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ABSTRACT 
Autonomous aerial manipulators have great potentials to 

assist humans or even fully automate manual labor-intensive 
tasks such as aerial cleaning, aerial transportation, 
infrastructure repair, and agricultural inspection and sampling. 
Reinforcement learning holds the promise of enabling persistent 
autonomy of aerial manipulators because it can adapt to 
different situations by automatically learning optimal policies 
from the interactions between the aerial manipulator and 
environments. However, the learning process itself could 
experience failures that can practically endanger the safety of 
aerial manipulators and hence hinder persistent autonomy. In 
order to solve this problem, we propose for the aerial 
manipulator a self-reflective learning strategy that can smartly 
and safely finding optimal policies for different new situations. 
This self-reflective manner consists of three steps: identifying the 
appearance of new situations, re-seeking the optimal policy with 
reinforcement learning, and evaluating the termination of self-
reflection. Numerical simulations demonstrate, compared with 
conventional learning-based autonomy, our strategy can 
significantly reduce failures while still can finish the given task. 

Keywords: self-reflective learning strategy, reinforcement 
learning, persistent autonomy, unmanned aerial manipulator 
 
1. INTRODUCTION 

Autonomous aerial manipulators have great potentials to 
assist humans through manipulations in dangerous or remote 
locations, and to automate manual labor-intensive tasks such as 
aerial cleaning, aerial transportation, infrastructure construction 
and repair, and agricultural inspection and sampling. Due to the 
varieties of the system configurations, tasks, and environments, 
it is challenging for aerial manipulators to achieve persistent 
autonomy which requires aerial manipulators to safely operate in 
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dynamic or unstructured environments for extended lengths of 
time with minimal human interventions. 

Reinforcement learning [1] holds the promise for persistent 
autonomy of aerial manipulators because it can adapt to different 
situations by automatically learning optimal policies from the 
interactions between the aerial manipulator and environments. 
However, failures can be unavoidable during the learning 
process because reinforcement learning can only learn the 
outcome of an action by executing the action itself. These 
failures can lead to serious safety issues in practical systems such 
as the crash of aerial manipulators, which is not acceptable in 
persistent autonomy, especially for safety-critical systems. 
Although human interventions could address some failures, they 
are also not desirable in persistent autonomy. Thus, it is ideal to 
avoid these failures during the practical deployment of 
reinforcement learning on persistent autonomy. 

While some safe reinforcement learning algorithms [2] 
could reduce failures by adding safety concerns into the 
optimization criteria or restricting to safe exploratory actions, 
they were still restricted within the scope of reinforcement 
learning itself. In other words, they assumed that they were 
always in the learning/training process to find a new optimal 
policy for a new situation. However, in persistent autonomy, the 
old policy may still work or even remain optimal when the 
situation changes to a new one. In this case, activating learning 
to re-find the optimal policy is actually unnecessary and 
unbeneficial because re-learning can bring more failures. Hence, 
it is safer to not activate learning and use current policy to finish 
the task. Similarly, even if the learning is activated, it could be 
sometimes enough for reinforcement learning to only find a sub-
optimal policy with less failures as long as this policy can finish 
the task. From this high-level perspective focusing on the system 
safety, the practical deployment of reinforcement learning on 
persistent autonomy actually raises a fundamental but 
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unanswered question: when to start learning a new policy and 
when to terminate the learning? 

While this question is difficult to robots, humans can well 
solve this problem with their self-reflection capability [3][4]. 
More specifically, humans prefer doing nothing and remaining 
current behaviors if they are satisfied with the outcomes of their 
decisions or actions. If not satisfied, however, humans are highly 
likely to start changing behaviors and continue exploring new, 
alternative actions until the outcomes satisfy them again. 
Inspired by this self-reflection process, we present a novel self-
reflective learning strategy for the aerial manipulator to smartly 
and safely operate in different situations. This strategy includes 
three steps. The first step is self-determining if the aerial 
manipulator is encountering a new situation by evaluating the 
necessity degree to change the control policy. If the necessity 
degree value is low, the strategy keeps its current policy because 
no new situation is identified. Once a new situation is detected, 
in the second step, the strategy makes new explorations about the 
new situation by using reinforcement learning. The maximum 
number of iterations is determined by the necessity degree value. 
The third step is deciding when to stop self-reflection. The 
termination criteria are related to task performances. With these 
three steps, the output policy is considered as safer for the new 
situation. 

We consider our main contributions as: (1) Develop a new 
cognitive learning strategy with a self-reflective architecture for 
the aerial manipulator to step towards persistent autonomy. 
While still maintaining the capability to finish a given task, this 
strategy focuses on improving the system safety by smartly 
deciding the timing of activating and terminating learning. (2) 
Demonstrate our strategy can experience substantially fewer 
failures when finishing a given task with simulations. The results 
also show that learning can be sometimes unbeneficial and 
unnecessary for a practical system to finish a given task when 
situation changes. 
 
2. RELATED WORK 

In general, any unmanned aerial vehicle (UAV) equipped 
with any degree-of-freedom (DOF) robotic arm can be regarded 
as an aerial manipulator. For simplicity, this work investigates 
the quadrotor equipped with a 3-DOF robotic arm (the 
quadrotor-arm system) as a specific example due to its popularity 
in aerial manipulators. However, our strategy can be also used in 
other aerial manipulators or robots because it does not rely on 
specific robot dynamics. 

While several methods [5,6] have been reported for the 
quadrotor-arm system to autonomously finish a task, they were 
limited to a well-defined situation without changes. If the 
situation such as the task or environment changes, their 
performances may reduce greatly. Reinforcement learning has 
shown great adaptabilities to different unknown situations in 
robotics [1], but it has not been really investigated in the aerial 
manipulator, which could be difficult due to the aerial 
manipulator’s high complexity and nonlinearity. More 
importantly, failures in the learning process can result in serious 
consequences on the aerial manipulator like the crash. 

With regard to safety and/or risks during the learning and/or 
deployment process, two fundamental tendencies of safe 
reinforcement learning methods [2] have been reported. The first 
one consists of transforming the traditional optimization criteria 
that maximizes the expectation of the return to more 
comprehensive criteria respecting learning safety such as the 
worst-case criterion [2], the risk-sensitive criterion [7], the 
constrained optimization criterion [8], and other optimization 
criteria in financial engineering [9]. Since exploratory actions 
could have serious consequences, the second tendency improved 
the safety with modifying the exploration process in two ways: 
(1) through the incorporation of external knowledge such as 
providing initial knowledge [10], deriving a policy from a finite 
set of demonstrations [11], and providing teach advice [12], and 
(2) through the use of a risk-directed exploration metric [13]. 
However, these methods restricted themselves within the 
training process of reinforcement learning. In contrast, our 
strategy reduces failures from a more general system’s 
perspective with understanding learning can be unnecessary and 
unbeneficial and deciding when to activate or terminate learning 
to avoid such unbeneficial learnings. 

 
3. SELF-REFLECTIVE LEARNING STRATEGY 

As shown in Figure 1, the self-reflective control strategy 
includes three important steps. The first step is to determine if a 
new situation is identified and the necessity of adaptation to the 
new situation. The identification criteria are usually related to the 
system’s maximum capability and situation change degree. If no 
new situation is detected, the self-reflective strategy believes the 
current policy is functional and no more action is needed. 
However, when a new situation is detected, the self-reflective 
strategy uses reinforcement learning technique to re-seek an 
optimal policy. New policies are tried with approximate value 
iteration (AVI) reinforcement learning method [14]. The 
maximum number of trials or iterations is proportional to the 
value of the necessity degree value to have more chances to find 
an optimal policy. During this process, the self-reflection can be 
terminated if a termination criterion is met, which is usually the 
satisfaction of new policy’s performance. 

 

 
 
FIGURE 1: OVERALL SELF-REFLECTIVE CONTROL SCHEME 
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3.1 New Situation Determination 
This step is to identify if there is a new situation that has not 

been met before. The basic idea is to compute a necessity degree 
value 𝛼  based on the aerial manipulator system’s maximum 
capability and situation change degree. As we use the quadrotor-
arm system for example, the criteria can include the limit of the 
quadrotor’s attitudes as well as the change of the quadrotor’s 
CoG and end-effector’s position. The limit of quadrotor’s 
attitudes represents the maximum capability of the quadrotor-
arm system to remain stable. The CoG change and position 
change indirectly reflect situation changes as different situations 
result in different variations of quadrotor’s CoG and end-effect’s 
position. If either of the two parameters is out of a reasonable 
range, indicating that the system behavior is strange and 
unexpected, then the current situation should be changed to a 
new one. The necessity degree value 𝛼, which is between 0 and 
1, is calculated based on the deviation of the criteria from 
reasonable ranges. A threshold 𝛼𝑡ℎ is defined to determine if a 
new task is encountered and its value can be empirically defined 
for different manipulators. If 𝛼 > 𝛼𝑡ℎ , then a self-reflection 
process is needed. Otherwise, the original policy is still 
considered as functional. Mathematically, 𝛼 can be formulized 
as (1). 

    𝛼 = sigmoid (
𝑎1(𝜙 − 𝜙𝑒) + 𝑎2(𝜃 − 𝜃𝑒)

+𝑎3 (∆𝐶𝑄 − ∆𝐶𝑄𝑒
) + 𝑎4

∆𝐸𝑒
∆𝐸

)  (1) 

where 𝜙 and 𝜃 indicates the quadrotor’s roll and pitch angles, 
∆𝐶𝑄 is the change of quadrotor’s CoG, ∆𝐸 is the end-effector’s 
position change, 𝑎𝑖  are the coefficients to adjust each term’s 
importance, and all variables with subscript 𝑒 are the critical 
values the system should obey. For example, 𝜙𝑒 = 60 degrees 
means the quadrotor’s roll angle is not supposed to exceed 60 
degrees, otherwise the system is considered unstable. ∆𝐸𝑒 =
0.01m indicates the end-effector is supposed to move effectively 
with at least a 0.01m change. Each criterion is normalized first, 
and their sum is then transferred into [0,1] with a sigmoid 
function. The reason choosing a sigmoid function is that any 
large difference between the actual measurements and 
comparison terms in (1) makes 𝛼 approach 1 quickly, which 
means a new situation is more likely to appear. This can help 
detecting an unusual or new situation effectively. 
 
3.2 Self-Reflective Adjustment 

We formulate the quadrotor-arm self-reflective adjustment 
process as a Markov Decision Process (MDP), specified by the 
5-tuple (𝑆, 𝐴, {𝑃𝑠𝑎}, 𝑟, 𝛾). Let 𝑆 be the set of system states, 
where each state is a vector containing the positions, poses, and 
corresponding velocities. Let 𝐴 be the set of actions the system 
can take from any state, where an action is a set of inputs 
including forces and torques. {𝑃𝑠𝑎} describes the unknown state 
transition probabilities, capturing the dynamics of the system. 
Specifically, 𝑃𝑠𝑎(𝑠′) is the probability of transitioning to state 
𝑠′ ∈ 𝑆, given current state 𝑠 ∈ 𝑆 and applied action 𝑎 ∈ 𝐴. The 
reward function is defined as 𝑟: 𝑆 ⟶ ℝ, representing the cost 
and reward structure of the state space. Let 𝛾  be a discount 
factor on rewards, chosen to be 0.99 in this case. 

The appropriate action to take at a given state can be defined 
in terms of a fixed policy 𝜋, where 𝑎 = 𝜋(𝑠). The total expected 
payoff (or value) of a given state can be defined as follows 

          𝑉𝜋(𝑠) = 𝔼 [
𝑟(𝑠0) + 𝛾𝑟(𝑠1) +

𝛾2𝑟(𝑠2) + ⋯ |𝑠0 = 𝑠, 𝜋] (2) 

Equation (2) can formulate in the so-called Bellman 
Equations [27]. 

          𝑉𝜋(𝑠) = 𝑟(𝑠) + 𝛾 ∑ 𝑃𝑠𝑎(𝑠′)𝑉𝜋(𝑠′)𝑠′∈𝑆  (3) 
The optimal value function can then be defined as 

        𝑉∗(𝑠) = 𝑟(𝑠) + 𝛾 max
𝑎∈𝐴

∑ 𝑃𝑠𝑎(𝑠′)𝑉∗(𝑠′)𝑠′∈𝑆  (4) 
Value iteration is a commonly used RL technique where the 

optimal value function is iteratively found and used to compute 
an optimal policy [5]. The optimal policy can be obtained as 

          𝜋∗(𝑠) = argmax
𝑎∈𝐴

∑ 𝑃𝑠𝑎(𝑠′)𝑉∗(𝑠′)𝑠′∈𝑆   (5) 

However, the tabular representation of the value function is 
impractical or infeasible when the state and action spaces are 
large or continuous. Instead, we consider using approximate 
value iteration (AVI) method [14] to solve the above MDP 
problem. With this method, the value function is approximated 
with a linearly parameterized feature vector 𝐹(𝑠) , which is 
specifically chosen for this problem including the quadrotor’s 
displacement and its velocity magnitude, arm’s end-effector 
displacement and its velocity magnitude. Mathematically, 𝐹(𝑠) 
can be expressed as 𝐹(𝑠) = [‖𝒑‖2 ‖𝒑̇‖2 ‖𝒑𝒆‖2 ‖𝒑̇𝒆‖2]𝑇. 
The reward function is designed to penalize the distance from the 
goal state for both the quadrotor and arm. The quadrotor’s 
altitude is also penalized to provide a bounding box so that the 
whole system is enforced to stay above the ground. The form is 
𝑟(𝑠) =  [𝛽1 𝛽2 𝛽3][𝑟1(𝑠) 𝑟2(𝑠) 𝑟3(𝑠)]𝑇, where 

𝑟1(𝑠) = −‖𝒑 − 𝒑𝑟‖2 
𝑟2(𝑠) = −‖𝒑𝑒 − 𝒑𝑒𝑟‖2

 

𝑟3(𝑠) = {−10000,    𝑧 < 0.3
      0,            𝑧 ≥ 0.3 

Because AVI is an iterative process, it only ends when the 
maximum iterative number (or maximum episode) is reached or 
the value function (3) is converged. The selection of maximum 
episode is important because it is better to be large enough to 
allow the value function to be converged. However, it cannot be 
too large if considering the practical availability. More 
specifically, when reinforcement learning cannot converge to an 
optimal policy for some new situations within the defined 
maximum episodes, increasing the maximum episode generally 
means a longer time, which may be not allowed in some 
situations. For example, a large maximum episode can give the 
aerial manipulator an ability to finish a new task in 15 minutes, 
but the task is required to be finished in 10 minutes. The sensitive 
10-minutes requirement can make the selection of a large 
maximum episode meaningless. A convenient way to adjust the 
maximum episode can be based on an empirical constant and the 
necessity degree value 𝛼 as in (6). 

  𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥
𝑛𝑒𝑤 = {𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥

𝑖𝑛𝑖𝑡 × (1 + 𝑏𝛼), 𝑖𝑓 𝛼 ≥ 𝛼𝑡ℎ 
              𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥

𝑖𝑛𝑖𝑡 ,          𝑖𝑓 𝛼 < 𝛼𝑡ℎ
  (6) 

where 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥
𝑖𝑛𝑖𝑡 is empirically set to be 10000, which 

corresponds to about 17 minutes using a PC with Intel i7-4790 
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dual Core CPU and 8G RAM. If there is no self-reflection (i.e., 
𝛼 < 𝛼𝑡ℎ), no maximum episode is needed due to no need of re-
learning. However, we still assign a value (𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥

𝑖𝑛𝑖𝑡 ) for this 
situation just in case the system accidently learns a policy again 
when no self-reflection is needed. The coefficient 𝑏 before 𝛼 
expands the maximum episode corresponding to the new level of 
situations. If 𝛼 is close to 1, it means the current situation is very 
unlikely to be met before and hence the system may need a 
totally different policy. A new situation usually needs more 
trials, which means the convergence may be slower because 
more samples need to be collected to get the new situation well 
known. 𝛼 = 1 could increase the maximum episode to (1+b) of 
the empirical constant and we can still use a larger b to increase 
the maximum episode, which can be suitable for highly complex 
tasks that need a long time to learn out an optimal policy. In 
general, 𝛼𝑡ℎ  mainly determines if re-finding control policy is 
needed. 𝑏 and 𝛼 decides how large the maximum episode will 
be. 
 
3.3 Self-Evaluation for Termination 

During the adjustment, we can use a self-evaluation module 
to decide whether the self-reflection should stop. In this paper, 
we define the stop criterion as (7). 

𝑇𝐶 = 𝑐1 (‖𝒑𝒆 − 𝒑𝒆𝒓‖2 + ‖𝒑 − 𝒑𝒓‖2

+ ‖𝛀 − 𝛀𝒓‖2) + 𝑐2(𝑡𝑠 − 𝑡𝑠𝑟)2
 

(7) 

where 𝒑𝒆  is the end-effector’s position, 𝒑  is the quadrotor’s 
position,  𝛀  is the quadrotor’s attitude, 𝑡𝑠  is the stabilization 
time, and all corresponding variables with subscript 𝑟 are the 
desired values. 𝑐1  and 𝑐2  are two coefficients balancing the 
focus between the accuracy and stabilization time of quadrotor-
arm system. If 𝑐1 is larger, then the system focuses more on the 
accuracy of finishing a task. Otherwise, the system’s 
stabilization time has a higher priority. It can be noticed that (7) 
and (1) have some overlapping terms such as 𝜙  and 𝛀 . 
However, there are two major differences. One is the inclusion 
of more criteria about task performances such as 𝑡𝑠 in (7). The 
other one is the different meaning of the similar comparison 
terms in (1) and (7). The comparison terms in (1) mean the 
system’s maximum capability to keep stable, but those in (7) 
indicate a satisfactory performance of a given task. Equation (7) 
is generally stricter than (1). In addition, the termination criterion 
value (TC) has a value only if a new situation is considered, and 
the self-reflection can stop once TC is less than a threshold 𝑇𝐶𝑡ℎ. 
If there is no new situation detected, TC is intentionally set to 0. 
The selection of 𝑇𝐶𝑡ℎ  is based on specific requirements of 
different users. For example, some users may only require the 
system not to crash, but some may need the system to perform 
the tasks with good performances like smaller deviation and 
shorter stabilization time. In general, 𝑇𝐶𝑡ℎ should be smaller if 
the requirement is stricter. The use of 𝑇𝐶𝑡ℎ may scarify some 
task performances as the learned policy does not necessarily 
need to be theoretically optimal. Instead, as long as the new 
policy can meet the requirement of finishing a task, it can be 
considered as safely functional, which implicitly considers the 

system’s safety as an optimization criterion as well. Whatever 
𝑇𝐶𝑡ℎ is, for any specific case, there is always a maximum 𝑇𝐶𝑡ℎ, 
defined as 𝑇𝐶𝑡ℎ_𝑚𝑎𝑥 . 𝑇𝐶𝑡ℎ_𝑚𝑎𝑥  represents the loosest 
termination criterion to keep a particular system stable, i.e., not 
crash. For a given system, 𝑇𝐶𝑡ℎ_𝑚𝑎𝑥  is fixed and only depends 
on the system. As long as 𝑇𝐶 ≤ 𝑇𝐶𝑡ℎ ≤ 𝑇𝐶𝑡ℎ_𝑚𝑎𝑥, the learned 
control strategy can output an optimal control policy. 

 
4. VALIDATION SIMULATIONS 

In this work, all simulations are completed in 
MATLAB/Simulink. The parameters of the quadrotor-arm 

TABLE I 
QUADROTOR SIMULATION PARAMETERS 

Parameters Values Descriptions 

𝐼𝑏𝑥, 𝐼𝑏𝑦 1.24 kg ∙ m2 Moment of inertia around 
quadrotor’s X, Y axis 

𝐼𝑏𝑧 2.48 kg ∙ m2 Moment of inertia around 
quadrotor’s Z axis 

𝑚𝑏 2 kg  Mass of quadrotor 
𝛾𝑡  3.13*10^(-5) Thrust factor 
𝛾𝑑 7.5*10^(-7) Drag factor 

𝑙 0.1 m Distance between the rotor center 
and quadrotor center 

𝑚1, 𝑚2, 
𝑚3 0.1 kg  Mass of the first, second, and third 

link of the arm 

𝐿1, 𝐿2, 𝐿3 0.1 m Length of the arm’s first, second, 
and third link 

𝐼𝑥1, 𝐼𝑦1 0.0025 kg ∙ m2 Moment of inertia around first 
link’s X, Y axis 

𝐼𝑧1 0.0075 kg ∙ m2 Moment of inertia around first 
link’s Z axis 

𝐼𝑥2, 𝐼𝑦2 0.0025 kg ∙ m2 Moment of inertia around second 
link’s X, Y axis 

𝐼𝑧2 0.0075 kg ∙ m2 Moment of inertia around second 
link’s Z axis 

𝐼𝑥3, 𝐼𝑦3 0.0025 kg ∙ m2 Moment of inertia around third 
link’s X, Y axis 

𝐼𝑧3 0.0075 kg ∙ m2 Moment of inertia around third 
link’s Z axis 

 
TABLE II 

SELF-REFLECTIVE CONTROL STRATEGY PARAMETERS 
Parameters Values 

𝑎1, 𝑎2, 𝑎3, 𝑎4 1 
𝑏 2 

𝑐1, 𝑐2 80, 20 
𝛾 0.99 

𝛽1, 𝛽2, 𝛽3 10000, 800, 50 
𝛼𝑡ℎ 0.5 

𝑇𝐶𝑡ℎ 0.7 
𝑇𝐶𝑡ℎ_𝑚𝑎𝑥 0.95 

𝜙𝑒, 𝜃𝑒 60 degrees 
∆𝐶𝑄𝑒

 0.15m 
∆𝐸 0.01m 
𝒑𝒆𝒓 [0.17, 0, 0.13] m 
𝒑𝒓 [0, 0, 0.3] m 
𝛀𝒓 [0, 0, 0] degrees 
𝑡𝑠𝑟 10 s 
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system [5] are listed in Table I. More modeling details about the 
quadrotor-arm system can be also seen in [5]. 

In order to validate the self-reflective strategy, the 
quadrotor-arm system is supposed to carry an object from 
position A (𝜼 = [−45, 45, 45] (degrees)) to position B (𝜼 =
[0, 45, 45] (degrees)) as shown in Figure 2. According to the 
parameters in Table I, the quadrotor is supposed to be stabilized 
at a certain location ( 𝒑𝒓 = [0, 0, 0.3]  (m), 𝜴𝒓 = [0, 0, 0] 
(degree)). The object weight can be 0.1kg, 0.15kg, 0.2kg, 
0.25kg, and 0.3kg. An MDP controller is designed for a 0.1kg 
object beforehand, then the other weights can be considered as 
new tasks, depending on the self-reflective strategy’s decision. 
Given the designed task, the parameters of the self-reflective 
strategy are listed in Table II. 𝑇𝐶𝑡ℎ_𝑚𝑎𝑥 is assigned with 0.95 to 
remain the system stable. However, the task that is considered to 
be successfully finished should also include the object 
movement from A to B, which is why we choose 𝑇𝐶𝑡ℎ to be 0.7. 
 
5. RESULTS 
 
5.1 New Situation Determination 

The results of new situation determination for different 
weights are shown in Figure 3. The new situation determination 
values (reflection necessity degree values) for five different 
weights are 0.06, 0.20, 0.41, 0.84, and 1, respectively. The 
default threshold 𝛼𝑡ℎ  (conservative threshold) is 0.5, so only 
two cases (0.25kg and 0.3kg) need self-reflections. However, if 
we decrease the threshold 𝛼𝑡ℎ to 0.3 (aggressive threshold), the 
0.2kg case needs self-reflection as well. This is because a smaller 
𝛼𝑡ℎ  means more situations are considered as new situations, 
which indicates self-reflection is triggered easier (i.e., self-
reflection is more needed). Instead of decreasing the threshold 
value 𝛼𝑡ℎ , another way to trigger self-reflection easier is to 
adjust constraints on the designed parameters, 𝜙𝑒 , 𝜃𝑒 , ∆𝐶𝑄𝑒

, 
∆𝐸𝑒, in (1) to be stricter. More specifically, 𝜙𝑒, 𝜃𝑒, and ∆𝐶𝑄𝑒

 
should be smaller while ∆𝐸𝑒 should be larger to cause an easier 
trigger. The result of reducing ∆𝐶𝑄𝑒

 from 0.15 to 0.05 can be 
found as the blue line in Figure 3. The necessity degree values of 
five weights are 0.09, 0.27, 0.55, 0.90, and 1, respectively. If 

using the default threshold 0.5, one more case (0.2kg) needs self-
reflection if compared with the loose maximum quadrotor CoG 
change (red line with ∆𝐶𝑄𝑒

 = 0.15). It is hence convenient to 
adjust when a new situation should be considered or a self-
reflection is needed.  

 
5.2 Self-Reflective Adjustment 

The change of maximum episode for different object 
weights is shown in Figure 4. Both the 0.1kg and 0.15kg case do 
not need self-reflection, so their maximum episodes are 
intentionally set to be the empirical constant 10000 according to 
(6). For the 0.2kg case, selections of parameters to calculate 𝛼 
and 𝛼𝑡ℎ  are both important. If using the same 𝛼𝑡ℎ , a stricter 
selection of parameters in (1) needs to adjust its maximum 
episode because it needs self-reflection. Similarly, if keeping the 
selection of parameters the same, a small 𝛼𝑡ℎ needs to adjust its 
maximum episode too. For the 0.25kg case and 0.3kg case, they 
all need self-reflections and the maximum episodes of 0.3kg are 
all larger than 0.25kg because the necessity degree value 𝛼 for 
0.3kg is larger. In particular, the maximum episode of the 0.3kg 
case are all the same for four different combinations. This is 
because 0.3kg is too heavy for the quadrotor’s current controller 
to handle, so ∆E in (1) equals to 0 and hence α is 1 and all 
maximum episodes become 30000. 

 

 

 
 
FIGURE 2: VISUALIZATION OF THE OBJECT-CARRY TASK 

 
 
FIGURE 3: NEW SITUATION DETERMINATION FOR 
DIFFERENT OBJECT WEIGHTS. For 0.1kg and 0.15kg, there is no 
need of self-reflection as they are similar to pre-trained situations. For 
0.25kg and 0.3kg, self-reflection is needed in all different parameter 
settings as they are greatly different from pre-trained situations. For 
0.2kg, the necessity degree value is less with loose constraints than that 
with strict constraints. If given the conservative threshold, only the case 
with strict constraints needs self-reflection. But given an aggressive 
threshold, both cases with strict and loose constraints need self-
reflection. 
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5.3 Self-Evaluation for Termination 
Table III shows termination criterion values and episodes 

with respect to different parameters. If using the default 
parameters in Table II, 0.1kg, 0.15kg and 0.2kg are not 
considered as new situations. Thus, their termination values are 
0 and episodes used to find the optimal control policy are 10000. 
On the contrary, the termination criterion value for 0.25kg and 
0.3kg are 0.68 and 0.69, respectively. The corresponding 
episodes are 20336 and 28212. More episodes are needed for 
0.3kg because this case deviates more from the original 
controller designed for 0.1 kg object than 0.25kg and is hence 
much more difficult for the system to handle. 

𝑇𝐶𝑡ℎ  has an influence on the self-reflection results 
including final termination criterion value and episodes used for 
learning a new policy. Changing 𝒑𝒓, 𝛀𝒓, 𝑡𝑠𝑟 , 𝑐1  ,and 𝑐2  can 
also affect 𝑇𝐶  and so self-reflection results can be different. 
Because of various combinations of the related parameters, we 
only change 𝑐1 and 𝑐2 for simple examples. Also, both changes 
are applied to 0.25kg and 0.3kg cases because these two cases 
are easily switched between task success and task failure. The 
new termination criterion values and episodes are displayed in 

Table III after re-doing the simulations with new parameters. 
Reducing 𝑇𝐶𝑡ℎ  from 0.7 to 0.6 and keeping other parameters 
unchanged means the current task can be considered as 
successful only with better performances. With this new setting, 
the 0.25kg case can still work but the 0.3kg case fails because 
the termination criterion value can reach only 0. 66 within 30000 
episodes. The failure means no optimal policy can be found with 
the given episodes and stricter performance criteria. If increasing 
the maximum episode number, the 0.3kg case may work again. 
For an additional test, we change 𝑐1 to 20 and 𝑐2 to 80, which 
means the controller focuses more on stabilization time. 
Although we use the same 𝑇𝐶𝑡ℎ  (0.7) as in Table II, the 
termination criterial values are still different from 𝑐1 =80 and 
𝑐2=20. The 0.25kg case needs 4766 more episodes, and the 0.3kg 
case fails. This is reasonable because limited time is a stronger 
constraint than good accuracy for the designed task if using the 
conclusion from the original 0.3kg case that the accuracy can be 
satisfied if given unlimited time. 

 
5.4 Task Performance 

The task performances include both the quadrotor’s 
performance and the arm’s performance. For simplicity, only 
link 1’s movements are shown in Figure 5 because link 1 has the 
most obvious movement. From this figure, it can be seen the 
original policy is good for 0.1kg. For the 0.15kg and 0.2kg cases, 
the overshoots and stabilization time increase greatly. Especially 
for the 0.2kg case, it is close to the unstable status. The unstable 
0.25kg case is considered as a new situation and then a self-
reflection starts. Although the performance after self-reflection 
cannot catch 0.1kg’s performance, it is much better than 0.15kg 

TABLE III 
TERMINATION CRITERION VALUE AND EPISODES COMPARISON  
Object 
weight 

(kg) 
Parameters 𝑇𝐶𝑡ℎ_𝑚𝑎𝑥 𝑇𝐶𝑡ℎ 

Termination 
criterion 

value 
Episodes 

0.1 𝑐1=80, 𝑐2=20 0.95 0.7 0 10000 
0.15 𝑐1=80, 𝑐2=20 0.95 0.7 0 10000 
0.2 𝑐1=80, 𝑐2=20 0.95 0.7 0 10000 

0.25 𝑐1=80, 𝑐2=20 0.95 0.7 0.68 20336 
0.3 𝑐1=80, 𝑐2=20 0.95 0.7 0.69 28212 

0.25 𝑐1=80, 𝑐2=20 0.95 0.6 0.59 27482 
0.3 𝑐1=80, 𝑐2=20 0.95 0.6 0.66 30000 

0.25 𝑐1=20, 𝑐2=80 0.95 0.7 0.68 25102 
0.3 𝑐1=20, 𝑐2=80 0.95 0.7 0.74 30000 

 

 
FIGURE 5: LINK1’S MOVEMENT FOR DIFFERENT OBJECT 
WEIGHTS. The movements with 0.15kg and 0.2kg are still acceptable 
using the pre-trained policy for 0.1kg. But the movement with 0.2kg is 
close to unstable due to the large overshoot and long stabilization time. 
Because self-reflection is applied for 0.25kg, the movement is stable 
again with a smaller overshoot and shorter setting time. The movement 
with 0.3kg becomes worse with using the strategy for 0.25kg but 
without self-reflection. 

 

 
FIGURE 4: MAXIMUM EPISODE FOR DIFFERENT OBJECT 
WEIGHTS 
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and 0.2kg. Carrying a 0.3kg object also needs self-reflection but 
the performance is worse than that of 0.25kg. This indicates that 
the self-reflection has a maximum capability to deal with new 
situations. If the situation difference is out of a system’s 
maximum capability, the self-reflective strategy may not work. 
We keep increasing the object weight until the self-reflective 
strategy totally fails with settings in Table II. The corresponding 
maximum object weight is 0.34kg, which means the aerial 
manipulator fails to move an object over 0.34kg from A to B with 
an expected accuracy and time, but it does not mean that the 
aerial manipulator crashes since 𝑇𝐶 could still be smaller than 
𝑇𝐶𝑡ℎ_𝑚𝑎𝑥. 

In order to present the self-reflection process, the task 
performance is quantified with integral time squared error 
(ITSE). ITSE is a comprehensive evaluation criterion because it 
covers the overshoot, stabilization time, rising time, and the like. 
In detail, the task performance is calculated using 
𝑡𝑎𝑠𝑘 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = ∑ 100 ∫ 𝑡𝑒𝑑𝑜𝑓(𝑡)2∞

0 𝑑𝑡⁄9
𝑑𝑜𝑓=1 , where 

100 is the user-defined number to get the scale back into a 
reasonable range [0,1]. The summation is needed because ITSE 
can only apply to 1 DOF, and the aerial manipulator has 9 DOFs. 
The greater the ITSE value is, the better performance the system 
has. The task performances for different object weights can be 
seen in Figure 6. If not using the self-reflective strategy, the 
performance keeps decreasing as the object weight increases. 
According to (1), the performance drops from 0.1kg to 0.15kg 
and 0.15kg to 0.2kg are acceptable. But it is not acceptable with 
the drop from 0.2kg to 0.25kg, so this is when self-reflection is 
needed. With applying self-reflection, the performance is 
increased back to the acceptable range. Since self-reflection is 

not kept used during the change from 0.25kg to 0.3kg, the 
performance drops again although it is still acceptable. 

 
5.5 Failure Costs and Computational Costs 

Table IV shows the failure costs and computational costs of 
two different methods: (a) always using reinforcement learning 
with the maximum episode to be 30000 and (b) self-reflective 
method with the default parameters in Table II. Always using 
reinforcement learning means that reinforcement learning is 
always applied again for each time the situation changes. The 
definition of the failure is simplified as either 𝜙 or 𝜃 exceeds 
its limitation defined in Table II, which can be considered as a 
failure of physical instability. Also, a large deviation from the 
goal with 𝑟(𝑠) < −10000 can be considered as a task failure. 
The computational cost is defined as the episodes used to 
converge to an optimal policy. The total numbers of failures and 
episodes using our method are much less than the corresponding 
numbers using always reinforcement learning. In most cases, our 
method has zero failures due to no need of re-learnings which 
are however necessary in always reinforcement learning. Even 
for the 0.25kg case that our method also re-learns, our method 
still has less failures and computational costs because the self-
termination removes some unnecessary re-learnings. Given that 
both methods can finish the task, these re-learnings are actually 
unbeneficial because they result in more computational costs and 
failures.  

 
5.6 Experimental Approach Stability Analysis 

In order to experimentally analyze the stability of our 
method, we conduct one more simulation with the following 
scenario. After the self-reflective method adapts to the 0.25kg 
object, we test the five different object weights (0.1kg to 0.3kg) 
again on the newly learned policy. The corresponding reflection 
necessity degree values are 0.95, 0.48, 0.25, 0.05, 0.19, 
respectively. According to the default threshold 𝛼𝑡ℎ=0.5, only 
the 0.1kg object is seen as the new situation. This simulation 
experimentally shows that our method can be stable in dealing 
with new situations. In addition, it is interesting to note that a 
same weight change in the weight decreasing process has a larger 
necessity degree value than that in the weight increasing process. 
For example, the necessity degree value with the weight change 
from 0.25kg to 0.2kg is 0.06 larger than that with the change 
from 0.25kg to 0.3kg. This may indicate the weight decreasing 

 
FIGURE 6: TASK PERFORMANCES FOR DIFFERENT OBJECT 
WEIGHTS. If self-reflection is not triggered, the task performance 
decreases as the object weight increases from 0.1kg to 0.2kg. Once self-
reflection is needed and applied at 0.25kg due to an unacceptable 
performance drop, the task performance increases back to be acceptable. 
When addressing 0.3kg, the task performance drops again because self-
reflection is determined not to be used. 

TABLE IV 
FAILURE COSTS AND COMPUTATIONAL COSTS 

Object 
Weight 
Change 

Methods Number of 
Failures 

Episodes for 
Convergence 

0.1kg to 
0.15kg 

Always reinforcement learning 3549 21448 
Self-reflective method 0 0 

0.15kg 
to 0.2kg 

Always reinforcement learning 4356 25633 
Self-reflective method 0 0 

0.2kg to 
0.25kg 

Always reinforcement learning 5013 28702 
Self-reflective method 3208 20336 

0.25kg 
to 0.3kg 

Always reinforcement learning 5482 30000 
Self-reflective method 0 0 
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situations can be more likely to be considered as new situations 
than the weight increasing situations. One possible reason is that 
the policy designed for the old, heavy objects could be too strong 
for the new, light objects, resulting in larger deviations in (1). 

 
6. DISCUSSIONS 

Although our strategy uses reinforcement learning as the 
second step to ensure the system’s adaptability to different 
situations, it more importantly improves the system’s safety 
during the adaptation, which is important for practical safety-
critical systems and results in significant differences between our 
strategy and traditional reinforcement learning methods [15]. 
The learned policies of traditional reinforcement learning based 
methods usually do not work for a new situation unless with a 
re-learning process. It is possible to keep reinforcement learning 
all the time to adapt to new situations, but the safety of adaptions 
may be compromised because introducing more learnings may 
lead to more failures due to possibly unavoidable unsafe 
explorations and intolerably high computational costs. Similarly, 
it is sometimes not safe to find a theoretically optimal policy for 
a task because the extra learnings from a sub-optimal policy that 
can already finish a task but may sacrifice some task 
performances to the theoretically optimal policy may also 
introduce more failures. With considering the safety from the 
whole system’s perspective, our strategy can finish the task more 
safely by smartly avoiding the unnecessary and unbeneficial 
learnings with using self-detection (step one) and self-
termination (step three),  

One limitation of our work is that our strategy cannot 
guarantee zero failures because it still needs reinforcement 
learning to learn a new policy if the situation has a significant 
change. Considering that safe reinforcement learning methods 
[6] can reduce failures in the learning process, our strategy may 
be further improved by complementarily using safe 
reinforcement learning methods in the second step. In addition, 
introducing safe reinforcement learning may also relax the self-
termination criteria to find a policy that is both theoretically 
optimal and safe. The combination of our strategy and safe 
reinforcement learning could be a promising way to achieve the 
persistent autonomy.  

Another limitation of our work is the use of heuristic criteria 
for the self-detection and self-termination. This can require 
specific engineering knowledge for different aerial manipulators, 
although the criteria once designed can be used for a long time 
for different tasks and environments. This could be improved by 
automatically formulating different criteria using intrinsically-
motivated learning [16]. Furthermore, some criteria that can be 
used for many situations may be stored in a memory so that it 
can be convenient to directly use them when the system 
encounters a similar situation in the future.  

 

7. CONCLUSION 
In this paper, a novel self-reflective learning strategy is 

developed for aerial manipulators to pursue persistent autonomy 
with mainly solving the problem of a smart and safe adaptation 
to new situations. While using reinforcement learning to achieve 

good self-adaptations, our method, more importantly, improves 
the system safety during the adaptations by determining the 
timing of triggering and terminating learning to reduce 
unnecessary and unbeneficial learnings. Numerical simulations 
using an aerial manipulator to carry different loads confirm the 
effectiveness of our method. In the future, we plan to apply our 
strategy in the physical aerial manipulator platform to get further 
validations. We also expect to replace the heuristic self-reflective 
criteria with more sophisticated criteria that may be changed 
online. 
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