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ABSTRACT

Autonomous aerial manipulators have great potentials to
assist humans or even fully automate manual labor-intensive
tasks such as aerial cleaning, aerial transportation,
infrastructure repair, and agricultural inspection and sampling.
Reinforcement learning holds the promise of enabling persistent
autonomy of aerial manipulators because it can adapt to
different situations by automatically learning optimal policies
from the interactions between the aerial manipulator and
environments. However, the learning process itself could
experience failures that can practically endanger the safety of
aerial manipulators and hence hinder persistent autonomy. In
order to solve this problem, we propose for the aerial
manipulator a self-reflective learning strategy that can smartly
and safely finding optimal policies for different new situations.
This self-reflective manner consists of three steps: identifying the
appearance of new situations, re-seeking the optimal policy with
reinforcement learning, and evaluating the termination of self-
reflection. Numerical simulations demonstrate, compared with
conventional learning-based autonomy, our strategy can
significantly reduce failures while still can finish the given task.

Keywords: self-reflective learning strategy, reinforcement
learning, persistent autonomy, unmanned aerial manipulator

1. INTRODUCTION

Autonomous aerial manipulators have great potentials to
assist humans through manipulations in dangerous or remote
locations, and to automate manual labor-intensive tasks such as
aerial cleaning, aerial transportation, infrastructure construction
and repair, and agricultural inspection and sampling. Due to the
varieties of the system configurations, tasks, and environments,
it is challenging for aerial manipulators to achieve persistent
autonomy which requires aerial manipulators to safely operate in
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dynamic or unstructured environments for extended lengths of
time with minimal human interventions.

Reinforcement learning [1] holds the promise for persistent
autonomy of aerial manipulators because it can adapt to different
situations by automatically learning optimal policies from the
interactions between the aerial manipulator and environments.
However, failures can be unavoidable during the learning
process because reinforcement learning can only learn the
outcome of an action by executing the action itself. These
failures can lead to serious safety issues in practical systems such
as the crash of aerial manipulators, which is not acceptable in
persistent autonomy, especially for safety-critical systems.
Although human interventions could address some failures, they
are also not desirable in persistent autonomy. Thus, it is ideal to
avoid these failures during the practical deployment of
reinforcement learning on persistent autonomy.

While some safe reinforcement learning algorithms [2]
could reduce failures by adding safety concerns into the
optimization criteria or restricting to safe exploratory actions,
they were still restricted within the scope of reinforcement
learning itself. In other words, they assumed that they were
always in the learning/training process to find a new optimal
policy for a new situation. However, in persistent autonomy, the
old policy may still work or even remain optimal when the
situation changes to a new one. In this case, activating learning
to re-find the optimal policy is actually unnecessary and
unbeneficial because re-learning can bring more failures. Hence,
it is safer to not activate learning and use current policy to finish
the task. Similarly, even if the learning is activated, it could be
sometimes enough for reinforcement learning to only find a sub-
optimal policy with less failures as long as this policy can finish
the task. From this high-level perspective focusing on the system
safety, the practical deployment of reinforcement learning on
persistent autonomy actually raises a fundamental but
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unanswered question: when to start learning a new policy and
when to terminate the learning?

While this question is difficult to robots, humans can well
solve this problem with their self-reflection capability [3][4].
More specifically, humans prefer doing nothing and remaining
current behaviors if they are satisfied with the outcomes of their
decisions or actions. If not satisfied, however, humans are highly
likely to start changing behaviors and continue exploring new,
alternative actions until the outcomes satisfy them again.
Inspired by this self-reflection process, we present a novel self-
reflective learning strategy for the aerial manipulator to smartly
and safely operate in different situations. This strategy includes
three steps. The first step is self-determining if the aerial
manipulator is encountering a new situation by evaluating the
necessity degree to change the control policy. If the necessity
degree value is low, the strategy keeps its current policy because
no new situation is identified. Once a new situation is detected,
in the second step, the strategy makes new explorations about the
new situation by using reinforcement learning. The maximum
number of iterations is determined by the necessity degree value.
The third step is deciding when to stop self-reflection. The
termination criteria are related to task performances. With these
three steps, the output policy is considered as safer for the new
situation.

We consider our main contributions as: (1) Develop a new
cognitive learning strategy with a self-reflective architecture for
the aerial manipulator to step towards persistent autonomy.
While still maintaining the capability to finish a given task, this
strategy focuses on improving the system safety by smartly
deciding the timing of activating and terminating learning. (2)
Demonstrate our strategy can experience substantially fewer
failures when finishing a given task with simulations. The results
also show that learning can be sometimes unbeneficial and
unnecessary for a practical system to finish a given task when
situation changes.

2. RELATED WORK

In general, any unmanned aerial vehicle (UAV) equipped
with any degree-of-freedom (DOF) robotic arm can be regarded
as an aerial manipulator. For simplicity, this work investigates
the quadrotor equipped with a 3-DOF robotic arm (the
quadrotor-arm system) as a specific example due to its popularity
in aerial manipulators. However, our strategy can be also used in
other aerial manipulators or robots because it does not rely on
specific robot dynamics.

While several methods [5,6] have been reported for the
quadrotor-arm system to autonomously finish a task, they were
limited to a well-defined situation without changes. If the
situation such as the task or environment changes, their
performances may reduce greatly. Reinforcement learning has
shown great adaptabilities to different unknown situations in
robotics [1], but it has not been really investigated in the aerial
manipulator, which could be difficult due to the aerial
manipulator’s high complexity and nonlinearity. More
importantly, failures in the learning process can result in serious
consequences on the aerial manipulator like the crash.

With regard to safety and/or risks during the learning and/or
deployment process, two fundamental tendencies of safe
reinforcement learning methods [2] have been reported. The first
one consists of transforming the traditional optimization criteria
that maximizes the expectation of the return to more
comprehensive criteria respecting learning safety such as the
worst-case criterion [2], the risk-sensitive criterion [7], the
constrained optimization criterion [8], and other optimization
criteria in financial engineering [9]. Since exploratory actions
could have serious consequences, the second tendency improved
the safety with modifying the exploration process in two ways:
(1) through the incorporation of external knowledge such as
providing initial knowledge [10], deriving a policy from a finite
set of demonstrations [11], and providing teach advice [12], and
(2) through the use of a risk-directed exploration metric [13].
However, these methods restricted themselves within the
training process of reinforcement learning. In contrast, our
strategy reduces failures from a more general system’s
perspective with understanding learning can be unnecessary and
unbeneficial and deciding when to activate or terminate learning
to avoid such unbeneficial learnings.

3. SELF-REFLECTIVE LEARNING STRATEGY

As shown in Figure 1, the self-reflective control strategy
includes three important steps. The first step is to determine if a
new situation is identified and the necessity of adaptation to the
new situation. The identification criteria are usually related to the
system’s maximum capability and situation change degree. If no
new situation is detected, the self-reflective strategy believes the
current policy is functional and no more action is needed.
However, when a new situation is detected, the self-reflective
strategy uses reinforcement learning technique to re-seek an
optimal policy. New policies are tried with approximate value
iteration (AVI) reinforcement learning method [14]. The
maximum number of trials or iterations is proportional to the
value of the necessity degree value to have more chances to find
an optimal policy. During this process, the self-reflection can be
terminated if a termination criterion is met, which is usually the
satisfaction of new policy’s performance.
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FIGURE 1: OVERALL SELF-REFLECTIVE CONTROL SCHEME
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3.1 New Situation Determination

This step is to identify if there is a new situation that has not
been met before. The basic idea is to compute a necessity degree
value o based on the aerial manipulator system’s maximum
capability and situation change degree. As we use the quadrotor-
arm system for example, the criteria can include the limit of the
quadrotor’s attitudes as well as the change of the quadrotor’s
CoG and end-effector’s position. The limit of quadrotor’s
attitudes represents the maximum capability of the quadrotor-
arm system to remain stable. The CoG change and position
change indirectly reflect situation changes as different situations
result in different variations of quadrotor’s CoG and end-effect’s
position. If either of the two parameters is out of a reasonable
range, indicating that the system behavior is strange and
unexpected, then the current situation should be changed to a
new one. The necessity degree value @, which is between 0 and

1, is calculated based on the deviation of the criteria from
reasonable ranges. A threshold a;;, is defined to determine if a
new task is encountered and its value can be empirically defined
for different manipulators. If a > a;,, then a self-reflection
process is needed. Otherwise, the original policy is still
considered as functional. Mathematically, @ can be formulized
as (1).

a; (¢ — Pe) + a,(6 — 6,) ) |
+a5 (AC — AC,, ) +a, 22 M
where ¢ and 6 indicates the quadrotor’s roll and pitch angles,
AC, is the change of quadrotor’s CoG, AE is the end-effector’s
position change, a; are the coefficients to adjust each term’s
importance, and all variables with subscript e are the critical
values the system should obey. For example, ¢, = 60 degrees
means the quadrotor’s roll angle is not supposed to exceed 60
degrees, otherwise the system is considered unstable. AE, =
0.01m indicates the end-effector is supposed to move effectively
with at least a 0.01m change. Each criterion is normalized first,
and their sum is then transferred into [0,1] with a sigmoid
function. The reason choosing a sigmoid function is that any
large difference between the actual measurements and
comparison terms in (1) makes a approach 1 quickly, which
means a new situation is more likely to appear. This can help
detecting an unusual or new situation effectively.

a= sigmoid(

3.2 Self-Reflective Adjustment

We formulate the quadrotor-arm self-reflective adjustment
process as a Markov Decision Process (MDP), specified by the
S-tuple (S, A, {Psy}, 1, ¥). Let S be the set of system states,
where each state is a vector containing the positions, poses, and
corresponding velocities. Let A be the set of actions the system
can take from any state, where an action is a set of inputs
including forces and torques. {P;,} describes the unknown state
transition probabilities, capturing the dynamics of the system.
Specifically, P,,(s") is the probability of transitioning to state
s’ € S, given current state s € S and applied action a € A. The
reward function is defined as r:S — R, representing the cost
and reward structure of the state space. Let y be a discount
factor on rewards, chosen to be 0.99 in this case.

The appropriate action to take at a given state can be defined
in terms of a fixed policy 7, where a = m(s). The total expected
payoff (or value) of a given state can be defined as follows

- _ r(sp) +yr(sy) + ]
Vi) = E [yzr(sz) + g =8,T @)

Equation (2) can formulate in the so-called Bellman
Equations [27].

Vi(s) = 1(s) + ¥ Xsres Bra(sHV™(s") G3)

The optimal value function can then be defined as

Vi(s) =7(s) +ymaxYses Pra(sIV(s) (4)

Value iteration is a commonly used RL technique where the
optimal value function is iteratively found and used to compute
an optimal policy [5]. The optimal policy can be obtained as

m*(s) = argmax Yres Poa (s )V (s") 5)
a€cA

However, the tabular representation of the value function is
impractical or infeasible when the state and action spaces are
large or continuous. Instead, we consider using approximate
value iteration (AVI) method [14] to solve the above MDP
problem. With this method, the value function is approximated
with a linearly parameterized feature vector F(s), which is
specifically chosen for this problem including the quadrotor’s
displacement and its velocity magnitude, arm’s end-effector
displacement and its velocity magnitude. Mathematically, F(s)
can be expressed as F(s) = [lIpll> lIplI> llpel® lp.ll*]".
The reward function is designed to penalize the distance from the
goal state for both the quadrotor and arm. The quadrotor’s
altitude is also penalized to provide a bounding box so that the
whole system is enforced to stay above the ground. The form is
r(s)=[Br Bz Bsllr(s) 7ma(s) 73(s)]", where

n(s)=-lp- PrIIZ2
7'2(5) = _”pe - per”
ry(s) = {—10000, z<0.3
3 0, z>0.3

Because AVI is an iterative process, it only ends when the
maximum iterative number (or maximum episode) is reached or
the value function (3) is converged. The selection of maximum
episode is important because it is better to be large enough to
allow the value function to be converged. However, it cannot be
too large if considering the practical availability. More
specifically, when reinforcement learning cannot converge to an
optimal policy for some new situations within the defined
maximum episodes, increasing the maximum episode generally
means a longer time, which may be not allowed in some
situations. For example, a large maximum episode can give the
aerial manipulator an ability to finish a new task in 15 minutes,
but the task is required to be finished in 10 minutes. The sensitive
10-minutes requirement can make the selection of a large
maximum episode meaningless. A convenient way to adjust the
maximum episode can be based on an empirical constant and the
necessity degree value a as in (6).

episodene = {episode,l,’}li'gc X (.1 + ba), if a = ag, ©
episodelNt if @ <ag

where episodellt is empirically set to be 10000, which

corresponds to about 17 minutes using a PC with Intel i7-4790

new
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dual Core CPU and 8G RAM. If there is no self-reflection (i.e.,
a < agy), no maximum episode is needed due to no need of re-
learning. However, we still assign a value (episodeit) for this
situation just in case the system accidently learns a policy again
when no self-reflection is needed. The coefficient b before a
expands the maximum episode corresponding to the new level of
situations. If « is close to 1, it means the current situation is very
unlikely to be met before and hence the system may need a
totally different policy. A new situation usually needs more
trials, which means the convergence may be slower because
more samples need to be collected to get the new situation well
known. & = 1 could increase the maximum episode to (1+b) of
the empirical constant and we can still use a larger b to increase
the maximum episode, which can be suitable for highly complex
tasks that need a long time to learn out an optimal policy. In
general, a;; mainly determines if re-finding control policy is
needed. b and a decides how large the maximum episode will
be.

3.3 Self-Evaluation for Termination
During the adjustment, we can use a self-evaluation module
to decide whether the self-reflection should stop. In this paper,
we define the stop criterion as (7).
7C = ¢ (|Ipe = pe,|I” + llp — 2,112
+ 192 = 0, 12) + e, (8 — £,)
where p, is the end-effector’s position, p is the quadrotor’s
position, Q is the quadrotor’s attitude, tg is the stabilization
time, and all corresponding variables with subscript r are the
desired values. ¢; and c, are two coefficients balancing the
focus between the accuracy and stabilization time of quadrotor-
arm system. If ¢; is larger, then the system focuses more on the
accuracy of finishing a task. Otherwise, the system’s
stabilization time has a higher priority. It can be noticed that (7)
and (1) have some overlapping terms such as ¢ and Q.
However, there are two major differences. One is the inclusion
of more criteria about task performances such as t; in (7). The
other one is the different meaning of the similar comparison
terms in (1) and (7). The comparison terms in (1) mean the
system’s maximum capability to keep stable, but those in (7)
indicate a satisfactory performance of a given task. Equation (7)
is generally stricter than (1). In addition, the termination criterion
value (7C) has a value only if a new situation is considered, and
the self-reflection can stop once 7C is less than a threshold TCyy,.
If there is no new situation detected, 7C is intentionally set to 0.
The selection of TC,, is based on specific requirements of
different users. For example, some users may only require the
system not to crash, but some may need the system to perform
the tasks with good performances like smaller deviation and
shorter stabilization time. In general, TC;; should be smaller if
the requirement is stricter. The use of TCy;, may scarify some
task performances as the learned policy does not necessarily
need to be theoretically optimal. Instead, as long as the new
policy can meet the requirement of finishing a task, it can be
considered as safely functional, which implicitly considers the

O]

system’s safety as an optimization criterion as well. Whatever
TC,y, is, for any specific case, there is always a maximum TCyy,
defined as TCipmax - TCenmax represents the loosest
termination criterion to keep a particular system stable, i.e., not
crash. For a given system, TC.p, mqy is fixed and only depends
on the system. As long as TC < TC,, < TCyp ax, the learned
control strategy can output an optimal control policy.

4. VALIDATION SIMULATIONS
In this work, all simulations are completed in
MATLAB/Simulink. The parameters of the quadrotor-arm

TABLE 1
QUADROTOR SIMULATION PARAMETERS
Parameters Values Descriptions
L2 Moment of inertia  around
Lo Iny 124 kg-m quadrotor’s X, Y axis
L2 Moment of inertia around
loz 248 kg-m quadrotor’s Z axis
my, 2 kg Mass of quadrotor
Ve 3.13*¥107°(-5) Thrust factor
Ya 7.5%107(-7) Drag factor
I 01 m Distance between the rotor center
' and quadrotor center
my, My, 01k Mass of the first, second, and third
ms K8 link of the arm
Length of the arm’s first, second,
Li Lz, Ls 0-I'm and third link
2 Moment of inertia around first
Las I 0.0025 kg~ m link’s X, Y axis
2 Moment of inertia around first
I 0.0075 kg - m link’s Z axis
2 Moment of inertia around second
La: Iyz 0.0025 kg - m link’s X, Y axis
2 Moment of inertia around second
[z 0.0075 kg-m link’s Z axis
2 Moment of inertia around third
Less Iys 0.0025 kg~ m link’s X, Y axis
2 Moment of inertia around third
L2 0.0075 kg - m link’s Z axis
TABLE II
SELF-REFLECTIVE CONTROL STRATEGY PARAMETERS
Parameters Values
a;, Az, A3, Ay 1
b 2
C1, Co 80, 20
y 0.99
B1, B2, B3 10000, 800, 50
Ay 0.5
TCy, 0.7
TCinmax 0.95
be, 6, 60 degrees
ACy, 0.15m
AE 0.0lm
Pe, [0.17,0,0.13] m
Pr [0,0,0.3] m
Q, [0, 0, 0] degrees
t 10s
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FIGURE 2: VISUALIZATION OF THE OBJECT-CARRY TASK

system [5] are listed in Table I. More modeling details about the
quadrotor-arm system can be also seen in [5].

In order to validate the self-reflective strategy, the
quadrotor-arm system is supposed to carry an object from
position A (17 = [—45,45,45] (degrees)) to position B (17 =
[0,45,45] (degrees)) as shown in Figure 2. According to the
parameters in Table I, the quadrotor is supposed to be stabilized
at a certain location ( p, =1[0,0,0.3] (m), 2, =1[0,0,0]
(degree)). The object weight can be 0.1kg, 0.15kg, 0.2kg,
0.25kg, and 0.3kg. An MDP controller is designed for a 0.1kg
object beforehand, then the other weights can be considered as
new tasks, depending on the self-reflective strategy’s decision.
Given the designed task, the parameters of the self-reflective
strategy are listed in Table II. TCyp, 14, 1s assigned with 0.95 to
remain the system stable. However, the task that is considered to
be successfully finished should also include the object
movement from A to B, which is why we choose TC;), tobe 0.7.

5. RESULTS

5.1 New Situation Determination

The results of new situation determination for different
weights are shown in Figure 3. The new situation determination
values (reflection necessity degree values) for five different
weights are 0.06, 0.20, 0.41, 0.84, and 1, respectively. The
default threshold @, (conservative threshold) is 0.5, so only
two cases (0.25kg and 0.3kg) need self-reflections. However, if
we decrease the threshold a;, to 0.3 (aggressive threshold), the
0.2kg case needs self-reflection as well. This is because a smaller
ay, means more situations are considered as new situations,
which indicates self-reflection is triggered easier (i.e., self-
reflection is more needed). Instead of decreasing the threshold
value a;,, another way to trigger self-reflection easier is to
adjust constraints on the designed parameters, ¢,, 6,, ACQe’

AE,, in (1) to be stricter. More specifically, ¢,, 6., and ACQe
should be smaller while AE, should be larger to cause an easier
trigger. The result of reducing ACQe from 0.15 to 0.05 can be

found as the blue line in Figure 3. The necessity degree values of
five weights are 0.09, 0.27, 0.55, 0.90, and 1, respectively. If

New situation determination for different object weights

+loose maximum quadrotor CoG change
<= strict maximum quadrotor CoG change

0.9 11 - - conservative threshold: hard to trigger
agreesive threshold: easy to trigger
0.8 + 3 . . Need self-r ion
strict constraint on necessity degree
0.7 | value: need self-reflection for both r both consery .

o
o

necessity degree value a
(=] (=]
B w

<
w

No need of self-reflection

for both conservative and

aggressive thresholds )

0.1 0.15 0.2 0.25 0.3
object weight (kg)

FIGURE 3: NEW SITUATION DETERMINATION FOR
DIFFERENT OBJECT WEIGHTS. For 0.1kg and 0.15kg, there is no
need of self-reflection as they are similar to pre-trained situations. For
0.25kg and 0.3kg, self-reflection is needed in all different parameter
settings as they are greatly different from pre-trained situations. For
0.2kg, the necessity degree value is less with loose constraints than that
with strict constraints. If given the conservative threshold, only the case
with strict constraints needs self-reflection. But given an aggressive
threshold, both cases with strict and loose constraints need self-
reflection.

using the default threshold 0.5, one more case (0.2kg) needs self-
reflection if compared with the loose maximum quadrotor CoG
change (red line with ACQe = 0.15). It is hence convenient to

adjust when a new situation should be considered or a self-
reflection is needed.

5.2 Self-Reflective Adjustment

The change of maximum episode for different object
weights is shown in Figure 4. Both the 0.1kg and 0.15kg case do
not need self-reflection, so their maximum episodes are
intentionally set to be the empirical constant 10000 according to
(6). For the 0.2kg case, selections of parameters to calculate o
and a;, are both important. If using the same a;;, a stricter
selection of parameters in (1) needs to adjust its maximum
episode because it needs self-reflection. Similarly, if keeping the
selection of parameters the same, a small «a;; needs to adjust its
maximum episode too. For the 0.25kg case and 0.3kg case, they
all need self-reflections and the maximum episodes of 0.3kg are
all larger than 0.25kg because the necessity degree value « for
0.3kg is larger. In particular, the maximum episode of the 0.3kg
case are all the same for four different combinations. This is
because 0.3kg is too heavy for the quadrotor’s current controller
to handle, so AE in (1) equals to 0 and hence a is 1 and all
maximum episodes become 30000.
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FIGURE 4: MAXIMUM EPISODE FOR DIFFERENT OBJECT
WEIGHTS

5.3 Self-Evaluation for Termination

Table III shows termination criterion values and episodes
with respect to different parameters. If using the default
parameters in Table II, 0.1kg, 0.15kg and 0.2kg are not
considered as new situations. Thus, their termination values are
0 and episodes used to find the optimal control policy are 10000.
On the contrary, the termination criterion value for 0.25kg and
0.3kg are 0.68 and 0.69, respectively. The corresponding
episodes are 20336 and 28212. More episodes are needed for
0.3kg because this case deviates more from the original
controller designed for 0.1 kg object than 0.25kg and is hence
much more difficult for the system to handle.

TC;, has an influence on the self-reflection results
including final termination criterion value and episodes used for
learning a new policy. Changing p,, Q,, t; ., ¢; ,and ¢, can
also affect TC and so self-reflection results can be different.
Because of various combinations of the related parameters, we
only change c¢; and c, for simple examples. Also, both changes
are applied to 0.25kg and 0.3kg cases because these two cases
are easily switched between task success and task failure. The
new termination criterion values and episodes are displayed in

TABLE III

TERMINATION CRITERION VALUE AND EPISODES COMPARISON

Object Termination

weight Parameters TCihmax TCen criterion Episodes
(kg) value
0.1 ¢,=80, c,=20 0.95 0.7 0 10000
0.15 ¢,;=80, c,=20 0.95 0.7 0 10000
0.2 ¢,;=80, c,=20 0.95 0.7 0 10000
0.25 ¢,=80, c,=20 0.95 0.7 0.68 20336
0.3 ¢,=80, c,=20 0.95 0.7 0.69 28212
0.25 ¢,;=80, c,=20 0.95 0.6 0.59 27482
0.3 ¢,=80, c,=20 0.95 0.6 0.66 30000
0.25 ¢,=20, c,=80 0.95 0.7 0.68 25102
0.3 ¢,;=20, c,=80 0.95 0.7 0.74 30000

Table III after re-doing the simulations with new parameters.
Reducing TCy, from 0.7 to 0.6 and keeping other parameters
unchanged means the current task can be considered as
successful only with better performances. With this new setting,
the 0.25kg case can still work but the 0.3kg case fails because
the termination criterion value can reach only 0. 66 within 30000
episodes. The failure means no optimal policy can be found with
the given episodes and stricter performance criteria. If increasing
the maximum episode number, the 0.3kg case may work again.
For an additional test, we change c¢; to 20 and ¢, to 80, which
means the controller focuses more on stabilization time.
Although we use the same TC;, (0.7) as in Table II, the
termination criterial values are still different from ¢;=80 and
¢,=20. The 0.25kg case needs 4766 more episodes, and the 0.3kg
case fails. This is reasonable because limited time is a stronger
constraint than good accuracy for the designed task if using the
conclusion from the original 0.3kg case that the accuracy can be
satisfied if given unlimited time.

5.4 Task Performance

The task performances include both the quadrotor’s
performance and the arm’s performance. For simplicity, only
link 1°s movements are shown in Figure 5 because link 1 has the
most obvious movement. From this figure, it can be seen the
original policy is good for 0.1kg. For the 0.15kg and 0.2kg cases,
the overshoots and stabilization time increase greatly. Especially
for the 0.2kg case, it is close to the unstable status. The unstable
0.25kg case is considered as a new situation and then a self-
reflection starts. Although the performance after self-reflection
cannot catch 0.1kg’s performance, it is much better than 0.15kg

30 Link1 movement for different object weights

0.1kg
—0.15kg
20 0.2kg
0.25kg
0.3kg
10 --- desired
AN
A X
— 01 fom e e R
o
e
o
3J-10 y
*
£ [/
=200 |
-30
I
401/
v
-50
0 2 4 6 8 10 12 14 16 18 20

time(s)

FIGURE 5: LINKI’S MOVEMENT FOR DIFFERENT OBJECT
WEIGHTS. The movements with 0.15kg and 0.2kg are still acceptable
using the pre-trained policy for 0.1kg. But the movement with 0.2kg is
close to unstable due to the large overshoot and long stabilization time.
Because self-reflection is applied for 0.25kg, the movement is stable
again with a smaller overshoot and shorter setting time. The movement
with 0.3kg becomes worse with using the strategy for 0.25kg but
without self-reflection.

6 ©2019 by ASME



and 0.2kg. Carrying a 0.3kg object also needs self-reflection but
the performance is worse than that of 0.25kg. This indicates that
the self-reflection has a maximum capability to deal with new
situations. If the situation difference is out of a system’s
maximum capability, the self-reflective strategy may not work.
We keep increasing the object weight until the self-reflective
strategy totally fails with settings in Table II. The corresponding
maximum object weight is 0.34kg, which means the aerial
manipulator fails to move an object over 0.34kg from A to B with
an expected accuracy and time, but it does not mean that the
aerial manipulator crashes since TC could still be smaller than
TCth_max~

In order to present the self-reflection process, the task
performance is quantified with integral time squared error
(ITSE). ITSE is a comprehensive evaluation criterion because it
covers the overshoot, stabilization time, rising time, and the like.
In detail, the task performance is calculated using
task performance = Yg,r-, 100/f000 teqor(t)*dt , where
100 is the user-defined number to get the scale back into a
reasonable range [0,1]. The summation is needed because ITSE
can only apply to 1 DOF, and the aerial manipulator has 9 DOFs.
The greater the ITSE value is, the better performance the system
has. The task performances for different object weights can be
seen in Figure 6. If not using the self-reflective strategy, the
performance keeps decreasing as the object weight increases.
According to (1), the performance drops from 0.1kg to 0.15kg
and 0.15kg to 0.2kg are acceptable. But it is not acceptable with
the drop from 0.2kg to 0.25kg, so this is when self-reflection is
needed. With applying self-reflection, the performance is
increased back to the acceptable range. Since self-reflection is
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FIGURE 6: TASK PERFORMANCES FOR DIFFERENT OBJECT
WEIGHTS. If self-reflection is not triggered, the task performance
decreases as the object weight increases from 0.1kg to 0.2kg. Once self-
reflection is needed and applied at 0.25kg due to an unacceptable
performance drop, the task performance increases back to be acceptable.
When addressing 0.3kg, the task performance drops again because self-
reflection is determined not to be used.

not kept used during the change from 0.25kg to 0.3kg, the
performance drops again although it is still acceptable.

5.5 Failure Costs and Computational Costs

Table IV shows the failure costs and computational costs of
two different methods: (a) always using reinforcement learning
with the maximum episode to be 30000 and (b) self-reflective
method with the default parameters in Table II. Always using
reinforcement learning means that reinforcement learning is
always applied again for each time the situation changes. The
definition of the failure is simplified as either ¢ or 6 exceeds
its limitation defined in Table II, which can be considered as a
failure of physical instability. Also, a large deviation from the
goal with r(s) < —10000 can be considered as a task failure.
The computational cost is defined as the episodes used to
converge to an optimal policy. The total numbers of failures and
episodes using our method are much less than the corresponding
numbers using always reinforcement learning. In most cases, our
method has zero failures due to no need of re-learnings which
are however necessary in always reinforcement learning. Even
for the 0.25kg case that our method also re-learns, our method
still has less failures and computational costs because the self-
termination removes some unnecessary re-learnings. Given that
both methods can finish the task, these re-learnings are actually
unbeneficial because they result in more computational costs and
failures.

5.6 Experimental Approach Stability Analysis

In order to experimentally analyze the stability of our
method, we conduct one more simulation with the following
scenario. After the self-reflective method adapts to the 0.25kg
object, we test the five different object weights (0.1kg to 0.3kg)
again on the newly learned policy. The corresponding reflection
necessity degree values are 0.95, 0.48, 0.25, 0.05, 0.19,
respectively. According to the default threshold a,,=0.5, only
the 0.1kg object is seen as the new situation. This simulation
experimentally shows that our method can be stable in dealing
with new situations. In addition, it is interesting to note that a
same weight change in the weight decreasing process has a larger
necessity degree value than that in the weight increasing process.
For example, the necessity degree value with the weight change
from 0.25kg to 0.2kg is 0.06 larger than that with the change
from 0.25kg to 0.3kg. This may indicate the weight decreasing

TABLE 1V
FAILURE COSTS AND COMPUTATIONAL COSTS

\(zfgzﬁtt Methods N]Em‘ﬁber of  Episodes for
Change ailures Convergence
0.1kgto  Always reinforcement learning 3549 21448
0.15kg Self-reflective method 0 0
0.15kg Always reinforcement learning 4356 25633

to 0.2kg Self-reflective method 0 0
0.2kg to Always reinforcement learning 5013 28702
0.25kg Self-reflective method 3208 20336
0.25kg  Always reinforcement learning 5482 30000

to 0.3kg Self-reflective method 0 0
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situations can be more likely to be considered as new situations
than the weight increasing situations. One possible reason is that
the policy designed for the old, heavy objects could be too strong
for the new, light objects, resulting in larger deviations in (1).

6. DISCUSSIONS

Although our strategy uses reinforcement learning as the
second step to ensure the system’s adaptability to different
situations, it more importantly improves the system’s safety
during the adaptation, which is important for practical safety-
critical systems and results in significant differences between our
strategy and traditional reinforcement learning methods [15].
The learned policies of traditional reinforcement learning based
methods usually do not work for a new situation unless with a
re-learning process. It is possible to keep reinforcement learning
all the time to adapt to new situations, but the safety of adaptions
may be compromised because introducing more learnings may
lead to more failures due to possibly unavoidable unsafe
explorations and intolerably high computational costs. Similarly,
it is sometimes not safe to find a theoretically optimal policy for
a task because the extra learnings from a sub-optimal policy that
can already finish a task but may sacrifice some task
performances to the theoretically optimal policy may also
introduce more failures. With considering the safety from the
whole system’s perspective, our strategy can finish the task more
safely by smartly avoiding the unnecessary and unbeneficial
learnings with using self-detection (step one) and self-
termination (step three),

One limitation of our work is that our strategy cannot
guarantee zero failures because it still needs reinforcement
learning to learn a new policy if the situation has a significant
change. Considering that safe reinforcement learning methods
[6] can reduce failures in the learning process, our strategy may
be further improved by complementarily using safe
reinforcement learning methods in the second step. In addition,
introducing safe reinforcement learning may also relax the self-
termination criteria to find a policy that is both theoretically
optimal and safe. The combination of our strategy and safe
reinforcement learning could be a promising way to achieve the
persistent autonomy.

Another limitation of our work is the use of heuristic criteria
for the self-detection and self-termination. This can require
specific engineering knowledge for different aerial manipulators,
although the criteria once designed can be used for a long time
for different tasks and environments. This could be improved by
automatically formulating different criteria using intrinsically-
motivated learning [16]. Furthermore, some criteria that can be
used for many situations may be stored in a memory so that it
can be convenient to directly use them when the system
encounters a similar situation in the future.

7. CONCLUSION

In this paper, a novel self-reflective learning strategy is
developed for aerial manipulators to pursue persistent autonomy
with mainly solving the problem of a smart and safe adaptation
to new situations. While using reinforcement learning to achieve

good self-adaptations, our method, more importantly, improves
the system safety during the adaptations by determining the
timing of triggering and terminating learning to reduce
unnecessary and unbeneficial learnings. Numerical simulations
using an aerial manipulator to carry different loads confirm the
effectiveness of our method. In the future, we plan to apply our
strategy in the physical aerial manipulator platform to get further
validations. We also expect to replace the heuristic self-reflective
criteria with more sophisticated criteria that may be changed
online.
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