fact,
 98 this simple observation is the basis of the so-called “synchronization” approach [32, 6, 7]: first
 99 estimate the shifts by $\tilde{\ell}_1, \dots, \tilde{\ell}_n \in \mathbb{Z}_d$ and then estimate θ by averaging the $R_{\tilde{\ell}_i}^{-1} y_i$ ’s. While the
 100 synchronization approach can be employed at high SNR, it is limited by the fact that at low
 101 SNR, even alignment of observations to the true signal yields inaccurate shift estimates [4].

102 Instead, we take a different approach that exploits the connection between MRA and
 103 Gaussian mixture models. This connection is based on the fact that in MRA, the data y is
 104 distributed according to a uniform mixture of Gaussians whose centers are the rotated vectors
 105 $R_1\theta, \dots, R_d\theta$. To analyze MRA, we therefore rely on techniques from the Gaussian mixture
 106 model literature. One insight from this literature, which is crucial to our work, is that there
 107 are two separate estimation problems that can be posed for Gaussian mixture models. The
 108 first is *clustering*, in which the goal is to assign a label to each datapoint corresponding to the
 109 Gaussian from which it was drawn. The second is *parameter estimation*, in which the goal is
 110 simply to learn the Gaussians themselves—i.e., to identify the mean vectors and covariance
 111 matrices of each Gaussian component, without necessarily assigning a label to each point.
 112 Previous theoretical work on MRA has focused on the first task, which forms the basis for
 113 the synchronization approach. By contrast, our approach is based on the second task: we
 114 seek only to estimate the underlying parameters of the mixture; as they correspond to the
 115 underlying signal of interest. This connection also motivates our theoretical approach: we
 116 develop an approach based on the *method of moments*, which was introduced in Pearson’s

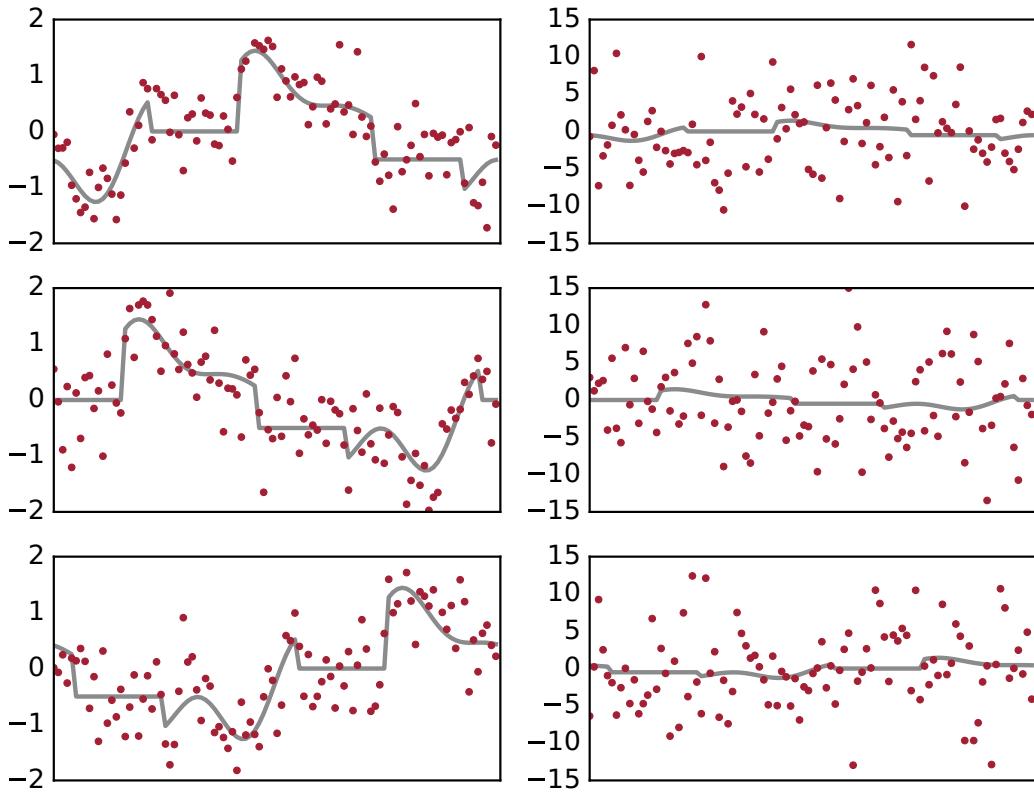


Figure 1. Instances of the multi-reference alignment problem, at low ($\sigma \approx .5$, left column) and high ($\sigma \approx 3$, right column) noise levels. We plot the values of a vector in \mathbb{R}^d for $d = 100$. Randomly shifted copies of a smoothed version of the underlying signal (θ) appears in gray, and a smoothed version of the noisy observation (y) appears in red. When the noise level is low, salient features of the signal are still visible despite the noise; in the presence of large noise, however, the signals cannot reliably be aligned. We establish the optimal sample complexity of the large noise problem.

117 seminal paper on Gaussian mixture models [27] and has recently led to efficient estimators
 118 with provably optimal guarantees [26].

119 **2.2. The method of invariants.** In this work, we develop a new approach to MRA based
 120 on the method of moments. This method focuses on the tensors $T^{(r)}(\theta)$ defined by

121 (2.1)
$$T^{(r)}(\theta) := \frac{1}{d} \sum_{\ell=1}^d (R_\ell \theta)^{\otimes r}.$$

122 These tensors are precisely the moments of the uniform distribution over the set of vectors
 123 $\{R_1 \theta, \dots, R_d \theta\}$. We first establish that the parameter θ can be identified by the moment
 124 tensors $\{T^{(r)}(\theta)\}_{r \geq 1}$. We then show that we can estimate the moment tensors accurately
 125 enough to recover the original signal.

126 The method of moments has an alternate interpretation in the context of MRA and
 127 similar problems involving group actions. One striking fact is that the moment tensors in

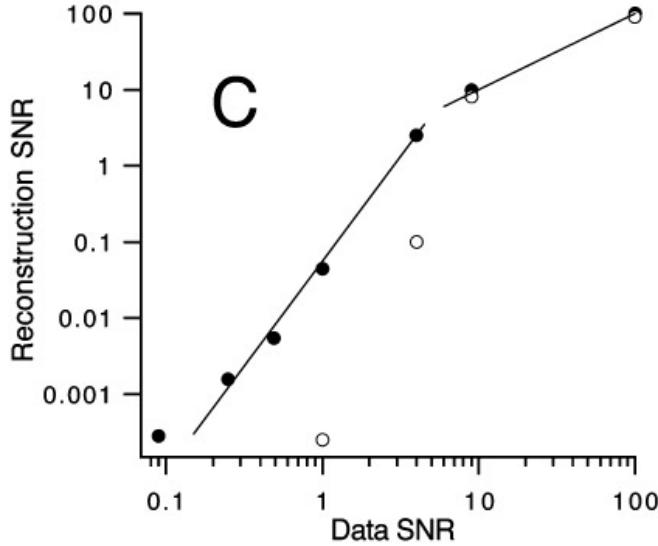


Figure 2. Figure taken from a paper on cryo-EM [31], illustrating (i) strikingly different behavior for the maximum likelihood estimator in low and high SNR regimes and (ii) $1/\text{SNR}^3$ scaling at low SNR. Our theoretical analysis suggests that any estimator, not only the maximum likelihood estimator, is bound to the same limitations. Reprinted from Journal of Structural Biology, Vol. 122, F. Sigworth, A maximum-likelihood approach to single-particle image refinement, pp. 328–339, copyright 1998, used with permission.

128 MRA capture features of the signal that are *invariant* under cyclic shifts. For example, the
 129 first moment tensor reduces to the entrywise mean of the signal (i.e., the vector in \mathbb{R}^d each
 130 of whose entries is the average value of θ), which is an example of an invariant feature: it
 131 is clearly invariant under cyclic shifts of θ and, as we show below, can easily be estimated
 132 consistently in the MRA model. More generally, each entry in the moment tensor $T^{(r)}(\theta)$ is
 133 an invariant polynomial in the coordinates of θ , and these invariant polynomials can always
 134 be estimated in the MRA model as long as σ is known. We therefore call our approach the
 135 *method of invariants*.

136 In what follows, we focus on the moment tensors $T^{(r)}(\theta)$ for $r \leq 3$. Our core contribution
 137 is to show that estimation on the basis of these first three moment tensors yields optimal
 138 sample complexity as a function of the SNR for the MRA model. We stress, however, that
 139 the focus on moment tensors is not limited to MRA, and that the method of invariants can be
 140 used to obtain sample complexity bounds for a wide variety of similar models. In this work,
 141 we specialize to MRA since it provides perhaps the simplest nontrivial application of these
 142 ideas.

143 The first three moment tensors in the MRA model correspond to quantities often studied
 144 under different names in the signal processing literature. In addition to the first moment
 145 tensor—which, as noted above, reduces to the entrywise mean of the signal—the second and
 146 third moment tensors are also easy to describe in terms of θ . The second moment tensor
 147 $T_2(\theta)$ corresponds to the autocorrelation of the signal θ . Written in the Fourier basis, this

148 autocorrelation corresponds to the power spectrum of θ (the square of the absolute value of
 149 the Fourier coefficients of the signal) which is often used as an invariant feature in signal
 150 processing. Note that, in general, this quantity does not carry enough information to allow
 151 for estimation of θ , since it provides only the magnitudes of the Fourier coefficients, but not
 152 their phases.

153 The crucial object in the case of MRA is the third moment tensor. Written in the Fourier
 154 basis, this object is known as the *bispectrum* of the signal, given by

$$155 \quad \mathcal{B}(k_1, k_2) = \hat{\theta}_{k_1} \hat{\theta}_{k_2} \hat{\theta}_{-k_1-k_2},$$

156 where $\hat{\theta}$ is the Fourier transform of θ , $k_1, k_2 \in [d]$, and the indices are taken modulo d . It was
 157 originally introduced in a statistical context [11, 35]. It is known [21] that the bispectrum
 158 uniquely determines the signal θ up to cyclic shift whenever $\hat{\theta}_k \neq 0$ for all $k \in [d]$. We call
 159 such signals *generic*. In other words, for generic signals, the moment tensors $T_1(\theta)$, $T_2(\theta)$, and
 160 $T^{(3)}(\theta)$ suffice to identify the true signal θ . This fact has been exploited to obtain estimates
 161 for alignment problems [29, 18, 10].

162 Note that the sample average based estimator for $T^{(3)}$ has a variance of order σ^6/n when
 163 σ is large, since it is a cubic polynomial of noisy data. It suggests that in the low SNR regime,
 164 any approach relying on the bispectrum requires at least order $1/\text{SNR}^3$ samples. Since this
 165 dependency on SNR is very different from the $1/\text{SNR}$ sample complexity of many models,
 166 bispectrum approaches seem highly suboptimal.

167 The main contribution of our work is to show that this number of samples is in fact a
 168 *fundamental* requirement of the problem when the shifts are sampled from the uniform dis-
 169 tribution, independent of the approach taken (following ideas developed in [8]): all estimators
 170 suffer from the same limitations, including the maximum likelihood estimator (see Figure 2).
 171 This shows that the latent cyclic transformations fundamentally change the difficulty of the
 172 problem. A similar phenomenon has been demonstrated for a Boolean version of MRA [2].

173 To complement our lower bound, we also propose simple algorithm based on the method
 174 of moments capable of provably achieving the optimal $1/\text{SNR}^3$ sample complexity for generic
 175 signals. While other algorithms employing the bispectrum exist in the literature [29, 18, 10],
 176 ours has the virtue of acting directly to decompose the third moment tensor via a straight-
 177 forward and principled approach. As we note below, this simple algorithm also extends to
 178 the heterogenous setting, for which no algorithms enjoyed theoretical guarantees prior to this
 179 work.

180 **2.3. Non-generic signals.** The bispectrum-based methods for the multi-reference align-
 181 ment problem we present work only for generic signals. In fact, non-generic signals can exhibit
 182 significantly worse behavior with a sample complexity of order $1/\text{SNR}^d$ rather than $1/\text{SNR}^3$,
 183 but this pessimistic scenario does not seem to be representative of signals encountered in
 184 practice. In fact, these signals that are hard to estimate form a set of zero Lebesgue measure.
 185 See [8] for more details.

186 **2.4. The heterogeneity problem.** One of the main challenges in cryo-EM reconstruction
 187 is the heterogeneity problem, where one observes noisy projection images of multiple unknown
 188 conformations of the same molecule. The MRA model can be extended to accommodate
 189 heterogeneity by assuming that in (1.1), the vector $\theta \in \mathbb{R}^d$ is also a latent variable drawn from

190 a finite set of unknown vectors $\mathcal{C} = \{\theta^{(1)}, \dots, \theta^{(K)}\}$. The goal here is to recover the set \mathcal{C} up
 191 to a cyclic shift and the proportion of each $\theta^{(j)}$.

192 Our approach based on the method of invariants coupled with tensor decomposition tech-
 193 niques extends to the heterogeneous setup. It yields the first algorithm capable of provably
 194 solving the heterogeneous MRA at arbitrarily low SNR, albeit at a potentially suboptimal
 195 sample complexity of $1/\text{SNR}^5$.

196 **2.5. Connections to cryo-EM and XFEL.** One of the main motivations to study the
 197 multi-reference alignment problem is that it serves as a simpler surrogate for cryo-EM. This
 198 paper indicates potentially fruitful directions for future work. Our results offer theoretical
 199 support for the use of invariant methods in cryo-EM, a proposal which dates back to Zvi
 200 Kam [22]. These methods have also proven effective in XFEL structure determination [36, 13].

201 Our work serves as a first step towards a complete statistical theory of cryo-EM. In fact,
 202 follow-up work to this paper has demonstrated that the method of invariants can be used
 203 to characterize the sample complexity of more general models, including the reconstruction
 204 problem for cryo-EM [5].

205 **2.6. Notation.** We use $[d]$ to represent the set $\{1, \dots, d\}$ and I_d to represent the $d \times d$
 206 identity matrix. The smallest and largest singular values of a matrix are denoted σ_{\min} and
 207 σ_{\max} , respectively. The symbol $\text{poly}(\cdot)$ refers to an unspecified polynomial with constant coef-
 208 ficients. C_d is used to refer to a constant that may depend on d but not on other parameters,
 209 and it may refer to a different constant in different appearances throughout the text. The
 210 expression $f(n) = O(g(n))$ means that there exists a constant C such that $f(n) \leq Cg(n)$ for
 211 all n , and we write $O_d(g(n))$ when the constant may depend on d . We write $g(n) = \Omega(f(n))$
 212 when $f(n) = O(g(n))$.

213 **3. Fundamental limitations.** In this section, we establish the fundamental limits of MRA
 214 and point to shortcomings of existing strategies to achieve optimal sample complexity.

215 **3.1. Lower bounds for sample complexity.** Since observations in the MRA model (1.1)
 216 are invariant under a global cyclic shift, one may only identify θ up to such a global shift.
 217 To account for this fact, it is natural to employ the following shift-invariant distance between
 218 vectors $\theta, \tau \in \mathbb{R}^d$:

$$219 \quad \rho(\theta, \tau) = \min_{\ell \in \mathbb{Z}_d} \|\theta - R_\ell \tau\|_2.$$

220 As noted above, by applying an independent and uniform random cyclic shift to each
 221 observation, we can always reduce the MRA model to the case where ℓ_1, \dots, ℓ_n are drawn
 222 i.i.d. uniformly from $[d]$. In this case, the distribution of y in (1.1) is a uniform mixture of the
 223 d Gaussian distributions $\mathcal{N}(\theta, \sigma^2 I_d), \dots, \mathcal{N}(R_{d-1}\theta, \sigma^2 I_d)$. If y is generated according to this
 224 distribution, we call it a ‘‘sample from MRA with signal θ .’’ The statistical properties of this
 225 Gaussian mixture are analyzed in [8].

226 If σ is small—that is, if the SNR is sufficiently large—then the signals can be aligned (for
 227 example, via the synchronization approach [32]), and therefore θ can be estimated accurately
 228 on the basis of n samples from MRA with signal θ as long as $n \geq C/\text{SNR}$ for some constant
 229 C . This is the same dependence that would be expected in the absence of shifts. Strikingly,

230 the situation in the high-noise regime (when the SNR is low) is very different: estimation is
 231 impossible unless $n \geq C/\text{SNR}^3$ for some constant C .

232 **Theorem 3.1.** *Fix $d > 2$, $\varepsilon > 0$ sufficiently small, and $\sigma \geq 1$. There exists a universal
 233 constant C such that the following holds with constant probability: for any estimator $\tilde{\theta}$ based on
 234 n samples from (1.1) there exists a generic signal $\theta \in \mathbb{R}^d$ with $\|\theta\|_2 = 1$, such that $\rho(\tilde{\theta}, \theta) \geq \varepsilon$
 235 whenever $n \leq C\sigma^6\varepsilon^{-2}$.*

236 In other words, if we require that our estimator $\tilde{\theta}$ satisfy $\rho(\tilde{\theta}, \theta) < \varepsilon$ with probability close
 237 to 1, then we must have $n \geq C\sigma^6\varepsilon^{-2}$. We prove this fact in the supplement using the tight
 238 information-theoretic bounds developed in [8], which are based on the method of invariants
 239 and, in particular, on the observation given above that the second moment tensor does not
 240 carry enough information about θ in general.

241 **3.2. The importance of high frequencies.** As noted above, the sample complexity exhibited
 242 by the method of invariants, $1/\text{SNR}^3$, is tight for generic signals. For non-generic signals,
 243 while the method of invariants still yields optimal results (see [5]), the precise sample complexity
 244 depends on specific properties of the support of the Fourier transform of the original
 245 signal. This dependence is often counter-intuitive as illustrated by the example below.

246 Some approaches to the alignment problem implicitly adopt a strategy of first estimating
 247 low frequencies of a signal, and then using this initial estimate to estimate higher frequencies
 248 (see [9]). In other words, these strategies assume that estimating a low-pass version of a signal
 249 is no harder than estimating the original signal.

250 Surprisingly, this is *not* the case in general, as following example shows. Let us take $d \geq 14$
 251 congruent to 2 (mod 4) and $\theta \in \mathbb{R}^d$ a signal whose Fourier transform $\hat{\theta}$ satisfies $\hat{\theta}_1 = \hat{\theta}_{-1} = 0$
 252 but otherwise has full support. We show in the supplement that we can estimate θ with
 253 $O_d(1/\text{SNR}^3)$ samples. Surprisingly, if we low-pass θ by setting $\hat{\theta}_j = 0$ for all $|j| > 4$, then
 254 $\Omega(1/\text{SNR}^4)$ samples are needed.

255 To show that θ can be recovered with $O_d(1/\text{SNR}^3)$ samples, it suffices to show that the
 256 phases of the Fourier coefficients of θ can be reconstructed uniquely from its bispectrum.
 257 Given a complex number z , denote by $\arg(z)$ its phase. By applying a circular shift, we can
 258 assume without loss of generality that $\arg(\hat{\theta}_2) \in [0, 4\pi/d)$ and that $\arg(\hat{\theta}^{(3)}) \in [0, \pi)$. It is easy
 259 to check that the identity $2 \sum_{k=2}^{(d-6)/4} \arg(\mathcal{B}(2, 2k)) + \arg(\mathcal{B}((d-2)/2, (d-2)/2)) = \frac{d}{2} \arg(\hat{\theta}_2)$
 260 holds modulo 2π , and the assumption that $\arg(\hat{\theta}_2) \in [0, 4\pi/d)$ implies that the choice of
 261 $\arg(\hat{\theta}_2)$ is unique. This implies that all even-indexed phases can be recovered. We also have
 262 the simple identity $\arg(\hat{\theta}_6) + \arg(\mathcal{B}(3, 3)) = 2\arg(\hat{\theta}^{(3)})$ modulo 2π , and the assumption that
 263 $\arg(\hat{\theta}^{(3)}) \in [0, \pi)$ implies that the choice is unique. Combined with the knowledge of $\arg(\hat{\theta}_2)$,
 264 this implies recoverability of all odd-indexed phases.

265 To show that the low-pass signals require $n \geq C\sigma^8$ samples, we simply note that the first
 266 three moment tensors of the low-pass signals agree. Theorem A.1 therefore implies that the
 267 Kullback-Leibler divergence between the relevant distributions is at most $C\sigma^{-8}$. The same
 268 argument given in proof of Theorem 3.1 establishes that any test attempting to distinguish
 269 between the low-pass signals incurs type-I and type-II error of at least $2/3$ unless $n \geq C\sigma^8$.

270 The difficulty in recovering the low-pass version arises from the following simple observation:
 271 if $\hat{\theta}_j = 0$ for all $j \notin \{\pm 2, \pm 3, \pm 4\}$, then the only nonzero entry of the bispectrum is

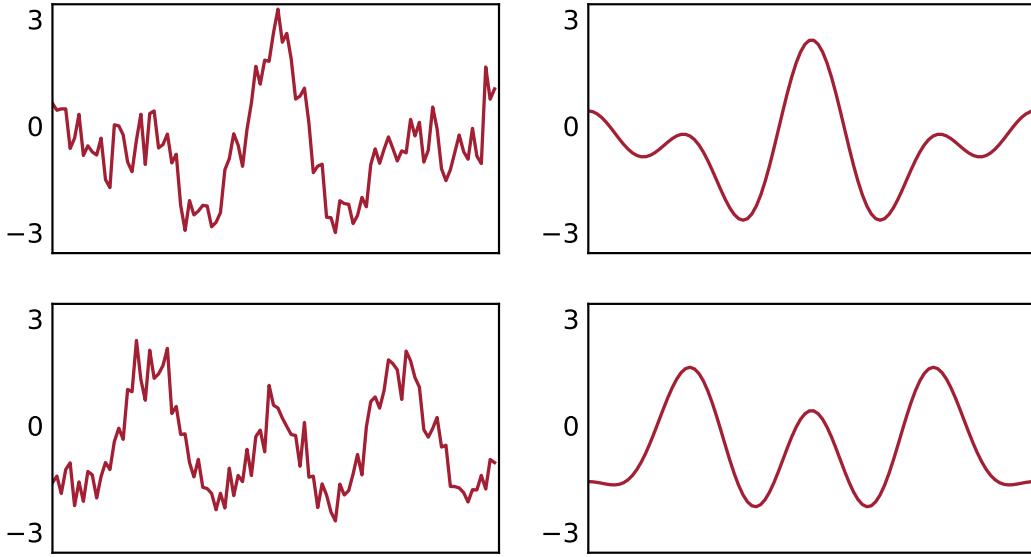


Figure 3. Two signals whose Fourier transforms have almost full support (left column) and their corresponding low-pass versions (right column). Estimating either of the original signals is possible with $O_d(1/\text{SNR}^3)$ samples. However, the same task for the low-pass versions requires $\Omega(1/\text{SNR}^4)$ samples; in fact, even distinguishing between the two options requires this number of samples. This illustrates the importance of high frequencies in the MRA model.

272 $\mathcal{B}(2, 2)$. This implies that the bispectrum carries no information about the phase of $\hat{\theta}^{(3)}$ and
 273 we show in the supplement that this implies that any two such signals which agree on their
 274 second and fourth Fourier coefficient are indistinguishable—in the sense that any procedure
 275 to distinguish them fails with constant probability—unless $n \geq C\sigma^8$.

276 **4. Efficient recovery via tensor methods.** Theorem 3.1 implies that the sample com-
 277 plexity of MRA for generic signals is at least $1/\text{SNR}^3$ in the low-SNR regime. In this section,
 278 we describe how the method of invariants also yields an efficient algorithm that achieves this
 279 optimal sample complexity, that is, it outputs an estimator $\tilde{\theta}$ of θ such that $\rho(\tilde{\theta}, \theta) \leq \varepsilon$ with
 280 high probability whenever $n \geq C_d\sigma^6\varepsilon^{-2}$.

281 Our approach uses the method of invariants by estimating invariant features in the third
 282 moment tensor $T^{(3)}$ defined in (2.1). While other algorithms in the literature have also been
 283 based on recovering the signal on the basis of the third moment tensor via iterative meth-
 284 ods [29, 18, 10], we propose a simpler procedure which also yields stable recovery guarantees.
 285

First, we estimate $T^{(3)}$ by the following empirical quantity:

$$286 \quad (4.1) \quad \tilde{T}_n^{(3)} = \frac{1}{dn} \sum_{i=1}^n \sum_{j=1}^d ((R_j y_i)^{\otimes 3} - 3 \text{sym}(R_j y_i \otimes I_d))$$

287 where

$$288 \quad (4.2) \quad \text{sym}(A)_{a_1 \dots a_k} = \frac{1}{k!} \sum_{\pi \in \mathcal{S}_k} A_{\pi(a_1) \dots \pi(a_k)}.$$

289

290 **Lemma 4.1.** *The estimator $\tilde{T}^{(3)}$ is an unbiased estimator of $T^{(3)}$. Moreover, each entry of*
 291 *$\tilde{T}_n^{(3)}$ has a variance of order σ^6/n so long as σ is bounded below by a positive constant.*

292 *Proof.* If $\xi_i \sim \mathcal{N}(0, I_d)$, then both $\mathbb{E}[\xi_i]$ and $\mathbb{E}[\xi_i^{\otimes 3}]$ are zero. This implies that

$$293 \quad \mathbb{E}_{ij}[(R_j y_i)^{\otimes 3}] = \mathbb{E}_{ij}[(R_j \theta + \sigma \xi)^{\otimes 3}] = \mathbb{E}_j(R_j \theta)^{\otimes 3} + 3 \text{sym}((\mathbb{E}_j R_j \theta) \otimes I_d),$$

295 so $\tilde{T}_n^{(3)}$ is an unbiased estimator of $T^{(3)}$.

296 Each entry of y_i is a Gaussian with variance σ^2 , so the entries of $\text{sym}(y_i \otimes I_d)$ have
 297 variance of order σ^2 , and the entries of $y_i^{\otimes 3}$ have variance of order σ^6 ; the latter dominates
 298 for σ bounded away from 0. The claim follows. \blacksquare

299 Then, we apply a basic decomposition technique, given in the next section, to the tensor $\tilde{T}_n^{(3)}$
 300 to find a vector $\tilde{\theta}$ such that

$$301 \quad \tilde{T}_n^{(3)} \approx \frac{1}{d} \sum_{\ell=1}^d (R_\ell \tilde{\theta})^{\otimes 3}.$$

302 The vector $\tilde{\theta}$ then serves as our estimate of θ .

303 **4.1. Jennrich's Algorithm for Tensor Decomposition.** In this section, we detail a sim-
 304 ple decomposition algorithm for the third moment tensor, which in turn provides an efficient
 305 algorithm that provably solves MRA for generic signals while achieving optimal sample com-
 306 plexity in terms of SNR. It involves the spectral decomposition of the tensor of empirical
 307 third moments. Such decompositions have been long studied and a sophisticated machinery
 308 has been developed over the years; see [25, Chapter 3].

309 The specific algorithm that we use is a standard tensor decomposition algorithm known
 310 as *Jennrich's algorithm* (proposed in [20] and credited to Robert Jennrich). The version
 311 described below allows the recovery of vectors u_1, \dots, u_r (up to simple transformations) from
 312 a noisy version of the tensor

$$313 \quad (4.3) \quad T = \sum_{j=1}^r u_j \otimes u_j \otimes v_j \in \mathbb{R}^{m \times m \times p},$$

314 where $v_1, \dots, v_r \in \mathbb{R}^p$ are arbitrary nonzero vectors.

Jennrich's Algorithm ([20, 24]).

Input: Tensor $T \approx \sum_{j=1}^r u_j \otimes u_j \otimes v_j \in \mathbb{R}^{m \times m \times p}$.

Output: Matrix $U = [\hat{u}_1, \dots, \hat{u}_r] \in \mathbb{R}^{m \times r}$

- ▶ Choose random unit vectors $a, b \in \mathbb{R}^p$, and form matrices $A, B \in \mathbb{R}^{m \times m}$ with entries:

$$A_{ij} = \sum_k T_{ijk} a_k, \quad A = \sum_{j=1}^r \langle v_j, a \rangle u_j \otimes u_j,$$

$$B_{ij} = \sum_k T_{ijk} b_k, \quad B = \sum_{j=1}^r \langle v_j, b \rangle u_j \otimes u_j$$

- ▶ Let W be the matrix whose columns are the first r left singular vectors of A .
- ▶ Compute $M = W^\top A W (W^\top B W)^{-1}$.
- ▶ Output $U = WP$, where $M = PDP^{-1}$ is the eigendecomposition of M .

Jennrich's algorithm requires only basic matrix operations and can therefore be implemented very efficiently even on large scale problems. It also enjoys the following robustness guarantees. Using the notation of Jennrich's algorithm, it is easy to see that $T^{(3)}$ is indeed a low-rank tensor of the form (4.3), with $m = p = d$, $u_j = v_j = R_{j-1}\theta$ (for $j = 1, \dots, r$) and $U = [\theta, R_1\theta, \dots, R_{d-1}\theta]$. We recall the following recovery guarantee of Jennrich's algorithm when applied to a tensor \tilde{T} that is close to a low rank tensor.

Theorem 4.2 ([19], Theorem 5.2). *Let T be a tensor of the form (4.3) with all u_j linearly independent, and define $\kappa(U) = \sigma_{\max}(U)/\sigma_{\min}(U)$. Moreover, fix $\varepsilon > 0$ and let \tilde{T} satisfy $\|\tilde{T} - T\|_F \leq \varepsilon$. Then Jennrich's algorithm applied to \tilde{T} returns unit vectors $\tilde{u}_j, j = 1, \dots, r$ such that there exists a permutation π and scalars β_j satisfying*

$$(4.4) \quad \max_{j \in [r]} \|\tilde{u}_j - \beta_j u_{\pi(j)}\|_\infty \leq \varepsilon \text{poly}(m, \kappa)$$

with high probability.

Let \tilde{u}_1 be the first vector output by Jennrich's algorithm applied to $\tilde{T}_n^{(3)}$ and let

$$\tilde{\beta}_1 = \tilde{u}_1^\top \mathbf{1}/\tilde{\mu}, \quad \tilde{\mu} = \frac{1}{n} \sum_{i=1}^n y_i^\top \mathbf{1}, \quad \tilde{\theta} = \tilde{u}_1/\tilde{\beta}_1$$

In the supplement, we show that an algorithm **homoJen** based on Jennrich's algorithm for tensor decomposition applied to the $\tilde{T}_n^{(3)}$ enjoys the following theoretical guarantees.

Theorem 4.3. *Fix $\sigma > .1$ and $\delta \in (0, 1)$ and assume $.1 \leq \|\theta\|_2 \leq 10$. Then, for any $\varepsilon > 0$ Jennrich's algorithm applied to $\tilde{T}_n^{(3)}$ outputs $\tilde{\theta}_n$ such that $\rho(\tilde{\theta}_n, \theta) \leq \varepsilon$ with probability at least $1 - \delta$ whenever*

$$n \geq \sigma^6 \varepsilon^{-2} \text{poly}(d, 1/\min_{j \in [d]} |\hat{\theta}_j|, 1/\delta)$$

in time $O(nd^3 + d^3 \text{poly}(\log(1/\varepsilon)))$.

Note that the constants $.1$ and 10 are arbitrary and may be replaced by any other constants.

The time complexity is dominated by the time necessary to construct the empirical tensor

333 $\tilde{T}_n^{(3)}$, which requires only a single pass over the data. Since Jennrich's algorithm relies on
 334 basic matrix operations, it requires only $O(d^3 \text{poly}(\log(1/\varepsilon)))$ additional computation time
 335 once $\tilde{T}_n^{(3)}$ has been constructed.

336 In view of the lower bound appearing in Theorem 3.1, the sample complexity of the
 337 modified Jennrich algorithm is optimal in terms of the SNR.

338 Several other bispectrum-based algorithms have appeared in the literature; see [10] for a
 339 recent empirical study. These may perform better in practice, but they largely do not come
 340 with the theoretical guarantees of the algorithm proposed here, and they do not yield efficient
 341 algorithms for the heterogenous case discussed below.

342 **5. Heterogeneity.** In this section, we sketch an extension of the previous results to the
 343 heterogenous multi-reference alignment problem. We recall this model here for completeness.
 344 In heterogenous MRA, we observe

345 (5.1)
$$y_i = R_{\ell_i} \theta^{(Z_i)} + \sigma \xi_i, \quad i = 1, \dots, n,$$

346 where $Z_1, \dots, Z_n \in \{1, \dots, K\}$ are i.i.d. latent variables such that $\Pr(Z_i = k) = \pi_k, k \in [K]$
 347 that are independent of all other variables and $\theta^{(k)} \in \mathbb{R}^d, k \in [K]$ are unknown vectors. The
 348 other variables are specified as in the homogeneous model (1.1). The goal here is to recover
 349 the set of vectors $\theta^{(k)} \in \mathbb{R}^d, k = 1, \dots, K$ up to a cyclic shift and the probability mass function
 350 $\{\pi_k\}_{k \in [K]}$.

The method of invariants described above can be extended to handle the heterogeneous model (5.1). In this case our method proceeds by estimating the mixtures of signals from an unbiased estimator $\tilde{T}_n^{(5)}$ for the 5-tensor

$$T^{(5)} = \sum_{k=1}^K \sum_{\ell=1}^d \frac{\pi_k}{d} (R_{\ell} \theta^{(k)})^{\otimes 5}.$$

351 In our analysis of homogenous MRA, we noted that the moment tensors $T^{(1)} = T^{(1)}(\theta), T^{(2)} =$
 352 $T^{(2)}(\theta), T^{(3)} = T^{(3)}(\theta)$ uniquely determine θ , as long as θ is generic. The method of invariants
 353 can also be applied to the heterogenous case to show that the moment tensors $T^{(1)}, \dots, T^{(5)}$
 354 determine the vectors $\theta^{(1)}, \dots, \theta^{(K)}$ as long as the vectors satisfy a particular genericity con-
 355 dition. Our proof of this fact is *algorithmic* in the sense that we exhibit an efficient algorithm,
 356 which can recover the vectors $\theta^{(1)}, \dots, \theta^{(K)}$ as long as the collection is suitably generic. The
 357 fact that the method of invariants can be extended to the heterogenous case supports the idea
 358 that it is a flexible, general approach to models of this kind. This algorithm achieves sample
 359 complexity $1/\text{SNR}^5$, whereas the optimal sample complexity for heterogenous MRA is known
 360 to be $1/\text{SNR}^3$ in several settings, including when $\theta^{(1)}, \dots, \theta^{(K)}$ are drawn independently from
 361 $\mathcal{N}(0, I/d)$ [5, 37]. Our algorithm therefore does not achieve optimal sample complexity in
 362 general; however, it is the first efficient algorithm for the heterogenous problem with provable
 363 guarantees.

We now sketch the basic idea of our approach. Using manipulations similar to the ones
 arising in the proof of Lemma 4.1, it is not hard to show that $T^{(5)}$ can be rewritten as

$$T^{(5)} = \mathbb{E}[y_i^{\otimes 5}] - 10\sigma^2 \text{sym}(T^{(3)} \otimes I_d) - 15\sigma^4 \text{sym}(T_1 \otimes I_d^{\otimes 2})$$

where $T_1 = \mathbb{E}[y_i]$ and $T^{(3)}$ is defined in (2.1). Therefore an unbiased estimator of $T^{(5)}$ is given by

$$\tilde{T}_n^{(5)} = \frac{1}{n} \sum_{i=1}^n y_i^{\otimes 5} - 10\sigma^2 \text{sym}(\tilde{T}_n^{(3)} \otimes I_d) - 15\sigma^4 \text{sym}\left(\frac{1}{n} \sum_{i=1}^n y_i \otimes I_d^{\otimes 2}\right),$$

364 where $\tilde{T}_n^{(3)}$ is given in (4.1). Moreover, each entry of $\tilde{T}_n^{(5)}$ has variance of order σ^{10}/n so long
365 as σ is bounded below by a positive constant.

We propose a method that consists in applying Jennrich's algorithm to an appropriate flattening of $\tilde{T}_n^{(5)}$. We call it `heteroJen`. It hinges on the following observation: the 5-tensor $T^{(5)}$ can be flattened into a 3-tensor of shape $d^2 \times d^2 \times d$ that admits the following low-rank decomposition:

$$\sum_{k=1}^K \sum_{\ell=1}^d \frac{\pi_k}{d} (R_\ell \theta^{(k)})^{\otimes 2} \otimes (R_\ell \theta^{(k)})^{\otimes 2} \otimes (R_\ell \theta^{(k)}).$$

The algorithm `heteroJen` then proceeds by plugging $\tilde{T}_n^{(5)}$ into the above flattening operation and then applying Jennrich's algorithm to the resulting 3-tensor of shape $d^2 \times d^2 \times d$. Theorem 4.2 implies that this procedure outputs vectors \tilde{u}_i , $1 \leq i \leq dK$ with the following guarantees: there exist scalars β_i and a bijection $a \times b : [dK] \rightarrow [d] \times [K]$ satisfying

$$\|\tilde{u}_i - \beta_i (R_{a(i)} \theta^{(b(i))})^{\otimes 2}\|_\infty \leq C_K \frac{\sigma^5}{\sqrt{n}} \text{poly}(d),$$

366 with high probability.

367 We compute \tilde{v}_i as the leading eigenvector of the $d \times d$ matrix \tilde{u}_i . Letting $\tilde{V}^{(3)}$ be the
368 $d^3 \times dK$ matrix with columns $\tilde{v}_i^{\otimes 3}$, we estimate $\tilde{\alpha} \in \mathbb{R}^{dK}$ as the least-squares solution to
369 $\tilde{V}^{(3)} \tilde{\alpha} = \text{vec}(T^{(3)})$. The vectors $\tilde{w}_i := \tilde{\alpha}^{1/3} \tilde{v}_i$ (with entrywise exponentiation) now comprise
370 dK redundant estimates to the K original signals θ_k ; we remove this redundancy by clustering
371 these dK estimates according to the pseudometric $\rho_2(x, y) = \min_{1 \leq \ell \leq d} \|x^{\otimes 2} - (R_\ell y)^{\otimes 2}\|_2$. (We
372 show in the proof of Theorem 5.1, below, that this clustering can be accomplished by a simple
373 thresholding scheme.) Finally, the procedure `heteroJen` returns one vector from each cluster.

374 The `heteroJen` procedure enjoys the following theoretical guarantees that rely on the fol-
375 lowing condition number.

376 Let $U = [\text{vec}((R_1 \theta^{(1)})^{\otimes 2}), \dots, \text{vec}((R_d \theta^{(K)})^{\otimes 2})]$, and denote the condition number of U by
377 κ . It can be shown that κ is generically finite. To that end, suppose we have some nonzero
378 linear relation $0 = \sum_{k=1}^K \sum_{\ell=1}^d c_{k,\ell} (R_\ell \theta^{(k)}) (R_\ell \theta^{(k)})^\top$. Multiplying by a DFT on the left and
379 its adjoint on the right, and examining the a, b entry, we have $0 = \sum_{k=1}^K (\hat{c}_k)_{a-b} \hat{\theta}_a^{(k)} \hat{\theta}_b^{(k)}$. Some
380 $(\hat{c}_k)_\alpha$ is nonzero, yielding a nontrivial linear relation among the autocorrelation vectors v_k ,
381 $1 \leq k \leq K$, with $v_{k,j} = \hat{\theta}_j^{(k)} \hat{\theta}_{\alpha-j}^{(k)}$. These vectors satisfy the symmetry $v_{k,j} = v_{k,\alpha-j}$, but
382 are generic on this subspace, which has dimension at least $\lceil d/2 \rceil$. Hence generically no such
383 relation exists, and the matrix U has finite condition number.

Theorem 5.1. *Fix $\sigma > .1$ and $\delta \in (0, 1)$. Assume that $.1 \leq \|\theta^{(k)}\|_2 \leq 10$ for all $k \in [K]$ and
that $K \leq \lceil d/2 \rceil$. Then, for any $\varepsilon > 0$, the `heteroJen` applied to $T_n^{(5)}$ outputs $\{\tilde{\theta}_n^{(1)}, \dots, \tilde{\theta}_n^{(K)}\}$*

such that

$$\sum_k \min_j \rho(\tilde{\theta}_n^{(j)}, \theta^{(k)}) \leq \varepsilon,$$

with probability at least $1 - \delta$ whenever

$$n \geq C_K \sigma^{10} \varepsilon^{-2} \text{poly}(d, \kappa, 1/\delta)$$

384 in time $O(nd^5 + d^6 \text{poly}(\log(1/\varepsilon)))$.

385 To the best of our knowledge, `heteroJen` is the first efficient method for heterogeneous
 386 MRA at low SNR. As noted above, follow-up work has shown that similar method-of-moments
 387 approaches based on tensor decomposition can efficiently achieve $1/\text{SNR}^3$ sample complexity
 388 under the assumption that the components are drawn independently from $\mathcal{N}(0, I/d)$ [37].

389 **6. Concluding remarks.** In this paper, we characterize the sample complexity of MRA, a
 390 first step towards a better statistical understanding of cryo-EM. In particular, we show that
 391 *any* estimator requires at least $1/\text{SNR}^3$ samples at low SNR.

392 We also present an algorithm based on the method of invariants that provably solves
 393 the MRA problem with optimal sample complexity at low SNR. We further show that the
 394 approach can be adapted to heterogenous problems, an extension of particular importance
 395 in cryo-EM where different biological molecules or conformations are often imaged together.
 396 Our approach is the first to yield theoretical guarantees on any procedure for heterogenous
 397 MRA and opens the door to a broader application of the method of invariants.

398 While this work constitutes a first step towards a statistical theory of 3-D molecule recon-
 399 struction in cryo-EM, many questions remain open. Since an earlier version of this manuscript
 400 was available, follow-up work has shown that our approach can be extended to molecule re-
 401 construction in cryo-EM [5] and to MRA with nonuniform shifts [1]. These works establish
 402 that the method of invariants yields optimal sample complexity in a wide variety of settings.

403 **Appendix A. Proof of lower bounds.**

404 **A.1. Proof of Theorem 3.1.** In what follows, let c_d and C be constants (with c_d depending
 405 on d) whose value may change from line to line. Let θ be any zero-mean signal such that
 406 $\|\theta\|_2 = 1$, and let $\hat{\theta}$ be its Fourier transform. There exists a coefficient $\hat{\theta}_j$ with $j \neq 0$ such that
 407 $|\hat{\theta}_j| \geq c_d$. Define τ by setting

$$408 \hat{\tau}_k = \begin{cases} e^{i\delta\hat{\theta}_j} & \text{if } k = j \\ e^{-i\delta\hat{\theta}_{-j}} & \text{if } k = -j \\ \hat{\theta}_k & \text{otherwise,} \end{cases}$$

409 where $\delta = c_d \varepsilon$ for some constant c_d chosen so that $|\hat{\tau}_j - \hat{\theta}_j| \geq 2\varepsilon$ as long as ε is sufficiently
 410 small. It is clear that $\rho(\theta, \tau) \geq 2\varepsilon$, since when ε is sufficiently small, for any shift R we have
 411 $\|\theta - R\tau\|_2 \geq |\hat{\theta}_j - \widehat{R\tau}_j| \geq |\hat{\theta}_j - \hat{\tau}_j| \geq 2\varepsilon$.

412 We now establish that no procedure can distinguish between MRA with signal θ and MRA
 413 with signal τ on the basis of n samples if $n \leq C\sigma^6 \varepsilon^{-2}$ with probability better than $1/3$. To
 414 prove this, we reproduce the following theorem [8, Theorem 9], whose proof we sketch for
 415 completeness.

416 **Theorem A.1.** Assume $\sigma \geq 1$. Let θ and τ be two mean-zero signals satisfying $\rho(\theta, \tau) \leq \varepsilon$
 417 and $T^{(r)}(\theta) = T^{(r)}(\tau)$ for $r < k$. If P_θ and P_τ are the Gaussian mixtures corresponding
 418 to MRA with signals θ and τ respectively, then the Kullback-Leibler divergence $D(P_\theta \| P_\tau)$
 419 satisfies

$$420 \quad D(P_\theta \| P_\tau) \leq C_k \sigma^{-2k} \varepsilon^2$$

421 for some constant C_k depending on k .

422 **Proof.** [Sketch] Let $\phi(x)$ be the density of a d -dimensional Gaussian with covariance $\sigma^2 I_d$,
 423 and let ϕ_θ and ϕ_τ be the densities of P_θ and P_τ , respectively. Let R be a uniformly distributed
 424 random cyclic shift. The convexity of the exponential function implies

$$425 \quad \phi_\tau(x) = \mathbb{E} \phi(x - R\tau) \geq \phi(x) e^{-\|\tau\|_2^2/2\sigma^2}.$$

426 The χ^2 divergence $\chi^2(P_\theta \| P_\tau)$ between P_θ and P_τ then satisfies

$$427 \quad \chi^2(P_\theta \| P_\tau) := \int \frac{(\phi_\theta(x) - \phi_\tau(x))^2}{\phi_\tau(x)} dx \\ 428 \quad \leq e^{\|\tau\|_2^2/2\sigma^2} \int (e^{-\|\theta\|_2^2/2\sigma^2} \mathbb{E} e^{\frac{x^\top R\theta}{\sigma^2}} - e^{-\|\phi\|_2^2/2\sigma^2} \mathbb{E} e^{\frac{x^\top R\tau}{\sigma^2}})^2 \phi(x) dx.$$

430 Expanding the square, collecting terms, and integrating with respect to x yields

$$431 \quad \chi^2(P_\theta \| P_\tau) \leq e^{\|\tau\|_2^2/2\sigma^2} \mathbb{E} [e^{(R'\theta)^\top R\theta/\sigma^2} - 2e^{(R'\theta)^\top R\tau/\sigma^2} + e^{(R'\theta)^\top R\theta/\sigma^2}],$$

432 where R' is an independent copy of R . Expanding this quantity as a Taylor series and applying
 433 Fubini's theorem to interchange summation and expectation yields

$$434 \quad \chi^2(P_\theta \| P_\tau) \leq e^{\|\tau\|_2^2/2\sigma^2} \sum_{r \geq 1} \frac{\|T^{(r)}(\theta) - T^{(r)}(\tau)\|_{HS}^2}{\sigma^{2r} r!},$$

435 where $\|\cdot\|_{HS}^2$ represents the Hilbert-Schmidt norm. By [8, Lemma B.12], for ε sufficiently
 436 small,

$$437 \quad \|T^{(r)}(\theta) - T^{(r)}(\tau)\|_{HS}^2 \leq 12 \cdot 2^r \varepsilon^2.$$

438 Combining this with the assumption that $T^{(r)}(\theta) = T^{(r)}(\tau)$ for $r < k$ yields

$$439 \quad \chi^2(P_\theta \| P_\tau) \leq e^{\|\tau\|_2^2/2\sigma^2} \varepsilon^2 \sum_{r \geq k} \frac{12 \cdot 2^r}{\sigma^{2r} r!} = C_k \sigma^{-2k} \varepsilon^2.$$

440 Since $D(P_\theta \| P_\tau) \leq \chi^2(P_\theta \| P_\tau)$ [34, Lemma 2.7], the claim follows. ■

441 The two signals θ and τ we have constructed are easily shown to satisfy $T^{(1)}(\theta) = T^{(1)}(\tau)$
 442 and $T^{(2)}(\theta) = T^{(2)}(\tau)$, since their means and power spectra (i.e., the moduli of their Fourier
 443 transforms) agree.

444 By applying Theorem A.1 and Pinsker's inequality, we obtain

445
$$\text{TV}(P_\theta^{\otimes n}, P_\tau^{\otimes n})^2 \leq \frac{1}{2} D(P_\theta^{\otimes n} \| P_\tau^{\otimes n}) \leq \frac{1}{2} C \sigma^{-6} \varepsilon^2 n.$$

446 Therefore if $n \leq C^{-1} \sigma^6 \varepsilon^{-2}$, [34, Theorem 2.2] implies that for any measurable function
447 $\psi : \mathbb{R}^{d \times n} \rightarrow \{\theta, \tau\}$ of the data y_1, \dots, y_n , it holds

448
$$P_\theta^n(\psi(y_1, \dots, y_n) = \tau) + P_\tau^n(\psi(y_1, \dots, y_n) = \theta) \geq 1 - \text{TV}(P_\theta^{\otimes n}, P_\tau^{\otimes n}) \geq 1/2.$$

449 In other words, any hypothesis test ψ must incur type-I and type-II error of at least 1/2.
450 Via Le Cam's two-point testing argument [23], this fact implies that any estimator $\tilde{\theta}$ is bound
451 to incur error ε with constant probability, as claimed. \square

452

453 **Appendix B. Proof of upper bounds.**

B.1. Proof of Theorem 4.3. Write $\kappa(\theta)$ for $1/(\min_{j \in [d]} |\hat{\theta}_j|)$. It can be shown that the condition number $\kappa(U)$ of U satisfies $\kappa(U) \leq \max_{j,k} \{|\hat{\theta}_j|/|\hat{\theta}_k|\} \leq \kappa(\theta)$. Theorem 4.2 implies that Jennrich's algorithm applied to $\tilde{T}_n^{(3)}$ outputs \tilde{u}_1 satisfying

$$\|\tilde{u}_1 - \beta_1 R_j \theta\|_\infty \leq \frac{\sigma^3 \text{poly}(d)}{\sqrt{n}}, \quad c > 0,$$

454 with high probability for some $j \in [d]$ and some $\beta_j \in \mathbb{R}$.

455 As we are only concerned with polynomial dependence and not detailed bounds, we write
456 $A \approx B$ if we can bound $|A - B| \leq \alpha \text{poly}(d, \kappa(\theta), \delta^{-1}) + \sigma/\sqrt{n} \text{poly}(d, \kappa(\theta), \delta^{-1})$ so long as¹
457 $\alpha \leq 1$ and $\sigma/\sqrt{n} \leq 1$; we apply this also to vectors in 2-norm or (equivalently) most other
458 common norms.

459 Theorem 4.2 guarantees us that $\tilde{u} \approx \beta_i R_i \theta$. Taking norms, we have $1 \approx |\beta_i| \|\theta\|_2$; as $\|\theta\|_2$
460 is bounded above and below by constants, we have that $|\beta_i| \approx 1/\|\theta\|_2$ is also of constant order.
461 Note also that by Chebyshev we have that $|\tilde{\mu} - \mu| \leq \sigma\sqrt{\delta}/\sqrt{2nd}$ with probability $1 - \delta/2$, so
462 that $\mu \approx \tilde{\mu}$. From $\tilde{u} \approx \beta_i R_i \theta$ we also derive that

463 (B.1)
$$\langle \tilde{u}, \mathbf{1} \rangle / d \approx \beta_i \mu \approx \beta_i \tilde{\mu}.$$

464 We know that $\|\theta\|_2 \leq \sigma_{\max}(U)$ and that $\sigma_{\min}(U) \leq \|U \cdot \frac{1}{\sqrt{d}} \mathbf{1}\|_2 = d|\mu|$, so that $|\tilde{\mu}| \approx |\mu| \geq$
465 $d\kappa(\theta)/\|\theta\|_2$; we are thus justified in dividing (B.1) by $\tilde{\mu}$ to obtain $\tilde{\beta} \approx \beta_i$, and $\beta_i/\tilde{\beta} \approx 1$. We
466 now bound the total estimation error as follows:

467
$$\begin{aligned} \|\tilde{\beta}^{-1} \tilde{u} - R_i \theta\|_2 &\leq \|\tilde{\beta}^{-1} \tilde{u} - \beta_i^{-1} \tilde{u}\|_2 + \|\beta_i^{-1} \tilde{u} - R_i \theta\|_2 \\ 468 &\leq |\tilde{\beta}^{-1} - \beta_i^{-1}| + |\beta_i|^{-1} \alpha \\ 469 &= |\beta_i|^{-1} \left(\alpha + \left| \frac{\beta}{\tilde{\beta}} - 1 \right| \right) \approx 0. \end{aligned}$$

¹The precise bound of 1 here is arbitrary.

471 Thus in order to bound this estimation error to within ε , it suffices to require bounds of the
 472 form $\sigma/\sqrt{n} \leq \varepsilon/\text{poly}(d, \kappa(\theta), \delta^{-1})$ and $\alpha \leq \varepsilon/\text{poly}(d, \kappa(\theta), \delta^{-1})$. By Theorem 4.2, we achieve
 473 this bound on α from Jennrich's algorithm so long as $\|\tilde{T}_n^{(3)} - T^{(3)}\|_F \leq \varepsilon/\text{poly}(d, \kappa(\theta), \delta^{-1})$.
 474 This estimation error is achieved with probability $1 - \delta/2$ so long as $n \geq \sigma^6 \text{poly}(d, \kappa(\theta), \delta^{-1})$,
 475 which also subsumes the explicit bound on σ/\sqrt{n} . By a union bound over the two probabilistic
 476 steps in this argument, the desired accuracy guarantee holds with probability $1 - \delta$. \square
 477

B.2. Proof of Theorem 5.1. As in the proof of Theorem 4.3, we write $A \approx B$ if we can bound

$$|A - B| \leq \alpha \text{poly}(d, \kappa, \delta^{-1}) + \sigma^3/\sqrt{n} \text{poly}(d, \kappa, \delta^{-1})$$

478 given that² $\alpha \leq 1$ and $\sigma^3/\sqrt{n} \leq 1$; we apply this also to vectors in 2-norm or (equivalently)
 479 most other common norms.

From Theorem 4.2, we are guaranteed that $\tilde{u}_i \approx \beta_i(R_{a(i)}\theta^{(b(i))})^{\otimes 2}$; taking norms, we have
 $1 \approx |\beta_i| \|\theta^{(b(i))}\|_2$, so that $|\beta_i| \approx \|\theta^{(b(i))}\|^{-1}$ is of constant order. Now by the Davis–Kahan
 theorem, if $v_{\max}(M)$ denotes either choice of unit-length eigenvector of M corresponding to
 the eigenvalue of largest magnitude, we have

$$\tilde{v}_i := v_{\max}(\tilde{u}_i) \approx \varepsilon_i R_{a(i)}\theta^{(b(i))}/\|\theta^{(b(i))}\|_2,$$

480 for some sign $\varepsilon_i = \pm 1$. Then we have $\tilde{V}^{(3)} \approx V^{(3)}$, where as above, $\tilde{V}^{(3)}$ is the $d^3 \times dK$
 481 matrix whose columns are $\tilde{v}_i^{\otimes 3}$, and $V^{(3)}$ has columns $\varepsilon_i(R_{a(i)}\theta^{(b(i))})^{\otimes 3}/\|\theta^{(b(i))}\|_2^3$. Estimating
 482 $T^{(3)}$ by $\tilde{T}_n^{(3)}$ according to Lemma 4.1, we have $\tilde{T}_n^{(3)} \approx T^{(3)}$ by Chebyshev, with probability
 483 $1 - \delta/2$. Note then that $V^{(3)}\alpha = \text{vec}(T^{(3)})$, where $\alpha_i = \varepsilon_i \|\theta^{(b(i))}\|_2^3/dK$. By the perturbation
 484 theory of linear systems, we are now guaranteed that, letting $\tilde{\alpha}$ be the least squares solution
 485 to $\tilde{V}^{(3)}\tilde{\alpha} = \text{vec}(\tilde{T}_n^{(3)})$, we have $\tilde{\alpha} \approx \alpha$, so long as the system is well-conditioned, which we
 486 defer to the following lemma:

487 **Lemma B.1.** *If $\kappa(V^{(3)})$ denotes the condition number of $V^{(3)}$, then $\kappa(V^{(3)}) \leq \kappa \text{poly}(d)$.*

488 As α_i is of constant order, it follows that $\tilde{w}_i := \tilde{\alpha}_i^{1/3}\tilde{v}_i \approx R_{a(i)}\theta^{(b(i))}$, so that $\rho(\tilde{\alpha}_i^{1/3}\tilde{v}_i, \theta^{(b(i))}) \approx$
 489 0. We are thus guaranteed dK good estimates to the original K signals. We next discuss how
 490 to remove this redundancy by clustering.

Define the pseudometric on \mathbb{R}^d defined by $\rho_2(x, y) = \min_{1 \leq \ell \leq d} \|x^{\otimes 2} - (R_\ell y)^{\otimes 2}\|_2$. Note
 that

$$\rho_2(w_i, w_{i'}) \approx \rho_2(R_{a(i)}\theta^{(b(i))}, R_{a(i')}\theta^{(b(i'))}) = \rho_2(\theta^{(b(i))}, \theta^{(b(i'))}).$$

If $b(i) = b(i')$, so that the two estimates w_i and $w_{i'}$ should represent the same signal, we thus
 have $\rho(w_i, w_{i'}) \approx 0$. If $b(i) \neq b(i')$, we have

$$\rho_2(w_i, w_{i'}) \approx \rho_2(\theta^{(b(i))}, \theta^{(b(i'))}) = \min_\ell \|U(e_{b(i),0} - e_{b(i'),\ell})\|_2 \geq \sqrt{2} \sigma_{\min}(U) = 1/\text{poly}(d, \kappa),$$

491 where $e_{b,\ell} \in \mathbb{R}^{dK}$ is the standard basis vector corresponding to signal b and rotation ℓ . It
 492 follows that, provided α and σ^6/n are inverse-polynomially small in d, κ, δ^{-1} , we exactly

²The precise bound of 1 here is arbitrary.

493 recover the clusters of estimates \tilde{w}_i corresponding to the same signal θ_k , simply by comparing
 494 on the metric ρ_2 and thresholding. Drawing one estimate \tilde{w}_i from each cluster, we obtain one
 495 estimate of each signal.

To conclude, in order to bound this estimation error to within ε , it suffices to require bounds of the form $\sigma^3/\sqrt{n} \leq \varepsilon/\text{poly}(d, \kappa, \delta^{-1})$ and $\alpha \leq \varepsilon/\text{poly}(d, \kappa, \delta^{-1})$. By Theorem 4.2, we achieve this bound on α from Jenrich's algorithm so long as

$$\|\tilde{T}_n^{(5)} - T^{(5)}\|_F \leq \varepsilon/\text{poly}(d, \kappa, \delta^{-1}).$$

496 This estimation error is achieved with probability $1 - \delta/2$ so long as $n \geq \sigma^{10} \text{poly}(d, \kappa, \delta^{-1})$,
 497 which also subsumes the explicit bound on σ^3/\sqrt{n} . By a union bound over the two proba-
 498 bilistic steps in this argument, the desired accuracy guarantee holds with probability $1 - \delta$. \square
 499

500 **B.3. Proof of Lemma B.1.** We apply the following transformations which do not alter
 501 the condition number: we transform the rows by the third tensor power of a DFT, we permute
 502 the columns to sort by signal and rotation, and we negate columns according to the signs ε_i .
 503 It thus suffices to control the condition number of the $d^3 \times dK$ matrix $V^{(3) \prime}$ whose columns
 504 are $(\hat{R}_j \hat{\theta}_k)^{\otimes 3} / \|\theta_k\|_2^3$, where $\hat{R}_i = \text{diag}(\{\omega^{ij}\}_j)$ is the Fourier representation of a rotation action
 505 ($\omega = e^{2i\pi/d}$), and $\hat{\theta}$ is the Fourier transform of θ . Meanwhile, let V'_2 be the $d^2 \times dK$ matrix
 506 with columns $(\hat{R}_j \hat{\theta}_k)^{\otimes 2}$, the Fourier transform of U , so that $\kappa(V'_2) = \kappa$.
 507 Let $v \in \mathbb{R}^{dK}$; then we have

$$\begin{aligned} 508 \|V^{(3) \prime} v\|_2^2 &= \sum_{\ell=1}^d \left\| V'_2 \text{diag} \left(\{\omega^{j\ell} (\hat{\theta}_k)_\ell \|\theta_k\|_2^{-3}\}_{jk} \right) v \right\|_2^2 \\ 509 &\geq \sum_{\ell=1}^d \sigma_{\min}(U)^2 \left\| \text{diag} \left(\{\omega^{j\ell} (\hat{\theta}_k)_\ell \|\theta_k\|_2^{-3}\}_{jk} \right) v \right\|_2^2 \\ 510 &= \sum_{\ell} \sigma_{\min}(U)^2 \sum_{jk} |(\hat{\theta}_k)_\ell|^2 \|\theta_k\|_2^{-6} |v|_{jk}^2 \\ 511 &= \sigma_{\min}(U)^2 \sum_k \|\theta_k\|_2^{-4} \left(\sum_j |v|_{jk}^2 \right) \\ 512 &\geq \sigma_{\min}(U)^2 10^{-4} \|v\|_2^2, \end{aligned}$$

514 so that $\sigma_{\min}(V^{(3) \prime}) \geq \sigma_{\min}(U) 10^{-2}$. Observing the norms of columns, it is clear that $\sigma_{\max}(U)$
 515 and $\sigma_{\max}(V^{(3) \prime})$ are bounded above by $\text{poly}(d)$, so we conclude that $\kappa(V^{(3)}) = \kappa(V^{(3) \prime}) \leq$
 516 $\kappa \text{poly}(d)$, as desired. \square
 517

518 **Acknowledgments.** The authors thank Alex Wein for many insightful discussions on the
 519 topic of this paper.

521 [1] E. ABBE, T. BENDORY, W. LEEB, J. PEREIRA, N. SHARON, AND A. SINGER, *Multireference alignment*
522 *is easier with an aperiodic translation distribution*, arXiv preprint arXiv:1710.02793, (2017).

523 [2] E. ABBE, J. PEREIRA, AND A. SINGER, *Sample complexity of the boolean multireference alignment prob-*
524 *lem*, in 2017 IEEE International Symposium on Information Theory (ISIT), July 2017.

525 [3] S. AGARWAL, N. SNAVELY, I. SIMON, S. M. SEITZ, AND R. SZELISKI, *Building rome in a day*, in Twelfth
526 IEEE International Conference on Computer Vision (ICCV 2009), Kyoto, Japan, September 2009,
527 IEEE.

528 [4] C. AGUERREBERE, M. DELBRACIO, A. BARTESAGHI, AND G. SAPIRO, *Fundamental limits in multi-image*
529 *alignment*, IEEE Trans. Signal Process., 64 (2016), pp. 5707–5722, <https://doi.org/10.1109/TSP.2016.2600517>, <http://dx.doi.org/10.1109/TSP.2016.2600517>.

531 [5] A. S. BANDEIRA, B. BLUM-SMITH, J. KILEEL, A. PERRY, J. WEED, AND A. S. WEIN, *Estimation under*
532 *group actions: recovering orbits from invariants*, arXiv preprint arXiv:1712.10163, (2018).

533 [6] A. S. BANDEIRA, M. CHARIKAR, A. SINGER, AND A. ZHU, *Multireference alignment using semidefi-*
534 *nite programming*, in ITCS’14—Proceedings of the 2014 Conference on Innovations in Theoretical
535 Computer Science, ACM, New York, 2014, pp. 459–470.

536 [7] A. S. BANDEIRA, Y. CHEN, AND A. SINGER, *Non-unique games over compact groups and orientation*
537 *estimation in cryo-EM*, Available online at arXiv:1505.03840 [cs.CV], (2015).

538 [8] A. S. BANDEIRA, P. RIGOLLET, AND J. WEED, *Optimal rates of estimation for multi-reference alignment*,
539 Available online at arXiv:1702.08546 [math.ST], (2017).

540 [9] A. BARNETT, L. GREENGARD, A. PATAKI, AND M. SPIVAK, *Rapid solution of the cryo-EM reconstruction*
541 *problem by frequency marching*, SIAM J. Imaging Sci., 10 (2017), pp. 1170–1195, <https://doi.org/10.1137/16M1097171>, <http://dx.doi.org/10.1137/16M1097171>.

543 [10] T. BENDORY, N. BOUMAL, C. MA, Z. ZHAO, AND A. SINGER, *Bispectrum inversion with application to*
544 *multireference alignment*, Available online at arXiv:1705.00641 [cs.IT], (2017).

545 [11] D. R. BRILLINGER, *Some history of the study of higher-order moments and spectra*, Statist. Sinica, 1
546 (1991), pp. 465–476.

547 [12] H. N. CHAPMAN, A. BARTY, M. J. BOGAN, S. BOUTET, M. FRANK, S. P. HAU-RIEGE, S. MARCHESEINI,
548 B. W. WOODS, S. BAJT, W. H. BENNER, ET AL., *Femtosecond diffractive imaging with a soft-x-ray*
549 *free-electron laser*, Nature Physics, 2 (2006), p. 839.

550 [13] J. J. DONATELLI, J. A. SETHIAN, AND P. H. ZWART, *Reconstruction from limited single-particle diffrac-*
551 *tion data via simultaneous determination of state, orientation, intensity, and phase*, Proceedings of
552 the National Academy of Sciences, 114 (2017), pp. 7222–7227.

553 [14] I. L. DRYDEN AND K. V. MARDIA, *Statistical shape analysis*, Wiley series in probability and statistics,
554 Wiley, Chichester, 1998.

555 [15] H. FOROOSH, J. ZERUBIA, AND M. BERTHOD, *Extension of phase correlation to subpixel registration*,
556 IEEE Trans. Image Processing, 11 (2002), pp. 188–200, <https://doi.org/10.1109/83.988953>, <http://dx.doi.org/10.1109/83.988953>.

558 [16] J. FRANK, *Three-dimensional electron microscopy of macromolecular assemblies: visualization of biolog-*
559 *ical molecules in their native state*, Oxford University Press, 2006.

560 [17] K. GAFFNEY AND H. CHAPMAN, *Imaging atomic structure and dynamics with ultrafast x-ray scattering*,
561 Science, 316 (2007), pp. 1444–1448.

562 [18] G. B. GIANNAKIS, *Signal reconstruction from multiple correlations: Frequency-and time-domain ap-*
563 *proaches*, JOSA A, 6 (1989), pp. 682–697.

564 [19] N. GOYAL, S. VEMPALA, AND Y. XIAO, *Fourier PCA and robust tensor decomposition*, in Proceedings
565 of the 46th Annual ACM Symposium on Theory of Computing, ACM, 2014, pp. 584–593.

566 [20] R. HARSHMAN, *Foundations of the PARAFAC procedure: Model and conditions for an explanatory mul-*
567 *timodal factor analysis*, tech. report, Tech. Rep. UCLA Working Papers in Phonetics 16, University
568 of California, Los Angeles, Los Angeles, CA, December. 13, 27, 1970.

569 [21] R. KAKARALA, *Completeness of bispectrum on compact groups*, arXiv preprint arXiv:0902.0196, (2009).

570 [22] Z. KAM, *The reconstruction of structure from electron micrographs of randomly oriented particles*, Journal
571 *of Theoretical Biology*, 82 (1980), pp. 15–39.

572 [23] L. LE CAM, *Convergence of estimates under dimensionality restrictions*, The Annals of Statistics, (1973),

573 pp. 38–53.

574 [24] S. LEURGANS, R. ROSS, AND R. ABEL, *A decomposition for three-way arrays*, SIAM Journal on Matrix
575 Analysis and Applications, 14 (1993), pp. 1064–1083.

576 [25] A. MOITRA, *Algorithmic aspects of machine learning*, Lecture notes (MIT), (2014).

577 [26] A. MOITRA AND G. VALIANT, *Settling the polynomial learnability of mixtures of gaussians*, in 51th Annual
578 IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
579 Nevada, USA, IEEE Computer Society, 2010, pp. 93–102, <https://doi.org/10.1109/FOCS.2010.15>,
580 <https://doi.org/10.1109/FOCS.2010.15>.

581 [27] K. PEARSON, *Contributions to the mathematical theory of evolution*, Philosophical Transactions of the
582 Royal Society of London A: Mathematical, Physical and Engineering Sciences, 185 (1894), pp. 71–110.

583 [28] D. ROSEN, L. CARLONE, A. BANDEIRA, AND J. LEONARD, *A certifiably correct algorithm for synchroniza-
584 tion over the special Euclidean group*, in Intl. Workshop on the Algorithmic Foundations of Robotics
585 (WAFR), San Francisco, CA, Dec. 2016.

586 [29] B. M. SADLER AND G. B. GIANNAKIS, *Shift- and rotation-invariant object reconstruction using the
587 bispectrum*, Oct. Soc. Am. A, 9 (1992), pp. 57–69.

588 [30] J. SCHNITZBAUER, Y. WANG, S. ZHAO, M. BAKALAR, T. NUWAL, B. CHEN, AND B. HUANG, *Correlation
589 analysis framework for localization-based superresolution microscopy*, Proceedings of the National
590 Academy of Sciences, 115 (2018), pp. 3219–3224.

591 [31] F. SIGWORTH, *A maximum-likelihood approach to single-particle image refinement*, Journal of structural
592 biology, 122 (1998), pp. 328–339.

593 [32] A. SINGER, *Angular synchronization by eigenvectors and semidefinite programming*, Appl. Comput. Har-
594 mon. Anal., 30 (2011), pp. 20 – 36.

595 [33] B. SONDAY, A. SINGER, AND I. G. KEVREKIDIS, *Noisy dynamic simulations in the presence of symme-
596 try: Data alignment and model reduction*, Computers & Mathematics with Applications, 65 (2013),
597 pp. 1535 – 1557.

598 [34] A. B. TSYBAKOV, *Introduction to nonparametric estimation*, Springer Series in Statistics, Springer,
599 New York, 2009, <https://doi.org/10.1007/b13794>, <http://dx.doi.org/10.1007/b13794>. Revised and
600 extended from the 2004 French original, Translated by Vladimir Zaiats.

601 [35] J. W. TUKEY, *The spectral representation and transformation properties of the higher moments of station-
602 ary time series*, in The Collected Works of John W. Tukey, D. R. Brillinger, ed., vol. 1, Wadsworth,
603 1984, ch. 4, pp. 165–184.

604 [36] B. VON ARDENNE, M. MECHELKE, AND H. GRUBMÜLLER, *Structure determination from single molecule
605 x-ray scattering with three photons per image*, Nature communications, 9 (2018), p. 2375.

606 [37] A. WEIN, *Statistical Estimation in the Presence of Group Actions*, PhD thesis, MASSACHUSETTS
607 INSTITUTE OF TECHNOLOGY, 2018.