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Abstract. The growing role of data-driven approaches to scientific discovery has unveiled a large class of models4
that involve latent transformations with a rigid algebraic constraint. Three-dimensional molecule5
reconstruction in Cryo-Electron Microscopy (cryo-EM) is a central problem in this class. Despite6
decades of algorithmic and software development, there is still little theoretical understanding of the7
sample complexity of this problem, that is, number of images required for 3-D reconstruction. Here8
we consider multi-reference alignment (MRA), a simple model that captures fundamental aspects9
of the statistical and algorithmic challenges arising in cryo-EM and related problems. In MRA, an10
unknown signal is subject to two types of corruption: a latent cyclic shift and the more traditional11
additive white noise. The goal is to recover the signal at a certain precision from independent12
samples. While at high signal-to-noise ratio (SNR), the number of observations needed to recover a13
generic signal is proportional to 1/SNR, we prove that it rises to a surprising 1/SNR3 in the low14
SNR regime. This precise phenomenon was observed empirically more than twenty years ago for15
cryo-EM but has remained unexplained to date. Furthermore, our techniques can easily be extended16
to the heterogeneous MRA model where the samples come from a mixture of signals, as is often17
the case in applications such as cryo-EM, where molecules may have different conformations. This18
provides a first step towards a statistical theory for heterogeneous cryo-EM.19

Key words. Multi-reference alignment, method of invariants, bispectrum, cryo-EM20

AMS subject classifications.21

1. Introduction. Sample complexity is a concept at the cornerstone of statistics and ma-22

chine learning with far reaching implications for experimental design and data collection strate-23

gies, ranging from polling voters for election prediction to training speech recognition systems.24

Loosely speaking, the sample complexity is the number of measurements needed to estimate25

model parameters at a prescribed accuracy. Perhaps the most fundamental question asso-26

ciated to sample complexity is its scaling with respect to signal-to-noise ratio (SNR) of the27

problem at hand. This question is of prime importance especially in modern problems arising28

in data-driven science that often feature a very low SNR.29

In many traditional models, the sample complexity scales as 1/SNR, but this question30
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remains elusive in more complex models that feature latent variables in order to account for31

heterogeneity in the data. In this paper, we examine the sample complexity of such complex32

models in which the signal undergoes two types of corruption: a latent linear transformation33

and noise addition. Of particular interest in applications are linear transformations that cor-34

respond to a group action. For example, in estimating a two-dimensional image from multiple35

arbitrarily rotated noisy copies, every measurement corresponds to an unknown element of36

the group of planar rotations SO(2) that acts linearly on the data. Another example is the37

reconstruction problem in cryo-EM [16], a fundamental imaging technique that won the 201738

Nobel Prize in Chemistry. In cryo-EM, the goal is to estimate the three-dimensional struc-39

ture of a molecule from many two-dimensional noisy tomographic projection images taken at40

unknown viewing angles. Here to every projection image corresponds an unknown element of41

the 3D rotation group SO(3) and the linear transformation is a composition of a tomographic42

projection in a fixed direction with the group action of rotating the molecular structure (we43

ignore possible in-plane translations and other imaging effects). Other estimation problems44

of similar nature arise in many other scientific and engineering disciplines, such as structure45

from motion (SfM) in computer vision [3], simultaneous localization and mapping (SLAM)46

in robotics [28], X-ray free electron lasers (XFEL) in structural biology [12, 17], crystalline47

simulations [33], and shape matching and image registration and alignment problems arising48

in geology, medicine, and paleontology, to name a few [14, 15, 30].49

Multi-reference alignment (MRA) [6] is one of the simplest models that is able to capture50

fundamental aspects of this class of problems, rendering it ideal for theoretical study. In this51

model one observes n independent data points y1, . . . , yn given by52

(1.1) yi = R`iθ + σξi,53

where R`i is a cyclic shift by an unknown number `i of coordinates: the jth coordinate of54

R`iθ ∈ Rd is given by
(
R`iθ)j = θj+`i (mod d). We assume isotropic Gaussian noise ξi ∼55

N (0, Id) i.i.d. and independent of `1, . . . , `n. We make no assumptions on the shifts `1, . . . , `n;56

however, by applying an independent and uniform random cyclic shift to each observation,57

we can always reduce the MRA model to the case where `1, . . . , `n are drawn i.i.d. uniformly58

from [d]. We therefore focus on this case for simplicity and generality. The goal is to estimate59

the unknown vector θ ∈ Rd.60

The MRA model is illustrated in Figure 1. We refer to ‖θ‖22/σ2 as the SNR; without61

loss of generality we assume in the sequel that ‖θ‖2 = 1, implying SNR = 1/σ2. The latent62

transformations R` in MRA correspond to the action of the cyclic group Z/dZ on real-valued63

signals of length d. The simplicity of MRA in the class of problems mentioned earlier stems64

from the following facts: (i) the group Z/dZ is finite (has exactly d elements) and commutative65

(i.e., R`Rm = RmR` for all `,m), and (ii) no further linear operation (such as projection as66

in cryo-EM) is involved.67

In this paper, we study the sample complexity of MRA, that is, the number of observations68

needed to recover a generic signal with a given accuracy as a function of the SNR. Our results69

reveal a striking difference between the high and low SNR regimes. On the one hand, the70

picture at a high SNR is fairly standard in signal processing: the sample complexity scales71

proportionally to 1/SNR. On the other hand, using information theoretic arguments, we show72

that the presence of the latent cyclic shifts has a profound effect on the sample complexity73
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at low SNR, where the optimal sample complexity becomes proportional to 1/SNR3. Twenty74

years ago, in a seminal paper by Sigworth [31] that introduced maximum likelihood estimation75

to the cryo-EM field, an analogous phenomenon was empirically observed (without theoretical76

explanation) in two-dimensional multi-reference alignment (Figure 2), where the group of77

transformations are planar rigid motions. Our results shed light on the fundamental reasons78

behind this behavior of the sample complexity.79

More specifically, our results on the sample complexity of MRA highlight the role of the80

third moment tensor (known in signal processing as the bispectrum) in the estimation task.81

From this analysis, we not only show that the 1/SNR3 dependence is unavoidable for any82

method in the low-SNR regime, but also give a very simple algorithm based on the third83

moment tensor, which achieves the optimal sample complexity efficiently and provably.84

By establishing the correct sample complexity for the MRA model, this work represents85

the first step towards determining the sample complexity of the reconstruction problem in86

cryo-EM and other applications involving more complicated group actions. In fact, we com-87

plement our results on MRA by showing that a simple extension of our algorithm applies to88

the heterogeneous case where θ in (1.1) is randomly drawn from a finite family of linearly inde-89

pendent vectors. Using ideas initiated in the present paper, follow-up work [5] has confirmed90

that similar phenomena arise for molecule reconstruction in cryo-EM, at least in a slightly91

weaker sense than the one presented in this paper.92

2. Overview. In this section, we give an overview of our contributions and how they fit93

in the existing literature.94

2.1. Existing methods. The difficulty of the multi-reference alignment problem resides in95

the fact that both the signal θ ∈ Rd and the shifts `1, . . . , `n ∈ Zd are unknown. If the shifts96

were known, one could easily estimate θ by taking the average of R−1`i yi, i = 1, . . . , n. In fact,97

this simple observation is the basis of the so-called “synchronization” approach [32, 6, 7]: first98

estimate the shifts by ˜̀
1, . . . , ˜̀

n ∈ Zd and then estimate θ by averaging the R−1˜̀
i
yi’s. While the99

synchronization approach can be employed at high SNR, it is limited by the fact that at low100

SNR, even alignment of observations to the true signal yields inaccurate shift estimates [4].101

Instead, we take a different approach that exploits the connection between MRA and102

Gaussian mixture models. This connection is based on the fact that in MRA, the data y is103

distributed according to a uniform mixture of Gaussians whose centers are the rotated vectors104

R1θ, . . . , Rdθ. To analyze MRA, we therefore rely on techniques from the Gaussian mixture105

model literature. One insight from this literature, which is crucial to our work, is that there106

are two separate estimation problems that can be posed for Gaussian mixture models. The107

first is clustering, in which the goal is to assign a label to each datapoint corresponding to the108

Gaussian from which it was drawn. The second is parameter estimation, in which the goal is109

simply to learn the Gaussians themselves—i.e., to identify the mean vectors and covariance110

matrices of each Gaussian component, without necessarily assigning a label to each point.111

Previous theoretical work on MRA has focused on the first task, which forms the basis for112

the synchronization approach. By contrast, our approach is based on the second task: we113

seek only to estimate the underlying parameters of the mixture; as they correspond to the114

underlying signal of interest. This connection also motivates our theoretical approach: we115

develop an approach based on the method of moments, which was introduced in Pearson’s116
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Figure 1. Instances of the multi-reference alignment problem, at low (σ ≈ .5, left column) and high (σ ≈ 3,
right column) noise levels. We plot the values of a vector in Rd for d = 100. Randomly shifted copies of a
smoothed version of the underlying signal (θ) appears in gray, and a smoothed version of the noisy observation
(y) appears in red. When the noise level is low, salient features of the signal are still visible despite the noise;
in the presence of large noise, however, the signals cannot reliably be aligned. We establish the optimal sample
complexity of the large noise problem.

seminal paper on Gaussian mixture models [27] and has recently led to efficient estimators117

with provably optimal guarantees [26].118

2.2. The method of invariants. In this work, we develop a new approach to MRA based119

on the method of moments. This method focuses on the tensors T (r)(θ) defined by120

(2.1) T (r)(θ) :=
1

d

d∑
`=1

(R`θ)
⊗r .121

These tensors are precisely the moments of the uniform distribution over the set of vectors122

{R1θ, . . . , Rdθ}. We first establish that the parameter θ can be identified by the moment123

tensors {T (r)(θ)}r≥1. We then show that we can estimate the moment tensors accurately124

enough to recover the original signal.125

The method of moments has an alternate interpretation in the context of MRA and126

similar problems involving group actions. One striking fact is that the moment tensors in127
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creases to a level where reliable a lignment is no
longer possible? Presumably the increased uncer-
ta in ty in a lignment resu lt s in increased noise or
bias in the refined image. This can be seen to be
the case in the ML reconst ruct ions in Fig. 4. Al-
though they resemble the t rue st ructu re, their
Four ier r ing cor rela t ions show a lower usefu l resolu-
t ion than tha t obta ined from the ‘‘t rue average,’’
obta ined by averaging the 4000 data images after
cor rect a lignmen t (see the ‘‘Average’’ panels in
Fig. 3). The lower qua lity of the ML reconst ruc-
t ions wou ld be approxima t ely ma tched if on ly
200 correct ly a ligned da ta images were to be aver-
aged.
To test the asymptot ic behavior of the ML align-

ment , a very simple test st ructure was used to
synthesize up to 200 000 data images, each 8 3 8
pixels in size, a t va r ious signa l-to-noise ra t ios.
The under lying st ructure W was a pa t tern of five
ones in a background of 59 zeros (Fig. 6A). The
probability of cor rect a lignment of these da ta im-
ages, based on cross-cor rela t ion with W , is seen to
drop steeply for SNR , 5 in th is case (Fig. 6B). Above
th is threshold, the SNR of the refined image is
propor t iona l to tha t of the da ta images as is ex-
pected from the sta t ist ics of averaging. Below the
threshold, however, the SNR of the refined image
decreases much more steeply than linear ly with
decreases in the da ta SNR (Fig. 6C), roughly as the
th ird power.

FIG. 6. ML refinement of a simple st ructure, consist ing of 5 pixels having va lue 1 and 59 pixels with va lue 0. (A) The t rue st ructure W
and two examples of simula ted images obta ined as in Eq. (1) with amplitude z 5 6. Also shown is the resu lt from ML refinement (700
itera t ions) from a data set of 200 000 images having z 5 0.3. In the da ta simula t ion , a ll x and y t ransla t ions have equa l probability,
rota t ions are quant ized to mult iples of 90°, and per iodic boundary condit ions are used. (B) Probability of cor rect a lignment of the 8 3 8 pixel
object is shown as a funct ion of the da ta signa l-to-noise ra t io z 2. (C) Quality of reconst ructed image as a funct ion of the signa l-to-noise ra t io
of the da ta images (filled circles). The reconst ruct ion signa l-to-noise ra t io s was computed from the refined image A according to

s 5
0A 2 zW 0 2

NM
,

where N is the number of da ta images and M 5 64 is the number of pixels. In each simula t ion N was chosen la rge enough to ensure
convergence of the refinement . Open circles are from corresponding CCA analyses of the same data set s. Lines represent a linear
rela t ionsh ip between input and output signa l-to-noise a t h igh da ta SNR (upper r igh t ) and a th ird-power rela t ionsh ip a t low SNR (lower
left ).

337MAXIMUM-LIKELIHOOD IMAGE REFINEMENT

Figure 2. Figure taken from a paper on cryo-EM [31], illustrating (i) strikingly different behavior for
the maximum likelihood estimator in low and high SNR regimes and (ii) 1/SNR3 scaling at low SNR. Our
theoretical analysis suggests that any estimator, not only the maximum likelihood estimator, is bound to the
same limitations. Reprinted from Journal of Structural Biology, Vol. 122, F. Sigworth, A maximum-likelihood
approach to single-particle image refinement, pp. 328–339, copyright 1998, used with permission.

MRA capture features of the signal that are invariant under cyclic shifts. For example, the128

first moment tensor reduces to the entrywise mean of the signal (i.e., the vector in Rd each129

of whose entries is the average value of θ), which is an example of an invariant feature: it130

is clearly invariant under cyclic shifts of θ and, as we show below, can easily be estimated131

consistently in the MRA model. More generally, each entry in the moment tensor T (r)(θ) is132

an invariant polynomial in the coordinates of θ, and these invariant polynomials can always133

be estimated in the MRA model as long as σ is known. We therefore call our approach the134

method of invariants.135

In what follows, we focus on the moment tensors T (r)(θ) for r ≤ 3. Our core contribution136

is to show that estimation on the basis of these first three moment tensors yields optimal137

sample complexity as a function of the SNR for the MRA model. We stress, however, that138

the focus on moment tensors is not limited to MRA, and that the method of invariants can be139

used to obtain sample complexity bounds for a wide variety of similar models. In this work,140

we specialize to MRA since it provides perhaps the simplest nontrivial application of these141

ideas.142

The first three moment tensors in the MRA model correspond to quantities often studied143

under different names in the signal processing literature. In addition to the first moment144

tensor—which, as noted above, reduces to the entrywise mean of the signal—the second and145

third moment tensors are also easy to describe in terms of θ. The second moment tensor146

T2(θ) corresponds to the autocorrelation of the signal θ. Written in the Fourier basis, this147
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autocorrelation corresponds to the power spectrum of θ (the square of the absolute value of148

the Fourier coefficients of the signal) which is often used as an invariant feature in signal149

processing. Note that, in general, this quantity does not carry enough information to allow150

for estimation of θ, since it provides only the magnitudes of the Fourier coefficients, but not151

their phases.152

The crucial object in the case of MRA is the third moment tensor. Written in the Fourier153

basis, this object is known as the bispectrum of the signal, given by154

B (k1, k2) = θ̂k1 θ̂k2 θ̂−k1−k2 ,155

where θ̂ is the Fourier transform of θ, k1, k2 ∈ [d], and the indices are taken modulo d. It was156

originally introduced in a statistical context [11, 35] . It is known [21] that the bispectrum157

uniquely determines the signal θ up to cyclic shift whenever θ̂k 6= 0 for all k ∈ [d]. We call158

such signals generic. In other words, for generic signals, the moment tensors T1(θ), T2(θ), and159

T (3)(θ) suffice to identify the true signal θ. This fact has been exploited to obtain estimates160

for alignment problems [29, 18, 10].161

Note that the sample average based estimator for T (3) has a variance of order σ6/n when162

σ is large, since it is a cubic polynomial of noisy data. It suggests that in the low SNR regime,163

any approach relying on the bispectrum requires at least order 1/SNR3 samples. Since this164

dependency on SNR is very different from the 1/SNR sample complexity of many models,165

bispectrum approaches seem highly suboptimal.166

The main contribution of our work is to show that this number of samples is in fact a167

fundamental requirement of the problem when the shifts are sampled from the uniform dis-168

tribution, independent of the approach taken (following ideas developed in [8]): all estimators169

suffer from the same limitations, including the maximum likelihood estimator (see Figure 2).170

This shows that the latent cyclic transformations fundamentally change the difficulty of the171

problem. A similar phenomenon has been demonstrated for a Boolean version of MRA [2].172

To complement our lower bound, we also propose simple algorithm based on the method173

of moments capable of provably achieving the optimal 1/SNR3 sample complexity for generic174

signals. While other algorithms employing the bispectrum exist in the literature [29, 18, 10],175

ours has the virtue of acting directly to decompose the third moment tensor via a straight-176

forward and principled approach. As we note below, this simple algorithm also extends to177

the heterogenous setting, for which no algorithms enjoyed theoretical guarantees prior to this178

work.179

2.3. Non-generic signals. The bispectrum-based methods for the multi-reference align-180

ment problem we present work only for generic signals. In fact, non-generic signals can exhibit181

significantly worse behavior with a sample complexity of order 1/SNRd rather than 1/SNR3,182

but this pessimistic scenario does not seem to be representative of signals encountered in183

practice. In fact, these signals that are hard to estimate form a set of zero Lebesgue measure.184

See [8] for more details.185

2.4. The heterogeneity problem. One of the main challenges in cryo-EM reconstruction186

is the heterogeneity problem, where one observes noisy projection images of multiple unknown187

conformations of the same molecule. The MRA model can be extended to accommodate188

heterogeneity by assuming that in (1.1), the vector θ ∈ Rd is also a latent variable drawn from189
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SAMPLE COMPLEXITY OF MRA 7

a finite set of unknown vectors C = {θ(1), . . . , θ(K)}. The goal here is to recover the set C up190

to a cyclic shift and the proportion of each θ(j).191

Our approach based on the method of invariants coupled with tensor decomposition tech-192

niques extends to the heterogeneous setup. It yields the first algorithm capable of provably193

solving the heterogeneous MRA at arbitrarily low SNR, albeit at a potentially suboptimal194

sample complexity of 1/SNR5.195

2.5. Connections to cryo-EM and XFEL. One of the main motivations to study the196

multi-reference alignment problem is that it serves as a simpler surrogate for cryo-EM. This197

paper indicates potentially fruitful directions for future work. Our results offer theoretical198

support for the use of invariant methods in cryo-EM, a proposal which dates back to Zvi199

Kam [22]. These methods have also proven effective in XFEL structure determination [36, 13].200

Our work serves as a first step towards a complete statistical theory of cryo-EM. In fact,201

follow-up work to this paper has demonstrated that the method of invariants can be used202

to characterize the sample complexity of more general models, including the reconstruction203

problem for cryo-EM [5].204

2.6. Notation. We use [d] to represent the set {1, . . . , d} and Id to represent the d × d205

identity matrix. The smallest and largest singular values of a matrix are denoted σmin and206

σmax, respectively. The symbol poly(·) refers to an unspecified polynomial with constant coef-207

ficients. Cd is used to refer to a constant that may depend on d but not on other parameters,208

and it may refer to a different constant in different appearances throughout the text. The209

expression f(n) = O(g(n)) means that there exists a constant C such that f(n) ≤ Cg(n) for210

all n, and we write Od(g(n)) when the constant may depend on d. We write g(n) = Ω(f(n))211

when f(n) = O(g(n)).212

3. Fundamental limitations. In this section, we establish the fundamental limits of MRA213

and point to shortcomings of existing strategies to achieve optimal sample complexity.214

3.1. Lower bounds for sample complexity. Since observations in the MRA model (1.1)215

are invariant under a global cyclic shift, one may only identify θ up to such a global shift.216

To account for this fact, it is natural to employ the following shift-invariant distance between217

vectors θ, τ ∈ Rd:218

ρ(θ, τ) = min
`∈Zd
‖θ −R`τ‖2 .219

As noted above, by applying an independent and uniform random cyclic shift to each220

observation, we can always reduce the MRA model to the case where `1, . . . , `n are drawn221

i.i.d. uniformly from [d]. In this case, the distribution of y in (1.1) is a uniform mixture of the222

d Gaussian distributions N (θ, σ2Id), . . . ,N (Rd−1θ, σ
2Id). If y is generated according to this223

distribution, we call it a “sample from MRA with signal θ.” The statistical properties of this224

Gaussian mixture are analyzed in [8].225

If σ is small—that is, if the SNR is sufficiently large—then the signals can be aligned (for226

example, via the synchronization approach [32]), and therefore θ can be estimated accurately227

on the basis of n samples from MRA with signal θ as long as n ≥ C/SNR for some constant228

C. This is the same dependence that would be expected in the absence of shifts. Strikingly,229
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the situation in the high-noise regime (when the SNR is low) is very different: estimation is230

impossible unless n ≥ C/SNR3 for some constant C.231

Theorem 3.1. Fix d > 2, ε > 0 sufficiently small, and σ ≥ 1. There exists a universal232

constant C such that the following holds with constant probability: for any estimator θ̃ based on233

n samples from (1.1) there exists a generic signal θ ∈ Rd with ‖θ‖2 = 1, such that ρ(θ̃, θ) ≥ ε234

whenever n ≤ Cσ6ε−2.235

In other words, if we require that our estimator θ̃ satisfy ρ(θ̃, θ) < ε with probability close236

to 1, then we must have n ≥ Cσ6ε−2. We prove this fact in the supplement using the tight237

information-theoretic bounds developed in [8], which are based on the method of invariants238

and, in particular, on the observation given above that the second moment tensor does not239

carry enough information about θ in general.240

3.2. The importance of high frequencies. As noted above, the sample complexity exhib-241

ited by the method of invariants, 1/SNR3, is tight for generic signals. For non-generic signals,242

while the method of invariants still yields optimal results (see [5]), the precise sample com-243

plexity depends on specific properties of the support of the Fourier transform of the original244

signal. This dependence is often counter-intuitive as illustrated by the example below.245

Some approaches to the alignment problem implicitly adopt a strategy of first estimating246

low frequencies of a signal, and then using this initial estimate to estimate higher frequencies247

(see [9]). In other words, these strategies assume that estimating a low-pass version of a signal248

is no harder than estimating the original signal.249

Surprisingly, this is not the case in general, as following example shows. Let us take d ≥ 14250

congruent to 2 (mod 4) and θ ∈ Rd a signal whose Fourier transform θ̂ satisfies θ̂1 = θ̂−1 = 0251

but otherwise has full support. We show in the supplement that we can estimate θ with252

Od
(
1/SNR3

)
samples. Surprisingly, if we low-pass θ by setting θ̂j = 0 for all |j| > 4, then253

Ω
(
1/SNR4

)
samples are needed.254

To show that θ can be recovered with Od(1/SNR3) samples, it suffices to show that the255

phases of the Fourier coefficients of θ can be reconstructed uniquely from its bispectrum.256

Given a complex number z, denote by arg(z) its phase. By applying a circular shift, we can257

assume without loss of generality that arg(θ̂2) ∈ [0, 4π/d) and that arg(θ̂(3)) ∈ [0, π). It is easy258

to check that the identity 2
∑(d−6)/4

k=2 arg(B(2, 2k)) + arg(B((d− 2)/2, (d− 2)/2)) = d
2 arg(θ̂2)259

holds modulo 2π, and the assumption that arg(θ̂2) ∈ [0, 4π/d) implies that the choice of260

arg(θ̂2) is unique. This implies that all even-indexed phases can be recovered. We also have261

the simple identity arg(θ̂6) + arg(B(3, 3)) = 2 arg(θ̂(3)) modulo 2π, and the assumption that262

arg(θ̂(3)) ∈ [0, π) implies that the choice is unique. Combined with the knowledge of arg(θ̂2),263

this implies recoverability of all odd-indexed phases.264

To show that the low-pass signals require n ≥ Cσ8 samples, we simply note that the first265

three moment tensors of the low-pass signals agree. Theorem A.1 therefore implies that the266

Kullback-Leibler divergence between the relevant distributions is at most Cσ−8. The same267

argument given in proof of Theorem 3.1 establishes that any test attempting to distinguish268

between the low-pass signals incurs type-I and type-II error of at least 2/3 unless n ≥ Cσ8.269

The difficulty in recovering the low-pass version arises from the following simple obser-270

vation: if θ̂j = 0 for all j /∈ {±2,±3,±4}, then the only nonzero entry of the bispectrum is271
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Figure 3. Two signals whose Fourier transforms have almost full support (left column) and their corre-
sponding low-pass versions (right column). Estimating either of the original signals is possible with Od(1/SNR3)
samples. However, the same task for the low-pass versions requires Ω(1/SNR4) samples; in fact, even distin-
guishing between the two options requires this number of samples. This illustrates the importance of high
frequencies in the MRA model.

B(2, 2). This implies that the bispectrum carries no information about the phase of θ̂(3) and272

we show in the supplement that this implies that any two such signals which agree on their273

second and fourth Fourier coefficient are indistinguishable—in the sense that any procedure274

to distinguish them fails with constant probability—unless n ≥ Cσ8.275

4. Efficient recovery via tensor methods. Theorem 3.1 implies that the sample com-276

plexity of MRA for generic signals is at least 1/SNR3 in the low-SNR regime. In this section,277

we describe how the method of invariants also yields an efficient algorithm that achieves this278

optimal sample complexity, that is, it outputs an estimator θ̃ of θ such that ρ(θ̃, θ) ≤ ε with279

high probability whenever n ≥ Cdσ6ε−2.280

Our approach uses the method of invariants by estimating invariant features in the third281

moment tensor T (3) defined in (2.1). While other algorithms in the literature have also been282

based on recovering the signal on the basis of the third moment tensor via iterative meth-283

ods [29, 18, 10], we propose a simpler procedure which also yields stable recovery guarantees.284

First, we estimate T (3) by the following empirical quantity:285

(4.1) T̃ (3)
n =

1

dn

n∑
i=1

d∑
j=1

((Rjyi)
⊗3 − 3 sym(Rjyi ⊗ Id))286

where287

(4.2) sym(A)a1...ak =
1

k!

∑
π∈Sk

Aπ(a1)...π(ak) .288
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10 A. PERRY, J. WEED, A. S. BANDEIRA, P. RIGOLLET, AND A. SINGER

289

Lemma 4.1. The estimator T̃ (3) is an unbiased estimator of T (3). Moreover, each entry of290

T̃
(3)
n has a variance of order σ6/n so long as σ is bounded below by a positive constant.291

Proof. If ξi ∼ N (0, Id), then both E[ξi] and E[ξ⊗3i ] are zero. This implies that292

Eij [(Rjyi)⊗3] = Eij [(Rjθ + σξ)⊗3] = Ej(Rjθ)⊗3 + 3 sym((EjRjθ)⊗ Id) ,293294

so T̃
(3)
n is an unbiased estimator of T (3).295

Each entry of yi is a Gaussian with variance σ2, so the entries of sym(yi ⊗ Id) have296

variance of order σ2, and the entries of y⊗3i have variance of order σ6; the latter dominates297

for σ bounded away from 0. The claim follows.298

Then, we apply a basic decomposition technique, given in the next section, to the tensor T̃
(3)
n299

to find a vector θ̃ such that300

T̃ (3)
n ≈ 1

d

d∑
`=1

(R`θ̃)
⊗3 .301

The vector θ̃ then serves as our estimate of θ.302

4.1. Jennrich’s Algorithm for Tensor Decomposition. In this section, we detail a sim-303

ple decomposition algorithm for the third moment tensor, which in turn provides an efficient304

algorithm that provably solves MRA for generic signals while achieving optimal sample com-305

plexity in terms of SNR. It involves the spectral decomposition of the tensor of empirical306

third moments. Such decompositions have been long studied and a sophisticated machinery307

has been developed over the years; see [25, Chapter 3].308

The specific algorithm that we use is a standard tensor decomposition algorithm known309

as Jennrich’s algorithm (proposed in [20] and credited to Robert Jennrich). The version310

described below allows the recovery of vectors u1, . . . , ur (up to simple transformations) from311

a noisy version of the tensor312

(4.3) T =

r∑
j=1

uj ⊗ uj ⊗ vj ∈ Rm×m×p,313

where v1, . . . , vr ∈ Rp are arbitrary nonzero vectors.314
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Jennrich’s Algorithm ([20, 24]).
Input: Tensor T ≈

∑r
j=1 uj ⊗ uj ⊗ vj ∈ Rm×m×p.

Output: Matrix U = [û1, . . . , ûr] ∈ Rm×r
I Choose random unit vectors a, b ∈ Rp, and form matrices A,B ∈ Rm×m with

entries:

Aij =
∑
k

Tijkak, A =
r∑
j=1

〈vj , a〉uj ⊗ uj ,

Bij =
∑
k

Tijkbk, B =

r∑
j=1

〈vj , b〉uj ⊗ uj

I Let W be the matrix whose columns are the first r left singular vectors of A.
I Compute M = W>AW (W>BW )−1.
I Output U = WP , where M = PDP−1 is the eigendecomposition of M .

315

Jennrich’s algorithm requires only basic matrix operations and can therefore be imple-316

mented very efficiently even on large scale problems. It also enjoys the following robustness317

guarantees. Using the notation of Jennrich’s algorithm, it is easy to see that T (3) is indeed a318

low-rank tensor of the form (4.3), with m = p = d, uj = vj = Rj−1θ (for j = 1, . . . , r) and319

U = [θ,R1θ, . . . , Rd−1θ]. We recall the following recovery guarantee of Jennrich’s algorithm320

when applied to a tensor T̃ that is close to a low rank tensor.321

Theorem 4.2 ([19], Theorem 5.2). Let T be a tensor of the form (4.3) with all uj linearly322

independent, and define κ(U) = σmax(U)/σmin(U). Moreover, fix ε > 0 and let T̃ satisfy323

‖T̃ − T‖F ≤ ε. Then Jennrich’s algorithm applied to T̃ returns unit vectors ũj , j = 1, . . . , r324

such that there exists a permutation π and scalars βj satisfying325

(4.4) max
j∈[r]
‖ũj − βjuπ(j)‖∞ ≤ ε poly(m,κ)326

with high probability.327

Let ũ1 be the first vector output by Jennrich’s algorihtm applied to T̃
(3)
n and let

β̃1 = ũ>1 1/µ̃ , µ̃ =
1

n

n∑
i=1

y>i 1 , θ̃ = ũ1/β̃1

In the supplement, we show that an algorithm homoJen based on Jennrich’s algorithm for328

tensor decomposition applied to the T̃
(3)
n enjoys the following theoretical guarantees.329

Theorem 4.3. Fix σ > .1 and δ ∈ (0, 1) and assume .1 ≤ ‖θ‖2 ≤ 10. Then, for any ε > 0

Jennrich’s algorithm applied to T̃
(3)
n outputs θ̃n such that ρ(θ̃n, θ) ≤ ε with probability at least

1− δ whenever
n ≥ σ6ε−2 poly(d, 1/min

j∈[d]
|θ̂j |, 1/δ)

in time O(nd3 + d3 poly(log(1/ε))).330

Note that the constants .1 and 10 are arbitrary and may be replaced by any other constants.331

The time complexity is dominated by the time necessary to construct the empirical tensor332
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12 A. PERRY, J. WEED, A. S. BANDEIRA, P. RIGOLLET, AND A. SINGER

T̃
(3)
n , which requires only a single pass over the data. Since Jennrich’s algorithm relies on333

basic matrix operations, it requires only O(d3 poly(log(1/ε))) additional computation time334

once T̃
(3)
n has been constructed.335

In view of the lower bound appearing in Theorem 3.1, the sample complexity of the336

modified Jennrich algorithm is optimal in terms of the SNR.337

Several other bispectrum-based algorithms have appeared in the literature; see [10] for a338

recent empirical study. These may perform better in practice, but they largely do not come339

with the theoretical guarantees of the algorithm proposed here, and they do not yield efficient340

algorithms for the heterogenous case discussed below.341

5. Heterogeneity. In this section, we sketch an extension of the previous results to the342

heterogenous multi-reference alignment problem. We recall this model here for completeness.343

In heterogenous MRA, we observe344

(5.1) yi = R`iθ
(Zi) + σξi , i = 1, . . . , n ,345

where Z1, . . . , Zn ∈ {1, . . . ,K} are i.i.d. latent variables such that Pr(Zi = k) = πk, k ∈ [K]346

that are independent of all other variables and θ(k) ∈ Rd, k ∈ [K] are unknown vectors. The347

other variables are specified as in the homogeneous model (1.1). The goal here is to recover348

the set of vectors θ(k) ∈ Rd, k = 1, . . . ,K up to a cyclic shift and the probability mass function349

{πk}k∈[K].350

The method of invariants described above can be extended to handle the heterogeneous
model (5.1). In this case our method proceeds by estimating the mixtures of signals from an

unbiased estimator T̃
(5)
n for the 5-tensor

T (5) =
K∑
k=1

d∑
`=1

πk
d

(
R`θ

(k)
)⊗5

.

In our analysis of homogenous MRA, we noted that the moment tensors T (1) = T (1)(θ), T (2) =351

T (2)(θ), T (3) = T (3)(θ) uniquely determine θ, as long as θ is generic. The method of invariants352

can also be applied to the heterogenous case to show that the moment tensors T (1), . . . , T (5)353

determine the vectors θ(1), . . . , θ(K) as long as the vectors satisfy a particular genericity con-354

dition. Our proof of this fact is algorithmic in the sense that we exhibit an efficient algorithm,355

which can recover the vectors θ(1), . . . , θ(K) as long as the collection is suitably generic. The356

fact that the method of invariants can be extended to the heterogenous case supports the idea357

that it is a flexible, general approach to models of this kind. This algorithm achieves sample358

complexity 1/SNR5, whereas the optimal sample complexity for heterogenous MRA is known359

to be 1/SNR3 in several settings, including when θ(1), . . . , θ(K) are drawn independently from360

N (0, I/d) [5, 37]. Our algorithm therefore does not achieve optimal sample complexity in361

general; however, it is the first efficient algorithm for the heterogenous problem with provable362

guarantees.363

We now sketch the basic idea of our approach. Using manipulations similar to the ones
arising in the proof of Lemma 4.1, it is not hard to show that T (5) can be rewritten as

T (5) = E[y⊗5i ]− 10σ2 sym(T (3) ⊗ Id)− 15σ4 sym(T1 ⊗ I⊗2d )
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where T1 = E[yi] and T (3) is defined in (2.1). Therefore an unbiased estimator of T (5) is given
by

T̃ (5)
n =

1

n

n∑
i=1

y⊗5i − 10σ2 sym(T̃ (3)
n ⊗ Id)− 15σ4 sym(

1

n

n∑
i=1

yi ⊗ I⊗2d ) ,

where T̃
(3)
n is given in (4.1). Moreover, each entry of T̃

(5)
n has variance of order σ10/n so long364

as σ is bounded below by a positive constant.365

We propose a method that consists in applying Jennrich’s algorithm to an appropriate

flattening of T̃
(5)
n . We call it heteroJen. It hinges on the following observation: the 5-tensor

T (5) can be flattened into a 3-tensor of shape d2 × d2 × d that admits the following low-rank
decomposition:

K∑
k=1

d∑
`=1

πk
d

(R`θ
(k))⊗2 ⊗ (R`θ

(k))⊗2 ⊗ (R`θ
(k)) .

The algorithm heteroJen then proceeds by plugging T̃
(5)
n into the above flattening oper-

ation and then applying Jennrich’s algorithm to the resulting 3-tensor of shape d2 × d2 × d.
Theorem 4.2 implies that this procedure outputs vectors ũi, 1 ≤ i ≤ dK with the following
guarantees: there exist scalars βi and a bijection a× b : [dK]→ [d]× [K] satisfying

‖ũi − βi(Ra(i)θ(b(i)))⊗2‖∞ ≤ CK
σ5√
n

poly(d) ,

with high probability.366

We compute ṽi as the leading eigenvector of the d × d matrix ũi. Letting Ṽ (3) be the367

d3 × dK matrix with columns ṽ⊗3i , we estimate α̃ ∈ RdK as the least-squares solution to368

Ṽ (3)α̃ = vec(T (3)). The vectors w̃i := α̃1/3ṽi (with entrywise exponentiation) now comprise369

dK redundant estimates to the K original signals θk; we remove this redundancy by clustering370

these dK estimates according to the pseudometric ρ2(x, y) = min1≤`≤d ‖x⊗2−(R`y)⊗2‖2. (We371

show in the proof of Theorem 5.1, below, that this clustering can be accomplished by a simple372

thresholding scheme.) Finally, the procedure heteroJen returns one vector from each cluster.373

The heteroJen procedure enjoys the following theoretical guarantees that rely on the fol-374

lowing condition number.375

Let U = [vec((R1θ
(1))⊗2),. . .,vec((Rdθ

(K))⊗2)], and denote the condition number of U by376

κ. It can be shown that κ is generically finite. To that end, suppose we have some nonzero377

linear relation 0 =
∑K

k=1

∑d
`=1 ck,`(R`θ

(k))(R`θ
(k))>. Multiplying by a DFT on the left and378

its adjoint on the right, and examining the a, b entry, we have 0 =
∑K

k=1
ˆ(ck)a−bθ̂

(k)
a θ̂

(k)
b . Some379

ˆ(ck)α is nonzero, yielding a nontrivial linear relation among the autocorrelation vectors vk,380

1 ≤ k ≤ K, with vk,j = θ̂
(k)
j θ̂

(k)
α−j . These vectors satisfy the symmetry vk,j = vk,α−j , but381

are generic on this subspace, which has dimension at least dd/2e. Hence generically no such382

relation exists, and the matrix U has finite condition number.383

Theorem 5.1. Fix σ > .1 and δ ∈ (0, 1). Assume that .1 ≤ ‖θ(k)‖2 ≤ 10 for all k ∈ [K] and

that K ≤ dd/2e. Then, for any ε > 0, the heteroJen applied to T
(5)
n outputs {θ̃(1)n , . . . , θ̃

(K)
n }
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such that ∑
k

min
j
ρ(θ̃(j)n , θ(k)) ≤ ε ,

with probability at least 1− δ whenever

n ≥ CKσ10ε−2 poly(d, κ, 1/δ)

in time O(nd5 + d6 poly(log(1/ε))).384

To the best of our knowledge, heteroJen is the first efficient method for heterogeneous385

MRA at low SNR. As noted above, follow-up work has shown that similar method-of-moments386

approaches based on tensor decomposition can efficiently achieve 1/SNR3 sample complexity387

under the assumption that the components are drawn independently from N (0, I/d) [37].388

6. Concluding remarks. In this paper, we characterize the sample complexity of MRA, a389

first step towards a better statistical understanding of cryo-EM. In particular, we show that390

any estimator requires at least 1/SNR3 samples at low SNR.391

We also present an algorithm based on the method of invariants that provably solves392

the MRA problem with optimal sample complexity at low SNR. We further show that the393

approach can be adapted to heterogenous problems, an extension of particular importance394

in cryo-EM where different biological molecules or conformations are often imaged together.395

Our approach is the first to yield theoretical guarantees on any procedure for heterogenous396

MRA and opens the door to a broader application of the method of invariants.397

While this work constitutes a first step towards a statistical theory of 3-D molecule recon-398

struction in cryo-EM, many questions remain open. Since an earlier version of this manuscript399

was available, follow-up work has shown that our approach can be extended to molecule re-400

construction in cryo-EM [5] and to MRA with nonuniform shifts [1]. These works establish401

that the method of invariants yields optimal sample complexity in a wide variety of settings.402

Appendix A. Proof of lower bounds.403

A.1. Proof of Theorem 3.1. In what follows, let cd and C be constants (with cd depending404

on d) whose value may change from line to line. Let θ be any zero-mean signal such that405

‖θ‖2 = 1, and let θ̂ be its Fourier transform. There exists a coefficient θ̂j with j 6= 0 such that406

|θ̂j | ≥ cd. Define τ by setting407

τ̂k =


eiδ θ̂j if k = j

e−iδ θ̂−j if k = −j
θ̂k otherwise,

408

where δ = cdε for some constant cd chosen so that |τ̂j − θ̂j | ≥ 2ε as long as ε is sufficiently409

small. It is clear that ρ(θ, τ) ≥ 2ε, since when ε is sufficiently small, for any shift R we have410

‖θ −Rτ‖2 ≥ |θ̂j − R̂τ j | ≥ |θ̂j − τ̂j | ≥ 2ε.411

We now establish that no procedure can distinguish between MRA with signal θ and MRA412

with signal τ on the basis of n samples if n ≤ Cσ6ε−2 with probability better than 1/3. To413

prove this, we reproduce the following theorem [8, Theorem 9], whose proof we sketch for414

completeness.415
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Theorem A.1. Assume σ ≥ 1. Let θ and τ be two mean-zero signals satisfying ρ(θ, τ) ≤ ε416

and T (r)(θ) = T (r)(τ) for r < k. If Pθ and Pτ are the Gaussian mixtures corresponding417

to MRA with signals θ and τ respectively, then the Kullback-Leibler divergence D(Pθ ‖Pτ )418

satisfies419

D(Pθ ‖Pτ ) ≤ Ckσ−2kε2420

for some constant Ck depending on k.421

Proof. [Sketch] Let φ(x) be the density of a d-dimensional Gaussian with covariance σ2Id,422

and let φθ and φτ be the densities of Pθ and Pτ , respectively. Let R be a uniformly distributed423

random cyclic shift. The convexity of the exponential function implies424

φτ (x) = Eφ(x−Rτ) ≥ φ(x)e−‖τ‖
2
2/2σ

2
.425

The χ2 divergence χ2(Pθ ‖Pτ ) between Pθ and Pτ then satisfies426

χ2(Pθ ‖Pτ ) :=

∫
(φθ(x)− φτ (x))2

φτ (x)
dx427

≤ e‖τ‖22/2σ2

∫
(e−‖θ‖

2
2/2σ

2
Ee

x>Rθ
σ2 − e−‖φ‖22/2σ2

Ee
x>Rτ
σ2 )2φ(x)dx .428

429

Expanding the square, collecting terms, and integrating with respect to x yields430

χ2(Pθ ‖Pτ ) ≤ e‖τ‖22/2σ2
E[e(R

′θ)>Rθ/σ2 − 2e(R
′θ)>Rτ/σ2

+ e(R
′θ)>Rθ/σ2

] ,431

where R′ is an independent copy of R. Expanding this quantity as a Taylor series and applying432

Fubini’s theorem to interchange summation and expectation yields433

χ2(Pθ ‖Pτ ) ≤ e‖τ‖22/2σ2
∑
r≥1

‖T (r)(θ)− T (r)(τ)‖2HS
σ2rr!

,434

where ‖ · ‖2HS represents the Hilbert-Schmidt norm. By [8, Lemma B.12], for ε sufficiently435

small,436

‖T (r)(θ)− T (r)(τ)‖2HS ≤ 12 · 2rε2 .437

Combining this with the assumption that T (r)(θ) = T (r)(τ) for r < k yields438

χ2(Pθ ‖Pτ ) ≤ e‖τ‖22/2σ2
ε2
∑
r≥k

12 · 2r

σ2rr!
= Ckσ

−2kε2 .439

Since D(Pθ ‖Pτ ) ≤ χ2(Pθ ‖Pτ ) [34, Lemma 2.7], the claim follows.440

The two signals θ and τ we have constructed are easily shown to satisfy T (1)(θ) = T (1)(τ)441

and T (2)(θ) = T (2)(τ), since their means and power spectra (i.e., the moduli of their Fourier442

transforms) agree.443
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By applying Theorem A.1 and Pinsker’s inequality, we obtain444

TV(P⊗nθ , P⊗nτ )2 ≤ 1

2
D(P⊗nθ ‖P⊗nτ ) ≤ 1

2
Cσ−6ε2n .445

Therefore if n ≤ C−1σ6ε−2, [34, Theorem 2.2] implies that for any measurable function446

ψ : Rd×n → {θ, τ} of the data y1, . . . , yn, it holds447

Pnθ (ψ(y1, . . . , yn) = τ) + Pnτ (ψ(y1, . . . , yn) = θ) ≥ 1− TV(P⊗nθ , P⊗nτ ) ≥ 1/2 .448

In other words, any hypothesis test ψ must incur type-I and type-II error of at least 1/2.449

Via Le Cam’s two-point testing argument [23], this fact implies that any estimator θ̃ is bound450

to incur error ε with constant probability, as claimed. �451

452

Appendix B. Proof of upper bounds.453

B.1. Proof of Theorem 4.3. Write κ(θ) for 1/(minj∈[d] |θ̂j |). It can be shown that the

condition number κ(U) of U satisfies κ(U) ≤ maxj,k{|θ̂j |/|θ̂k||} ≤ κ(θ). Theorem 4.2 implies

that Jennrich’s algorithm applied to T̃
(3)
n outputs ũ1 satisfying

‖ũ1 − β1Rjθ‖∞ ≤
σ3 poly(d)√

n
, c > 0 ,

with high probability for some j ∈ [d] and some βj ∈ R.454

As we are only concerned with polynomial dependence and not detailed bounds, we write455

A ≈ B if we can bound |A − B| ≤ α poly(d, κ(θ), δ−1) + σ/
√
n poly(d, κ(θ), δ−1) so long as1456

α ≤ 1 and σ/
√
n ≤ 1; we apply this also to vectors in 2-norm or (equivalently) most other457

common norms.458

Theorem 4.2 guarantees us that ũ ≈ βiRiθ. Taking norms, we have 1 ≈ |βi|‖θ‖2; as ‖θ‖2459

is bounded above and below by constants, we have that |βi| ≈ 1/‖θ‖2 is also of constant order.460

Note also that by Chebyshev we have that |µ̃− µ| ≤ σ
√
δ/
√

2nd with probability 1− δ/2, so461

that µ ≈ µ̃. From ũ ≈ βiRiθ we also derive that462

(B.1) 〈ũ,1〉/d ≈ βiµ ≈ βiµ̃.463

We know that ‖θ‖2 ≤ σmax(U) and that σmin(U) ≤ ‖U · 1√
d
1‖2 = d|µ|, so that |µ̃| ≈ |µ| ≥464

dκ(θ)/‖θ‖2; we are thus justified in dividing (B.1) by µ̃ to obtain β̃ ≈ βi, and βi/β̃ ≈ 1. We465

now bound the total estimation error as follows:466

‖β̃−1ũ−Riθ‖2 ≤ ‖β̃−1ũ− β−1i ũ‖2 + ‖β−1i ũ−Riθ‖2467

≤ |β̃−1 − β−1i |+ |βi|
−1α468

= |βi|−1
(
α+

∣∣∣∣ββ̃ − 1

∣∣∣∣) ≈ 0.469
470

1The precise bound of 1 here is arbitrary.
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Thus in order to bound this estimation error to within ε, it suffices to require bounds of the471

form σ/
√
n ≤ ε/ poly(d, κ(θ), δ−1) and α ≤ ε/ poly(d, κ(θ), δ−1). By Theorem 4.2, we achieve472

this bound on α from Jennrich’s algorithm so long as ‖T̃ (3)
n − T (3)‖F ≤ ε/ poly(d, κ(θ), δ−1).473

This estimation error is achieved with probability 1− δ/2 so long as n ≥ σ6 poly(d, κ(θ), δ−1),474

which also subsumes the explicit bound on σ/
√
n. By a union bound over the two probabilistic475

steps in this argument, the desired accuracy guarantee holds with probability 1 − δ. �476

477

B.2. Proof of Theorem 5.1. As in the proof of Theorem 4.3, we write A ≈ B if we can
bound

|A−B| ≤ α poly(d, κ, δ−1) + σ3/
√
n poly(d, κ, δ−1)

given that2 α ≤ 1 and σ3/
√
n ≤ 1; we apply this also to vectors in 2-norm or (equivalently)478

most other common norms.479

From Theorem 4.2, we are guaranteed that ũi ≈ βi(Ra(i)θ(b(i)))⊗2; taking norms, we have

1 ≈ |βi|‖θ(b(i))‖2, so that |βi| ≈ ‖θ(b(i))‖−1 is of constant order. Now by the Davis–Kahan
theorem, if vmax(M) denotes either choice of unit-length eigenvector of M corresponding to
the eigenvalue of largest magnitude, we have

ṽi := vmax(ũi) ≈ εiRa(i)θ(b(i))/‖θ(b(i))‖2,

for some sign εi = ±1. Then we have Ṽ (3) ≈ V (3), where as above, Ṽ (3) is the d3 × dK480

matrix whose columns are ṽ⊗3i , and V (3) has columns εi(Ra(i)θ
(b(i)))⊗3/‖θ(b(i))‖32. Estimating481

T (3) by T̃
(3)
n according to Lemma 4.1, we have T̃

(3)
n ≈ T (3) by Chebyshev, with probability482

1− δ/2. Note then that V (3)α = vec(T (3)), where αi = εi‖θ(b(i))‖32/dK. By the perturbation483

theory of linear systems, we are now guaranteed that, letting α̃ be the least squares solution484

to Ṽ (3)α̃ = vec(T̃
(3)
n ), we have α̃ ≈ α, so long as the system is well-conditioned, which we485

defer to the following lemma:486

Lemma B.1. If κ(V (3)) denotes the condition number of V (3), then κ(V (3)) ≤ κ poly(d).487

As αi is of constant order, it follows that w̃i := α̃
1/3
i ṽi ≈ Ra(i)θ(b(i)), so that ρ(α̃

1/3
i ṽi, θ

(b(i))) ≈488

0. We are thus guaranteed dK good estimates to the original K signals. We next discuss how489

to remove this redundancy by clustering.490

Define the pseudometric on Rd defined by ρ2(x, y) = min1≤`≤d ‖x⊗2 − (R`y)⊗2‖2. Note
that

ρ2(wi, wi′) ≈ ρ2(Ra(i)θ(b(i)), Ra(i′)θ(b(i
′))) = ρ2(θ

(b(i)), θ(b(i
′))).

If b(i) = b(i′), so that the two estimates wi and wi′ should represent the same signal, we thus
have ρ(wi, wi′) ≈ 0. If b(i) 6= b(i′), we have

ρ2(wi, wi′) ≈ ρ2(θ(b(i)), θ(b(i
′))) = min

`
‖U(eb(i),0 − eb(i′),`)‖2 ≥

√
2σmin(U) = 1/ poly(d, κ),

where eb,` ∈ RdK is the standard basis vector corresponding to signal b and rotation `. It491

follows that, provided α and σ6/n are inverse-polynomially small in d, κ, δ−1, we exactly492

2The precise bound of 1 here is arbitrary.
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recover the clusters of estimates w̃i corresponding to the same signal θk, simply by comparing493

on the metric ρ2 and thresholding. Drawing one estimate w̃i from each cluster, we obtain one494

estimate of each signal.495

To conclude, in order to bound this estimation error to within ε, it suffices to require
bounds of the form σ3/

√
n ≤ ε/ poly(d, κ, δ−1) and α ≤ ε/ poly(d, κ, δ−1). By Theorem 4.2,

we achieve this bound on α from Jennrich’s algorithm so long as

‖T̃ (5)
n − T (5)‖F ≤ ε/ poly(d, κ, δ−1).

This estimation error is achieved with probability 1 − δ/2 so long as n ≥ σ10 poly(d, κ, δ−1),496

which also subsumes the explicit bound on σ3/
√
n. By a union bound over the two proba-497

bilistic steps in this argument, the desired accuracy guarantee holds with probability 1− δ. �498

499

B.3. Proof of Lemma B.1. We apply the following transformations which do not alter500

the condition number: we transform the rows by the third tensor power of a DFT, we permute501

the columns to sort by signal and rotation, and we negate columns according to the signs εi.502

It thus suffices to control the condition number of the d3 × dK matrix V (3)′ whose columns503

are (R̂j θ̂k)
⊗3/‖θk‖32, where R̂i = diag({ωij}j) is the Fourier representation of a rotation action504

(ω = e2iπ/d), and θ̂ is the Fourier transform of θ. Meanwhile, let V ′2 be the d2 × dK matrix505

with columns (R̂j θ̂k)
⊗2, the Fourier transform of U , so that κ(V ′2) = κ.506

Let v ∈ RdK ; then we have507

‖V (3)′v‖22 =

d∑
`=1

∥∥∥V ′2diag
(
{ωj`(θ̂k)`‖θk‖−32 }jk

)
v
∥∥∥2
2

508

≥
d∑
`=1

σmin(U)2
∥∥∥diag

(
{ωj`(θ̂k)`‖θk‖−32 }jk

)
v
∥∥∥2
2

509

=
∑
`

σmin(U)2
∑
jk

|(θ̃k)`|2‖θk‖−62 |v|
2
jk510

= σmin(U)2
∑
k

‖θk‖−42

∑
j

|v|2jk

511

≥ σmin(U)210−4‖v‖22,512513

so that σmin(V (3)′) ≥ σmin(U)10−2. Observing the norms of columns, it is clear that σmax(U)514

and σmax(V (3)′) are bounded above by poly(d), so we conclude that κ(V (3)) = κ(V (3)′) ≤515

κ poly(d), as desired. �516
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