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• Design a new scheduler which takes data locality and resource usage into account when allocating containers.
• Design a one-thread mode for spark, where all tasks of a short application are computed on just one thread.
• Design a one-container mode which deploys one container but with multiple virtual cores.
• Design a submitter framework with a reasonable number of AM containers to quickly bootstrap short applications.
• Design a profiler for Spark which uses bytecode instrumentation.
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a b s t r a c t

Due to its speed and ease of use, Spark has become a popular tool amongst data scientists to analyze
data in various sizes. Counter-intuitively, data processing workloads in industrial companies such
as Google, Facebook, and Yahoo are dominated by short-running applications, which is due to the
majority of applications being mostly consisted of simple SQL-like queries (Dean, 2004, Zaharia et
al, 2008). Unfortunately, the current version of Spark is not optimized for such kinds of workloads.
In this paper, we propose a novel framework, called Meteor, which can dramatically improve the
performance for short-running applications. We extend Spark with three additional operating modes:
one-thread, one-container, and distributed. The one-thread mode executes all tasks on just one thread;
the one-container mode runs these tasks in one container by multi-threading; the distributed mode
allocates all tasks over the whole cluster. A new framework for submitting applications is also designed,
which utilizes a fine-grained Spark performance model to decide which of the three modes is the most
efficient to invoke upon a new application submission. From our extensive experiments on Amazon
EC2, one-thread mode is the optimal choice when the input size is small, otherwise the distributed
mode is better. Overall, Meteor is up to 2 times faster than the original Spark for short applications.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Apache Spark [1,2] is an open source distributed computing
framework to handle big data problems. Due to its high effi-
ciency, versatility, and ease of use, Spark quickly builds a large
community around it, and there is an increasing trend that Spark
will replace other big data platforms such as Hadoop [3] and
Storm [4].

Although Spark has its own standalone cluster manager, which
provides almost all the resource management features, Hadoop
Yarn is more mature, reliable, and secure for real-world deploy-
ments and can be used in conjunction with Spark. The common
resource management of Yarn allows one to centrally configure
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and dynamically share the same pool of resources with other
computing platforms like Hadoop MapReduce. Furthermore, one
can choose a number of executors on each node to execute
instead of an executor on every node in the cluster for each ap-
plication. More importantly, Yarn provides a pluggable scheduler
framework, which already has two built-in schedulers: Capaci-
tyScheduler and FairScheduler.

The major feature of Spark is its in-memory computing plat-
form that speeds up the process of data crunching, especially for
iterative applications. Spark allows applications to run up to 100
times faster by caching data in memory and 10 times faster even
when disk is accessed compared with Hadoop MapReduce [1]. Al-
though Spark is fast enough to solve big data problems, in reality,
a majority of workloads are completed within a short amount of
time [5–7]. There are two reasons: (1) we are getting much better
at building gigantic clusters (especially in large companies), so
even a large amount of input data can be dwarfed when massive
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amount of hardware can be utilized efficiently in parallel; (2)
many workloads are simple SQL-like queries for structured data
such as Spark SQL and Hive. To handle the latter case, Hadoop
MapReduce specifically added a new processing mode called Uber
mode that runs all Map and Reduce tasks in a single container.
Unfortunately, this mode is still not very efficient [8], and more
importantly, there is no corresponding mode in Spark. The major
disadvantages of the current Spark on Yarn framework are listed
as follows:

• Hadoop Yarn does not consider data locality for short-
running applications, which incurs additional overheads
when shuffling data between Data Nodes. This drastically
affects the performance for such applications.

• The request, deploy, setup, launch, and tear down overheads
of the Application Master are much more prominent in
short-running applications.

• Piggybacked communications between the Application Mas-
ter and the Resource Manager are extremely inefficient
when asynchronously waiting for resource responses.

• No support of Uber-like mode in Spark results in not only
inefficiency but also resource waste for short-running ap-
plications.

• Moreover, there is no clear decision-making mechanism to
decide how to best run a short application, which leads to
bad configurations or misuse of Uber-like modes.

Short application (or short job) has been studied in the past
[5–7]. However, the definition of short application is still unclear
to guide their implementation and execution. In our previous
work [8], we took resource usage and cluster size into account
for our definition of a short application and designed a submitter
system to help user decide which application is a short applica-
tion and how to execute it efficiently on Hadoop. In this study,
we show an efficient short application optimization framework
for Spark, called Meteor, which can improve the performance
and help user run a short application in one of three modes we
add: one-thread, one-container, and distributed. This paper is a
significant extension to our previous study [8] for Hadoop. Our
contributions of this paper are summarized as follows:

• We design a new scheduler that takes data locality and
resource usage of each node into account when allocat-
ing containers. Instead of waiting for node updates from
Node Manager (NM) when an Application Master (AM) asks
for containers from Yarn, our scheduler responds immedi-
ately by considering the resource status of each node and
data location information. Our algorithm not only reduces
the communication cost between the AM and the Resource
Manager (RM), but also reduces resource contention and
data transferring.

• We design one-thread mode for spark, where all tasks of a
short application are computed on just one thread. It shows
better performance under certain scenarios especially when
cluster is busy.

• Another mode we design for short applications is one-
container mode, which deploys one container but with
multiple virtual cores. This mode takes full advantage of
context sharing within a single container and running mul-
tiple tasks in parallel. It also shows better performance in
our experiments under certain scenarios.

• Due to the expensive process of setup, deploy, and launch an
AM from scratch for every short application, we allow one
to pre-allocate an AM pool with a reasonable number of AM
containers to quickly bootstrap short applications.

Fig. 1. Hadoop Yarn application submission [9].

• In order to decide which mode is the most efficient for
newly submitted short applications, we design a new sub-
mitter framework, which has a decision maker that mon-
itors the resource usage of the cluster and predicts the
performance of the three modes.

• We also design a profiler for Spark that uses bytecode in-
strumentation technique to profile applications for useful
information with lower overhead.

The rest of this paper is organized as follows. In Section 2,
we give an introduction to the application submission process in
Hadoop Yarn. Then we discuss our design and implementation
of Meteor in Section 3, which supports three new modes: one-
thread, one-container, and distributed. In Section 4, we show
experimental results. Section 5 gives a review of related work.
Finally, Section 6 concludes remarks.

2. Background

To discuss the disadvantages of the original RM in Yarn, we
first introduce some background knowledge of the application
submission process in Yarn, where submitting an application will
trigger the launching of an AM so that it can request containers
for its tasks’ execution. There are 6 steps in this process, as shown
in Fig. 1.

1. Application submission: A client first contacts the RM to
obtain a new application id. After checking the specifica-
tion of the application, the client copies input splits, the
application’s jar file and other resources to HDFS. Then the
application is submitted to the RM.

2. AM allocation: When the RM receives the request, it allo-
cates a container to deploy an AM for this application.

3. Launching AM: The corresponding NM launches a container
to run the AM for this application. After that, the AM
pulls all files from HDFS, which includes input splits, the
application’s jar file, and configurations.

4. Request containers: Then the AM requests containers from
the RM by piggybacking with a heartbeat message. When
the AM receives the resources from the RM, it schedules
tasks based on data locality.

5. Task assignment: The AM communicates with NMs to launch
and monitor containers to run tasks.

6. Task execution: Each task is scheduled by a Task-Scheduler
(TS) to a container to execute.

From the steps we mentioned above, data locality is only
considered when the resource is assigned by the RM, which is too



264 H. Zhang, H. Huang and L. Wang / Future Generation Computer Systems 101 (2019) 262–271

Fig. 2. Resource request in Hadoop Yarn [9].

late, since the designated node may not have the input data for
this short application. Another problem is that the scheduler does
not consider the resource utilization ratio of each node, so that
it often bin packs all containers to a few nodes. This may cause
severe resource contention for short applications. Furthermore,
there does not exist a Uber-like mode for Spark to execute all
tasks on a single node. Last but not least, the process to re-
quest, allocate, and launch an AM is time-consuming for short
applications.

3. Design and implementation

To decide how to execute a short application more efficiently
on Spark is very difficult: running all tasks in a single container
or executing them distributively in the cluster. Executing all tasks
of all stages in one container not only reduces a large amount of
time to request, deploy, and launch executors from different com-
puting nodes, but also avoids burdensome remote shuffling and
communications with one another; however, due to parallelism,
the performance of using one container is sometime slower than
distributing all tasks in the whole cluster, which can fully use the
resource in the cluster, if there are a bunch of small tasks to be
executed and the file size is relatively large.

Therefore, we design a system that includes three modes:
one-thread, one-container, and distributed. One-thread mode ex-
ecutes all tasks in one container with one thread, which utilizes
resource as little as possible. One-container mode still uses one
container to run all tasks but with multiple virtual cores, which
increases the parallelism degree in a multi-threading way. The
distributed mode is to distribute all tasks in the cluster uniformly
to take full advantage of the cluster resource so that it reduces
execution waves of the whole application as far as possible.

From our experiments, we found that to setup and launch AM
is very expensive for a short application no matter what kind
of mode to implement. Thus, we design a submitter framework
by Spring Hadoop [10] that reserves an AM pool used for short
applications in order to reuse AM container rather than to request
it each time for a short application.

3.1. Distributed mode

To reduce memory, CPU, and disk I/O contentions in each
computing node and move computation close to data as much
as we can, we redesign the resource scheduling strategy in Yarn,
which is more considerate to data locality and resource utilization
so that we can execute each task near to its data in a relatively
idle machine. This scheduler also speedups data transmission
between Data Nodes in the shuffling processes as a result of
uniform task distribution.

Fig. 2 demonstrates the workflow to request containers from
the original RM of Yarn.

1. Container request: In order to ask containers to execute
tasks, the AM sends a request to the RM. This request
is sent periodically as a piggyback of heartbeat, which
contains information of new request, a list of released
containers, and a set of blacklist nodes.

2. Node update: After the RM receives the heartbeat, it puts
this request of container into a corresponding queue and
waits for the NM to update its resource status by a
NODE_STATUS_UPDATE event.

3. Container assignment: The Resource Scheduler (RS) updates
the resource information and allocates available resources
on the Worker Node if it has available resource to use. The
RS will select the container request sequentially in the front
of the request queue to assign if the available resource on
this Worker Node can satisfy the container request.

4. Container allocation: Finally, the AM requests the NM to
launch containers to run tasks of each stage and the NM
will also register these containers to the RM for updating.

From the above discussion, we notice that resource cannot be
allocated to the AM until the RM receives the NODE_STATUS_
UPDATE signal from one NM, even there exists ample idle re-
source in Worker Nodes. Another big problem is the frequent
communications between the AM and the RM, which causes that
the AM has to wait at least two heartbeats to receive resource.
Last but not least, the skew task scheduling is liable to cause
resource contention and data transferring due to bad data locality
for the first-stage tasks. Although the scheduling algorithm in-
troduced above is not a big problem if the input data are large,
it is time-consuming and a severe problem for short application
if ignoring data locality and resource utilization of each Worker
Node, especially when there is enough resource to schedule in the
cluster.

Algorithm 1 Scheduler algorithm for distributed mode

Input: request , nodes
Output: response
1: types = {NodeLocal, RackLocal, ANY }

2: /* Priority order: NodeLocal > RackLocal > ANY */
3: for each type in types do
4: for each task in request do
5: Decide which resource is the current dominant resource;

6: Sort nodes by available dominant resource in descending
order;

7: for each node in nodes do
8: container = getResource(task, node, type);
9: updateClusterResource(container);

10: if (container is not null) then
11: response.add(container);
12: request.del(task);
13: end if
14: if (request is empty) then
15: return response
16: end if
17: end for
18: end for
19: end for
20: return response

Therefore, we design a brand-new algorithm that considers
the resource usage in each Worker Node in order to schedule
tasks in a more uniform and efficient way and also assigns tasks
to the relatively idle nodes at first, as shown in Fig. 3. Firstly,
after the RM receives the request of containers from the AM, it
sends a CONTAINER_ STATUS_UPDATE event to the RS to check
whether there is enough resource for this request. Secondly,
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rather than waiting for updating their resource status to the
RM from Worker Nodes, we design an in-time response mecha-
nism, which asks for resources directly from the Cluster Resource.
The Cluster Resource is a structure maintained by the RM that
stores all resource status for each Worker Node, and decides the
scheduling strategy by Algorithm 1. After receiving the specific
assignment of resources from the Cluster Resource, the RS sends
back the response to the AM immediately without any waiting.
The resource status is updated by heartbeat so that the Cluster
Resource can maintain the latest resource status. At last, the AM
asks the corresponding Worker Nodes to launch the containers
and report them to the RM, which is the same as the original
Yarn. The frequency of heartbeat is one second by default. In our
design mentioned above, we only need one heartbeat to respond
the resource request, which means we can save more than one
second compared with the original Scheduler.

In Algorithm 1, we improve the original CapacityScheduler
algorithm that sorts all Worker Nodes by available dominant
resource from upper to lower so that the relatively idle nodes
will be assigned first. Dominant resource is the resource with the
maximum utilization rate in the cluster. Here we only consider
CPU and memory that are easily to detect and analyze, and have
distinct influence on the performance. Note that we use virtual
core to measure the CPU usage in Amazon EC2 and our definition
of dominant resource is different from the definition of dominant
resource in [11] for each user. The original CapacityScheduler
schedules tasks by a Bin-Packing algorithm, which uses as few
as possible Worker Nodes to allocate all containers. This does
not take data locality into account for short applications, and
may cause high possibility of resource contention. Our algorithm
employs a round-robin method that has a global view of the
whole cluster.

There are three types of container requests (i.e., NodeLocal,
RackLocal, and ANY) according to the relationship between re-
quest location and resource location. Request location is the rec-
ommended location by Spark, which is always the data location.
The resource location is the available resource location selected
by the RM. NodeLocal is the type that the request location is the
same as the resource location; RackLocal means the preferred
node and the resource node are in the same rack; and ANY is
that the RM can designate any resource node. In Algorithm 1,
the order of priority is NodeLocal > RackLocal > ANY. For each
container, we assign a NodeLocal node firstly. If the NodeLocal
resource is not enough, we assign a RackLocal instead, otherwise
an ANY node is selected until this request is satisfied. After each
allocation, we recalculate the current dominant resource after
each assignment to ensure that the idlest nodes can serve the
next request. From Algorithm 1, we consider data locality in
preference to resource utilization due to the importance of data
locality and the reasonable data distribution.

As we discussed above, our distributed mode not only takes
the data locality into account, but also reduces the chance of
resource contention and computation skew problem. Moreover,
our algorithm also avoids bandwidth congestion and improves
the communication efficiency between the AM and the RM.

3.2. Spark one-thread mode

As we discussed before, there exists an Uber mode in Hadoop
that executes all Map and Reduce tasks in one container to reduce
the overhead of requesting, launching, and deploying remote
containers and avoid the expensive data shuffling between each
other. However, Spark does not support the Uber mode. Although
we can run Spark in a local mode, which uses non-distributed
single-JVM driver for execution on the driver’s node, this is just
for testing, debugging or demonstration rather than real indus-
trial deployment. Hence, we design a one-thread mode that runs

Fig. 3. Resource request in the distributed mode of Meteor.

Fig. 4. Spark’s one-thread mode.

all tasks in every stage just in one thread, which dramatically
reduces the resource usage for a short application.

Fig. 4 demonstrates the workflow to execute a Spark applica-
tion in the one-thread mode. The major modification is that we
add the input data merger before task execution, which merges
all input data into one partition, so that only one task is executed
for each stage. This merger employs an inputstream to read
all input data from HDFS, which does not cause any overhead.
One-thread execution for the whole application minimizes the
total resource usage, which is very suitable for a busy cluster
and an application with small input data size. But the duration
will increase with the increment of the input data size, and the
cluster’s resource is not fully utilized if it is relatively idle.

3.3. Spark one-container mode

Due to these inefficiency issues of the one-thread mode, we
design the one-container mode that inherits the single container
feature from the one-thread mode, but use multiple threads
to execute tasks in parallel by multi-threading. The one-thread
mode takes full advantage of the resource in one node to run all
tasks of each stage concurrently using multi-threading technique.
Fig. 5 shows a detailed workflow of the one-container mode.
Thread-level parallelism makes the execution always faster than
one-thread mode based on our experiments, and the number of
cores in one container can be determined by min(num_vcores,
num_tasks).

The major difference between Hadoop Uber mode and our
one-container mode in Spark is that Hadoop Uber mode reuses
AM to execute all Map and Reduce tasks. Due to the complexity
of Spark applications that usually have more than 2 stages, we
require another container besides AM to run tasks, which shows
good performance in despite of more resource utilization. An-
other difference is Hadoop Uber mode cannot execute tasks in
parallel, whereas our one-container mode allows.
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Fig. 5. One-container mode in Spark.

Fig. 6. The overhead of AM creation on WordCount by varying the number of
files.

3.4. Resource-considerate application submitter

In our design, there are three different modes (distributed,
one-thread, and one-container) to choose. Distributed mode scat-
ters all tasks to multiple computing nodes to make all processes
run in parallel; the one-container mode is to execute all tasks by
multi-threading to avoid remote transmission and communica-
tion; one-thread mode only relies on a single thread to compute
all tasks. According to our experiments, we found that when the
input data size is small, it is better to use one-container mode,
or even one-thread mode, otherwise it is preferred to use the
distributed mode. However, how to precisely select the best mode
to deploy a Spark short application is a grand challenge. This is
a multi-objective optimization problem (MOOP) which not only
needs to consider the time consumption but also the resource
usage of each mode. The optimization problem is shown in Eq. (1).
Θ expresses the three-mode decision space. α denotes the time-
critical ratio, which is 0.8 by default due to the importance of
execution efficiency. This ratio is configurable by users depending
on the consideration of timeliness of each application. tappi is the
execution time for mode i, which is evaluated by our performance
model mentioned later, and max tappi is the maximum duration of
three modes, rappi is the dominant resource utilization of mode
i, and ravail is the available dominant resource in the cluster.
From Eq. (1), it is easy to find that the less the resource available
in the cluster, the larger possibility to select one-container mode,
even one-thread mode.

argmin
i∈Θ

(α ·
tappi

max tappi
+ (1 − α) ·

rappi

ravail
) (1)

Because the duration of a short application is really short, the
overhead of setting up AM turns out to be very expensive, which

Fig. 7. The submission framework in Meteor.

is shown in Fig. 6. For WordCount, when the number of files
is 4 and the file size is 10 MB, the overhead of AM launching
is more than 40%. Therefore, we design a submitter framework
that creates a reserved AM pool to reserve a reasonable number
of containers specifically for short applications. We also design
a performance model to decide which mode is the optimal one,
considering the dominant resource usage in the cluster.

Fig. 7 demonstrates the process to submit a Spark application.
When the client submits an application, instead of requesting AM
from the resource manager Yarn, we design a novel application
submission framework using Spring Hadoop [10] to accept the
application submission from the client. Our submitter contains
three major components: (1) The client module is used to submit
short applications to a proxy module and upload the related files
such as configuration and jar files to HDFS. (2) The proxy module
is responsible for accepting the application request from the
client, and then allocates an AM from the AM pool that contains
a reasonable number of AMs. (3) AMSlave module is the module
to launch AM from the proxy module rather than Yarn, and run
the ‘‘main’’ function for the Spark application. The workflow of
application submission is shown in Fig. 7.

1. Application submission: The proxy module is launched
when Hadoop Yarn starts, and creates an AM pool that
contains a certain number of AMs in order to deploy short
applications. The user can configure the number of AMs
in the AM pool depending on the submission frequency of
short applications. After the proxy starts up, the client can
use the client module to submit a short application in our
submitting framework.

2. Decision making: The proxy module is a daemon that
waits for the requests from clients. The proxy consults
the decision maker to decide which mode is the most
efficient way according to the time estimated by the perfor-
mance model and resource usage status from the resource
analyzer.

3. Launching AM: If there exists history logs collected by
our profiler for this application, the decision maker can
make choice based on the duration and resource utilization
of each mode in the history. Then the proxy launches
one AM from the AM pool to execute it. Otherwise, the
proxy will launch this application depending on the current
resource usage in the cluster according to a conservative
order distributed > one-container > one-thread.
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Table 1
Notations used in the estimation algorithm.
tapp The total duration for Application
tjobi The total duration for job i
tstagei The total duration for stage i
ttaski The total duration for task i
tam The AM setup time
texecutors All executors setup time
DOP Degree of parallelism
tschedule The time to schedule task to executor
tdeserialize Task deserialization time
trun The exact execution time of a task
tserialize Task serialization time
tresult The time to fetch result data to driver
tshuffle_read The shuffle read time
tshuffle_write The shuffle write time
tcpu The real cpu computing time of a task
tidle The idle time of a task
di Disk input rate
do Disk output rate
bi Bandwidth
sr Average shuffle read of tasks
sw Average shuffle write of tasks

4. Profiling: Although Spark collects some execution met-
rics, this information is still insufficient to design an accu-
rate performance model to evaluate the duration without
running. In our framework, we design a Spark profiler,
which employs a light-weight bytecode instrumentation
tool, called ASM [12], to collect fine-grained information
such as the duration of sub-phases and RDD operations
within each task.

5. Evaluation: According to the logs collected by the Spark
profiler, we use our performance model to estimate the du-
ration of the application in three modes. The fine-grained
performance model will be introduced in Section 3.5.

6. Terminating: When the application finishes, the proxy re-
ceives a notice from the AMSlave, it releases the AM, and
returns it back to the AM pool.

3.5. Performance model

In order to select a more efficient mode to execute, we design
a performance model, called Hedgehog, which is a white box
evaluator to estimate the dataflow and cost of Spark applications
based on the profiler logs, Spark logs, and Yarn logs.

tapp = tam + texecutors +

n∑
i=1

tjobi

tjobi =

∑
stagej∈jobi

tstagej

tstagej =

∑
taskk∈stagej

ttaskk
DOP

(2)

ttask = tschedule + tdeserialize + trun + tserialize + tresult (3)

trun = tshuffle_read + tcpu + tidle + tshuffle_write

= sr/do + sr/bi + tcpu + tidle + sw/di
(4)

Table 1 gives the notations used in our performance model.
Eq. (2) shows an estimation of the total duration of a Spark ap-
plication. The AM setup time can be avoided due to our submitter
framework. texecutors is the time to deploy all executors in cluster’s
nodes, which is linear to the number of nodes to be used in
each mode. For one-container and one-thread modes, there is

only one container to be launched, which means that only one
node needs to be deployed. For distributed mode, the number of
used nodes relies on the number of tasks to be executed in the
first stage if there is no repartition operation. The total execution
time of an application consists of the duration of each job. Each
job contains multiple stages, and each stage has a bunch of tasks
to be executed. The degree of parallelism can be expressed by
DOP , which indicates how many tasks executed in parallel. For
one-container mode, DOP is the number of virtual cores in each
executor. The one-thread mode only uses one virtual core during
the whole application process, where DOP is 1. In the distributed
mode, DOP counts on the total virtual cores of all containers.

Eq. (3) gives an evaluation of the duration for a task. The whole
execution time of a task consists of 5 major sub-phases: sched-
ule, deserialize, run, serialize, and getting-result . Since schedule,
deserialize, serialize, and getting-result are related to the spe-
cific characteristics of the task setup and cleanup, the three
modes have almost the same duration of these four sub-phases,
which is proved by our experiments. Therefore, we only consider
the run sub-phase to decide which mode should be the best to
execute. The run sub-phase can be further divided into four sub-
sub-phases: shuffle-read, CPU-computing (called cpu), idle, and
shuffle-write, as shown in Eq. (4). shuffle-read is related to the
shuffle read size, the bandwidth ratio, and disk input ratio that
can be evaluated and detected by our Hedgehog system. cpu time
is linear to the load of one task. Since the one-thread mode runs
all tasks in a sequential way, which means that it need more
time than other two modes for this sub-phase. idle time depends
on the memory, CPU and disk I/O contentions during the task
duration determined by the number of cores in each container.

4. Experiments

4.1. Experimental setup

We conduct all experiments on a cluster on Amazon’s Elastic
Compute Cloud (EC2) that consists of one Name Node and ten
Data Nodes. The instance type we used is Amazon m5.2xlarge,
which has 2.5 GHz Intel Xeon Platinum 8175 processors, 32 GB
memory, 8 vCPUs, SSD-based instance storage for fast I/O perfor-
mance, and up to 25 Gbps network bandwidth. Our experiment
is based on Apache Spark 2.0, Apache Hadoop 2.3, and Java 7.
To evaluate the performance of our new framework, we run
four different benchmarks: WordCount, PageRank, K-Means, and
SQL query. WordCount is a classic big data program that counts
words from a large file, which was downloaded from Wikipedia
database. PageRank is an algorithm used to rank websites. For
PageRank, the input data are generated by ‘‘GraphGenerators’’
from Spark API, and the iteration number is set to 5. K-Means is a
famous clustering method that clusters vector observations into k
sets. For K-Means, we set the iteration number to 5, and the data
are generated by Spark MLlib API ‘‘KMeansDataGenerator’’. SQL
query is a ‘‘selection’’ operation that counts how many numbers
are greater than 0 in one column, which also uses K-Means data.
The performance of each benchmark is barely influenced by the
distribution of input data.

4.2. Experimental results

4.2.1. WordCount
Fig. 8 shows the performance of Meteor and Spark with the

number of files varying from 4 to 32 and the file size being set to
10 MB. We compare three new modes with the original Spark.
When the number of files is 4, the one-container mode gains
an improvement of 66.6% compared with Spark. This is because
the one-container mode not only significantly avoids shuffling
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Fig. 8. The performance on WordCount when varying the number of files but
fixing the file size to 10 MB.

Fig. 9. The performance on WordCount by fixing the number of files to 8 but
varying file size.

data between containers, but also reduces the containers’ setup
and deploy time compared with the distributed mode. However,
when the number of files increases to 16, the distributed mode
becomes a better choice since the higher level of parallelism can
speed up the total performance and improve data locality, but
with the cost of 4 containers. Fig. 8 demonstrates that as the
number of input files grows, the distributed mode outperforms
one-container mode even more. When the number of files is 32,
the distributed mode is 25% faster than the one-container mode.
Although the one-thread mode is more time-consuming than the
other two modes, it is still a good choice when the cluster is
short of resource and cannot allocate enough for the distributed
and one-container modes. Note that even the one-thread mode is
better than the original Spark when the number of files is small.

In Fig. 9, we vary file size from 5 MB to 40 MB but keep
the number of files fixed at 8. As input files grow larger, the
distributed mode also becomes increasingly better than the other
two modes. This is because the large input data size increases the
chance of CPU and disk I/O contentions compared with only one
container. Another reason is that the one-container mode has to
execute 2 waves (8 tasks/4 cores), which is more time-consuming
than the distributed mode, which runs only one wave. When the
file size is 80 MB, the distributed mode is 20% faster than the
one-container mode, and 73.3% faster than the original Spark.
As expected, the performance of the one-thread mode becomes
worse when the file size increases.

Fig. 10 demonstrates the performance when the total input
data size is fixed to 160 MB, but the number of files varies from 2
to 8. The distributed mode is the optimal choice regarding from
performance’s point of view, especially when the number of files
is large. However, when the number of files is small, the one-
container mode is also a good candidate, since it is only about 7%

Fig. 10. The performance on WordCount when fixing the input size to 160 MB.

Table 2
Mode selection based on performance model.
Selection Resource availability

20% 40% 60% 80% 100%

Num of
files

2 1-Thread 1-Thread 1-Thread 1-Thread 1-Thread
4 1-Container 1-Container 1-Container 1-Container 1-Container
6 1-Container 1-Container Distributed Distributed Distributed
8 1-Container Distributed Distributed Distributed Distributed

Fig. 11. PageRank performance with different numbers of records.

slower than the distributed mode, but only costs 1/4 of resource
usage.

Table 2 shows the selection results when the resource avail-
ability varies from 20% to 100% and the number of files grows
from 2 to 8. As the number of files is 2, one-thread mode is
best no matter the available resource rate is from 20% to 100%.
However, when the number of files is ≥ 4, the one-container
mode is selected due to its multi-threading and less resource
usage. Only when the quantity of files is 8 and the resource
availability is large (≥ 40%), The distributed mode outperforms
the other two modes because of better parallelism. The overhead
of our submitter framework is mainly caused by the decision-
making process. The time consumption of this process depends
on the size of the history logs, which are organized as json format.
Due to our compact performance model shown in Section 3.4 and
small log size for short job, the duration of decision-making is
within 1 s, and the decision is sent back with resource allocation
information, which does not generate any extra overhead costs.

4.2.2. PageRank
In Fig. 11, we execute another classic benchmark called PageR-

ank. We vary the input data records from 20000 to 160000. Each
block contains 10000 records, therefore, the number of blocks
changes from 2 to 16 when the number of records varies from
20000 to 160000. We found that its result is similar to that of
WordCount, where the one-container mode is the optimal mode
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Fig. 12. K-means performance when varying input data size.

Fig. 13. SQL query performance when varying input data size.

when the input data size is small, and the distributed mode is
better when the data size becomes large. We also found that
the duration of one-thread mode increases drastically when the
data size is bigger due to the more complex calculation and more
stages in PageRank. Our one-container mode is twice as fast as
the original Spark when the number of records is 20000.

4.2.3. K-means
Fig. 12 shows the performance of K-means. The input data

size is varied from 20 MB to 640 MB. An interesting thing is
that the distributed mode outperforms the one-container mode
only when the input data size is very large (more than 640 MB),
because this benchmark does not require massive computation,
and there is little CPU contention, which enhances the benefit
gained by the one-container mode.

4.2.4. SQL query
Fig. 13 is another benchmark to execute a SQL query that

counts numbers in the dataset to be greater than 0 with the
K-means data. This benchmark is even lighter weight than PageR-
ank, where the majority of the time consumed is in loading data
from HDFS. We found that the one-thread mode is always a better
choice even when the data size has grown to 640 MB. When the
input data size is 20 MB, the one-thread mode is 1.5 times faster
than the original Spark.

4.3. Cross-comparison for WordCount, PageRank, K-means, SQL
query

From our experiments, it is worth noting that the lighter the
application is, the better the performance of one-thread and one-
container modes are. Due to the less resource contention for
K-means and SQL query, one-thread or one-container is always
a better choice even if the input data size is large, which is

Fig. 14. WordCount performance when varying batch size.

also better than the original Spark. However, if the application is
resource-intensive (e.g., IO, CPU or Memory) such as WordCount
and PageRank, the one-thread or one-container mode can gain
the improvement only when the input data is very small. There-
fore, we have to make a mode decision by performance model
rather than experience.

4.4. Experimental results for batch applications

In this section, we discuss the performance of batch pro-
cessing that executes a series of Spark applications in parallel.
In reality, multiple tenants could share the same Spark cluster
and submit applications simultaneously. It is crucial to detect
what mode is the best mode when the cluster is busy. Here
we use batch-submission to analyze the performance of short
applications.

In Fig. 14, we vary the number of WordCount applications in
a batch from 10 to 40. When the number of applications is 10,
the one-container mode is the optimal mode because it not only
requests few resources in the cluster, but also has multi-threading
to speed up the work. However, when the number of applications
is changed to more than 20, the one-thread mode becomes more
efficient due to fewer resource requested and less contention in
the cluster. The one-thread mode outperforms the distributed
mode by 20% when the number of WordCount applications is 30.
As the number of WordCount applications is 40, The one-thread
mode can outperform the original Spark by 48%.

Fig. 15 demonstrates the performance of three modes for
another benchmark, SQL query in batch-submission. The com-
putation of SQL query is even simpler than WordCount so that
even with one thread, Spark can compute all tasks very fast.
From Fig. 15, even when the number of applications submitted
is 10, the one-thread mode shows good performance, although
it is still worse than the other two modes. However, when the
number of applications is greater than or equal to 20, the one-
thread mode becomes the most efficient mode and is 80% faster
than the distributed mode at 40 applications. From experiments
shown in this section, we found that when the cluster is relatively
busy, the one-thread mode is always a good choice as it is more
resource-efficient than the other two modes.

5. Related work

There are four research areas related to our system regarding
optimizing performance of short applications for Spark: data-
locality awareness [13–16], application scheduling [7,17–22], per-
formance model [23–26], and multi-threading [27,28].

Data-locality awareness. Hammoud et al. [13] proposed a
locality-aware Task Scheduler based on data locality and size,
which has significant improvement when the data are skewed.
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Fig. 15. SQL query performance when varying the batch size.

Zhang et al. [14] introduced a next-k-node scheduling (NKS)
algorithm that reserves nodes to satisfy data locality. Maestro [15]
designed a scheduling algorithm to schedule all tasks in two
steps to achieve better data-locality. Marco et al. [16] presented
a mixture-of-experts approach to model the memory behavior
of Spark applications in order to determine how many tasks to
co-locate on the same host to improve system utilization and
throughput.

Application scheduling. Elmeleegy [7] introduced a system
called Piranha to avoid saving intermediate results to disk and
provide a fault-tolerance mechanism. Yao et al. [17] designed
a scheduling algorithm considering the size of applications to
decrease average application response time by adjusting resource
sharing among users dynamically. Yan et al. [18] implemented
an optimized Hadoop that employed a push-model assignment
mechanism instead of the pull-model to reduce the initialization
and termination time of a application. Chen et al. [19] proposed a
pre-scheduling framework to predict stragglers to minimize the
processing latency. Yan et al. [20] designed a new framework to
run time-insensitive applications as secondary background tasks
but guarantee the stability characteristics. Cheng et al. [21] pro-
posed an adaptive scheduling algorithm that schedules parallel
micro-batch applications dynamically and automatically based on
their data dependencies and workload properties. Chen et al. [22]
designed a speculative slot reservation algorithm that reserves
slots for upstream computations, which can also run extra copies
of stragglers. However, all these do not take the time-critical
feature of short applications into account.

Performance model. Wang et al. [23] presented a simulation
driven prediction model to predict application performance for
Apache Spark platform. OptEx [24] is another tool that models
application completion time on Spark by considering the input
dataset, the number of iterations, and the number of nodes. A
dynamic memory manager for in-memory data analytics, MEM-
TUNE [25], is a dynamic memory manager that tunes compu-
tation/caching memory partitions at runtime based on memory
demand and in-memory cache need. Yoo et al. [26] evaluated the
performance and resource usage to decide when to scale-up and
scale-out cluster for Spark. But none of these performance models
is a comprehensive one that considers all performance-influence
factors for Spark.

Multi-threading. Zhang et al. [27] designed a system called HJ-
Hadoop to employ multi-core parallelism at JVM level to decrease
the number of containers needed to run for Hadoop applications.
Lion et al. [28] designed a new JVM that cuts long tasks into
short ones to amortize JVM warm-up overhead through long
tasks. These optimizations are only limited to tuning JVM level
parallelism.

There are other aspects concerning distributed platform per-
formance, such as network [29–31], HDFS [32], middleware [33,
34], and query optimization [35,36].

6. Conclusions and future work

Although big data platforms were originally designed for
large-scale applications, the majority of these workloads are
short. In this paper, we design and implement an optimized
Spark-on-Yarn system for short applications by introducing three
new operating modes: one-thread, one-container, and distributed.
We introduce a brand-new scheduler that takes both data locality
and resource usage into account and reduce the redundant com-
munications between the Application Master and the Resource
Manager. A new submitter framework is designed to avoid the
setup time of Application Master and decide which mode is the
most efficient based on our fine-grained performance model.
According to our experimental results, our system is up to 2 times
faster compared with the original Spark for short applications.

In the further, we plan to optimize our framework to de-
cide the best mode with static program analysis and dynamic
real-time analysis without history log information.
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