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Abstract. We consider the linearly transformed spiked model,
where observations Yi are noisy linear transforms of unobserved sig-
nals of interest Xi:

Yi = AiXi + εi,

for i = 1, . . . , n. The transform matrices Ai are also observed. We
model Xi as random vectors lying on an unknown low-dimensional
space. How should we predict the unobserved signals (regression co-
efficients) Xi?

The naive approach of performing regression for each observation
separately is inaccurate due to the large noise. Instead, we develop op-
timal linear empirical Bayes methods for predicting Xi by “borrowing
strength” across the different samples. Our methods are applicable to
large datasets and rely on weak moment assumptions. The analysis
is based on random matrix theory.

We discuss applications to signal processing, deconvolution, cryo-
electron microscopy, and missing data in the high-noise regime. For
missing data, we show in simulations that our methods are more
robust to noise and to unequal sampling than well-known matrix
completion methods.

1. Introduction. In this paper we study the linearly transformed spiked
model, where the observed data vectors Yi are noisy linear transforms of un-
observed signals of interest Xi:

Yi = AiXi + εi, i = 1, . . . , n.

We also observe the transform matrices Ai. A transform matrix reduces
the dimension of the signal Xi ∈ Rp to a possibly observation-dependent
dimension qi ≤ p, thus Ai ∈ Rqi×p. Moreover, the signals are assumed to be
random vectors lying on an unknown low-dimensional space, an assumption
sometimes known as a spiked model (Johnstone, 2001).

Our main goal is to recover (estimate or predict) the unobserved signals
Xi. The problem arises in many applications, some of which are discussed
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2 DOBRIBAN, LEEB, AND SINGER

in the next section. Recovery is challenging due to the two different sources
of information loss: First, the transform matrices Ai reduce the dimension,
since they are generally not invertible. It is crucial that the transform ma-
trices differ between observations, as this allows us to reconstruct this lost
information from different “snapshots” of Xi. Second, the observations are
contaminated with additive noise εi. We study the regime where the size of
the noise is much larger than the size of the signal. This necessitates methods
that are not only numerically stable, but also reduce the noise significantly.

This setup can be viewed as a different linear regression problem for each
sample i = 1, . . . , n, with outcome vector Yi and covariate matrix Ai. The
goal is then to estimate the regression coefficients Xi. Since Xi are random,
this is also a random effects model. Our specific setting, with low-rank Xi, is
more commonly considered in spiked models, and we will call Xi the signals.

This paper assumes that the matrices A>i Ai ∈ Rp are diagonal. Equiva-
lently, we assume that the matrices A>i Ai all commute (and so can be jointly
diagonalized). We will refer to this as the commutative model. This is mainly
a technical assumption and we will see that it holds in many applications.

With large noise, predicting one Xi using one Yi alone has low accuracy.
Instead, our methods predict Xi by “borrowing strength” across the different
samples. For this we model Xi as random vectors lying on an unknown
low-dimensional space, which is reasonable in many applications. Thus our
methods are a type of empirical Bayes methods (Efron, 2012).

Our methods are fast and applicable to big data, rely on weak distri-
butional assumptions (only using moments), are robust to high levels of
noise, and have certain statistical optimality results. Our analysis is based
on recent insights from random matrix theory, a rapidly developing area of
mathematics with many applications to statistics (e.g., Bai and Silverstein,
2009; Paul and Aue, 2014; Yao et al., 2015).

1.1. Motivation. We study the linearly transformed model motivated by
its wide applicability to several important data analysis scenarios.

1.1.1. PCA and spiked model. In the well-known spiked model one ob-
serves data Yi of the form Yi = Xi + εi, where Xi ∈ Rp are unobserved
signals lying on an unknown low dimensional space, and εi ∈ Rp is noise.
With Ai = Ip for all i, this is a special case of the commutative linearly
transformed spiked model.

The spiked model is fundamental for understanding principal component
analysis (PCA), and has been thoroughly studied under high-dimensional
asymptotics. Its understanding will serve as a baseline in our study. Among
the many references, see for instance Johnstone (2001); Baik et al. (2005);
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Baik and Silverstein (2006); Paul (2007); Nadakuditi and Edelman (2008);
Nadler (2008); Bai and Ding (2012); Bai and Yao (2012); Benaych-Georges
and Nadakuditi (2012); Onatski (2012); Onatski et al. (2013); Donoho et al.
(2013); Onatski et al. (2014); Nadakuditi (2014); Gavish and Donoho (2014b);
Johnstone and Onatski (2015); Hachem et al. (2015).

1.1.2. Noisy deconvolution in signal processing. The transformed spiked
model is broadly relevant in signal acquisition and imaging. Measurement
and imaging devices nearly never measure the “true” values of a signal.
Rather, they measure a weighted average of the signal over a small window
in time and/or space. Often, this local averaging can be modeled as the
application of a convolution filter. For example, any time-invariant record-
ing device in signal processing is modeled by a convolution (Mallat, 2008).
Similarly, the blur induced by an imaging device can be modeled as convo-
lution with a function, such as a Gaussian (Blackledge, 2006; Campisi and
Egiazarian, 2016). In general, this filter will not be numerically invertible.

As is well-known, any convolution filter Ai is linear and diagonal in the
Fourier basis; for example, see Stein and Shakarchi (2011). Consequently,
A>i Ai is also diagonalized by the Fourier basis. Convolutions thus provide a
rich source of examples of the linearly transformed spiked model.

1.1.3. Cryo-electron microscopy (cryo-EM). Cryo - electron microscopy
(cryo-EM) is an experimental method for mapping the structure of molecules.
It allows imaging of heterogeneous samples, with mixtures or multiple con-
formations of molecules. This method has received a great deal of recent in-
terest, and has recently led to the successful mapping of important molecules
(e.g., Bai et al., 2015; Callaway, 2015).

Cryo-EM works by rapidly freezing a collection of molecules in a layer
of thin ice, and firing an electron beam through the ice to produce two-
dimensional images. The resulting observations can be modeled as Yi =
AiXi+εi, whereXi represents an unknown 3D molecule; Ai randomly rotates
the molecule, projects it onto the xy-plane, and applies blur to the resulting
image; and εi is noise (Katsevich et al., 2015). Since a low electron dose is
used to avoid destroying the molecule, the images are typically very noisy.

When all the molecules in the batch are identical, i.e. Xi = X for all i,
the task of ab-initio 3D reconstruction is to recover the 3D molecule X from
the noisy and blurred projections Yi (Kam, 1980). Even more challenging
is the problem of heterogeneity, in which several different molecules, or one
molecule in different conformations, are observed together, without labels.
The unseen molecules can usually be assumed to lie on some unknown low-
dimensional space (Katsevich et al., 2015; Andén et al., 2015). Cryo-EM
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4 DOBRIBAN, LEEB, AND SINGER

observations thus fit the linearly transformed spiked model.
The noisy deconvolution problem mentioned above is also encountered

in cryo-EM. The operators Ai induce blur by convolution with a point-
spread function (PSF), thus denoising leads to improved 3D reconstruction
(Bhamre et al., 2016). The Fourier transform of the point-spread function
is called the contrast transfer function (CTF), and the problem of removing
its effects from an image is known as CTF correction.

1.1.4. Missing data. Missing data can be modeled by coordinate selec-
tion operators Ai, such that Ai(k, l) = 1 if the k-th coordinate selected by
Ai is l, and Ai(k, l) = 0 otherwise. Thus A>i Ai are diagonal with 0/1 entries
indicating missing/observed coordinates. In the low-noise regime, missing
data in matrices has recently been studied under the name of matrix com-
pletion (e.g., Candès and Recht, 2009; Candès and Tao, 2010; Keshavan
et al., 2009, 2010; Koltchinskii et al., 2011; Negahban and Wainwright, 2011;
Recht, 2011; Rohde et al., 2011; Jain et al., 2013). As we discuss later, our
methods perform well in the high-noise setting of this problem.

1.2. Our contributions. Our main contribution is to develop general meth-
ods predicting Xi in linearly transformed spiked models Yi = AiXi + εi. We
develop methods that are fast and applicable to big data, rely on weak
moment assumptions, are robust to high levels of noise, and have certain
optimality properties.

Our general approach is as follows: We model Xi as random vectors lying

on an unknown low-dimensional space, Xi =
∑r

k=1 `
1/2
k zikuk for fixed unit

vectors uk and mean-zero scalar random variables zik, as usual in spiked
models. In this model, the Best Linear Predictor (BLP), also known as the
Best Linear Unbiased Predictor (BLUP), of Xi given Yi is well known (Searle
et al., 2009). (The more well known Best Linear Unbiased Estimator (BLUE)
is defined for fixed-effects models where Xi are non-random parameters.)
The BLP depends on the unknown population principal components uk. In
addition, it has a complicated form involving matrix inversion.

Our contributions are then:

1. We show that the BLP reduces to a simpler form in a certain natural
high-dimensional model where n, p→∞ such that p/n→ γ > 0 (Sec.
.8). In this simpler form, we can estimate the population principal
components using the principal components (PCs) of the backprojected
data A>i Yi to obtain an Empirical BLP (EBLP) predictor (a type of
moment-based empirical Bayes method), known up to some scaling
coefficients. By an exchangeability argument, we show that the optimal
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scaling coefficients are the same as optimal singular value shrinkage
coefficients for a certain novel random matrix model (Sec. 2.3).

2. We derive the asymptotically optimal singular value shrinkage coeffi-
cients (Sec. 3), by characterizing the spectrum of the backprojected
data matrix (Sec. 3.1). This is our main technical contribution.

3. We derive a suitable “normalization” method to make our method
fully implementable in practice (Sec. 2.4). This allows us to estimate
the optimal shrinkage coefficients consistently, and to use well-known
optimal shrinkage methods (Nadakuditi, 2014; Gavish and Donoho,
2014b). We also discuss how to estimate the rank (Sec. 3.4).

4. We also solve the out-of-sample prediction problem, where new Y0, A0

are observed, and X0 is predicted using the existing data (Sec. 4).
5. We compare our methods to existing approaches for the special case of

missing data problems via simulations (Sec. 5). These are reproducible
with code provided on Github at https://github.com/wleeb/opt-pred.

2. Empirical linear prediction.

2.1. The method. Our method is simple to state using elementary linear
algebra. We give the steps here for convenience. In subsequent sections, we
will explain each step, and prove the optimality of this procedure over a
certain class of predictors. Our method has the following steps:

1. Input : Noisy linearly transformed observations Yi, and transform ma-
trices Ai, for i = 1, . . . , n. Preliminary rank estimate r (see Sec. 3.4
for discussion).

2. Form backprojected data matrix B = [A>1 Y1, . . . , A
>
n Yn]> and diagonal

normalization matrix M̂ = n−1/2
∑n

i=1A
>
i Ai. Form the normalized,

backprojected data matrix B̃ = BM̂−1.
3. (Optional) Multiply B̃ by a diagonal whitening matrix W , B̃ ← B̃W .

The definition of W is given in Sec. 3.3.1.
4. Compute the singular values σk and the top r singular vectors ûk, v̂k

of the matrix B̃.
5. Compute X̂ = (X̂1, . . . , X̂n)> =

∑r
k=1 λ̂kûkv̂

>
k .

Here λ̂k are computed according to Sec. 3: λ̂k = ˆ̀1/2
k ĉk ˆ̃ck, where

ˆ̀
k, ĉk, ˆ̃ck are estimated based on the formulas given in Theorem 3.1

by plug-in. Specifically, ˆ̀
k = 1/D̂(σ2

k), ĉ
2
k = m̂(σ2

k)/[D̂
′(σ2

k)
ˆ̀
k], ˆ̃c2

k =

m̂(σ2
k)/[D̂

′(σ2
k)

ˆ̀
k], where m̂, m̂, D̂, D̂′ are the plug-in estimators of the

Stieltjes-transform-like functionals of the spectral distribution, using
the bottom min(n, p)− r eigenvalues of the sample covariance matrix
of the backprojected data. For instance, m̂ is given in equation (3.2.1)
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6 DOBRIBAN, LEEB, AND SINGER

(assuming p ≤ n):

m̂(x) =
1

p− r

p∑
k=r+1

1

σ2
k − x

.

6. If whitening was performed (Step 3), unwhiten the data, X̂ ← X̂W−1.
7. Output : Predictions X̂i for Xi, for i = 1, . . . , n.

The complexity of the method is dominated by computing the singu-
lar value spectrum of the backprojected matrix, which takes O(min(n, p)2 ·
max(n, p)) floating point operations. As we will show in Sec. 3.3, by choosing
a certain whitening matrix W , the algorithm will only require computing
the top r singular vectors and values of the backprojected data matrix, and
so can typically be performed at an even lower cost using, for example, the
Lanczos algorithm (Golub and Van Loan, 2012), especially when there is a
low cost of applying the matrix B̃ to a vector.

2.2. Motivation I: from BLP to EBLP. We now explain the steps of
our method. We will use the mean-squared error E‖X̂i − Xi‖2 to assess
the quality of a predictor X̂i. Recall that we modeled the signals as Xi =∑r

k=1 `
1/2
k zikuk. It is well known in random effects models (e.g., Searle et al.,

2009) that the best linear predictor, or BLP, of one signal Xi using Yi, is:

(1) X̂BLP
i = ΣXA

>
i (AiΣXA

>
i + Σε)

−1Yi.

Here, ΣX =
∑r

k=1 `kuku
>
k denotes the covariance matrix of one Xi, and Σε

is the covariance matrix of the noise εi. These are unknown parameters, so
we need to estimate them in order to get a bona fide predictor. Moreover,
though Ai are fixed parameters here, we will take them to be random later.

We are interested in the “high-dimensional” asymptotic regime, where
the dimension p grows proportionally to the number of samples n; that is,
p = p(n) and limn→∞ p(n)/n = γ > 0. In this setting it is in general not
possible to estimate the population covariance ΣX consistently. Therefore,
we focus our attention on alternate methods derived from the BLP.

The BLP involves the inverse of a matrix, which makes it hard to analyze.
However, for certain uniform models (see Sec. .8 for a precise definition),
we can show that the BLP is asymptotically equivalent to a simpler linear
predictor not involving a matrix inverse:

X̂0
i =

r∑
k=1

η0
k〈A>i Yi, uk〉uk.
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Here η0
k are certain constants given in Sec. .8. This simple form of the

BLP guides our choice of predictor when the true PCs are not known. Let
û1, . . . , ûr be the empirical PCs; that is, the top eigenvectors of the sam-
ple covariance

∑n
i=1(A>i Yi)(A

>
i Yi)

>/n, or equivalently, the top left singular
vectors of the matrix [A>1 Y1, . . . , A

>
n Yn]>. For coefficients η = (η1, . . . , ηr),

substituting ûk for uk leads us to the following empirical linear predictor :

X̂η
i =

r∑
k=1

ηk〈A>i Yi, ûk〉ûk.

Note that, since the empirical PCs ûk are used in place of the population
PCs uk, the coefficients ηk defining the BLP are no longer optimal, and
must be adjusted downwards to account for the non-zero angle between uk
and ûk. This phenomenon was studied in the context of the ordinary spiked
model in Singer and Wu (2013).

2.3. Motivation II: Singular value shrinkage. Starting with BLP and
replacing the unknown population PCs uk with their empirical counter-
parts ûk, we were lead to a predictor of the form X̂η

i =
∑r

k=1 ηk〈Bi, ûk〉ûk,
where Bi = A>i Yi are the backprojected data. Now, the matrix X̂η =
[X̂η

1 , . . . , X̂
η
n]> has the form

X̂η =
r∑

k=1

ηk ·Bûkû>k =
r∑

k=1

ηkσk(B) · v̂kû>k .(2)

This has the same singular vectors as the matrix B = [B1, . . . , Bn]> of
backprojected data.

From now on, we will consider the Ai as random variables, which cor-
responds to an average-case analysis over their variability. Then observe
that the predictors X̂η

i are exchangeable random variables with respect to
the randomness in Ai, εi, because they depend symmetrically on the data
matrix B. Therefore, the prediction error for a sample equals the average
prediction error over all Xi, which is the normalized Frobenius norm for
predicting the matrix X = (X1, . . . , Xn)>:

E‖X̂η
i −Xi‖2 =

1

n
E‖X̂η −X‖2F .

Therefore, the empirical linear predictors are equivalent to performing sin-
gular value shrinkage of the matrix B to estimate X. That is, singular value
shrinkage predictors are in one-to-one correspondence with the in-sample
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8 DOBRIBAN, LEEB, AND SINGER

empirical linear predictors. Because singular value shrinkage is minimax op-
timal for matrix denoising problems with Gaussian white noise (Gavish and
Donoho, 2014a), it is a natural choice of predictor in the more general setting
we consider in this paper, where an optimal denoiser is not known.

2.4. The class of predictors: shrinkers of normalized, backprojected data.
Motivated by the previous two sections, we are led to singular value shrinkage
predictors of the matrix X. However, it turns out that rather than shrink
the singular values of the matrix B of backprojected data A>i Yi, it is more
natural to work instead with the matrix B̃ with rows B̃i = M−1A>i Yi, where
M = EA>i Ai is a diagonal normalization matrix. We will show later that we
can use a sample estimate of M .

The heuristic to explain this is that we can write A>i Ai = M +Ei, where
Ei is a mean zero diagonal matrix. We will show in the proof of Thm. 3.1
that because the matrices A>i Ai commute, the matrix with rows EiXi/

√
n

has operator norm that vanishes in the high-dimensional limit p/n → γ.
Consequently, we can write:

Bi = A>i Yi = MXi +A>i εi + EiXi ∼MXi︸ ︷︷ ︸
signal

+A>i εi︸ ︷︷ ︸
noise

Since Xi lies in an r-dimensional subspace, spanned by u1, . . . , ur, MXi also
lies in the r-dimensional subspace spanned by Mu1, . . . ,Mur. Furthermore,
A>i εi is mean-zero and independent of MXi. Consequently, A>i Yi looks like
a spiked model, with signal MXi and noise A>i εi.

Shrinkage of this matrix will produce a predictor of MXi, not Xi itself.
However, multiplying the data by M−1 fixes this problem: we obtain the
approximation:

B̃i = M−1A>i Yi ∼ Xi +M−1A>i εi︸ ︷︷ ︸
noise

.

After this normalization, the target signal of any shrinker becomes the true
signal Xi itself.

Motivated by these considerations, we can finally state the class of prob-
lems we study. We consider predictors of the form:

X̂η
i =

r∑
k=1

ηk〈B̃i, ûk〉ûk

where B̃i = M−1A>i Yi, and we seek the AMSE-optimal coefficients η∗k in
the high-dimensional limit p/n→ γ; that is, our goal is to find the optimal
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coefficients ηk, minimizing the AMSE:

η∗ = arg min
η

lim
p,n→∞

E‖X̂η
i −Xi‖2.

We will show that the limit exists. The corresponding estimator X̂η∗

i will
be called the empirical best linear predictor (EBLP). We will: (1) show that
it is well-defined; (2) derive the optimal choice of ηk; (3) derive consistent
estimators of the optimal ηk; and (4) derive consistently estimable formulas
for the AMSE. As before, finding the optimal ηk is equivalent to performing
optimal singular value shrinkage on the matrix B̃ = [B̃1, . . . , B̃n]>.

3. Derivation of the optimal coefficients. As described in Sec. 2,
we wish to find the AMSE-optimal coefficients ηk for predictors of the form
X̂η
i =

∑r
k=1 ηk〈B̃i, ûk〉ûk, where B̃i = M−1A>i Yi is the normalized, backpro-

jected data. Equivalently, we find the optimal singular values of the matrix
with the same singular vectors as B̃ = [B̃1, . . . , B̃n]>.

Singular value shrinkage has been the subject of a lot of recent research.
It is now well known that optimal singular value shrinkage depends on the
asymptotic spectrum of the data matrix B̃ (e.g., Nadakuditi, 2014; Gavish
and Donoho, 2017). We now fully characterize the spectrum, and use it to
derive the optimal singular values. We then show that by estimating the
optimal singular values by plug-in, we get the method described in Sec. 2.1.

3.1. The asymptotic spectral theory of the back-projected data. The main
theorem characterizes the asymptotic spectral theory of the normalized
backprojected data matrix B̃ = BM−1, and of the unnormalized version
B = [A>1 Y1, . . . , A

>
n Yn]>. Our data are iid samples of the form Yi = AiXi+εi.

We assume that the signals have the form Xi =
∑r

k=1 `
1/2
k zikuk. Here

uk are deterministic signal directions with ‖uk‖ = 1. We will assume that
uk are delocalized, so that |uk|∞ ≤ Cp for some constants Cp → 0 that
we will specify later. The scalars zik are standardized independent random
variables, specifying the variation in signal strength from sample to sample.
For simplicity we assume that the deterministic spike strengths are different
and sorted: `1 > `2 > . . . > `r > 0.

For a distribution H, let Fγ,H denote the generalized Marchenko-Pastur
distribution induced by H with aspect ratio γ (Marchenko and Pastur, 1967).
Closely related to Fγ,H is the so-called companion distribution F γ,H(x) =
γFγ,H(x)+(1−γ)δ0. We will also need the Stieltjes transform mγ,H of Fγ,H ,
mγ,H(z) =

∫
(x − z)−1dFγ,H(x), and the Stieltjes transform mγ,H of F γ,H .

Based on these, one can define the D-transform of Fγ,H by

Dγ,H(x) = x ·mγ,H(x) ·mγ,H(x).
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10 DOBRIBAN, LEEB, AND SINGER

Up to the change of variables x = y2, this agrees with the D-transform
defined in Benaych-Georges and Nadakuditi (2012). Let b2 := b2H be the
supremum of the support of Fγ,H , and Dγ,H(b2H) = limt↓bDγ,H(t2). It is
easy to see that this limit is well defined, and is either finite or +∞.

We will assume the following conditions:

1. Commutativity condition. The matrices A>i Ai commute with each
other. Equivalently, they are jointly diagonal in some known basis. For
simplicity of notation, we will assume without loss of generality that
the A>i Ai are diagonal.

2. Backprojected noise. The vectors ε∗i = A>i εi have independent en-
tries of mean zero. If Hp is the distribution function of the variances of
the entries of M−1ε∗i , then Hp is bounded away from zero; and Hp ⇒ H
almost surely, where H is a compactly supported distribution.

3. Maximal noise variance. The supremum of the support of Hp con-
verges almost surely to the upper edge of the support of H.

4. Noise moments. E|ε∗ij |6+φ < C, E|Eij |6+φ < C (recall that we de-

fined Ei = A>i Ai −M).
5. Signal. One of the following two assumptions holds for the signal

directions uk and signal coefficients zij :

• Polynomial moments and delocalization. Suppose E|zij |m ≤
C <∞ for some m > 4 and for all k

‖uk‖∞ · p(2+c)/m →a.s 0

for some c > 0.

• Exponential moments and logarithmic delocalization. Sup-
pose the zij are sub-gaussian in the sense that E exp(t|zij |2) ≤ C
for some t > 0 and C <∞, and that for all k

‖uk‖∞ ·
√

log p→a.s 0.

6. Generic signal. Let P be the diagonal matrix with Pjj = Var[M−1
j ε∗ij ],

where Mj are the diagonal entries of the diagonal matrix M = EA>i Ai.
Then uj are generic with respect to P , in the sense that there are some
constants τk > 0 such that:

u>j (P − zIp)−1uk → I(j = k) · τk ·mH(z)

for all z ∈ C+.
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Before stating the main results, we make a few remarks on these assump-
tions. Assumption 1 holds for many applications, as discussed in Sec. 1.1.
However, our analysis will go through if a weaker condition is placed on ma-
trices A>i Ai, namely that they are diagonally dominant in a known basis, in
the sense that the off-diagonal elements are asymptotically negligible to the
operator norm. Because it does not change anything essential in the analysis,
for ease of exposition we will analyze the exact commutativity condition.

Figure 1: Histograms of empirical eigenvalues of whitened, backprojected
noise using 30 CTFs, plotted against the Marchenko-Pastur density for dif-
ferent aspect ratios γ.

The part of Assumption 2 that the entries of ε∗i = A>i εi are independent
is easily checked for certain problems, such as missing data with indepen-
dently selected coordinates. However, it may not always hold. For example,
in the problem of CTF correction in cryo-EM (see Sec. 1.1), each Ai may be
one of a discrete number of different CTFs; in this case, the assumption will
not hold exactly. However, we have found in practice that the Marchenko-
Pastur law holds even in this regime. To illustrate this, in Fig. 1 we plot
histograms of the sample covariance eigenvalues of simulated backprojected
isotropic Gaussian noise using 30 different synthetic CTFs, generated using
the ASPIRE software package (ASPIRE, 2017), for 30 defocus values be-
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12 DOBRIBAN, LEEB, AND SINGER

tween 0.5 and 3. We plot the coefficients of the backprojected noise in the
first frequency block of a steerable basis with radial part the Bessel func-
tions, as described in Bhamre et al. (2016) and Zhao et al. (2016). Because
this frequency block only contains 49 coefficients, the histogram we plot is
for 100 draws of the noise. We whiten the backprojected noise, so the pop-
ulation covariance is the identity. As is evident from the figure, there is a
very tight agreement between the empirical distribution of eigenvalues and
the Marchenko-Pastur laws.

Assumption 5 about the signals presents a tradeoff between the delocal-
ization of the spike eigenvectors and the moments of the signal coefficients.
If a weak polynomial moment assumption or order m holds for the signal co-
efficients zij , then it requires a delocalization at a polynomial rate p−(2+c)/m

for the spike eigenvectors. In particular, this implies that at least a poly-
nomial number of coefficients of uk must be nonzero, so that uk must be
quite non-sparse. In contrast, if we assume a stronger sub-Gaussian moment
condition for the noise, then only a logarithmic delocalization is required,
which allows uk to be quite sparse.

This assumption is similar to the incoherence condition from early works
on matrix completion (e.g., Candès and Recht, 2009, etc.). Later works have
shown that some form of recovery is possible even if we do not have incoher-
ence (e.g., Koltchinskii et al., 2011). However, in our case, complete sparsity
of order one (i.e., only a fixed number of nonzero coordinates) seems impos-
sible to recover. Indeed, suppose the rank is one and u = (1, 0, . . . , 0). Then,
all information about u and z is in the first coordinate. In our sampling
model, we observe a fixed fraction q of the coordinates, and we can have
q < 1. Thus, for the unobserved coordinates, there is no information about
the zi. Therefore, with the current random sampling mechanism, we think
that accurate estimation is not possible for fixed sparsity.

Assumption 6 generalizes the existing conditions for spiked models. In
particular, it is easy to see that it holds when the vectors uk are random with
independent coordinates. Specifically, let x be a random vector with iid zero-
mean entries with variance 1/p. Then Ex>(P −zIp)−1x = p−1tr(P −zIp)−1.
Assumption 6 requires that this converges to mH(z), which follows from
Hp ⇒ H. However, Assumption 6 is more general, as it does not require any
kind of randomness in uk.

Our main result in this section is the following.

Theorem 3.1 (Spectrum of transformed spiked models). Under the
above conditions, the eigenvalue distribution of B̃>B̃/n converges to the
general Marchenko-Pastur law Fγ,H a.s. In addition, for k ≤ r, the k-th
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largest eigenvalue of B̃>B̃/n converges, λk(B̃
>B̃)/n→ t2k a.s., where

(3) t2k =

{
D−1
γ,H( 1

`k
) if `k > 1/Dγ,H(b2H),

b2H otherwise.

Moreover, let ûk be the right singular vector of B̃ corresponding to λk(B̃
>B̃).

Then (u>j ûk)
2 → c2

jk a.s., where

(4) c2
jk =

{
mγ,H(t2k)

D′γ,H(t2k)`k
if j = k and `k > 1/Dγ,H(b2H),

0 otherwise.

Finally, let Zj = n−1/2(z1j , . . . , znj)
>, and let Ẑk be the k-th left singular

vector of B̃. Then (Z>j Ẑk)
2 → c̃2

jk a.s., where

(5) c̃2
jk =

{
mγ,H(t2k)

D′γ,H(t2k)`k
if j = k and `k > 1/Dγ,H(b2H),

0 otherwise.

The proof is in Sec. .1. While the conclusion of this theorem is very similar
to the results of Benaych-Georges and Nadakuditi (2012), our observation
model Yi = AiXi + εi is entirely different from the one in that paper; we
are addressing a different problem. Moreover, our technical assumptions are
also more general and more realistic, and only require finite moments up to
the sixth moment, unlike the more stringent conditions in previous work. In
addition, we also have the result below, which differs from existing work.

For the un-normalized backprojected matrix B, a version of Thm. 3.1
applies mutatis mutandis. Specifically, we let Hp be the distribution of the
variances of A>i εi. We replace Ip with M in the assumptions when needed,
so we let τk = limn→∞ ‖Muk‖2, and νj = Muj/‖Muj‖. Then the above
result holds for B, with `k replaced by τk`k, and uj replaced by νj . The
proof is identical, and is also presented in Sec. .1.

3.2. Optimal singular value shrinkage. Theorem 3.1 describes precisely
the limiting spectral theory of the matrix B̃/

√
n. Specifically, we derived

formulas for the limiting cosines ck and c̃k of the angles between the top r
singular vectors of B̃/

√
n and X/

√
n, and the relationship between the top

singular values of these matrices.
It turns out, following the work of Gavish and Donoho (2017) and Nadaku-

diti (2014), that this information is sufficient to derive the optimal singular
value shrinkage predictor of X. It is shown in Gavish and Donoho (2017)

that λ∗i = `
1/2
k ck c̃k, under the convention ck, c̃k > 0. Furthermore, the AMSE
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14 DOBRIBAN, LEEB, AND SINGER

of this predictor is given by
∑r

k=1 `k(1− c2
k c̃

2
k). We outline the derivation of

these formulas in Sec. .11, though the reader may wish to refer to Gavish
and Donoho (2017) for a more detailed description of the method, as well
as extensions to other loss functions.

We next show how to derive consistent estimators of the angles and the
limiting singular values of the observed matrix. Plugging these into the ex-

pression λ∗i = `
1/2
i cic̃i, we immediately obtain estimators of the optimal

singular values λ∗i . This will complete the proof that the algorithm given in
Sec. 2.1 solves the problem posed in Sec. 2.4 and defines the EBLP.

3.2.1. Estimating `k, ck and c̃k. To evaluate the optimal λ∗i , we estimate
the values of `k, ck, and c̃k using Thm. 3.1 whenever `k ≥ b2H (that is, if
the signal is strong enough). From (3) we have the formula `k = 1/Dγ,H(t2k)
where tk is the limiting singular value of the observed matrix B̃/

√
n. We

also have the formulas (4) and (5) for ck and the c̃k.
We will estimate the Stieltjes transform mγ,H(z) by the sample Stieltjes

transform, defined as:

m̂γ,H(z) =
1

p− r

p∑
k=r+1

1

λk − z
,

where the sum is over the bottom p−r eigenvalues λk of B̃>B̃/n. It is shown
by Nadakuditi (2014) that m̂γ,H is a consistent estimator of mγ,H , and that
using the corresponding plug-in estimators of mγ,H , Dγ,H and D′γ,H , we also
obtain consistent estimators of `k, ck, and c̃k.

3.2.2. Using M̂ in place of M . To make the procedure fully imple-
mentable, we must be able to estimate the mean matrix M = EA>i Ai.
If M is estimated from the n iid matrices A>i Ai by the sample mean M̂ =
n−1

∑n
i=1A

>
i Ai, we show that multiplying by M̂−1 has asymptotically the

same effect as multiplying by the true M−1, assuming that the diagonal
entries of M are bounded below. This justifies our use of M̂ .

Lemma 3.2. Suppose that the entries Mi of M are bounded away from
0: Mi ≥ δ for some δ > 0, for all i. Let M̂ = n−1

∑n
i=1A

>
i Ai. Then

lim
p,n→∞

n−1/2‖BM−1 −BM̂−1‖op = 0.

See Sec. .10 for the proof. Note that the condition of this lemma are
violated only when the entries of M can be arbitrarily small; but in this
case, the information content in the data on the corresponding coordinates
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vanishes, so the problem itself is ill-conditioned. The condition is therefore
reasonable in practice.

3.3. Prediction for weighted loss functions: whitening and big data. In
certain applications there may be some directions that are more important
than others, whose accurate prediction is more heavily prized. We can cap-
ture this by considering weighted Frobenius loss functions ‖X̂i − Xi‖2W =

‖W (X̂i−Xi)‖2, where W is a positive-definite matrix. Can we derive optimal
shrinkers with respect to these weighted loss functions?

The weighted error can be written as ‖X̂i − Xi‖2W = ‖W (X̂i − Xi)‖2 =

‖ŴXi−WXi‖2. In other words, the problem of predicting Xi in the W -norm
is identical to predicting WXi in the usual Frobenius norm. Because the
vectors WXi lie in an r-dimensional subspace (spanned by Wu1, . . . ,Wur),
the same EBLP method we have derived for Xi can be applied to prediction
of WXi, assuming that the technical conditions we imposed for the original
model hold for this transformed model. That is, we perform singular value
shrinkage on the matrix of transformed observations WB̃i.

To explore this further, recall that after applying the matrix M−1 to
each vector A>i Yi, the data matrix behaves asymptotically like the matrix
with columns Xi + ε̃i, for some noise vectors ε̃i that are independent of the
signal Xi. The observations WM−1A>i Yi are asymptotically equivalent to
WXi +Wε̃i. If we choose W to be the square root of the inverse covariance
of ε̃i, then the effective noise term Wε̃i has a identity covariance; we call
this transformation “whitening the effective noise”.

One advantage of whitening is that there are closed formulas for the
asymptotic spikes and cosines. This is because the Stieltjes transform of
white noise has an explicit closed formula; see Bai and Silverstein (2009).
To make sense of the formulas, we will assume that the low-rank model WXi

satisfies the assumptions we initially imposed on Xi; that is, we will assume:

WXi =

r∑
k=1

˜̀1/2
k z̃ikũk(6)

where the zik are iid and the ũk are orthonormal. With this notation, the
empirical eigenvalues of WB̃>B̃W/n converge to

λk =

{
(˜̀
k + 1)

(
1 + γ

˜̀
k

)
if ˜̀

k >
√
γ,

(1 +
√
γ)2 otherwise

while the limit of the cosine of the angle between the kth empirical PC ûk
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16 DOBRIBAN, LEEB, AND SINGER

and the kth population PC uk is

c2
k =


1−γ/˜̀2

k

1+γ/˜̀
k

if ˜̀
k >
√
γ,

0 otherwise
.(7)

and the limit of the cosine of the angle between the kth empirical left singular
vector v̂k and the kth left population singular vector vk is

c̃2
k =


1−γ/˜̀2

k

1+1/˜̀
k

if ˜̀
k >
√
γ,

0 otherwise
.(8)

These formulas are derived in Benaych-Georges and Nadakuditi (2012);
also see Paul (2007).

Following Sec. 3.2, the W -AMSE of the EBLP is
∑r

k=1
˜̀
k(1−c2

k c̃
2
k). Since

the parameters ˜̀
k, ck and c̃k are estimable from the observations, the W -

AMSE can be explicitly estimated.
Using these formulas makes evaluation of the optimal shrinkers faster, as

we avoid estimating the Stieltjes transform from the bottom p− r singular
values of B̃. Using whitening, the entire method only requires computation
of the top r singular vectors and values. Whitening thus enables us to scale
our methods to extremely large datasets.

3.3.1. Estimating the whitening matrix W . In the observation model
Yi = A>i Xi + εi, if the original noise term εi has identity covariance, that
is Σε = Ip, then it is straightforward to estimate the covariance of the “ef-
fective” noise vector ε̃i = M−1A>i εi, and consequuently to estimate the

whitening matrix W = Σ
−1/2
ε̃ .

It is easy to see that A>i εi has covariance M = E[A>i Ai], which is diagonal.
Then the covariance of ε̃i is M−1MM−1 = M−1, and W = M1/2. As in the
proof of Lemma 3.2, W can be consistently estimated from the data by the
sample mean

∑n
i=1(A>i Ai)

1/2/n.

3.4. Selecting the rank. Our method requires a preliminary rank esti-
mate. Our results state roughly that, after backprojection, the linearly trans-
formed spiked model becomes a spiked model. So we believe we may be able
to adapt some popular methods for selecting the number of components in
spiked models. There are many such methods, and it is not our goal to recom-
mend a particular one. One popular method in applied work is a permutation
method called parallel analysis (Buja and Eyuboglu, 1992; Dobriban, 2017),
for which we have proposed improvements (Dobriban and Owen, 2017). For
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other methods, see Kritchman and Nadler (2008); Passemier and Yao (2012),
and also Yao et al. (2015), Ch. 11, for a review.

If the method is strongly consistent, in the sense that the number of
components is almost surely correctly estimated, then it is easy to see that
the entire proof works. Specifically, the optimal singular value shrinkers can
be obtained using the same orthonormalization method, and they can also be
estimated consistently. Thus, for instance the methods from Passemier and
Yao (2012); Dobriban and Owen (2017) are applicable if the spike strengths
are sufficiently large.

4. Out-of-sample prediction. In Sec. 3, we derived the EBLP for
predicting Xi from Yi = AiXi + εi, i = 1, . . . , n. We found the optimal
coefficients ηk for the predictor

∑r
k=1 ηk〈B̃i, ûk〉ûk, where the ûk are the

empirical PCs of the normalized back-projected data B̃i = M̂−1A>i Yi.
Now suppose we are given another data point, call it Y0 = A0X0 + ε0,

drawn from the same model, but independent of Y1, . . . , Yn, and we wish to
predict X0 from an expression of the form

∑r
k=1 ηk〈B̃0, ûk〉ûk.

At first glance, this problem appears identical to the one already solved.
However, there is a subtle difference: the new data point is independent of
the empirical PCs û1, . . . , ûr. It turns out that this independence forces us
to use a different set of coefficients ηk to achieve optimal prediction.

We call this the problem of out-of-sample prediction, and the optimal pre-
dictor the out-of-sample EBLP. To be clear, we will refer to the problem of
predicting Y1, . . . , Yn as in-sample prediction, and the optimal predictor as
the in-sample EBLP. We call (Y1, A1), . . . , (Yn, An) the in-sample observa-
tions, and (Y0, A0) the out-of-sample observation.

One might object that solving the out-of-sample problem is unnecessary,
since we can always convert the out-of-sample problem into the in-sample
problem. We could enlarge the in-sample data to include Y0, and let ûk be
the empirical PCs of this extended data set. While this is true, it is often not
practical for several reasons. First, in on-line settings where a stream of data
must be processed in real-time, recomputing the empirical PCs for each new
observation may not be feasible. Second, if n is quite large, it may not be
viable to store all of the in-sample data Y1, . . . , Yn; the r vectors û1, . . . , ûr
require an order of magnitude less storage.

In this section we will first present the steps of the out-of-sample EBLP.
Then we will provide a rigorous derivation. We will also show that the AM-
SEs for in-sample and out-of-sample EBLP with respect to squared W -norm
loss are identical, where W is the inverse square root of the effective noise
covariance. This is a rather surprising result that gives statistical justifica-

imsart-aos ver. 2014/10/16 file: paper.tex date: July 6, 2018



18 DOBRIBAN, LEEB, AND SINGER

tion for the use of out-of-sample EBLP, in addition to the computational
considerations already described.

4.1. Out-of-sample EBLP. The out-of-sample denoising method can be
stated simply, similarly to the in-sample algorithm in Sec. 2.1. We present
the steps below.

1. Input : The top r in-sample empirical PCs û1, . . . , ûr. Estimates of
the eigenvalues ˆ̀

1, . . . , ˆ̀
r and cosines ĉ1, . . . , ĉr. An estimate Σ̂ε̃ of

the noise covariance Σε̃ of the normalized backprojected noise vectors
ε̃i = M−1A>i εi. The diagonal matrix M̂−1 which is the inverse of an
estimate of the covariance matrix of the noise εi, and an out-of-sample
observation (Y0, A0).

2. Construct the vector B̃0 = M̂−1A>0 Y0.
3. Compute estimators of the out-of-sample coefficients η1, . . . , ηr. These

are given by the formula η̂k =
ˆ̀
k ĉ

2
k

ˆ̀
k ĉ

2
k+d̂k

, where d̂k = û>k Σ̂ε̃ûk.

4. Output : Return the vector X̂0 =
∑r

k=1 η̂k〈B̃0, ûk〉ûk.

4.2. Deriving out-of-sample EBLP. We now derive the out-of-sample
EBLP described in Sec. 4.1. Due to the independence between the (Y0, A0)
and the empirical PCs ûk, the derivation is much more straightforward than
was the in-sample EBLP. Therefore, we present the entire calculation in the
main body of the paper.

4.2.1. Covariance of M−1A>i Yi. Let B̃i = M−1A>i Yi = M−1DiXi +

M−1A>i εi, with Xi =
∑r

j=1 `
1/2
j zijuj and Di = A>i Ai. Let Ri = Xi +

M−1A>i εi = Xi + ε̃i; so B̃i = Ri + EiXi, with Ei = Ip −M−1A>i Ai.
Observe that

Cov(B̃i) = Cov(Ri) + Cov(EiXi) + ERi(EiXi)
> + E(EiXi)

>Ri

and also that

ERi(EiXi)
> = EXiX

>
i Ei + Eε̃iX>i Ei = 0

since EEi = 0 and Eεi = 0, and they are independent of Xi; similarly
E(EiXi)

>Ri = 0 as well. Consequently,

Cov(B̃i) = Cov(Ri) + Cov(EiXi).
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Let cj = EE2
ij . Then

E(EiXi)(EiXi)
> =

r∑
j=1

`
1/2
j


c1u

2
j1

c2u
2
j2

. . .

cpu
2
jp



which goes to zero in operator norm as n, p→∞, by the incoherence prop-
erty of the uk’s, and because cj are uniformly bounded under the assump-
tions of Theorem 3.1. Therefore ‖ΣB̃ − (ΣX + Σε̃)‖op → 0.

4.2.2. Out-of-sample coefficients and AMSE. We will compute the opti-
mal (in sense of AMSE) coefficients for out-of-sample prediction. We have
normalized, back-projected observations B̃i = M−1DiXi + ε̃i, with Xi =∑r

j=1 `
1/2
j zijuj and ε̃i = M−1A>i εi.

We are looking for the coefficients η1, . . . , ηr so that the estimator

(9) X̂η
0 =

r∑
j=1

ηj〈B̃0, ûj〉ûj

has minimal AMSE. Here, ûj are the empirical PCs based on the in-sample
data (Y1, A1), . . . , (Yn, A1) (that is, the top r eigenvectors of

∑n
j=1 B̃iB̃

>
i ),

whereas (Y0, A0) is an out-of-sample datapoint.
It is easily shown that the contribution of ηk to the overall MSE is:

`k + η2
kE(û>k B̃0)2 − 2ηk`

1/2
k Ez0k(û

>
k B̃0)(û>k uk).

It is also easy to see that the interaction terms obtained when expanding
the MSE vanish.

To evaluate the quadratic coefficient above, first take the expectation over
Y0 and A0 only, which gives:

E0(û>k B̃0)2 = û>k ΣB̃ûk ∼ û
>
k

 r∑
j=1

`juju
>
j + Σε̃

 ûk

∼ `kc2
k + û>k Σε̃ûk

Note that when the original noise εi is white (i.e. Σε = Ip), we can estimate
dk ≡ û>k Σε̃ûk using the approximation Σε̃ ∼M−1, as in Sec. 3.3.1. Defining
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the estimator d̂k = û>kM
−1ûk (or û>k M̂

−1ûk, where M̂ =
∑n

i=1A
>
i Ai/n),

we therefore have |d̂k − dk| → 0.

Now turn to the linear term. We have û>k B̃0 =
∑r

j=1 `
1/2
j z0j û

>
kM

−1D0uj+

û>k ε0; using E[M−1D0] = Ip and using the almost sure convergence results,

it follows after some simple calculation that `
1/2
k E[z0kû

>
k B̃0û

>
k uk] → `kc

2
k.

Consequently, the mean-squared error of the out-of-sample predictor (as a
function of ηk) is asyptotically equivalent to:

r∑
k=1

{
`k + η2

k(`kc
2
k + dk)− 2ηk`kc

2
k

}
.

This is minimized at η∗k =
`kc

2
k

`kc
2
k+dk

and the MSE is asymptotically equivalent

to:
r∑

k=1

(
`k −

`2kc
4
k

`kc
2
k + dk

)
.

This finishes the derivation of the optimal coefficients for out-of-sample
prediction.

4.3. The whitened model. Following the approach described in Sec. 3.3,
we can optimally predict X0 using the W -loss, for any positive semi-definite
matrix W . This is equivalent to performing optimal prediction of the signal
WX0 based on the observations WB̃0 = WM−1D0X0 + Wε̃0 in the usual
Frobenius sense.

We can always transform the data so that the effective noise Wε̃ =

WM−1A>0 ε̃0 has identity covariance; that is, take W = Σ
−1/2
ε̃ .

In this setting, the parameters û>kWΣ
−1/2
ε̃ Wûk = û>k ûk = 1, and so

dk = 1. Consequently, the limiting AMSE is

r∑
k=1

(
˜̀
k −

˜̀2
kc

4
k

˜̀
kc

2
k + 1

)
(10)

where ˜̀
k are the eigenvalues of the whitened model WXi, assuming the

model (6). Using the formulas (7) and (8) for ck and c̃k as functions of ˜̀
k, it

is straightforward to check that formula (10) is equal to
∑r

k=1
˜̀
k(1− c2

k c̃
2
k),

which is the in-sample AMSE with W -loss; we will show this in Sec. .12.
That is, the AMSE for whitened observations are identical for in-sample
and out-of-sample EBLP.

Thus, we state the following theorem:

imsart-aos ver. 2014/10/16 file: paper.tex date: July 6, 2018



OPTIMAL PREDICTION 21

Theorem 4.1 (Out-of-sample EBLP). Suppose our observations have
the form Yi = AiXi+εi, i = 1, . . . , n, under the conditions of Thm. 3.1, and

suppose in addition that (6) holds, with W = Σ
−1/2
ε̃ and ε̃i = M−1A>i εi.

Given an out-of-sample observation Y0, A0, consider a predictor of X0

of the form (9). Then, for the optimal choice of ηk, the minimum asymp-

totic out-of-sample MSE achieved by this predictor in Σ
−1/2
ε̃ -norm equals the

corresponding expression for in-sample MSE.
Thus, asymptotically, out-of-sample denoising is not harder than in-sample

denoising.

The remainder of the proof of Thm. 4.1 is contained in Sec. .12.

5. Matrix denoising and missing data. A well-studied problem to
which our analysis applies is the problem of missing data, where coordinates
are discarded from the observed vectors. Here the operators Di = A>i Ai
place zeros in the unobserved entries.

Without additive noise, recovering the matrix X = [X1, . . . , Xn]> is
known as matrix completion, and has been widely studied in statistics and
signal processing. There are many methods with guarantees of exact recov-
ery for certain classes of signals (Candès and Recht, 2009; Candès and Tao,
2010; Jain et al., 2013; Keshavan et al., 2010; Recht, 2011; Jain et al., 2013).

Many methods for matrix completion assume that the target matrix X
is low-rank. This is the case for the linearly-transformed model as well,
since the rows X>i of X all lie in the r-dimensional subspace spanned by
u1, . . . , ur. In the linearly-transformed model, the low-rank target matrix X
is itself random, and the analysis we provide for the performance of EBLP
is dependent on this random structure.

Our approach differs from most existing methods. Our methods have the
following advantages:

1. Speed. Typical methods for matrix completion are based on solving
optimization problems such as nuclear norm minimization (Candès
and Recht, 2009; Candès and Tao, 2010). These require iterative al-
gorithms, where an SVD is computed at each step. In contrast, when
an upper bound on the rank of the target matrix is known a priori
our methods require only one SVD, and are thus much faster. Some of
the methods for rank estimation in the spiked model discussed in Sec.
3.4, such as Dobriban and Owen (2017) and Kritchman and Nadler
(2008), require only one SVD as well; we believe that these methods
can be adapted to the linearly-transformed spiked model, though this
is outside the scope of the current paper.
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2. Robustness to high levels of noise. Most matrix completion meth-
ods have guarantees of numerical stability: when the observed entries
are accurate to a certain precision, the output will be accurate to al-
most the same precision. However, when the noise level swamps the
signal, these stability guarantees are not informative. While many ma-
trix completion methods can be made more robust by incorporating
noise regularization, EBLP is designed to directly handle the high-
noise regime. In Sec. 5.1, we show that our method is more robust to
noise than regularized nuclear norm minimization.

3. Applicability to uneven sampling. While many matrix completion
methods assume that the entries are observed with equal probability,
other methods allow for uneven sampling across the rows and columns.
Our method of EBLP allows for a different probability in each column
of X. In Sec. 5.1.2 we compare our method to competing methods
when the column sampling probabilities exhibit varying degrees of non-
uniformity. In particular, we compare to the OptShrink method for
noisy matrix completion (Nadakuditi, 2014), which is nearly identical
to EBLP when the sampling is uniform, but is not designed for uneven
sampling. We also compare to weighted nuclear norm minimization,
designed to handle the uneven sampling.

4. Precise performance guarantees. Our shrinkage methods have
precise asymptotic performance guarantees for their mean squared er-
ror. The errors can be estimated from the observations themselves.

In addition to these advantages, our method has the seeming shortcoming
that unlike many algorithms for matrix completion, it never yields exact
recovery. However, our methods lead to consistent estimators in the low-
noise regime. In our model low noise corresponds to large spikes `. It is
easy to see that taking ` → ∞ we obtain an asymptotic MSE of E‖Xi −
X̂i‖2 = O(1), whereas E‖Xi‖2 = `. Thus the correlation corr(X̂i, Xi) → 1
in probability, and we get consistent estimators. Thus we still have good
performance in low noise.

5.1. Simulations. In this section, we illustrate the finite-sample proper-
ties of our proposed EBLP with noise whitening. We compare this method
to three other methods found in the literature. First is the OptSpace method
of Keshavan et al. (2010). This algorithm is designed for uniform sampling
of the matrix and relatively low noise levels, although a regularized version
for larger noise has been proposed as well (Keshavan and Montanari, 2010).
As we will see, OptSpace (without regularization) typically performs well
in the low-noise regime, but breaks down when the noise is too high. We
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use the MATLAB code provided by Sewoong Oh on his website http://

swoh.web.engr.illinois.edu/software/optspace/code.html. We note
that, like EBLP, OptSpace makes use of a user-provided rank.

The second method is nuclear norm-regularized least squares (NNRLS),
as described in Candès and Plan (2010). In the case of uniform sampling, we
minimize the loss function 1

2‖XΩ−YΩ‖2 +w · ‖X‖∗, where ‖ · ‖∗ denotes the
nuclear norm and XΩ denotes the vector of X’s values on the set of observed
entries Ω. Following the recommendation in Candès and Plan (2010) we take
w to be the operator norm of the pure subsampled noise term; that is, w =
‖EΩ‖, where E is the matrix of noise. With this choice of parameter, when
the input data is indistinguishable from pure noise the estimator returned
is the zero matrix. When the noise is white noise with variance σ2, then
w = σ(

√
p+
√
n)
√
|Ω|/(pn) at noise variance σ2. If the noise is colored, we

determine w by simulation; we note that the Spectrode method of Dobriban
(2015) might offer an alternative means of determining w. To solve the
minimization, we use the accelerated gradient method of Ji and Ye (2009).

When the sampling probabilities differ across the columns of X, we com-
pare to a weighted nuclear norm minimization. This minimizes the loss func-
tion 1

2‖XΩ−YΩ‖2 +w · ‖XCi‖∗, where C is the diagonal matrix with entries
Cii =

√
p
i
, and pi is the probability that column i is sampled. Again, we

choose w so that if there is no signal (i.e. X = 0), then the zero matrix is
returned. This method has been widely studied (Srebro and Salakhutdinov,
2010; Negahban and Wainwright, 2011; Klopp, 2014; Chen et al., 2015).

The third method is OptShrink (Nadakuditi, 2014). OptShrink assumes
the sampling of the matrix is uniform; when this is the case, the method is
essentially identical to EBLP without whitening. However, for non-uniform
sampling we find the EBLP outperforms OptShrink, especially as the noise
level increases. In Sec. 5.1.3, we also compare EBLP with whitening to Opt-
Shrink (which does not perform whitening) with colored noise; we find that
whitening improves performance as the overall noise level increases. When
using EBLP and OptShrink with data that is not mean zero, we estimate the
mean using the available-case estimator, and subtract it before shrinkage.

In Sec. 5.1.4, we compare in-sample and out-of-sample EBLP. We demon-
strate a very good agreement between the RMSEs, as predicted by Thm.
4.1, especially at high sampling rates.

In Secs. 5.1.1, 5.1.2 and 5.1.3, we used the following experimental pro-
tocol. The signals Xi are drawn from a rank 10 model, with eigenvalues
1, 2, . . . , 10, and random mean. Except for Sec. 5.1.1, the PCs u1, . . . , u10

were chosen to span a completely random 10-dimensional subspace of R300.
We used the aspect ratio γ = 0.8, corresponding to a sample size of n = 375.
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The random variables zik were taken to be Gaussian, as was the additive
noise. The matrices Ai are random coordinate selection operators, with each
coordinate chosen with a given probability. When each entry of the matrix
has probability δ of being selected, we will call δ the sampling rate.

We measure the accuracy of a predictor X̂ of the matrix X using the root
mean squared error, defined by ‖X̂−X‖/‖X‖. For each experiment, we plot
the RMSEs of the different algorithms for forty runs of the experiment at
increasing noise levels σ. The code for these experiments, as well as a suite
of MATLAB codes for singular value shrinkage and EBLP, can be found
online at https://github.com/wleeb/opt-pred.

Figure 2: Log-RMSEs against log-noise for matrix completion. Each plot
shows a different amount of sparsity in the PCs u1, . . . , u10.

5.1.1. Sparsity of the PCs. We compare the matrix completion algo-
rithms when the PCs u1, . . . , u10 have different amounts of sparsity. We say
that a vector is m-sparse if only m coordinates are non-zero; we consider
the cases where all the PCs are 10-sparse, p/4-sparse, p/2-sparse, and dense.
We show the results in Fig. 3. Note that EBLP outperforms OptSpace and
NNRLS at high noise levels, while it does worse than OptSpace at low noise
levels in all sparsity regimes, and worse than both competing methods at
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low noise levels when the PCs are sparse.

5.1.2. Uneven sampling. In this experiment, each coordinate is assigned
a different probability of being selected, where the probabilities range lin-
early from δ to 1− δ for δ ∈ (0, 1). In addition to NNRLS and OptSpace, we
also compare EBLP to OptShrink (Nadakuditi, 2014), which assumes uni-
form sampling. With uniform sampling, the two procedures are nearly iden-
tical. However, EBLP performs better when the sampling is non-uniform.

Figure 3: Log-RMSEs against log-noise for matrix completion. Each plot
shows a different unevenness of sampling across the coordinates, with sam-
pling probabilities ranging linearly from δ to 1− δ.

5.1.3. Colored noise. We consider colored noise with a covariance with
condition number κ > 1. The noise covariance’s eigenvalues increase linearly
with the coordinates while having overall norm p = 300. In each experi-
ment the noise is then multiplied by σ to increase the overall variance of
the noise while maintaining the condition number. We subsample uniformly
with probability 0.5. Again, we compare EBLP with whitening to NNRLS,
OptSpace, and OptShrink (which does not whiten). We observe that at high
noise levels, EBLP with whitening outperforms OptShrink, while OptShrink
performs better at low noise levels; and this effect increases with larger κ.
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Figure 4: Log-RMSEs against log-noise for matrix completion. Each plot
shows a different condition number κ of the noise covariance matrix, reflect-
ing different amounts of heterogeneity in the noise.

5.1.4. In-sample vs. out-of-sample EBLP. In this experiment, we com-
pare the performance of in-sample and out-of-sample EBLP. Thm. 4.1 pre-
dicts that asymptotically, the MSE of the two methods are identical. We
illustrate this result in the finite-sample setting.

We fixed a dimension p = 500 and sampling rate δ, and generated random
values of n > p and ` > 0. For each set of values, we randomly generated
two rank 1 signal matrices of size n-by-p, Xin and Xout, added Gaussian
noise, and subsampled these matrices uniformly at rate δ to obtain the
backprojected observations B̃in and B̃out. We apply the in-sample EBLP
on B̃in to obtain X̂in, and using the singular vectors of B̃in, we apply the
out-of-sample EBLP to B̃out to obtain X̂out.

In Fig. 5, we show scatterplots of the RMSEs for the in-sample and out-
of-sample data for each value of n and `. We also plot the line x = y for
reference. The errors of in-sample and out-of-sample EBLP are very close to
each other, though the finite sample effects are more prominent for small δ.
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Figure 5: Scatterplots of the RMSEs of in-sample EBLP against out-of-
sample EBLP for different sampling densities.

6. Conclusion. In this paper we considered the linearly transformed
spiked model, and developed asymptotically optimal EBLP methods for pre-
dicting the unobserved signals in the commutative case of the model, under
high-dimensional asympotics. For missing data, we showed in simulations
that our methods are faster, more robust to noise and to unequal sampling
than well-known matrix completion methods.

There are many exciting opportunities for future research. One problem
is to extend our methods beyond the commutative case. This is challenging
because the asymptotic spectrum of the backprojected matrix B becomes
harder to characterize, and new proof methods are needed. Another problem
is to understand the possible benefits of whitening. We saw that whitening
enables fast optimal shrinkage, but understanding when it leads to improved
denoising remains an open problem.
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