The sample complexity of multi-reference alignment*
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Abstract. The growing role of data-driven approaches to scientific discovery has unveiled a large class of models
that involve latent transformations with a rigid algebraic constraint. Three-dimensional molecule
reconstruction in Cryo-Electron Microscopy (cryo-EM) is a central problem in this class. Despite
decades of algorithmic and software development, there is still little theoretical understanding of the
sample complexity of this problem, that is, number of images required for 3-D reconstruction. Here
we consider multi-reference alignment (MRA), a simple model that captures fundamental aspects
of the statistical and algorithmic challenges arising in cryo-EM and related problems. In MRA, an
unknown signal is subject to two types of corruption: a latent cyclic shift and the more traditional
additive white noise. The goal is to recover the signal at a certain precision from independent
samples. While at high signal-to-noise ratio (SNR), the number of observations needed to recover a
generic signal is proportional to 1/SNR, we prove that it rises to a surprising 1/SNR? in the low
SNR regime. This precise phenomenon was observed empirically more than twenty years ago for
cryo-EM but has remained unexplained to date. Furthermore, our techniques can easily be extended
to the heterogeneous MRA model where the samples come from a mixture of signals, as is often
the case in applications such as cryo-EM, where molecules may have different conformations. This
provides a first step towards a statistical theory for heterogeneous cryo-EM.
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AMS subject classifications.

1. Introduction. Sample complexity is a concept at the cornerstone of statistics and ma-
chine learning with far reaching implications for experimental design and data collection strate-
gies, ranging from polling voters for election prediction to training speech recognition systems.
Loosely speaking, the sample complexity is the number of measurements needed to estimate
model parameters at a prescribed accuracy. Perhaps the most fundamental question asso-
ciated to sample complexity is its scaling with respect to signal-to-noise ratio (SNR) of the
problem at hand. This question is of prime importance especially in modern problems arising
in data-driven science that often feature a very low SNR.

In many traditional models, the sample complexity scales as 1/SNR, but this question
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remains elusive in more complex models that feature latent variables in order to account for
heterogeneity in the data. In this paper, we examine the sample complexity of such complex
models in which the signal undergoes two types of corruption: a latent linear transformation
and noise addition. Of particular interest in applications are linear transformations that cor-
respond to a group action. For example, in estimating a two-dimensional image from multiple
arbitrarily rotated noisy copies, every measurement corresponds to an unknown element of
the group of planar rotations SO(2) that acts linearly on the data. Another example is the
reconstruction problem in cryo-EM [16], a fundamental imaging technique that won the 2017
Nobel Prize in Chemistry. In cryo-EM, the goal is to estimate the three-dimensional struc-
ture of a molecule from many two-dimensional noisy tomographic projection images taken at
unknown viewing angles. Here to every projection image corresponds an unknown element of
the 3D rotation group SO(3) and the linear transformation is a composition of a tomographic
projection in a fixed direction with the group action of rotating the molecular structure (we
ignore possible in-plane translations and other imaging effects). Other estimation problems
of similar nature arise in many other scientific and engineering disciplines, such as structure
from motion (SfM) in computer vision [3], simultaneous localization and mapping (SLAM)
in robotics [28], X-ray free electron lasers (XFEL) in structural biology [12, 17], crystalline
simulations [33], and shape matching and image registration and alignment problems arising
in geology, medicine, and paleontology, to name a few [14, 15, 30].

Multi-reference alignment (MRA) [6] is one of the simplest models that is able to capture
fundamental aspects of this class of problems, rendering it ideal for theoretical study. In this

model one observes n independent data points yi,...,y, given by
where Ry, is a cyclic shift by an unknown number ¢; of coordinates: the jth coordinate of
R0 € R? is given by (Rglﬂ)j = 044, (mod - We assume isotropic Gaussian noise §; ~

N(0,1,) i.i.d. and independent of ¢y, ..., ¢,. We make no assumptions on the shifts ¢1,...,¢y;
however, by applying an independent and uniform random cyclic shift to each observation,
we can always reduce the MRA model to the case where /1, ..., ¢, are drawn i.i.d. uniformly
from [d]. We therefore focus on this case for simplicity and generality. The goal is to estimate
the unknown vector 6 € RY.

The MRA model is illustrated in Figure 1. We refer to ||0]|3/0? as the SNR; without
loss of generality we assume in the sequel that ||f]|2 = 1, implying SNR = 1/02. The latent
transformations Ry in MRA correspond to the action of the cyclic group Z/dZ on real-valued
signals of length d. The simplicity of MRA in the class of problems mentioned earlier stems
from the following facts: (i) the group Z/dZ is finite (has exactly d elements) and commutative
(i.e., R¢R,, = Ry Ry for all £,m), and (ii) no further linear operation (such as projection as
in cryo-EM) is involved.

In this paper, we study the sample complexity of MRA, that is, the number of observations
needed to recover a generic signal with a given accuracy as a function of the SNR. Our results
reveal a striking difference between the high and low SNR regimes. On the one hand, the
picture at a high SNR is fairly standard in signal processing: the sample complexity scales
proportionally to 1/SNR. On the other hand, using information theoretic arguments, we show
that the presence of the latent cyclic shifts has a profound effect on the sample complexity
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SAMPLE COMPLEXITY OF MRA 3

at low SNR, where the optimal sample complexity becomes proportional to 1/SNR3. Twenty
years ago, in a seminal paper by Sigworth [31] that introduced maximum likelihood estimation
to the cryo-EM field, an analogous phenomenon was empirically observed (without theoretical
explanation) in two-dimensional multi-reference alignment (Figure 2), where the group of
transformations are planar rigid motions. Our results shed light on the fundamental reasons
behind this behavior of the sample complexity.

More specifically, our results on the sample complexity of MRA highlight the role of the
third moment tensor (known in signal processing as the bispectrum) in the estimation task.
From this analysis, we not only show that the 1/SNR? dependence is unavoidable for any
method in the low-SNR regime, but also give a very simple algorithm based on the third
moment tensor, which achieves the optimal sample complexity efficiently and provably.

By establishing the correct sample complexity for the MRA model, this work represents
the first step towards determining the sample complexity of the reconstruction problem in
cryo-EM and other applications involving more complicated group actions. In fact, we com-
plement our results on MRA by showing that a simple extension of our algorithm applies to
the heterogeneous case where 6 in (1.1) is randomly drawn from a finite family of linearly inde-
pendent vectors. Using ideas initiated in the present paper, follow-up work [5] has confirmed
that similar phenomena arise for molecule reconstruction in cryo-EM, at least in a slightly
weaker sense than the one presented in this paper.

2. Overview. In this section, we give an overview of our contributions and how they fit
in the existing literature.

2.1. Existing methods. The difficulty of the multi-reference alignment problem resides in
the fact that both the signal § € R% and the shifts ¢1,...,¢, € Zy are unknown. If the shifts
were known, one could easily estimate 6 by taking the average of Rzilyi,i =1,...,n. In fact,
this simple observation is the basis of the so-called “synchronization” approach [32, 6, 7]: first
estimate the shifts by /1, . . . ,gn € Z4 and then estimate 6 by averaging the Rglyi’s. While the
synchronization approach can be employed at high SNR, it is limited by the fact that at low
SNR, even alignment of observations to the true signal yields inaccurate shift estimates [4].

Instead, we take a different approach that exploits the connection between MRA and
Gaussian mixture models. This connection is based on the fact that in MRA, the data y is
distributed according to a uniform mixture of Gaussians whose centers are the rotated vectors
R10, ..., R40. To analyze MRA, we therefore rely on techniques from the Gaussian mixture
model literature. One insight from this literature, which is crucial to our work, is that there
are two separate estimation problems that can be posed for Gaussian mixture models. The
first is clustering, in which the goal is to assign a label to each datapoint corresponding to the
Gaussian from which it was drawn. The second is parameter estimation, in which the goal is
simply to learn the Gaussians themselves—i.e., to identify the mean vectors and covariance
matrices of each Gaussian component, without necessarily assigning a label to each point.
Previous theoretical work on MRA has focused on the first task, which forms the basis for
the synchronization approach. By contrast, our approach is based on the second task: we
seek only to estimate the underlying parameters of the mixture; as they correspond to the
underlying signal of interest. This connection also motivates our theoretical approach: we
develop an approach based on the method of moments, which was introduced in Pearson’s
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Figure 1. Instances of the multi-reference alignment problem, at low (o = .5, left column) and high (o =~ 3,
right column) noise levels. We plot the values of a vector in R® for d = 100. Randomly shifted copies of a
smoothed version of the underlying signal (0) appears in gray, and a smoothed version of the noisy observation
(y) appears in red. When the noise level is low, salient features of the signal are still visible despite the noise;
in the presence of large noise, however, the signals cannot reliably be aligned. We establish the optimal sample
complexity of the large noise problem.

seminal paper on Gaussian mixture models [27] and has recently led to efficient estimators
with provably optimal guarantees [26].

2.2. The method of invariants. In this work, we develop a new approach to MRA based
on the method of moments. This method focuses on the tensors 7 (6) defined by

d
(2.1) T (6) = éZ(Rge)@ .
/=1

These tensors are precisely the moments of the uniform distribution over the set of vectors
{R10,...,R40}. We first establish that the parameter 6 can be identified by the moment
tensors {T()(0)},>1. We then show that we can estimate the moment tensors accurately
enough to recover the original signal.

The method of moments has an alternate interpretation in the context of MRA and
similar problems involving group actions. One striking fact is that the moment tensors in
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Figure 2. Figure taken from a paper on cryo-EM [31], illustrating (i) strikingly different behavior for
the mazimum likelihood estimator in low and high SNR regimes and (i) 1/SNR? scaling at low SNR. Our
theoretical analysis suggests that any estimator, not only the mazrimum likelthood estimator, is bound to the
same limitations. Reprinted from Journal of Structural Biology, Vol. 122, F. Sigworth, A mazimum-likelihood
approach to single-particle image refinement, pp. 328-339, copyright 1998, used with permission.

MRA capture features of the signal that are invariant under cyclic shifts. For example, the
first moment tensor reduces to the entrywise mean of the signal (i.e., the vector in R? each
of whose entries is the average value of ), which is an example of an invariant feature: it
is clearly invariant under cyclic shifts of 6 and, as we show below, can easily be estimated
consistently in the MRA model. More generally, each entry in the moment tensor 7()(f) is
an invariant polynomial in the coordinates of 6, and these invariant polynomials can always
be estimated in the MRA model as long as ¢ is known. We therefore call our approach the
method of invariants.

In what follows, we focus on the moment tensors 7" (6) for < 3. Our core contribution
is to show that estimation on the basis of these first three moment tensors yields optimal
sample complexity as a function of the SNR for the MRA model. We stress, however, that
the focus on moment tensors is not limited to MRA, and that the method of invariants can be
used to obtain sample complexity bounds for a wide variety of similar models. In this work,
we specialize to MRA since it provides perhaps the simplest nontrivial application of these
ideas.

The first three moment tensors in the MRA model correspond to quantities often studied
under different names in the signal processing literature. In addition to the first moment
tensor—which, as noted above, reduces to the entrywise mean of the signal—the second and
third moment tensors are also easy to describe in terms of #. The second moment tensor
T5(#) corresponds to the autocorrelation of the signal §. Written in the Fourier basis, this
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autocorrelation corresponds to the power spectrum of 6 (the square of the absolute value of
the Fourier coefficients of the signal) which is often used as an invariant feature in signal
processing. Note that, in general, this quantity does not carry enough information to allow
for estimation of @, since it provides only the magnitudes of the Fourier coefficients, but not
their phases.

The crucial object in the case of MRA is the third moment tensor. Written in the Fourier
basis, this object is known as the bispectrum of the signal, given by

B (k1,k2) = 01, 01,0k, 1o

where 6 is the Fourier transform of 6, ky, ko € [d], and the indices are taken modulo d. It was
originally introduced in a statistical context [11, 35] . It is known [21] that the bispectrum
uniquely determines the signal 6 up to cyclic shift whenever 0, # 0 for all k € [d]. We call
such signals generic. In other words, for generic signals, the moment tensors T (6), T2(9), and
T®)(6) suffice to identify the true signal #. This fact has been exploited to obtain estimates
for alignment problems [29, 18, 10].

Note that the sample average based estimator for T®) has a variance of order o%/n when
o is large, since it is a cubic polynomial of noisy data. It suggests that in the low SNR regime,
any approach relying on the bispectrum requires at least order 1/SN R? samples. Since this
dependency on SNR is very different from the 1/SNR sample complexity of many models,
bispectrum approaches seem highly suboptimal.

The main contribution of our work is to show that this number of samples is in fact a
fundamental requirement of the problem when the shifts are sampled from the uniform dis-
tribution, independent of the approach taken (following ideas developed in [8]): all estimators
suffer from the same limitations, including the maximum likelihood estimator (see Figure 2).
This shows that the latent cyclic transformations fundamentally change the difficulty of the
problem. A similar phenomenon has been demonstrated for a Boolean version of MRA [2].

To complement our lower bound, we also propose simple algorithm based on the method
of moments capable of provably achieving the optimal 1/SNR? sample complexity for generic
signals. While other algorithms employing the bispectrum exist in the literature [29, 18, 10],
ours has the virtue of acting directly to decompose the third moment tensor via a straight-
forward and principled approach. As we note below, this simple algorithm also extends to
the heterogenous setting, for which no algorithms enjoyed theoretical guarantees prior to this
work.

2.3. Non-generic signals. The bispectrum-based methods for the multi-reference align-
ment problem we present work only for generic signals. In fact, non-generic signals can exhibit
significantly worse behavior with a sample complexity of order 1/ SNR? rather than 1 /SNRS3,
but this pessimistic scenario does not seem to be representative of signals encountered in
practice. In fact, these signals that are hard to estimate form a set of zero Lebesgue measure.
See [8] for more details.

2.4. The heterogeneity problem. One of the main challenges in cryo-EM reconstruction
is the heterogeneity problem, where one observes noisy projection images of multiple unknown
conformations of the same molecule. The MRA model can be extended to accommodate
heterogeneity by assuming that in (1.1), the vector # € R? is also a latent variable drawn from
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SAMPLE COMPLEXITY OF MRA 7

a finite set of unknown vectors C = {0(1), N )}. The goal here is to recover the set C up
to a cyclic shift and the proportion of each 81,

Our approach based on the method of invariants coupled with tensor decomposition tech-
niques extends to the heterogeneous setup. It yields the first algorithm capable of provably
solving the heterogeneous MRA at arbitrarily low SNR, albeit at a potentially suboptimal
sample complexity of 1/SNR?.

2.5. Connections to cryo-EM and XFEL. One of the main motivations to study the
multi-reference alignment problem is that it serves as a simpler surrogate for cryo-EM. This
paper indicates potentially fruitful directions for future work. Our results offer theoretical
support for the use of invariant methods in cryo-EM, a proposal which dates back to Zvi
Kam [22]. These methods have also proven effective in XFEL structure determination [36, 13].

Our work serves as a first step towards a complete statistical theory of cryo-EM. In fact,
follow-up work to this paper has demonstrated that the method of invariants can be used
to characterize the sample complexity of more general models, including the reconstruction
problem for cryo-EM [5].

2.6. Notation. We use [d] to represent the set {1,...,d} and I to represent the d x d
identity matrix. The smallest and largest singular values of a matrix are denoted o, and
Omax, respectively. The symbol poly(-) refers to an unspecified polynomial with constant coef-
ficients. Cy is used to refer to a constant that may depend on d but not on other parameters,
and it may refer to a different constant in different appearances throughout the text. The
expression f(n) = O(g(n)) means that there exists a constant C such that f(n) < Cg(n) for
all n, and we write O4(g(n)) when the constant may depend on d. We write g(n) = Q(f(n))

when f(n) = O(g(n)).

3. Fundamental limitations. In this section, we establish the fundamental limits of MRA
and point to shortcomings of existing strategies to achieve optimal sample complexity.

3.1. Lower bounds for sample complexity. Since observations in the MRA model (1.1)
are invariant under a global cyclic shift, one may only identify € up to such a global shift.
To account for this fact, it is natural to employ the following shift-invariant distance between
vectors 0,7 € R%:

p(0.7) = min [0 = Rl

As noted above, by applying an independent and uniform random cyclic shift to each
observation, we can always reduce the MRA model to the case where /1,...,¢, are drawn
i.i.d. uniformly from [d]. In this case, the distribution of y in (1.1) is a uniform mixture of the
d Gaussian distributions N (6, 02%1),...,N(Rg_10,0%1;). If y is generated according to this
distribution, we call it a “sample from MRA with signal 0.” The statistical properties of this
Gaussian mixture are analyzed in [8].

If o is small—that is, if the SNR is sufficiently large—then the signals can be aligned (for
example, via the synchronization approach [32]), and therefore 6 can be estimated accurately
on the basis of n samples from MRA with signal 6 as long as n > C'/SNR for some constant
C. This is the same dependence that would be expected in the absence of shifts. Strikingly,

This manuscript is for review purposes only.



8 A. PERRY, J. WEED, A. S. BANDEIRA, P. RIGOLLET, AND A. SINGER

the situation in the high-noise regime (when the SNR is low) is very different: estimation is
impossible unless n > C/SNR? for some constant C.

Theorem 3.1. Fix d > 2, € > 0 sufficiently small, and 0 > 1. There exists a universal
constant C such that the following holds with constant probability: for any estimator 0 based on
n samples from (1.1) there exists a generic signal 0 € R with ||0|o = 1, such that p(6,0) > ¢
whenever n < Co%e72.

In other words, if we require that our estimator 6 satisfy p(é,@) < € with probability close
to 1, then we must have n > Co% 2. We prove this fact in the supplement using the tight
information-theoretic bounds developed in [8], which are based on the method of invariants
and, in particular, on the observation given above that the second moment tensor does not
carry enough information about € in general.

3.2. The importance of high frequencies. As noted above, the sample complexity exhib-
ited by the method of invariants, 1/ SNRS3, is tight for generic signals. For non-generic signals,
while the method of invariants still yields optimal results (see [5]), the precise sample com-
plexity depends on specific properties of the support of the Fourier transform of the original
signal. This dependence is often counter-intuitive as illustrated by the example below.

Some approaches to the alignment problem implicitly adopt a strategy of first estimating
low frequencies of a signal, and then using this initial estimate to estimate higher frequencies
(see [9]). In other words, these strategies assume that estimating a low-pass version of a signal
is no harder than estimating the original signal.

Surprisingly, this is not the case in general, as following example shows. Let us take d > 14
congruent to 2 (mod 4) and @ € R? a signal whose Fourier transform 0 satisfies 6; = 0_1 = 0
but otherwise has full support. We show in the supplement that we can estimate 6 with
Og4 (1 / SNR3) samples. Surprisingly, if we low-pass 6 by setting éj = 0 for all |j| > 4, then
Q(1/ SNR4) samples are needed.

To show that @ can be recovered with O4(1/SNR?) samples, it suffices to show that the
phases of the Fourier coefficients of 8 can be reconstructed uniquely from its bispectrum.
Given a complex number z, denote by arg(z) its phase. By applying a circular shift, we can
assume without loss of generality that arg(fy) € [0,47/d) and that arg(§®)) € [0, 7). Tt is easy
to check that the identity 2 Z (d— 6)/ arg(B(2,2k)) + arg(B((d — 2)/2,(d — 2)/2)) = %arg(ég)
holds modulo 27, and the assumptlon that arg(fy) € [0,47/d) implies that the choice of
arg(ég) is unique. This implies that all even-indexed phases can be recovered. We also have
the simple identity arg(fs) + arg(B(3,3)) = 2arg(d®)) modulo 27, and the assumption that
arg(9®)) e [0, 7) implies that the choice is unique. Combined with the knowledge of arg(fs),
this implies recoverability of all odd-indexed phases.

To show that the low-pass signals require n > Co® samples, we simply note that the first
three moment tensors of the low-pass signals agree. Theorem A.l therefore implies that the
Kullback-Leibler divergence between the relevant distributions is at most Co~®. The same
argument given in proof of Theorem 3.1 establishes that any test attempting to distinguish
between the low-pass signals incurs type-I and type-II error of at least 2/3 unless n > Co®.

The difficulty in recovering the low-pass version arises from the following simple obser-
vation: if éj = 0 for all j ¢ {£2,43,+£4}, then the only nonzero entry of the bispectrum is
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Figure 3. Two signals whose Fourier transforms have almost full support (left column) and their corre-
sponding low-pass versions (right column). Estimating either of the original signals is possible with O4(1/SNR?)
samples. However, the same task for the low-pass versions requires Q(1/SNR?*) samples; in fact, even distin-
guishing between the two options requires this number of samples. This illustrates the importance of high
frequencies in the MRA model.

B(2,2). This implies that the bispectrum carries no information about the phase of 63 and
we show in the supplement that this implies that any two such signals which agree on their
second and fourth Fourier coefficient are indistinguishable—in the sense that any procedure
to distinguish them fails with constant probability—unless n > Co?®.

4. Efficient recovery via tensor methods. Theorem 3.1 implies that the sample com-
plexity of MRA for generic signals is at least 1/SNR? in the low-SNR regime. In this section,
we describe how the method of invariants also yields an efficient algorithm that achieves this
optimal sample complexity, that is, it outputs an estimator § of # such that p(0,0) < & with
high probability whenever n > Cyo%e2.

Our approach uses the method of invariants by estimating invariant features in the third
moment tensor T®) defined in (2.1). While other algorithms in the literature have also been
based on recovering the signal on the basis of the third moment tensor via iterative meth-
ods [29, 18, 10], we propose a simpler procedure which also yields stable recovery guarantees.

First, we estimate T3 by the following empirical quantity:

n d
~ 1
(4.1) T = -3 > ((Rjy)®® = 3sym(Rjy; ® 1))
i=1 j=1
where
1
(4.2) sym(A)a;...ap = i Z Ar(ay)...m(ay) -

TeSk
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Lemma 4.1. The estimator T® is an unbiased estimator of T®) . Moreover, each entry of
TS’) has a variance of order o®/n so long as o is bounded below by a positive constant.

Proof. Tf & ~ N(0, I), then both E[¢;] and E[¢P%] are zero. This implies that
Eij[(Rjyi)®°] = Eijl(R0 + o)) = E;(R;0)%° + 3sym((E; R;0) @ Ia),

SO Tég) is an unbiased estimator of 7).

Each entry of y; is a Gaussian with variance o, so the entries of sym(y; ® I;) have
variance of order o2, and the entries of y??’ have variance of order ¢®; the latter dominates
for ¢ bounded away from 0. The claim follows. |

2

)

Then, we apply a basic decomposition technique, given in the next section, to the tensor TT(L?’
to find a vector 6 such that

7O~

SHN

d
> (R
/=1

The vector § then serves as our estimate of 6.

4.1. Jennrich’s Algorithm for Tensor Decomposition. In this section, we detail a sim-
ple decomposition algorithm for the third moment tensor, which in turn provides an efficient
algorithm that provably solves MRA for generic signals while achieving optimal sample com-
plexity in terms of SNR. It involves the spectral decomposition of the tensor of empirical
third moments. Such decompositions have been long studied and a sophisticated machinery
has been developed over the years; see [25, Chapter 3].

The specific algorithm that we use is a standard tensor decomposition algorithm known
as Jennrich’s algorithm (proposed in [20] and credited to Robert Jennrich). The version
described below allows the recovery of vectors uq, ..., u, (up to simple transformations) from
a noisy version of the tensor

T
(4.3) T= ZUJ' Pu; Qu; € R™MXMXP
=1
where v1,...,v, € RP are arbitrary nonzero vectors.
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Jennrich’s Algorithm ([20, 24)).
Input: Tensor T~ 3% u; ® u; ® v; € RMXMXP,
Output: Matrix U = [uq,...,0,] € R™*"
» Choose random unit vectors a,b € RP, and form matrices A, B € R™*™ with
entries:

r
Aij = Z,I%jkaka A= Z(Uj,&)Uj @ g,
k =1

r
Bij = Zﬂjkbka B = Z<Uj, b)uj %) Uj
k 7=1

» Let W be the matrix whose columns are the first r left singular vectors of A.
» Compute M = W T AW (W' BW)~L.

» Output U = WP, where M = PDP~! is the eigendecomposition of M.

316 Jennrich’s algorithm requires only basic matrix operations and can therefore be imple-
317 mented very efficiently even on large scale problems. It also enjoys the following robustness
318 guarantees. Using the notation of Jennrich’s algorithm, it is easy to see that T®) is indeed a
319 low-rank tensor of the form (4.3), with m =p =d, u; = v; = R;_10 (for j =1,...,7) and

320 U = [0, R10,..., Rg_10]. We recall the following recovery guarantee of Jennrich’s algorithm
321  when applied to a tensor T that is close to a low rank tensor.

322 Theorem 4.2 ([19], Theorem 5.2). Let T' be a tensor of the form (4.3) with all u; linearly
23 independent, and define k(U) = omax(U)/omin(U). Moreover, fit ¢ > 0 and let T' satisfy
24 | T —=T||r <e. Then Jennrich’s algorithm applied to T returns unit vectors u;,j = 1,...,r

25 such that there exists a permutation ™ and scalars (B satisfying

326 (4.4) E%%?]( |ij — Bjtr(j)lloo < € poly(m, k)

327 with high probability.
Let @1 be the first vector output by Jennrich’s algorihtm applied to T, 723) and let

T, e .
ﬁlzu]—l/:uw M:EE yiT]-7 qul/ﬁl
1=1

328 In the supplement, we show that an algorithm homolJen based on Jennrich’s algorithm for
329 tensor decomposition applied to the T,(L?’) enjoys the following theoretical guarantees.

Theorem 4.3. Fiz o > .1 and § € (0,1) and assume .1 < ||0]|2 < 10. Then, for any e > 0
Jennrich’s algorithm applied to T7§3) outputs 0,, such that p(én, 0) < e with probability at least
1 — 9 whenever

n > o% 2 poly(d, 1/ min |6;],1/5)
Jjeld]

330 in time O(nd® + d° poly(log(1/¢))).

331 Note that the constants .1 and 10 are arbitrary and may be replaced by any other constants.
332 The time complexity is dominated by the time necessary to construct the empirical tensor
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T, ,(13), which requires only a single pass over the data. Since Jennrich’s algorithm relies on
basic matrix operations, it requires only O(d® poly(log(1/¢))) additional computation time

once Tég) has been constructed.

In view of the lower bound appearing in Theorem 3.1, the sample complexity of the
modified Jennrich algorithm is optimal in terms of the SNR.

Several other bispectrum-based algorithms have appeared in the literature; see [10] for a
recent empirical study. These may perform better in practice, but they largely do not come
with the theoretical guarantees of the algorithm proposed here, and they do not yield efficient
algorithms for the heterogenous case discussed below.

5. Heterogeneity. In this section, we sketch an extension of the previous results to the
heterogenous multi-reference alignment problem. We recall this model here for completeness.
In heterogenous MRA, we observe

(51) yl:R&Q(Zl)—i_OfZ) i1=1,...,n,

where Z1,...,7Z, € {1,..., K} are i.i.d. latent variables such that Pr(Z; = k) = m, k € [K]
that are independent of all other variables and %) € R k € [K] are unknown vectors. The
other variables are specified as in the homogeneous model (1.1). The goal here is to recover
the set of vectors 0F) € R% k= 1,..., K up to a cyclic shift and the probability mass function
{7k ek

The method of invariants described above can be extended to handle the heterogeneous
model (5.1). In this case our method proceeds by estimating the mixtures of signals from an

unbiased estimator T7(L5) for the 5-tensor

K d
70 = 33 ™ ().

k=1 (=1

In our analysis of homogenous MRA, we noted that the moment tensors 7 = 7(1) 0), T (2) =
7@ (), 73 = T7(4) () uniquely determine 6, as long as  is generic. The method of invariants
can also be applied to the heterogenous case to show that the moment tensors 70, ..., T()
determine the vectors (), ... %) as long as the vectors satisfy a particular genericity con-
dition. Our proof of this fact is algorithmic in the sense that we exhibit an efficient algorithm,
which can recover the vectors (1), ... %) as long as the collection is suitably generic. The
fact that the method of invariants can be extended to the heterogenous case supports the idea
that it is a flexible, general approach to models of this kind. This algorithm achieves sample
complexity 1/SNR®, whereas the optimal sample complexity for heterogenous MRA is known
to be 1/SNR? in several settings, including when (), ... #(K) are drawn independently from
N(0,1/d) [5, 37]. Our algorithm therefore does not achieve optimal sample complexity in
general; however, it is the first efficient algorithm for the heterogenous problem with provable
guarantees.

We now sketch the basic idea of our approach. Using manipulations similar to the ones
arising in the proof of Lemma 4.1, it is not hard to show that T() can be rewritten as

T = Ely;®] - 100° sym(T®) © 1) — 150" sym(Ty @ I§?)
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where Ty = E[y;] and T®) is defined in (2.1). Therefore an unbiased estimator of T®) is given
by

R 3 Lo
= ﬁ ny% — 1002 sym(T£3) ® Id) — 1504 Sym(a Zyi 2 I§2) ,

where TV is given in (4.1). Moreover, each entry of 7

as o is bounded below by a positive constant.

We propose a method that consists in applying Jennrich’s algorithm to an appropriate
flattening of T7$5). We call it heteroJen. It hinges on the following observation: the 5-tensor
T®) can be flattened into a 3-tensor of shape d? x d? x d that admits the following low-rank

decomposition:

has variance of order o'°/n so long

d

K
3 % (Re0®)®2 & (R,0M)®2 & (R,H0M)Y .
k=1 (=1

The algorithm heteroJen then proceeds by plugging TT(LE)) into the above flattening oper-

ation and then applying Jennrich’s algorithm to the resulting 3-tensor of shape d? x d? x d.
Theorem 4.2 implies that this procedure outputs vectors 4;, 1 < i < dK with the following
guarantees: there exist scalars 3; and a bijection a x b : [dK]| — [d] x [K] satisfying

od

Huz /31( e(b )®2H < CK\f

poly(d),

with high probability.

We compute ¥; as the leading eigenvector of the d x d matrix @;. Letting V) be the
d® x dK matrix with columns U®3, we estimate @ € R as the least-squares solution to
VB®a = vece(T®). The vectors w; := &'/3%; (with entrywise exponentiation) now comprise
dK redundant estimates to the K original signals 6j; we remove this redundancy by clustering
these dK estimates according to the pseudometric pe(7,y) = minj<p<q ||[2%% — (Rey)©?[]2. (We
show in the proof of Theorem 5.1, below, that this clustering can be accomplished by a simple
thresholding scheme.) Finally, the procedure heteroJen returns one vector from each cluster.

The heteroJen procedure enjoys the following theoretical guarantees that rely on the fol-
lowing condition number.

Let U = [vec((R10M)%®2),. .. vec((Rg0))®?)], and denote the condition number of U by
k. It can be shown that k is generically finite. To that end, suppose we have some nonzero
linear relation 0 = S5, Z?:l k(RO (ROFN T, Multiplying by a DFT on the left and
its adjoint on the right, and examining the a, b entry, we have 0 = Zle (cAk)afbéék)él()k). Some
(cAk) ., 1s nonzero, yielding a nontrivial linear relation among the autocorrelation vectors vy,
1 <k <K, with v, ; = éj(k)é((ﬁj These vectors satisfy the symmetry v ; = vgq—j, but
are generic on this subspace, which has dimension at least [d/2]. Hence generically no such
relation exists, and the matrix U has finite condition number.

Theorem 5.1. Fiz o > .1 and § € (0,1). Assume that .1 < ||0®)||y < 10 for all k € [K] and
that K < [d/2]. Then, for any ¢ > 0, the heteroJen applied to T7§5) outputs {5&1), . '757(11()}
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such that -
S win 69,00 < e
—

with probability at least 1 — § whenever
n > Crol% 2 poly(d, k,1/6)

in time O(nd® + d° poly(log(1/¢))).

To the best of our knowledge, heteroJen is the first efficient method for heterogeneous
MRA at low SNR. As noted above, follow-up work has shown that similar method-of-moments
approaches based on tensor decomposition can efficiently achieve 1/SNR? sample complexity
under the assumption that the components are drawn independently from A (0,1/d) [37].

6. Concluding remarks. In this paper, we characterize the sample complexity of MRA, a
first step towards a better statistical understanding of cryo-EM. In particular, we show that
any estimator requires at least 1/SNR? samples at low SNR.

We also present an algorithm based on the method of invariants that provably solves
the MRA problem with optimal sample complexity at low SNR. We further show that the
approach can be adapted to heterogenous problems, an extension of particular importance
in cryo-EM where different biological molecules or conformations are often imaged together.
Our approach is the first to yield theoretical guarantees on any procedure for heterogenous
MRA and opens the door to a broader application of the method of invariants.

While this work constitutes a first step towards a statistical theory of 3-D molecule recon-
struction in cryo-EM, many questions remain open. Since an earlier version of this manuscript
was available, follow-up work has shown that our approach can be extended to molecule re-
construction in cryo-EM [5] and to MRA with nonuniform shifts [1]. These works establish
that the method of invariants yields optimal sample complexity in a wide variety of settings.

Appendix A. Proof of lower bounds.

A.1. Proof of Theorem 3.1. In what follows, let ¢; and C be constants (with ¢4 depending
on d) whose value may change from line to line. Let 6 be any zero-mean signal such that
16]]2 = 1, and let 6 be its Fourier transform. There exists a coefficient éj with j # 0 such that
|9J] > ¢q. Define 7 by setting

e ifk=j
=14 e P0_; ifk=—j
0 otherwise,

where § = cqe for some constant cq chosen so that |7; — éj\ > 2¢ as long as ¢ is sufficiently
small. It is clear that p(6,7) > 2¢, since when ¢ is sufficiently small, for any shift R we have
16 — Rrlla > 0; — Rr| > |0; — 7] > 2e.

We now establish that no procedure can distinguish between MRA with signal § and MRA
with signal 7 on the basis of n samples if n < Co%¢~2 with probability better than 1/3. To
prove this, we reproduce the following theorem [8, Theorem 9], whose proof we sketch for
completeness.
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Theorem A.1. Assume o > 1. Let 0 and T be two mean-zero signals satisfying p(6,7) < &
and TU(0) = TU)(r) for r < k. If Py and P, are the Gaussian miztures corresponding
to MRA with signals 6 and T respectively, then the Kullback-Leibler divergence D(Py|| Pr)
satisfies

D(Py || P;) < Cro—2ke?

for some constant C}, depending on k.

Proof. [Sketch] Let ¢(x) be the density of a d-dimensional Gaussian with covariance 021,
and let ¢ and ¢, be the densities of Py and P;, respectively. Let R be a uniformly distributed
random cyclic shift. The convexity of the exponential function implies

¢r(2) = E¢(w — Rr) > p(x)e 71227
The x? divergence x2(Py || P;) between Py and P, then satisfies

2 _ [ (Po(x) — ¢r(2))?

< lirli3/20? / (10820 =82 _ —I61B/20* 5 = E 20, 1) d

xT

Expanding the square, collecting terms, and integrating with respect to x yields

XZ(PG H P‘r) < eHTH§/2‘72E[6(RIG)TR9/02 o 26(R’9)TRT/02 +6(R/9)TR9/02]

)

where R’ is an independent copy of R. Expanding this quantity as a Taylor series and applying
Fubini’s theorem to interchange summation and expectation yields

(P || Pr) < lmlEr2e* §° 1T (8) — TW ()34

o2ryl ’

r>1

where || - |34 represents the Hilbert-Schmidt norm. By [8, Lemma B.12], for ¢ sufficiently
small,

17D (6) =T (7)|Ifs < 12 27€°.

Combining this with the assumption that T (0) = T(")(r) for r < k yields

1290 1297 B
Py || Pr) < ellmll/27e2 g = Cro e?.
r>k
Since D(Py || Pr) < x%(Ps || Pr) [34, Lemma 2.7], the claim follows. [ ]

The two signals 6 and 7 we have constructed are easily shown to satisfy 7()(9) = T (1)
and T (9) = T?)(r), since their means and power spectra (i.e., the moduli of their Fourier
transforms) agree.
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By applying Theorem A.1 and Pinsker’s inequality, we obtain

1 1
TV(PY™, PO™)? < §D(P9®" | P&™) < 500—*65%.
Therefore if n < C~'o% 72, [34, Theorem 2.2] implies that for any measurable function
Y R — {0, 7} of the data y1,...,yn, it holds

Py ((y1, - oyn) = 7) + PL(W(y1, ... yn) = 0) > 1 = TV(F", PF™) > 1/2.

In other words, any hypothesis test ¢ must incur type-I and type-II error of at least 1 /2.
Via Le Cam’s two-point testing argument [23], this fact implies that any estimator € is bound
to incur error € with constant probability, as claimed. O

Appendix B. Proof of upper bounds.

B.1. Proof of Theorem 4.3. Write #(6) for 1/(min;c(g) 6;). Tt can be shown that the

condition number x(U) of U satisfies x(U) < maxj’k{\éj]/|ék||} < k(#). Theorem 4.2 implies
(3)

that Jennrich’s algorithm applied to T,;”) outputs @; satisfying
a® poly(d)
Vi

with high probability for some j € [d] and some 3; € R.

As we are only concerned with polynomial dependence and not detailed bounds, we write
A ~ B if we can bound |A — B| < apoly(d,x(#),5~ 1) + o/v/npoly(d, x(0),6!) so long as’
a < 1 and o/y/n < 1; we apply this also to vectors in 2-norm or (equivalently) most other
common norms.

Theorem 4.2 guarantees us that 4 ~ 3;R;0. Taking norms, we have 1 ~ |53;]||0]|2; as ||6]|2
is bounded above and below by constants, we have that |5;| = 1/||6||2 is also of constant order.
Note also that by Chebyshev we have that |fi — u| < 0v/§/v/2nd with probability 1 — §/2, so
that p =~ ji. From 4 =~ §; R;0 we also derive that

i1 — B1R;0]|o0 < c>0,

(B.1) (5, 1)/d ~ By ~ Bifi.
We know that [|0]|2 < omax(U) and that omin(U) < ||U - ﬁng = d|pl, so that |a| ~ |p| >
drk(0)/)|0]]2; we are thus justified in dividing (B.1) by i to obtain 8 &~ §;, and 3;/3 ~ 1. We
now bound the total estimation error as follows:
187 i — Rif||o < |8~ i — B Yailla + |8y i — Rif|2
< B =B+ 18 e

= |8 <a+ ‘g — 1‘) ~ 0.

!The precise bound of 1 here is arbitrary.
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Thus in order to bound this estimation error to within ¢, it suffices to require bounds of the
form o/\/n < ¢/ poly(d, x(6),671) and a < &/ poly(d, x(#),5~1). By Theorem 4.2, we achieve
this bound on « from Jennrich’s algorithm so long as ||T,(13) —TO)||p < ¢/ poly(d, x(6),51).
This estimation error is achieved with probability 1 —§/2 so long as n > % poly(d, x(9),5 1),
which also subsumes the explicit bound on ¢ /+/n. By a union bound over the two probabilistic
steps in this argument, the desired accuracy guarantee holds with probability 1 — 4. U

B.2. Proof of Theorem 5.1. As in the proof of Theorem 4.3, we write A ~ B if we can
bound
|A— B| < apoly(d,x,6~") + o /y/npoly(d, ,67")

given that? o < 1 and 03/y/n < 1; we apply this also to vectors in 2-norm or (equivalently)
most other common norms.

From Theorem 4.2, we are guaranteed that ; ~ ,Bi(Ra(i)H(b(i)))m; taking norms, we have
1~ |3]]|0®@)||3, so that |5;| =~ ||8®@)||~! is of constant order. Now by the Davis-Kahan
theorem, if vmax(M) denotes either choice of unit-length eigenvector of M corresponding to
the eigenvalue of largest magnitude, we have

’ZN)Z‘ = Umax(ﬂz‘) ~ e’-:ZRa(Z)e(b(z))/Ha(b(Z))||2,

for some sign ¢; = +1. Then we have VB ~ VB where as above, V®) is the d® x dK
matrix whose columns are ¢, and V) has columns 51-(Ra(i)H(b(i)))®3/||9(b(i))H%. Estimating
T®) by T,(Lg) according to Lemma 4.1, we have T,(Lg) ~ T®) by Chebyshev, with probability
1 — /2. Note then that V®a = vec(T®)), where oy = ;]|®*)||3/dK. By the perturbation
theory of linear systems, we are now guaranteed that, letting & be the least squares solution
to V®a = Vec(j}(ﬁ)), we have & =~ «, so long as the system is well-conditioned, which we
defer to the following lemmas:

Lemma B.1. If k(V®)) denotes the condition number of V), then x(V®) < kpoly(d).

As «; is of constant order, it follows that w; := 073/317@' ~ Ra(i)e(b(i)), so that p(dil/gﬁi, H(b(i))) ~
0. We are thus guaranteed dK good estimates to the original K signals. We next discuss how
to remove this redundancy by clustering.
Define the pseudometric on R? defined by pa(z,y) = minj</<q |2%? — (Rey)®?||2. Note
that
p2(wi, wir) 2 pa( R0, Ry 0P0)) = py (90D 9CLD).

If b(7) = b(4'), so that the two estimates w; and w; should represent the same signal, we thus
have p(w;, w;r) ~ 0. If b(i) # b(i'), we have
pa(wi, wi) 2 pa (0, 00Dy = min U ens 0 = evii.0)l2 2 V2 min(U) = 1/ poly(d, ),

where e, € R is the standard basis vector corresponding to signal b and rotation ¢. It

follows that, provided o and o%/n are inverse-polynomially small in d,x,d6~!, we exactly

2The precise bound of 1 here is arbitrary.
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recover the clusters of estimates w; corresponding to the same signal 6, simply by comparing
on the metric ps and thresholding. Drawing one estimate w; from each cluster, we obtain one
estimate of each signal.

To conclude, in order to bound this estimation error to within e, it suffices to require
bounds of the form o3/\/n < ¢/ poly(d, x,6~!) and a < ¢/ poly(d, k,6~ ). By Theorem 4.2,
we achieve this bound on « from Jennrich’s algorithm so long as

|7 —T®) || p < e/ poly(d, #,67").

This estimation error is achieved with probability 1 — 6/2 so long as n > o' poly(d, x,571),
which also subsumes the explicit bound on ¢®/y/n. By a union bound over the two proba-
bilistic steps in this argument, the desired accuracy guarantee holds with probability 1 —¢§. I

B.3. Proof of Lemma B.1. We apply the following transformations which do not alter
the condition number: we transform the rows by the third tensor power of a DFT, we permute
the columns to sort by signal and rotation, and we negate columns according to the signs &;.
It thus suffices to control the condition number of the d® x dK matrix V) whose columns
are (RjHAk)®3 /116% |13, where R; = diag({w"};) is the Fourier representation of a rotation action
(w = €2™/?) and 0 is the Fourier transform of §. Meanwhile, let V3 be the d? x dK matrix
with columns (Rjék)@, the Fourier transform of U, so that x(Vy) = k.

Let v € R4 then we have

V@2 = Zd: HVQ’diag ({wje(ék)e|!9k||2_3}jk> sz
=1

> iammw)z |tine (7 @)l e) o]
=1

= omin(U)? D 10)e[106ll3 ol
l ik

= owin(U)” D 66l | D ol
k J
> O-min(U)210_4||UH%v
s0 that omin(V®)) > 0min(U)10~2. Observing the norms of columns, it is clear that oyax(U)

and opmax (V) are bounded above by poly(d), so we conclude that (V) = x(V®)) <
kpoly(d), as desired. O
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This manuscript is for review purposes only.



o

N
[\]

ot Ut Ut

ot Ut Ut
U W

NN NN DN
I3 ¢ o

ot Ut Ut
[\
Qo

Ne)

=
o

ot gt Ot
[N

S TR W

3

Gl ot UL Ot Ot O Ot O U1 O OOt
- W W W W W W W W WwwWN
o © @

T W N =

=

J

ot Ot Ut
NS

ot Ot Ut

ot

v Ot Ot Ot Ot
v Ot Ot Ot Ot Ot
SR o= O

ot

~

ot Ot
Ut Ot Ot

ot
[0:¢]

t

Oy O
=

ot Gt

o)

ot Ot
(o)

Y O
T W N =

ot

=)

S
(o))

ot Ut

(@)

3

[@))
o

=

=S A

ot U Ut

or Ot
J

3

\V]

SAMPLE COMPLEXITY OF MRA 19

REFERENCES

[1] E. ABBE, T. BENDORY, W. LEEB, J. PEREIRA, N. SHARON, AND A. SINGER, Multireference alignment
is easier with an aperiodic translation distribution, arXiv preprint arXiv:1710.02793, (2017).

[2] E. ABBE, J. PEREIRA, AND A. SINGER, Sample complezity of the boolean multireference alignment prob-
lem, in 2017 IEEE International Symposium on Information Theory (ISIT), July 2017.

[3] S. AGARWAL, N. SNAVELY, I. SIMON, S. M. SEITZ, AND R. SZELISKI, Building rome in a day, in Twelfth
IEEE International Conference on Computer Vision (ICCV 2009), Kyoto, Japan, September 2009,
IEEE.

[4] C. AGUERREBERE, M. DELBRACIO, A. BARTESAGHI, AND G. SAPIRO, Fundamental limits in multi-image
alignment, IEEE Trans. Signal Process., 64 (2016), pp. 5707-5722, https://doi.org/10.1109/TSP.2016.
2600517, http://dx.doi.org/10.1109/TSP.2016.2600517.

[5] A.S. BANDEIRA, B. BLUM-SMITH, J. KILEEL, A. PERRY, J. WEED, AND A. S. WEIN, Estimation under
group actions: recovering orbits from invariants, arXiv preprint arXiv:1712.10163, (2018).

[6] A. S. BANDEIRA, M. CHARIKAR, A. SINGER, AND A. ZHU, Multireference alignment using semidefi-
nite programming, in ITCS’14—Proceedings of the 2014 Conference on Innovations in Theoretical
Computer Science, ACM, New York, 2014, pp. 459-470.

[7] A. S. BANDEIRA, Y. CHEN, AND A. SINGER, Non-unique games over compact groups and orientation
estimation in cryo-EM, Available online at arXiv:1505.03840 [cs.CV], (2015).

[8] A.S. BANDEIRA, P. RIGOLLET, AND J. WEED, Optimal rates of estimation for multi-reference alignment,
Available online at arXiv:1702.08546 [math.ST], (2017).

[9] A. BARNETT, L. GREENGARD, A. PATAKI, AND M. SPIVAK, Rapid solution of the cryo-EM reconstruction
problem by frequency marching, STAM J. Imaging Sci., 10 (2017), pp. 1170-1195, https://doi.org/10.
1137/16M 1097171, https://doi.org/10.1137/16M1097171.

[10] T. BENDORY, N. BouMAL, C. MA, Z. ZHAO, AND A. SINGER, Bispectrum inversion with application to
multireference alignment, Available online at arXiv:1705.00641 [cs.IT], (2017).

[11] D. R. BRILLINGER, Some history of the study of higher-order moments and spectra, Statist. Sinica, 1
(1991), pp. 465-476.

[12] H. N. CHAPMAN, A. BARTY, M. J. BOGAN, S. BOUTET, M. FRANK, S. P. HAU-RIEGE, S. MARCHESINI,
B. W. Woobs, S. BajT, W. H. BENNER, ET AL., Femtosecond diffractive imaging with a soft-z-ray
free-electron laser, Nature Physics, 2 (2006), p. 839.

[13] J. J. DONATELLI, J. A. SETHIAN, AND P. H. ZWART, Reconstruction from limited single-particle diffrac-
tion data via simultaneous determination of state, orientation, intensity, and phase, Proceedings of
the National Academy of Sciences, 114 (2017), pp. 7222-7227.

[14] 1. L. DrRYDEN AND K. V. MARDIA, Statistical shape analysis, Wiley series in probability and statistics,
Wiley, Chichester, 1998.

[15] H. FOROOSH, J. ZERUBIA, AND M. BERTHOD, Extension of phase correlation to subpizel registration,
IEEE Trans. Image Processing, 11 (2002), pp. 188-200, https://doi.org/10.1109/83.988953, https:
//doi.org/10.1109/83.988953.

[16] J. FRANK, Three-dimensional electron microscopy of macromolecular assemblies: visualization of biolog-

ical molecules in their native state, Oxford University Press, 2006.

K. GAFFNEY AND H. CHAPMAN, Imaging atomic structure and dynamics with ultrafast z-ray scattering,
Science, 316 (2007), pp. 1444-1448.

[18] G. B. GIANNAKIS, Signal reconstruction from multiple correlations: Frequency-and time-domain ap-

proaches, JOSA A, 6 (1989), pp. 682-697.

[19] N. GOYAL, S. VEMPALA, AND Y. XIAO, Fourier PCA and robust tensor decomposition, in Proceedings
of the 46th Annual ACM Symposium on Theory of Computing, ACM, 2014, pp. 584-593.

[20] R. HARSHMAN, Foundations of the PARAFAC procedure: Model and conditions for an explanatory mul-
timodal factor analysis, tech. report, Tech. Rep. UCLA Working Papers in Phonetics 16, University
of California, Los Angeles, Los Angeles, CA, December. 13, 27, 1970.

. KAKARALA, Completeness of bispectrum on compact groups, arXiv preprint arXiv:0902.0196, (2009).

. KaM, The reconstruction of structure from electron micrographs of randomly oriented particles, Journal
of Theoretical Biology, 82 (1980), pp. 15-39.

[23] L. LE CaM, Convergence of estimates under dimensionality restrictions, The Annals of Statistics, (1973),

(17]

21]
22]

N

This manuscript is for review purposes only.


https://doi.org/10.1109/TSP.2016.2600517
https://doi.org/10.1109/TSP.2016.2600517
https://doi.org/10.1109/TSP.2016.2600517
http://dx.doi.org/10.1109/TSP.2016.2600517
https://doi.org/10.1137/16M1097171
https://doi.org/10.1137/16M1097171
https://doi.org/10.1137/16M1097171
https://doi.org/10.1137/16M1097171
https://doi.org/10.1109/83.988953
https://doi.org/10.1109/83.988953
https://doi.org/10.1109/83.988953
https://doi.org/10.1109/83.988953

1
3

ol ot ot ©
NS IPS IS IS
© 00~ O T W

ot Or Ot Ot Ot Ot
0o 00 GO 00 OO0 =3 =
Y UL i W N = O

Ot Ot Ot Ot Ot Ot Ut C
© 0 N>

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

20

(24]

25]
[26]

27]

28]

29]

(30]

(31]
(32]

(33]

(34]

(35]

(36]

37]

o

A. PERRY, J. WEED, A. S. BANDEIRA, P. RIGOLLET, AND A. SINGER

pp- 38-53.

. LEURGANS, R. Ross, AND R. ABEL, A decomposition for three-way arrays, STAM Journal on Matrix

Analysis and Applications, 14 (1993), pp. 1064-1083.

. MoITRA, Algorithmic aspects of machine learning, Lecture notes (MIT), (2014).
. MOITRA AND G. VALIANT, Settling the polynomial learnability of miztures of gaussians, in 51th Annual

IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, IEEE Computer Society, 2010, pp. 93-102, https://doi.org/10.1109/FOCS.2010.15,
https://doi.org/10.1109/FOCS.2010.15.

. PEARSON, Contributions to the mathematical theory of evolution, Philosophical Transactions of the

Royal Society of London A: Mathematical, Physical and Engineering Sciences, 185 (1894), pp. 71-110.

. ROsEN, L. CARLONE, A. BANDEIRA, AND J. LEONARD, A certifiably correct algorithm for synchroniza-

tion over the special Fuclidean group, in Intl. Workshop on the Algorithmic Foundations of Robotics
(WAFR), San Francisco, CA, Dec. 2016.

. M. SADLER AND G. B. GIANNAKIS, Shift- and rotation-invariant object reconstruction using the

bispectrum, Oct. Soc. Am. A, 9 (1992), pp. 57-69.

. SCHNITZBAUER, Y. WANG, S. ZHAO, M. BAKALAR, T. NuwAL, B. CHEN, AND B. HuANG, Correlation

analysis framework for localization-based superresolution microscopy, Proceedings of the National
Academy of Sciences, 115 (2018), pp. 3219-3224.

SIGWORTH, A maximum-likelihood approach to single-particle image refinement, Journal of structural
biology, 122 (1998), pp. 328-339.

. SINGER, Angular synchronization by eigenvectors and semidefinite programming, Appl. Comput. Har-

mon. Anal., 30 (2011), pp. 20 — 36.

. SONDAY, A. SINGER, AND I. G. KEVREKIDIS, Noisy dynamic simulations in the presence of symme-

try: Data alignment and model reduction, Computers & Mathematics with Applications, 65 (2013),
pp. 1535 — 1557.

. B. TSYBAKOV, Introduction to monparametric estimation, Springer Series in Statistics, Springer,

New York, 2009, https://doi.org/10.1007/b13794, http://dx.doi.org/10.1007/b13794. Revised and
extended from the 2004 French original, Translated by Vladimir Zaiats.

J. W. TUKEY, The spectral representation and transformation properties of the higher moments of station-

B.

A.

ary time series, in The Collected Works of John W. Tukey, D. R. Brillinger, ed., vol. 1, Wadsworth,
1984, ch. 4, pp. 165-184.

VON ARDENNE, M. MECHELKE, AND H. GRUBMULLER, Structure determination from single molecule
x-Tay scattering with three photons per image, Nature communications, 9 (2018), p. 2375.

WEIN, Statistical Estimation in the Presence of Group Actions, PhD thesis, MASSACHUSETTS
INSTITUTE OF TECHNOLOGY, 2018.

This manuscript is for review purposes only.


https://doi.org/10.1109/FOCS.2010.15
https://doi.org/10.1109/FOCS.2010.15
https://doi.org/10.1007/b13794
http://dx.doi.org/10.1007/b13794

	Introduction
	Overview
	Existing methods
	The method of invariants
	Non-generic signals
	The heterogeneity problem
	Connections to cryo-EM and XFEL
	Notation

	Fundamental limitations
	Lower bounds for sample complexity
	The importance of high frequencies

	Efficient recovery via tensor methods
	Jennrich's Algorithm for Tensor Decomposition

	Heterogeneity
	Concluding remarks
	Appendix A. Proof of lower bounds
	Proof of Theorem 3.1

	Appendix B. Proof of upper bounds
	Proof of Theorem 4.3
	Proof of Theorem 5.1
	Proof of Lemma B.1

	Acknowledgments

