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ABsTRACT. Single-particle reconstruction in cryo-electron microscopy (cryo-
EM) is an increasingly popular technique for determining the 3-D structure of
a molecule from several noisy 2-D projections images taken at unknown viewing
angles. Most reconstruction algorithms require a low-resolution initialization
for the 3-D structure, which is the goal of ab initio modeling. Suggested by Zvi
Kam in 1980, the method of moments (MoM) offers one approach, wherein low-
order statistics of the 2-D images are computed and a 3-D structure is estimated
by solving a system of polynomial equations. Unfortunately, Kam’s method
suffers from restrictive assumptions, most notably that viewing angles should
be distributed uniformly. Often unrealistic, uniformity entails the computation
of higher-order correlations, as in this case first and second moments fail to
determine the 3-D structure. In the present paper, we remove this hypothesis,
by permitting an unknown, non-uniform distribution of viewing angles in MoM.
Perhaps surprisingly, we show that this case is statistically easier than the
uniform case, as now first and second moments generically suffice to determine
low-resolution expansions of the molecule. In the idealized setting of a known,
non-uniform distribution, we find an efficient provable algorithm inverting first
and second moments. For unknown, non-uniform distributions, we use non-
convex optimization methods to solve for both the molecule and distribution.
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1. Introduction. Single-particle cryo-electron microscopy (cryo-EM) is an imag-
ing method for determining the high-resolution 3-D structure of biological macro-
molecules without crystallization [25, 35]. The reconstruction process in cryo-EM
determines the 3-D structure of a molecule from its noisy 2-D tomographic projec-
tion images. By virtue of the experimental setup, each projection image is taken
at an unknown viewing direction and has a very high level of noise, due to the
small electron dose one can apply to the specimen before inflicting severe radia-
tion damage, e.g., [12, 24, 41]. The computational pipeline that leads from the
raw data, given many large unsegmented micrographs of projections, to the 3-D
model consists of the following stages. The first step is particle picking, in which
2-D projection images are selected from micrographs. The selected particle images
typically undergo 2-D classification to assess data quality and further improve par-
ticle picking. At this point, the 3-D reconstruction process begins, where often it
is divided into two substeps of low-resolution modeling and 3-D refinement. In this
paper, we focus on the mathematical aspects of the former, namely the modeling
part. In particular, we suggest using the method of moments (MoM) for ab initio
modeling. We illustrate this workflow with an overview given in Figure 1.

The last step in the reconstruction, also known as the refinement step, aims to
improve the resolution as much as possible. This refinement process is typically
a variant of the expectation-maximization (EM) algorithm which seeks the max-
imum likelihood estimator (MLE) via an efficient implementation, e.g., [52]. As
such, 3-D refinement requires an initial structure that is close to the correct tar-
get structure [28, 51]. Serving this purpose, an ab initio model is the result of a
reconstruction process which depends solely on the data at hand with no a priori
assumptions about the 3-D structure of the molecule [49]. We remark that the two
primary challenges for cryo-EM reconstruction are the high level of noise and the
unknown viewing directions. Mathematically, without the presence of noise, the un-
known viewing directions could be recovered using common lines [61, 62]. Then, the
3-D structure follows, for example, by tomographic inversion, see, e.g., [2]. Reliable
detection of common lines is limited however to high signal-to-noise (SNR) ratio.
As a result, the application of common lines based approaches is often limited to
2-D class averages rather than the original raw images [56]. Other alternatives such
as frequency marching [7] and optimization using stochastic gradient have been sug-
gested [48]. As optimization processes are designed to minimize highly non-convex
cost functions, methods like SGD are not guaranteed to succeed. In addition, as in
the case of EM, it is not a priori clear how many images are required.

Steerable basis

Particle g
Low order statistics

picking expansion

Input images
Ab-initio model

Micrographs
FIGURE 1. A schematic flowchart of 3-D reconstruction using
method of moments (MoM).

Approximately forty years ago, Zvi Kam proposed a method for 3-D ab initio
reconstruction based on computing the mean and covariance of the 2-D noisy im-
ages [33]. In order to uniquely determine the volume, the third moment (triple
correlation) is also used besides the mean and covariance. In this approach, known
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as Kam’s method, the 3-D volume is reconstructed without estimating the viewing
directions. In this sense, Kam’s method is strikingly different from common lines
based approaches and maximum likelihood and other optimization methods that
rely on orientation estimation for each image. Crucially, Kam’s method is effective
at arbitrary levels of noise, given sufficiently many picked particles for accurate esti-
mation of the moment statistics. Additionally, Kam’s method does not require any
starting model, and it requires only one pass through the data to compute moments
(contrary to other approaches needing access to the measurements multiple times).
Despite the aforementioned advantages, Kam’s method relies on the restrictive as-
sumption that the viewing directions for the images are distributed uniformly over
the sphere. This hypothesis, alongside other technical issues, has so far prevented a
direct application of Kam’s method to experimental cryo-EM data, for which view-
ing angles are typically non-uniform [4, 26, 44, 59]. This situation motivates us to
explore generalizations of Kam’s method better suited to cryo-EM data.’

In this paper, we generalize Kam’s theory to the case of non-uniform distribution
of viewing directions. We regard Kam'’s original approach with uniform distribu-
tion of viewing angles as a degenerate instance of MoM. In our formulation, we
estimate both the 3-D structure and the unknown distribution of viewing angles
jointly from the first two moments of the Fourier transformed images. More pre-
cisely, for n images I;,j = 1,...,n, the first and second empirical moments of the

Fourier transformed images, given in polar coordinates, jcj(r, ©v),j=1,...,n, are
1 n 1 n
77’7,1(7", QO) = ﬁzlj(ra 90)7 and 77&2(7"7%0’7‘/a<;0/) = ﬁzlj(ra @)Ij(T/aQa/% (1)
j=1 j=1

which upon the above discretization become 2-D and 4-D tensors, respectively. Our
basic rationale for trying to obtain the volume from the first two moments is as
follows. Supposing the distribution of rotations of the image plane to be uniform,
then in the limit n — oo the first moment is radially symmetric, that is, it is only
a function of r but is independent of ¢. Therefore, m; may be regarded as a 1-D
vector. Similarly, the second moment is a 3-D tensor (rather than 4-D) since it
will only depend on ¢ and ¢’ through ¢ — ¢’ as n — oco. Also I; (', ¢’) is linearly
related to the molecule’s volume via a tomographic projection. Thus, for images of
size N x N pixels, the first and second moments should give rise to O(N?) poly-
nomial equations for the unknown volume and distribution. Assuming the volume
is of size N x N x N (and the distribution is of lower dimensionality), then the
first and second moments have “just” the right number of equations (in terms of
leading order) to determine the unknowns. Unfortunately, when the distribution
of viewing directions is uniform, as noted by Kam [33], the information encoded in
the second moment is algebraically redundant; essentially it is the autocorrelation
function (or equivalently, the power spectrum), and this information is insufficient
for determining the structure of the molecule. As we will see, a non-uniform distri-
bution of viewing directions introduces additional terms in both the first and second
moments, and extends the number of independent equations beyond the autocorre-
lation case. In particular, we will show that non-uniformity guarantees uniqueness
from the analytical counterparts of m; and ms in cases of a known distribution, and

1We remark that Kam’s method, assuming uniform rotations, is of significant current interest
in X-ray free electron laser (XFEL) single molecule imaging, where the assumption of uniformity
more closely matches experimental reality [21, 45, 65].
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it guarantees finitely many solutions in other, more realistic, cases of an unknown
distribution.

Our work is inspired by several earlier studies on simplified models in a setting
called Multi-Reference Alignment (MRA). In MRA, a given group of transforma-
tions acts on a vector space of signals [5]. For example, the group SO(2) acts on the
space of band-limited signals over the unit circle by rotating them counterclockwise
(as a 1-D analog of cryo-EM). The task then is to estimate a ground truth signal
from multiple noisy samples, corresponding to unknown group elements of a finite
cyclic subgroup of SO(2) acting on the signal. The papers [6, 9] show that for a
uniform distribution over the group, the signal can be estimated from the third mo-
ment, and the number of samples required scales like the third power of the noise
variance. On the other hand, for a non-uniform and also aperiodic distributions over
the group, the signal can be estimated from the second moment, and the required
number of samples scales quadratically with the noise variance [1].

Despite the success of signal recovery in MRA from the first two moments un-
der the action of the cyclic group, it is not apparent that such a strategy is still
applicable in the case of cryo-EM. First, in cryo-EM, each image is obtained from
the ground truth volume not just by applying a rotation in SO(3), but also a to-
mographic projection. Moreover, the studies mentioned above (of MRA) consider
finite abelian groups, whereas, in the case of cryo-EM, the group under considera-
tion is the continuous non-commutative group SO(3). The goal of this paper is then
to investigate whether the first and second moment of the images is also sufficient
for solving the inverse problem of structure determination in the cryo-EM setting.

1.1. Our contribution. We formulate the reconstruction problem in cryo-EM as
an inverse problem of determining the volume and the distribution of viewing direc-
tions from the first two moments of the images. Assuming the volume and distri-
bution are band-limited functions, they are discretized by Prolate Spheroidal Wave
Functions (PSWFs) and Wigner matrices, respectively. The moments give rise to
a polynomial system in which the unknowns are the coefficients of the volume and
the distribution. Using computational algebraic geometry techniques [20, 23, 58],
we exhibit a range of band limits for the volume and the distribution such that the
polynomial system has only finitely many solutions, pointing to the possibility of
exact recovery in these regimes. Additionally, we comment on numerical stability
issues, by providing condition number formulas for moment inversion. In the setting
where the rotational distribution is known, we prove that the number of solutions is
generically 1 and present an efficient algorithm for recovering the volume using ideas
from tensor decomposition [31]. For the practical case of an unknown distribution,
we rely on methods from non-convex optimization and demonstrate, with synthetic
data, successful ab initio model recovery of a molecule from the first two moments.

1.2. Organization. The paper is organized as follows. In Section 2, we present
discretizations for the volume and distribution and derive the polynomial system
obtained from the first two moments. In Section 3, we demonstrate that there exists
a range of band limits where the polynomial system for the unknown molecule
and distribution has only finitely many solutions. In Section 4, we discuss some
implementation details on how the system is solved and present numerical and
visual results. Proofs and background material are provided in appendices. For
research reproducibility, MATLAB code is publicly available at GitHub.com.?

2The full address of the GitHub repository is https://github.com/nirsharon/nonuniformMoM.
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2. Method of moments. We begin by introducing the image formation model.
Then, convenient basis for discretizing various continuous objects, namely the im-
ages and the volume (in the Fourier domain) as well as the distribution for ori-
entations, are introduced. From these, relationships between the moments of the
2-D images and the 3-D molecular volume can be derived, enabling us to fit the
molecular structure to the empirical moments of the images.

2.1. Image formation model and the 3-D reconstruction problem. In cryo-
EM, data is acquired by projecting particles embedded in ice along the direction
of the beaming electrons, resulting in tomographic images of the particles. The
particles orient themselves randomly with respect to the projection direction. More
formally, let ¢: R® — R be the Coulomb potential of the 3-D volume, and the
projection operator be denoted by P: R3 — R?, where

Po(xy,x2) 1= /jo d(x1, 22, 3) drs. (2)

Assuming the j-th particle comes from the same volume ¢ but rotated by R; €
SO(3), the image formation model is [10, 25]

Ij=h;«P (RI-6) +2;, R;€80(3), j=1,....n, (3)

where ¢ is a random field modeling the noise term and h; is a point spread function,
whose Fourier transform is known as the contrast transfer function (CTF) [42, 50,
60]. Each image is assumed to lie within the box [—1,1] x [-1,1]. For size N x N
discretized images, we assume the random field €; ~ N(,0%In2), 7 =1,...,n.
Here R; denotes an element in the group of 3 x 3 rotations SO(3), and we define
the group action by?®

T
R? . ¢($1,$27.’II3) = ¢(Rj [Il T2 1’3] ) (4)
The rotations R;’s are not known since the molecules can take any orientation with

respect to projection direction. For the purpose of simplifying the exposition, we
shall henceforth disregard the CTF, by assuming

L=P(Rl¢)+e, j=1....n (5)

The presence of CTF is not expected to have a major impact on our main results,
and we will incorporate the CTF in a future work. Typically, it is convenient to
consider Fourier transform of the images, since by projection slice theorem, the
Fourier transform IAJ of I; gives a slice of the Fourier coeflicients a of the volume ¢:

e —

Ii(w1,22) = P(RT - ¢)(w1,72) + & = (RT - ¢) (w1, w2, 73) |ss—0 + & (6)

The goal of cryo-EM is to recover QAS from the Fourier coefficients of the projections

~

Ij(x1,22). While reconstructing ¢ given estimated R;’s amounts to solving a stan-
dard computed tomography problem, we wish to reconstruct (E directly from the
noisy images without estimating the rotations, for reasons detailed above. To this
end, we assume the rotations are sampled from a distribution p on SO(3), where
p: SO(3) — R is a smooth band-limited function. Then from the empirical moments
of the images {IAJ-};’:17 we jointly estimate the volume ¢T and the distribution p.

3Here we prefer to write the action of RT and correspondingly later we use Wigner U-matrices,
instead of R and Wigner D-matrices. While simply notational, these conventions allow us to cite
identities from [19] verbatim, which are in terms of Wigner U-matrices and not Wigner D-matrices.
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2. Representation of the volume, the distribution of rotations and the
images. As mentioned previously, the proposed method of moments consists of
fitting the analytical moments

m1 =Er,[P(RT-¢)], and my=Eg.,[P(RT-¢)@P (RT -¢). (7)
to their empirical counterparts m; and mo as appears in (1) after debiasing.”
Through fitting to the empirical moments, we seek to determine the Fourier volume

dg and also the distribution p. In this section, we present discretizations of 45 and p
by expanding them using convenient bases.

2.2.1. Basis for the Fourier volume (5 Since the image formation model involves
rotations of the Fourier volume ¢A>, it is convenient to represent g/b\ as an element of
a function space closed under rotations; in fact, this is the same as representing (/5
using spherical harmonics (see the Peter-Weyl theorem [19]):

¢ S

He@ Z Z ZAEmsF/s ) (9, ) (8)

=0 m=—L s=1

Here Y, are the (complex) spherical harmonics:

m 20+1)(L—m m
v; (G,w)—\/( e P ost) e )
with associated Legendre polynomials P;™ defined by:
m —1 m d€+m
Py = Sy D ey (10)

In Cartesian coordinates, spherical harmonics are polynomials of degree ¢. Without
loss of generality, the radial frequency functions Fy s should form an orthonormal
family (for each fixed £) with respect to x2dk, where s = 1,...,S(f) is referred
to as the radial index. Choices of radial functions suitable for molecular densities
include spherical Bessel functions [3]|, which are eigenfunctions of the Laplacian on
a closed ball with Dirichlet boundary condition, as well as the radial components
of 3-D prolate spheroidal wave functions [57].

We assume the volume is band-limited with Fourier coefficients supported within
a radius of size mN/2, i.e., the Nyquist cutoff frequency for the images I;’s dis-
cretized on a grid of size N x N (over the square [—1,1] x [—1,1]). Under this
assumption, the maximum degree and radial indices L and S(¢) in (8) are essen-
tially finite. Further details on the particular basis functions F ; and cutoffs L and
S(¢) that we choose to use are deferred to Section A in the appendix. Note that in
practice, as we target low-resolution modeling, one can choose to decrease either the
cutoff or the grid size to obtain more compact settings. The coefficients Ay, s € C
furnish our representation of QAS using spherical harmonics. Note that since ¢ is real
valued, its Fourier transform is conjugate-symmetric, which imposes restrictions on
the coefficients Ay, 5. The specific constraints are presented in Section 4.1.

The advantage of expanding (E in terms of spherical harmonics is that the space of
degree ¢ spherical harmonics is closed under rotation; in group-theoretic language,

4By the law of large numbers, m1 — m1 and ma2 — ma + 021 almost surely as n — 0o, so m1
is fitted to m1 and mo to Mo — o21. For notational convenience, we drop o2I in what follows,
either assuming o has been appropriately debiased already or o = 0.
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5

this space forms a linear representation of SO(3).> Thus the action of a rotation
on gg amounts to a linear transformation on the expansion coefficients Ay, s (with
a block structure according to ¢ and s). More precisely, fixing the vector space
spanned by {Y;"(0,¢)},__, for a specific ¢, the action of a rotation R on this
vector space is represented by the Wigner matriz Uf(R) € CRHD*(HD) (see [19,

p. 343]) so that:

V4
RT-Y"(x) =Y/ (Ra) = Y Up (R (), z€S% (11)
Y4

m/=—

In particular, the matrix U*(R) is unitary, with entries degree ¢ polynomials in
the entries of R [19]. For all Ry, Ry € SO(3) and ¢, the group homomorphism
property reads U‘(R; Ry) = U(R1)U*(Ry). In light of (11), 3-D bases of the form
{Fe,s(R)Y;"(0, @) }o.m,s have been called steerable bases.

2.2.2. Basis for the probability distribution of rotations p. As we shall see, when
expanding the volume in terms of spherical harmonics, the analytical moments (7)
involve integrating different monomials of {U'(R)}£_, with respect to the measure
p(R)dR. To this end, we assume the probability density p over SO(3) is a smooth
band-limited function (and in a function space closed under rotation) by expanding

P P
p(R)=>" > BpusUL,(R), ReSOM). (12)
p=0u,v=—p

By Peter-Weyl, these form an orthonormal basis for L?(SO(3)), and for higher p they
are increasingly oscillatory functions on SO(3). Thus, expansion (12) is analogous
to using spherical harmonics to expand a smooth function on the sphere, or using
Fourier modes for a function on the circle. The cutoff P € N is the band limit of
the distribution p; we shall see in the next section that since we use only first and
second moments it makes sense to assume P < 2L. Note that in the special case of
a uniform distribution, the only nonzero coefficient is By o0 = 1. Also, dR denotes
the Haar measure, which is the unique volume form on the group of total mass
one that is invariant under left action. Using the Euler angles parameterization of
SO(3), the Haar measure is of the form

AR = —L sin(8)dadBdy, (13)
872
27

where the normalizing constant ensures fSO(B) dR = szo fﬂﬂ-:O JZgdR=1.

2.2.3. Basis for the 2-D images. At this point, we discuss convenient representa-
tions for the images after Fourier transform, fj Similarly to volumes, it is desirable
to represent images using a function space closed under in-plane rotations, i.e.,
SO(2). By the Peter-Weyl theorem, this is the same as expanding using Fourier
modes, in a 2-D steerable basis:

R Q T(@) .
Ii(k, @) = Z Z ay ¢ fo,e(K)e"?. (14)
g=—Q t=1
Here the radial frequency functions f, ; (for fixed ¢) are taken to be an orthonormal
basis with respect to xdk, with x referred to as the radial frequency. Comparing

5Tn fact, this is an irreducible representation of SO(3) and varying ¢ these give all irreps.
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to expansion (8) (see Section 2.2), it makes most sense to set @ = L. Again,
owing to the Nyquist frequency for the discretized images I;, we may bound the
cutoffs T'(¢). Typical choices for f,; for representing tomographic images include
Fourier-Bessel functions [66] and the radial components of 2-D prolate spheroidal
wave functions [57]. Details on our specific choices are given in Section A.2 in the
appendix.

2.2.4. Choice of radial functions. For the finite expansions in (8) and (14) to ac-
curately represent the Fourier transforms of the electric potential and its slices,
one should carefully choose the radial functions Fp s and f;;, together with the
truncation-related quantities L, S(¢), @, and T(gq). In this work, we consider
F; s and fq; to be the radial parts of the three-dimensional and two-dimensional
PSWFs [57], respectively. In Appendix A, we describe some of the key properties of
the PSWFs, and propose upper bounds for setting L, S(¢), @, and T'(¢). In prac-
tice, band limits would be selected by balancing these expressivity considerations
together with the well-posedness and conditioning considerations of Section 3.

2.3. Low-order moments. In this section, we derive the analytical relationship
between the first two moments for the observed images {a; ;}; 4.¢, and the coeffi-
cients {Asm s}e,m,s and {Bpuv}pue of the volume and distribution of rotations.
These relationships will be used to determine {4 s}em,s and {Bpuv}puo via
solving a nonlinear least-squares problem.

To this end, we first register a crucial relationship between the coefficients of the
2-D images and the 3-D volume. By indexing the images in terms of R € SO(3)
(instead of j in (14)), we have:

Q T(q)

In(k, @)= % 3 ag fos(r)e™. (15)

g=—Q t=1

On the other hand, using the Fourier slice theorem and (11):

=~ ~
IR("€7 90) = RT ' (b(’%? 57 30) (16)
L S ¢
T my
= Z Z A@,m,s FZ,S(H) R )/é (5790) (17)
1=0 s=1 m=—/
L S ¢ ¢ -
=333 Y Ans P U (R)Y (G0). (1)
=0 s=1 m=—fm'=—¢

Multiplying (15) and (16) by f,+(x)e™"¥ and integrating against 5-rdrdyp, then
combining the orthogonality relation

1 ¢S] 27 ) »
g\/ / fql»tl (/f)elqlgofth,w (K)e L¥dords = 1‘112112 Lty =t,
0 0

with Yem'(g, ©) o e™'? tells us

L S®) ¢

alf, =33 Apms UL, (R) YL (19)

Z:|q| s=1m=—¢



METHOD OF MOMENTS FOR AB INITIO MODELING 9

where ’yg’: are constants depending on the radial functions:

27
fyg”; = / Yq —ige Fy s(K) fai(k)rdrde (20)

/e + 1) C—q) [
o (L+q)! P (0) /0 Fy s(k) fqi(k)kdk. (21)

From the term P/(0), we see ’yg”st = 0if ¢ # ¢ (mod 2) (and if |g| > ¢ then
7?,’; := 0). Also one may check W_’g’t = (—1)‘172’;. Equation (19) connects 2-D
image coefficients with 3-D volume coeflicients. We note we may as well choose
Q = L in (15), since if |g| > L then afj’t = 0. In practice, the coefficients 'ygy’;
are calculated via numerical integration over a closed segment, according to the
localization property of the PSWFs, see Appendix A and [39].

2.3.1. The first moment. In this section, from (19) the relationship between the
first moment of the images and the volume is derived. Taking the expectation over
R, and using the distribution expansion (12), we get

L S ¢
=220 D Amaf / J(R)p(R)AR (22)
(=|q| s=1 m=—¢
L S® ¢

=535 35 DD Db DIF ISy WU RS
¢=|q| s=1 m=—L p=0u,v=—p
min(L,P)

_1\m+
NSNS e Bt S en

£=|q| s=1 m=—/

The last equation follows from the orthogonality of the Wigner matrix entries [11,
p. 68]

— 1
U;;l n R)Ugv(R dR= —— ]léz ]lu:m ]lv:na 25
/30(3) ’ ( ’ ) 20+ 1 P ( )
and
Ulw(R) = (=1)"" U, _,(R). (26)

The first moment gives a set of bilinear forms in the unknowns {A¢ s }e.m,s and
{Bp,uv}puv, as seen in (24) for each (q,t) with |¢| < min(L, P) and 1 <t < T(q).

It is convenient to provide compact notation for the first moment formula. To
this end, we introduce:

1. Ay, a matrix of size S(¢) x (20 + 1) given by (As)s.m = Ae,m,s

2. B}, a vector of size 2¢ + 1 given by (8])m = (2_@2;” By —m,—q

3. '], a matrix of size T'(q) x S(¢) given by (I'});,s = (—1)‘1721”;.
Item 2 is zero if ¢ < |g| and item 3 is zero if either ¢ < |g| or £ # ¢ (mod 2). In this
notation, the first moment formula (24) (with fixed ¢ and varying t) reads:

— (El" . T9 Ay B2, 27
ma(q) ( [aq’t])t:17~»-,T(q) ||Z<:€<L P 0
ZE q(mocTZ)

Here m;(q) € CT(@ is nonzero only if |g| < min(L, P).
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2.3.2. The second moment. Higher moments require higher powers of the image
coefficients, and so in the case of the second moment and for |q1], |g2| < L, we have

S(t2) £y

L L
Er |:a¢}1%17t1aqR;7t2:|: Z Z Z Z Z Aélﬂ”laslfyglljzi (28)

1=1 mi=—{1 loy=|qz| s2=1 ma=—£>

X Ay 212 / UL (RUZ, . (R)p(R)R  (29)

o~
s
o
=}
5
wn

where

P P
/ vt (RS (Rp(RAR =YY By, / Ul (RUL, . (R)U? ,(R)dR.

p=0u,v=—p

(30)

The product of two Wigner matrix entries is expressed as a linear combination
of Wigner matrix entries [19, p. 351],

£i+Lo
Ug’l}l,ql (R)U'If'fQ,QQ (R) = Z CZB (617 627 m17 m27 ql’ q2) U’If’?lerg,’nlJrnz (R)7 (31)
l3=[l2—{1]

where

Cuy (01, b2, m1,m2, q1, q2) = C (€1, ma; la, malls,m1 + m2)C (€1, q15 02, 2|03, 1 + q2),

(32)
is the product of two Clebsch-Gordan coefficients. This product is nonzero only if
(41, L2, £3) satisfy the triangle inequalities. Substituting (31) into (30), and invoking
(25) and (26), we obtain:

/ Unty.a (R)Us, g (R)P(R)AR = 3 Cp (b1, (2,1, m2, 1, 0)
g
(_1)m1+m2+Q1+Q2

2p+1

where the sum is over p satisfying max(|¢; — €2, |m1+ma|, |¢1 +¢2|) < p < min(¢; +
U5, P). Now substituting into (28) gives:

(33)

X pr—m1—m2,—l11—¢Z2

R R _ q1,t1 . q2,t2 q1+q2
Er [thtlaqzﬂfz} - Z Aelamlvsl A€27m2,82 Ver,s1 Ve, ts (=1 X
£1,51,m1,€2,52,m2
_1)m1+m2
E B ,7m17m2,7q17qQCp(£17€27mlvaaqth) (34)
- 2p+1

where the first sum has the range of (28) and the second sum has range of (33).
The second moment thus gives a set of polynomials in unknowns {A¢ m s te,m,s and
{Bpu}puwv, quadratic in the volume coefficients and linear in the distribution
coefficients, namely, the expression in (34) for each (qi1,%1,q2,t2) with |¢1| < L,
lgo|] < L, |g1 +qo| < P, 1 <t3 <T(q1) and 1 <ty < T(gz). Also, it may be
assumed that P < 2L, since By, with p > 2L does not contribute in either (34)
or (24).

As for the first moment, it will be convenient to rewrite the second moment in
compact notation. Let us further introduce:
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4. B{V, a matrix of size (2£; + 1) x (2{5 + 1) given by
) _1ymitma
(Bgll’gj)ml’m"‘ - Z By, —mi—ma,—q1—g2Cp ({1, L2, M1, Mo, Q17q2)2)pT7
p

where the sum is over max(|¢; — £a|, |m1+mal, |¢1 +¢2]) < p < min(4y + 43, P)
and C,, denotes the product Clebsch-Gordan coefficients in (32).

Ttem 4 is zero if either ¢1 < |q1] or ¢o < |ga| or max(|¢; — 2], ]|q1 + g2|) > P. Now
for fixed q1, g2 and varying t1,t2, the second moment (34) neatly reads:

. R R _ q1 q1,92 AT q2\T
mQ(qqu) = (E[a’ql,tlaqg,tg})t1:17...7T(q1) - z : Ffl Ael B&,Zg Afz (Féz) :
t2=1,....T(q2) L1,y |q1| <6 <L
lg2]<€2<L

£1=q1 (mod 2)
l2=q> (mod 2)
|e1—£2| <P

(35)

Here ma(q1, q2) € CT@)*T(22) is nonzero only if |q1], |¢2| < L and |q1 + 2| < P.

3. Uniqueness Guarantees and Conditioning. Here, we derive uniqueness
guarantees and comment on intrinsic conditioning for the polynomial system de-
fined by the first and second moments, (27) and (35).

Analysis comes in four cases, according to assumptions on the distribution p:
whether p is known or unknown; and if p is invariant to in-plane rotations, i.e.,
p depends only on the viewing directions up to rotations that retain the z-axis.
This invariance restricts p to be a non-uniform distribution function over S?, see
subsection 4.2. If p is not invariant to in-plane rotations, we say p is totally non-
uniform as a distribution on the entire SO(3). Throughout, our general finding is
well-posedness, i.e., the molecule is uniquely determined by first and second mo-
ments up to finitely many solutions, under genericity assumptions, for a range of
band limits L and P. In the case of a known totally non-uniform distribution, we
prove the number of solutions is 1, and give an efficient, explicit algorithm to solve
for {Agm.s}. For all cases, sensitivity of the solution to errors in the moments is
quantified by condition number formulas.

3.1. Known, totally non-uniform p. For this case, we have a provable algo-
rithm that recovers {4y, s} from (27) and (35) (up to the satisfaction of technical
genericity and band limit conditions). Remarkably, while the polynomial system is
nonlinear (consisting of both quadratic and linear equations), our method is based
only on linear algebra. The main technical idea is simultaneous diagonalization bor-
rowed from Jennrich’s well-known algorithm for third-order tensor decomposition
[31], that was also used recently for signal recovery in MRA [46].

Theorem 1. The molecule {A¢.m s} is uniquely determined by the analytical first
and second moments, (27) and (35), in the case the distribution {B, .} is totally
non-uniform, known and P > 2L, provided it also holds:

(i) The matrices By := Bff and By = Bf:;L of size (2L + 1) x (2L + 1) both
have full rank, and B1B2_1 has distinct eigenvalues. Likewise B3 1= Bf:i’f:i
and By = ij:f_ﬁ of size (2L —1) x (2L —1) both have full rank, and B3B;*

has distinct eigenvalues.
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(ii) Writing B1 By " =t Q12D12Q15 and B3B! =: Q34D34Q§41 for eigendecompo-
sitions, the vectors big := Qf;ﬁf of size 2L 4+ 1 and bgy 1= Q§415£:11 of size
2L — 1 both have no zero entries.

(iii) For ¢ < L — 2, the matriz Bz’f of size (20+ 1) x (2L + 1) has full row rank.

(iv) For all £, the matriz Ag of size S(€) x (20 + 1) has full column rank.

(v) For ¢ > |q| with £ = q (mod 2), the matriz I'} of size T(q) x S(£) has full
column rank.

Moreover in this case, there is a provable algorithm inverting (27) and (35) to get
{Agm,s} in time O (L? - T?), where T := max, T(q).

Proof. For this proof, we need some general properties of the Moore-Penrose pseudo-
inverse, denoted by T, as in [§]. In particular, if Y € C™*"2 has full column rank
and Z € C"*"s has full row rank, then Y'Y = I,,,, ZZt = I,,,, (Y2)! = ZiY1,
and also, pseudo-inversion and transposition commute.

Proceeding, the second moment with ¢ = L, qs = L tells us:

my(L,L) = TPALBi(AL)T(TF)T e cTExTd), (36)
and with ¢ = L,qy = —L:

ma(L,—L) = TEALBy(AL)"(T")T e ¢TI (37)
where T'F = (—1)!T;%. We compute (—1)* times the Moore-Penrose psuedo-

inverse of (37) and then multiply this on the right of (36). Because 'Y and Ay, are
each tall with full column rank by assumptions (v) and (iv), respectively, and Bj is
invertible by (i), properties of the pseudo-inverse imply:

(1) ma(L. Lyma(L,~L)! = (PEALBy(An) ()" (TEALBa(AL) (TH)T)'
= (PLAL)Bi(AL) T (TE) (P T (AL) T By M AL
= (TLAL)B1By '(TLAL)
= (M7 AL)Q12D12Q1, (TTAL)T

= (F%ALQm) Dis <F%~J4LC212)Jf ; (38)

where we have substituted in an eigendecomposition B B5 b= Q12D12Q1_21. As
BBy ! has distinct eigenvalues by condition (i), we see that the eigenvectors of
(=1)Emyo(L, L)mo(L, —L)" are unique up to scale and given as the columns of
IEALQq2. Thus, TEALQ12 = XA, where X consists of eigenvectors of (38) and A
is an unknown (as yet) diagonal matrix.

To disambiguate the scales A, we compare with the first moment for ¢ = L:

mi(L) = TEALBE = XAQT BE = X Abys. (39)

Multiplying on the left by XT gives XTm; (L) = Ab;2, an equality of matrix-vector
products in which the only unknown is the diagonal matrix A. By the full support
of b1z (assumption (i7)), this determines A. Substituting into XA, we now know
I'EALQq2. Multiplying on the left by Fgr and on the right by Q5" tells us Af.
Backward marching, the second moment with ¢; = L — 2 and ¢o = L reads:

ma(L —2,L) = TE 24, BE P (AL)T(CE)T + T34, 5Br 21 (AT (THT.
(40)
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At this point, we know the first term, and thus the second term gives us Ay _s by
appropriately multiplying by pseudo-inverses (BffLQ’L is right-invertible by (4i%)).

Then, we may look at the second moments with ¢y = L — 4 and g2 = L to
similarly determine A;_4, and so on, to 4 or A; (depending on the parity of L).
Analogous reasoning and usage of the assumptions gives A;_1, Ar_3, ...

We have provided an algorithm to solve for each Ay, which proves uniqueness
of A, as a byproduct. The time complexity of the algorithm is O(L*T®) since
it involves O(L?) matrix operations —~matrix multiplications, pseudo-inversions or
eigendecompositions — of matrices whose dimensions are all bounded by T. (Note
that back-substituting to solve for A, involves O(L—¢) such matrix operations.) O

We remark that condition (4v), which just involves the choice of radial bases,
appears to always hold for PSWFEs using the cutoffs proposed in Appendix A. Con-
ditions (%), (7) and (44) just involve the distribution, and are full-rank, spectral and
non-vanishing hypotheses. Condition (i) just involves the molecule and in partic-
ular requires S(L) > 2L + 1, which limits L to be less than the Nyquist frequency
where S(Lnyquist) = 1.

Our algorithm goes by reverse® frequency marching, as we solve for top-frequency
coefficients from the second moment (35) where ¢1,q2 = +L,+(L — 1) via eigen-
vectors (similar to simultaneous diagonalization in Jennrich’s algorithm), and then
solving for lower-frequency coefficients via linear systems. While our conditions
in Theorem 1 are certainly not necessary, fortunately for generic” (A, B), those
conditions are satisfied, so that the method applies:

Lemma 2. Condition (i) in Theorem 1 holds for Zariski-generic {Bpyv}. If
S(L) > 2L+ 1, then condition (iii) holds for Zariski-generic {Ag . s}. At least for
L <100, conditions (i) and (iii) hold for Zariski-generic {Bp y.v}-

Proof of Lemma 2. Conditions (7)-(iv) are all Zariski-open, i.e., their failure implies
{Agm.s} or {Bp v} obey polynomial equations. As such, to conclude genericity, it
suffices to exhibit a single point {Ag s} or {Bpu,v}, where the conditions are met.
For conditions (), (i), we verified the conditions hold at randomly selected points
on computer up to L < 100. Conditions (i4) and (iv) are obviously generic. O

By uniqueness, A is a well-defined function of the first and second moments m;
and mo almost everywhere. It is useful to quantify the “sensitivity” of A to errors
in my,mo, as, e.g., in practice one can access only empirical estimates m; and ms.
An a posteriori (absolute) condition number for A is given by the reciprocal of the
least singular value of the Jacobian matrix of the algebraic map:

mp : {Agm,st— {mi(q), ma(q1,q2) }- (41)

Throughout this section, all condition formulas are in the sense of [16, Section 14.3],
for which the domain and image of our moment maps are viewed as Riemannian
manifolds. To this end, when p is unknown, dense open subsets of the orbit spaces
{(4, B) mod SO(3)}, {A mod SO(3)}, {B mod SO(3)} naturally identify as Riem-

mannian manifolds (for the construction, see [15]).

6Reverse frequency marching is natural given the sparsity structure of (35): only Ay, and Ay,
with £1 > |q1|, ¢1 = ¢1 (mod 2) and £2 > |g2|, 2 = g2 (mod 2) appear in the moments ma(q1, g2)-

"This means generic with respect to the Zariski topology [30]. Equivalently, there is a non-zero
polynomial p in A, B such that p(A, B) # 0 implies the conditions in Theorem 1 are met.
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3.2. Known, in-plane uniform p. For this case, given a particular image size
(and other image parameters), together with band limits L and P, we have code®
which decides if, for generic A and B, the molecule A is determined by (27) and
(35), up to finitely many solutions. The basis for this code is the so-called Jacobian
test for algebraic maps, see Appendix B. Below is an illustrative computation.

Computational Result 3. Consider 43 x 43 pixel images, and the following pa-
rameters for prolates (representative values): a bandlimit ¢ (see Appendix A) chosen
as the Nyquist frequency, 2-D prescribed accuracy (95) set to e = 1073 and 3-D
truncation parameter (75) to be 6 = 0.99 . We varied band limits L in (8) and P
in (12), and randomly fixed (12) to give a known in-plane uniform distribution. For
each (L, P), we computed the numerical rank of the Jacobian matrix of the polyno-
mial map mp of (41) at a randomly chosen A, with random B. The Jacobian was
convincingly of full numerical rank for a variety of band limits, as seen in Table 1.
Cases where the gap between the two least singular values of the Jacobian matrix
exceeds a threshold of 10® are set as indecisive numerics, and appears in the table
as ®. Note that if the rank was calculated in exact arithmetic, this gives a proof
that for generic (A, B) generic fibers of the map mp consist of finitely many A4; i.e.,
first and second moments (with known in-plane uniform distribution) determine
the molecule up to finitely many solutions. For fibers and related definitions, see
Appendix B.

Again, the sensitivity of A as a locally defined function of (27) and (35) is quan-
tified by the reciprocal of the least singular value of the Jacobian matrix of mpg.

3.3. Unknown, totally non-uniform p. In this case, it is important to note that
solutions come in symmetry classes. If (A, B) have specified moments, then so too
for (R- A, R- B) for all R € SO(3), that is, we may jointly rotate the molecule and
probability distribution and the moments are left invariant. So, solutions come in
3-dimensional equivalence classes, and we are interested in solutions modulo SO(3).

That said, we have code which accepts a particular image size (and other image
parameters), together with band limits L and P. The code then numerically decides
which of the following situations occur: i) for generic (A, B), both A and B are
determined by (27) and (35) up to finitely many solutions modulo SO(3); i) for
generic (A, B), the molecule A is determined by (27) and (35) up to finitely many
solutions modulo SO(3), whereas the distribution B has infinitely many solutions;
ii1) for generic (A, B), both A and B have infinitely many solutions modulo SO(3).
Note these cases are (essentially) exhaustive, since if B is determined so is A in the
regime of Theorem 1. Moreover, we noticed the case ii) really does arise, e.g., this
seems to happen when P = 2L.

Computational Result 4. We keep the running example of 43 x 43 pixel images,
and the prolates parameters of a bandlimit ¢ chosen as the Nyquist frequency, 2-D
prescribed accuracy (95) set to € = 1072 and 3-D truncation parameter (75) of
d = 0.99. We varied band limits L in (8) and P in (12). For each (L, P), we
computed the numerical rank of the Jacobian matrix of the polynomial map

m: {Aé,mq,sv Bp,um} = {ml(Q)7 mQ(qLQQ)}' (42)

8 Available in GitHub: https://github.com/nirsharon/nonuniformMoM /JacobianTest.
9The value of § means we allow only 1% of the energy to be outside the ball, and is chosen to
best model a molecule structure which is assumed to be mostly supported inside a ball.
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at a randomly chosen point in the domain. The numerical rank of the Jacobian
convincingly equaled three less (that is d; = 3, see Appendix B) than full column
rank for a variety of band limits, see Table 2. Cases where the gap between the
third and fourth least singular values of the Jacobian matrix exceeds a threshold
of 108 are set as indecisive numerics, and appears in the table as . If the rank
were calculated in exact arithmetic, this furnishes a proof that generic fibers of the
map m consist of finitely many SO(3)-orbits; that is, first and second moments
determine both the molecule and the totally non-uniform distribution up to finitely
many solutions (modulo global rotation).

For band limits L and P such that generically there are only finitely many so-
lutions for (A4, B) mod SO(3), the sensitivity of (A4, B) mod SO(3) as a (locally
defined) function of (27) and (35) is quantified by the reciprocal of the fourth least
singular of m. For band limits such that generically there are only finitely many
solutions for A mod SO(3), the sensitivity of A mod SO(3) as a locally defined of
(27) and (35) is quantified by the reciprocal of the fourth least singular value of

PaJac(m|ap)f (43)

where 1 denotes pseudo-inverse and P4 is the differential of (A4, B) — A mod SO(3).
We compute (43) by analytically differentiating (27) and (35), evaluating at (A, B)
and place as diagonal blocks of a matrix, and finally applying pseudo-inverse which
is SVD-based.

3.4. Unknown, in-plane uniform p. Again in this case, solutions come in 3-
symmetry classes, orbits under the action of global rotation, so we are interested
in solutions modulo SO(3). We have code which accepts a particular image size
(and other image parameters), together with band limits L and P, and numerically
decides if for generic (A, B), both A and B are determined by (27) and (35) up to
finitely many solutions modulo SO(3), or if there are infinitely many solutions. We
did not find parameters giving a “mixed” result as in case i) above.

Computational Result 5. For 43 x 43 pixel images, and the parameters for
prolates (representative values): a bandlimit ¢ chosen as the Nyquist frequency,
2-D prescribed accuracy (95) set to € = 1072 and 3-D truncation parameter (75)
of § = 0.99. We varied band limits L in (8) and P in (12), restricting (12) to an
in-plane uniform distribution. For each (L, P), we computed the numerical rank of
the Jacobian matrix of the polynomial map:

m: {A¢m,s, Bpuo} — {ml (q), mg(ql,qg)}. (44)

at a randomly chosen point in the domain. The numerical rank of the Jacobian
convincingly equaled three less than full column rank for a variety of band limits,
see Table 3. Cases where the gap between the third and fourth least singular values
of the Jacobian matrix exceeds a threshold of 10° are set as indecisive numerics,
and appears in the table as . If the rank was calculated in exact arithmetic, this
furnishes a proof that generic fibers of the map m consist of finitely many SO(3)-
orbits; that is, first and second moments determine both the molecule and the in-
plane uniform distribution up to finitely many solutions (modulo global rotation).

For band limits L and P such that generically there are only finitely many so-
lutions for (A, B) mod SO(3), the sensitivity of (A, B) mod SO(3) as a function
of moments is quantified by the reciprocal of the fourth least singular of m. For
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example, in the P = 2 row of Table 3, when evaluating at random (A, B), this
worked out to:

1.98x10%, 47.1, 209, 2700, 4.66x10% 1.17x10%° 6.02x107, 9.10x108.
Further, in the L = 4 column of Table 1, evaluating at random (A, B) gave:
1.44 x 10*%,  2.15 x 10'®, 209, 154, 1360.

In practice, we run this refined Jacobian test (takes < 1 minute on a standard
laptop) to identify well-conditioned band limits L and P before we attempt non-
convex optimization.

TABLE 1. Uniqueness for inverting the first two moments in the
case of a known, in-plane uniform p, according to band limits.
Generically finitely many solutions for A is denoted by v/, infin-
itely many solutions for A is denoted by X, and indecisive numerics
is denoted by .

L=2 L=3 L=4 L=5 L=6 L=7 L=8 L=9 L=10
P=0 X X X X X X X X X
pP=1 X X ? 4 4 4 4 4 v
P =2 X v v 4 4 v 4 4 v
P=3 X v v 4 v v v v v
P=4 X v/ v 4 4 v v v v

TABLE 2. Uniqueness for inverting the first two moments in the
case of an unknown, totally non-uniform p, according to band lim-
its. Generically finitely many solutions for (A, B) mod SO(3) is
denoted by v/, finitely many solutions for A mod SO(3) but infin-
itely many solutions for B mod SO(3) is denoted by ~, infinitely
many solutions for A mod SO(3) is denoted by X, and indecisive
numerics is denoted by .

L=2 L=3 L=4 L=5 L=6 L=7 L=8 L=9 L=10

e~ ilaBiav
NN SN X
NN SN SN %
AN N
AN NN
NN
NN NN X
NN NN x
NN NN x
NN N 9 X

i

4. Numerical Optimization and First Visual Examples. After studying the
theoretical properties of the polynomial system which is defined by the first two
moments, we discuss in this section aspects of numerically inverting the polynomial
map via optimization.
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TABLE 3. Uniqueness for inverting the first two moments in the
case of an unknown, in-plane uniform p, according to band lim-
its. Generically finitely many solutions for (A, B) mod SO(3) is
denoted by v/, infinitely many solutions for A mod SO(3) and
B mod SO(3) is denoted by X, and indecisive numerics is denoted
by &

h
I
()
h
I
w
h
I
S
h
I
ot
h
Il
=)
h
Il
\]
~
Il
0]
h
Il
NeJ
h
I
—_
o

e Aiavilav e Eiae
Lewll
NN N X X%
NN N X% X%
NN N X X
NN N X X
NN N\ X X
NN WX %
R
R

4.1. Incorporating natural constraints in optimization. When determining
the coefficients A = {Ay 1 s }e,m,s and B = {B} y v }p.uv, the search space has to be
restricted in order to ensure the coefficients stem from some physical volume and
density.

4.1.1. Constraints on the volume. To ensure the volume ¢: R3 — R is a real-valued
function, one has to ensure its Fourier transformation ¢ : R* — C satisfies conjugate
symmetry g?)(/{, 0,p) = QAS(/{, m — 0,7+ ). That is, in spherical coordinates,

L ¢ S L ¢ S
Z Z Z st 9 SO)FZS = Z Z ZAZ,m,szzm(ﬂ-f977T+90)F€,s(’<5)'
=0 m=—/ s=1 =0 m=—/ s=1

Assuming the basis {F} } is a set of real-valued functions, along with the facts that
Y/ (0,¢) = (=1)"Y,™(0,¢) and Y,"(m — 0,7 + ¢) = (— 1)£}’£m(9,¢), we get

ZA@ ms _mY e(prs—ZAemS (9780)ny5

£,m,s l,m,s

This further implies
Apms(—1)7™ = Ag—m s(—1)" (45)

Having such relationships, {A¢m.s}e.m,s can thus be written in terms of some real
coefficients {cv m s }o,m,s as:

- l
arms — (=) s, m >0,

AZ,m,s = 7;laé,’m,s m =0, (46)
(_1)l+m0‘€,m,s + iaf,m,37 m < 0.

The latter means that instead of solving a complex optimization problem in terms
of the coefficients Ay, s, one can work with the real coefficients oy, s of (46).
Otherwise, the equality constraints (45) are required.
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4.1.2. Constraints on the density. Similarly, to ensure the density p being a real-
valued function, we need to ensure

P p 14 P p p
S BpunlU (B) =Y > BpunUhu(R). (47)
p=0u=—pv=—p p=0u=—pv=—p
The fact that UL, (R) = (=1)"""U",, _,(R) leads to
Bpuw = (=1)"""Bp, —u,—v- (48)

Again, from such relationships, it can be shown that an alternative to (48) can be
written in terms of real coefficients By v

ﬂp,u,’u + (*1)1‘7%61),—%—@’ (uv ’U) lex (Ov O)v
Bp,u,v = ﬁp,0,07 (U,U) = 07 (49)
Bp,uﬂ) - (_1)u_viﬂp,7u,7va (U,U) <lex (07 0)

Here, <jex is the lexicographical order, that is (u1,v1) <ex (u2,v2) iff uy < us or
both u; = ug and v; < vs.

Two additional constraints are required. First, the integral of any density func-
tion is one. To ensure such a correct normalization, we simply let

P p P
Bo,0,0 = /Z > > BpuwUL,(R)dR =1, (50)

p=0u=—pv=—p

which means it is no longer considered as unknown. Finally, the nonnegativity of
the density is ensured via a collocation method, that is requiring

p(Ri) =Y BpuwUL,(Ri) >0, (51)

p,u,v

for R;’s on a near uniform, refined grid on SO(3). While (51) does not prevent
the density from becoming negative off the SO(3) grid, requiring the density to
be non-negative entirely on SO(3) leads to an optimization problem that is much
more costly to solve in practice. Note that we do not enforce positivity of p by
requiring it to be a sum-of-squares, as, e.g., already in the case of an in-plane
uniform distribution on the sphere S? C R?, not all nonnegative polynomials may
be written as a sum-of-squares, see Motzkin’s example when P = 6 [43].

4.2. Accommodating invariance to in-plane rotations. While molecules typi-
cally exhibit preferred orientations, there is no physical reason why molecules should
have preferred in-plane orientations. In this section, we focus on the case of non-
uniform rotational distributions invariant to in-plane rotations since these distribu-
tions better model real cryo-EM data sets.

For simplicity, we fix the image plane as perpendicular to the z-axis. We add
the prior that the density for drawing R equals the density for drawing Rz(a),
for all R € SO(3) and all rotations z(«) of a € R radians about the z-axis. This
assumption reads

p(R) =p(Rz(a)) ReSO(3), acR. (52)
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Therefore,
Z Bypuw Uiy (R) = Z By uw Ul (R2()) (53)
[ RTRY] P,V
= > By (U@ ((0)) (54)
p,u,v

Here we used the group representation property of UP. Checking explicitly the
action of z(«) on degree p spherical harmonics,

U (z(a)) = diag(e™"?, eTipDa  eipay, (55)
So continuing the above,
> BpuwUL(R) =Y Bpuw UL, (R)e™, ReSO(B), acR. (56)
p,u,v p,u,v

This is equivalent to B, ,,, = 0 for v # 0 where v ranges over —p,—p+1,...,p. To
sum, we have found that in-plane invariance is captured by:

dp(R) =) ByuoUly(R) dR (57)

p,u
For a sanity check, a distribution with in-plane invariance should sample a rotation
with density only depending on which point maps to the north pole. Namely, p(R)
should only depend on the last column of R, that is, R(:;3) = Re3. Indeed, this

holds as Ul (R) = (—1)"y /555 Y (Re3) [19, Equ. 9.44, Pg. 342].

Restricting the expansion of p as above, we easily see the first moment is inde-
pendent of . It is now merely a linear combination of basis functions Fy s(x). Like-
wise, for the second moment, angular dependency is only on the difference ¢1 — @2,
meaning it is a linear combination of basis functions e™™(¥1=%2) Fy (1) Fy, s, (K2).
Thus, in subsection (3.4), we have the following polynomial map, now with fewer
B variables and fewer invariants than in subsection (3.3)

m: {Aem,s, Bpuo} — {ER[a(IftL ER[aR alt 1} (58)

q1,t17—q1,t2

4.3. Direct method — known totally non-uniform distribution. For the
“easy” case of a known, totally non-uniform distribution, we have implemented
the provable algorithm in Theorem 1. The method’s performance is illustrated by
way of an example. As the ground truth volume, we use EMD-0409, that is, the
catalytic subunit of protein kinase A bound to ATP and IP20 [32], as presented at
the online cryo-EM data-bank [38]. The volumetric array’s original dimension is
128 voxels in each direction, which we downsampled by a factor of three to 43. The
volume was expanded using PSWFs with a band limit ¢ chosen to be the Nyquist
frequency and 3-D truncation parameter (75) of § = 0.99. Before downsampling,
the full expansion consists of degree L = 40; with downsampling and proper trun-
cation, we aim to recover the terms up to degree L = 7. For the known totally
non-uniform distribution, we took P = 14 (per Theorem 1), and then formed a
particular distribution using a sums-of-squares. Precisely, we formed a random lin-
ear combination of Wigner entries up to degree 7, multiplied this by its complex
conjugate, invoked (26) and (32) to rewrite the result as a linear combination of
Wigner entries up to degree 14, repeated for a second square, added, and finally
normalized to satisfy (50). Then, with the distribution known as such, the volume
contributes 1080 unknowns (without discounting for (45)). Providing the algorithm
with my and ms, our method took 0.24 seconds on a standard laptop, and recovered
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the unknowns A up to a relative error in £2 norm of 5.4 x 107!, Visual results are
in Figure 2.

<

View 1 View 2

FIGURE 2. Two views of the reconstruction as provided by the
algorithm of Theorem 1 to the case of known, totally non-uniform
distribution. The ground truth volume appears on the right of each
pair (in gray), whereas the lower degree estimation resulting from
the downsampled volume appears on the left (in yellow). Note that
the estimation is visually identical to the truncated volume, and it
thus illustrates the effect of truncation.

4.4. Setting up a least-squares formulation. For the cases where we lack a
direct method, we formulate the problem in terms of minimizing a least-squares
cost function. First, we define the unknowns of our optimization process to be
the coefficients of the volume A = {4;,, s} and distribution B = {B) »}. The
explicit formulas (27) and (35) provide means to write the low-order moments (7) as
functions of our unknown coefficients, that is m; = m;(A, B) and mg = ma(A, B).
In practice, given data images, one estimates the low-order statistics using the
empirical moments m; and my of (1), but now given in PSWFs coordinates
1 < 1 < )
(ml)q,t = g Z a’-z],t and (ﬁl2>q1,t1,q2,tz = E Z a’fh,tla’fh,tz’ (59)
j=1 j=1
The connection between the empirical moments and their analytical formulas as
functions of our unknowns gives rise to a nonlinear least-squares

Q T(a) 9
min >y (ml(A B)gst — (ml)q,t)
T g=—-Q t=0
Q T(q) 9
+ A Z Z (m2 (Av B)Q17t17Q27t2 - (ﬁlQ)ql,tl,q27t2) ) (60)
q1,92=—Q t1,t2=0

where ) is a parameter chosen to balance the errors from both terms. In particular,
two main considerations determine the value of A. First is the number of elements in
each summand. Namely, the second moment includes many more entries than the
first moment. Therefore, without the effect of noise, A is set to be the ratio between
the number of entries in first moment and the second moment. The second factor
to balance is the different convergence rates of the empirical moments, see also [1].
The nonlinear least-squares (60) may be adjusted to incorporate the constraints on
{Aim,s} and {B, .} that ensure ¢ is a real-valued volume and p a probability
density.
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We remark that it is interesting to consider pre-conditioners, or more intricate
weighings, in the formation of the nonlinear least-squares cost (60). Such might
alleviate high condition numbers observed in Section 3, and potentially accelerate
optimization algorithms. While we have not tested a pre-conditioner in optimization
experiments yet, one possibility would be to consider the following normalized cost:

Q T(a) N ,
min 3 > (malA, By — (n),,) [ (),
T g=—-Q t=0
T(q) 9 )
+A Z Z ( (4, B) ’117t17q27t2 o (mZ)chtthtz) / (mz)th,thqz,tz' (61)
q1,92=—Q t1,t2=0

Effectively, (61) scales each polynomial in (A, B) given by m; and mq to take value 1.

4.5. Complexity analysis of inverting the moments via gradient-based
optimization. Before moving forward to further numerical examples, we state the
computational load of minimizing the least-squares cost function (60). It is worth
noting that in many modern ab initio algorithms, like SGD [48] and EM [52], the
runtime of each iteration is measured with respect to the size of the set of data
images, which can be huge. In our approach, we only carry out one pass over the
data to collect the low-order statistics. In here, we assume the empirical moments
are already given, and so the complexity of each iteration is merely a function of
the size of the moments or equivalently depends on the size and resolution of the
data images, as reflected by their PSWF representations.

Many possible algorithms exist to minimize the least squares problem (60), for
example direct gradient descent methods, such as trust-region [47], or alternating
approaches, including alternating stochastic gradient descent. Here, we present the
complexity of evaluating the cost function and its gradient, regardless of the specific
algorithm or implementation one wishes to exploit.

For simplicity, denote by S and T two bounds for the radial indices S(¢) and
T'(q) of the 3-D and 2-D PSWF expansions, respectively. Typically, it is sufficient
to take S = S(0) and T = T'(0), as radial degree decreases as overall degree ()
increases.

Starting from the first moment (27): with a fixed ¢ we have to apply two
matrix-vector products in a row which requires an order of O (S¢+ TS) arith-
metic operations. The variable ¢ increases up to L, which sums up to a total of
L-O(St+TS) = O(LS(L+T)). The gradient uses the precomputed remain-
der my(A, B) — (m1) and is calculated by two terms with similar complexity as
the above. Namely, the cost of both evaluation and gradient calculations is again
@ (LS (L+ T))

For the second moment, we follow (35): establishing I'f A, is done in O (T'SL)
and applying the product in O (TLQ). Overall, the evaluation is bounded by

0 (L2(TSL + TL2)) 0 (TL3(S + L)) . (62)

The gradient is a bit more complicated, in short, there are two terms for the volume
derivatives and one term for the distribution part, with the precomputed remainder
ma(A, B) — (m2) we get an overall complexity of O (L2S(L? +T? + TL)). In sum-
mary, the first moment requires third-order complexity with respect to the different
parameters where the second moment requires a total power of five.
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Finally, the parameters 7', S, and L can be described by the PSWF representa-
tion: the length L of the 3-D PSWF expansion and the bound on the radial indices S
are related to the parameter c of sampling rate, and are bounded according to (78).
Additional bound, now on the radial 2-D expansion T', uses the accuracy parameter
e of the 2-D images and the above L as given in (95). For more details on those
parameters, see Appendix A.

4.6. Remark on using semidefinite programming (SDP) relaxation. Solv-
ing the nonlinear least-squares problem in Eq. (60) could suffer from slow conver-
gence because the cost function is a polynomial of degree 6. We remark that in
principle, it is possible to apply a semidefinite programming relaxation to facilitate
the optimization. For convenience, let the second moments ma(A, B)g, t,.q2,t, b€
summarized as

ma (Aa B)q17t17q2,t2 = untl,qmtz (AAT & B) (63)

where Gy, ¢, 42,1, (-) is a linear operator that captures the RHS of Eq. (34). If we
define

A=AAT,
the optimization problem can be written as

Q T(q)

Z Z (m1 (A,B)g. (ml)q,t)Q

min
AB 0
A= AAT I= =

T(q)

+A Z Z (GQ1 taata (A ® B) — (1 )‘Ilvtl*q%t?)Q '

q1,92=—Q t1,t2=0

To deal with the non-convex constraint A = AAT, we propose the following relaxed
constraint

A AAT, (64)
which gives the following non-linear least squares problem

Q T(a)

i, 303 (Bl ()

Ar AAT I=-Q =0
T(q)

A Z Z (GQI t1,a2,t2 (A ® B) ( )q1,t17Q27t2)2 ’ (65)

q1,92=—Q t1,t2=0

Comparing with (60), although (65) is still a non-convex problem, the degree of
the polynomial in the cost function of (65) is 4 (instead of 6). Furthermore, one
can solve (65) efficiently by minimizing (4, A) and B in an alternating fashlon
Therefore if at the optimum A ~ AAT in spite of the relaxation (64), solving (65)
can be advantageous.
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We remark on the special case when the density coefficient B is given. In this
situation, one can consider an SDP relaxation

i Tr(A 66
min r(A) (66)
A=-AAT

subject to ‘ml(AB)q’t — (M) S €qpy 0<t<T(q), —-Q<q=<Q,

‘G¢11,t17q27t2 (A ® B) - (ﬁLQ)ql,tl,qz,tQ
0<t1 <T(q1), 0<t2<T(q2), —-Q<aq,q2<Q.

The nuclear norm minimization strategy as in matrix completion [17] is used
to promote A to be of rank-1. We test the SDP in (66) when given a fixed By.
We generate By for a non-uniform distribution from a 6-th degree nonnegative
polynomial over the rotation group, i.e. letting P = 6. We generate a volume with
random coeflicients Ag with L = 3. Noise is added to the moments in the following
manner:

< €q1,t1,q2,t25

(m1),,, = m1(Ao, Bo)gt +|m1 (Ao, Bo)q,t| Zq,ts
(ﬁZ)ql,tl,q2,t2 = GQ1J1,¢J2¢2 (AOAS ® BO) +‘GQ1,t1’qz,t2 (AOAS ® B0)| Zq1,t1,q2,t2
Where
Zg.t) Zqu tr,q0,t2 ~ Uniform[—e, €],

and

0<t<T(q), - Q<q<Q, 05t <T(q1), 0<t2 <T(q2), —Q < 1,52 < Q.
In this case, we set in (66),

€t = €lmi(Ao, Bo)gi| and  €g 10010 = €| Gy 100,02 (A0 AG ® Bo)| -

The stability results in recovering Ag are shown in Figure 3. We ran five simulations
for every € and average the relative error

|A — Ao AGllr
RE= —1—+—+
[ A0 Al

Results show an exact recovery in the noiseless case and slowly increasing in relative
€rTor as € grows.

0.25

0.15} \/

0.057

Relative error

0 0.05 0.1 0.15 0.2

€

FIGURE 3. Stability of the SDP in (66) when fixing the density to
be a non-uniform density.
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4.7. Volume from moments — non-uniform vs. uniform. As a first numerical
example, we present a recovery comparison between the cases of uniform and non-
uniform distributions of rotations. In this example, we use as a ground truth a
low degree approximation of a mixture of six Gaussians, given in a non-symmetric
conformation. The approximation, which we ultimately use as our reference, is
attained by discretizing the initial volume to 23 x 23 x 23 and truncating the PSWFs
expansion to L = 4. This expansion consists of 118 coefficients in total. The other
PSWFs parameters that we use are a band limit ¢ that corresponds to the Nyquist
frequency and 3-D truncation parameter (75) of 6 = 0.99. The original volume and
its approximation appear in Figure 4.

We divide the example into two scenarios of different distributions, uniform and
non-uniform. In each case, we start from the analytic moments (7), calculated with
respect to 2-D prescribed accuracy (95) of € = 1072, and obtain an estimation based
on minimizing the least squares cost function (60). The optimization is carried with
a gradient-based method, specifically we use an implementation of the trust-region
algorithm, see e.g., [47]. In the first case, we use as the distribution of rotations
a quadratic expansion P = 2 which is in-plane uniform. Based on the in-plane
invariance, we present this distribution as a function on the sphere in Figure 5. For
the second case, we use a uniform distribution of rotations.

In both cases, we let the optimization reach numerical convergence, where the
progress in minimization is minor. In this example, it is usually at about 100 — 150
iterations. In the case of non-uniform distribution, we observe that choosing a
random initial guess can have an effect on the speed of convergence but has almost
no influence on the resulted volume. In other words, we gain numerical evidence
for uniqueness. The estimated volume, in this case, is depicted on the left side of
Figure 6.

On the other hand, in the case of a uniform distribution, while convergence was
typically quicker than in the non-uniform case, the results vary between different
initial guesses, indicating the richness of the space of possible solutions. One such
solution appears on the right side of Figure 6. This behavior of the optimization
solver agrees with our previous knowledge on the ill-posedness of Kam’s method
and also with the Jacobian test which shows degree deficiency of the polynomial
system defined by the first and second moment under the uniform distribution.

(A) Mixture of Gaussians (B) A low degree approximation using
PSWF expansion with L = 4

FIGURE 4. Ground truth volumes



METHOD OF MOMENTS FOR AB INITIO MODELING 25

-0.12

-0.1
0.08
0.06
0.04

0.02

FIGURE 5. The non-uniform distribution of viewing angles which
we use for Section 4.7. This distribution satisfies in-plane invari-
ance and depicted as a function on the sphere

(G

(A) Recovery under non-uniform distribu- (B) Recovery under uniform distribution
tion

FIGURE 6. Comparison of reconstructions for two cases of non-
uniform and uniform distribution of rotations: ground truth vol-
ume, as also seen in Figure 4b, appears on the left of each pair (in
gray), where the estimation is on the right (in yellow)

4.8. Comparing volumes using FSC. A commonly used cryo-EM resolution
measure is the Fourier shell correlation (FSC) [29]. The FSC measures cross-
correlation coefficient between two 3-D volumes over each corresponding shell. That
is, given two volumes ¢; and ¢2, the FSC in a shell k is calculated using all voxels
K on this k-th shell:

FSC(r) = Zirli=r ¢12 (k)2 (r) 2
\/Z\M\Iznwl(”) ‘ Z”,g”:,{ |¢2 (K) |

Customary, the resolution is determined by a cutoff value. The threshold question
is discussed in [64], where in our case since we wish to compare a reconstructed
volume against its ground truth, we use the 0.5 threshold. Since we focus on ab
initio modeling, we aim to estimate a low-resolution version of the molecule from
the first two moments. Thus, we expect the cutoff to reach a value which ensures a
good starting point for a refinement procedure.

(67)

4.9. Visual example and the effect of non-uniformity. We next introduce an
example for the most realistic scenario of an unknown, in-plane uniform distribution,
by inverting the moment map of a real-world structure through minimization of



26 SHARON, KILEEL, KHOO, LANDA AND SINGER

a least-squares cost function (60). In this example, we once again illustrate the
feasibility of numerically approaching the solution, without any prior assumption
on the volume.

The example is constructed as follows. As the ground truth volume, we once
again use EMD-0409, the catalytic subunit of protein kinase A bound to ATP and
IP20 [32], as presented at the online cryo-EM data-bank [38]. The map original
dimension is 128 x 128 x 128 voxels. Since we aim to recover a low-resolution
model, we reduce complexity and downsample it by a factor of three to 43. We
firstly expand this volume using PSWFs with a band limit ¢ chosen as the Nyquist
frequency and 3-D truncation parameter (75) of § = 0.99. The full expansion
consists of degree L = 40, and after truncation to maximize conditioning, as done
in Section 3.3, we aim to recover the low degree counterpart up to degree L = 6. The
moments were calculated with respect to 2-D prescribed accuracy (95) of € = 1073
and in the absence of noise. The volume contributes 657 unknowns to be optimized.

As the ground truth distribution, we choose three different functions: uniform,
highly non-uniform and a non-uniform case in-between. The two non-uniform cases
are cubic spherical harmonics expansions (P = 3) and satisfy in-plane invariance
and so we present them in Figure 7 as functions on the sphere, together with
a histogram to compare and illustrate their “non-uniformness”. The non-uniform
distributions add extra 15 unknowns which means that, in total, we optimize 672
unknowns in the cases of non-uniform distribution and only 657 unknowns in the
case of uniform distribution.

0.084 0.1
0.083

10.082 0.09 0.08
{0.081 0.08
0.06
0.08 ‘ o
0.079
0.04
0.078 \ R

0.077 0.05 0.02
0.076

0
0.04 0.06 0.08 0.1

(A) The less non-uniform (B) The more non-uniform  (c) The probability of each

distribution function on the distribution function on the value to appear in the dis-

sphere sphere tribution: a comparison to
illustrate the different non-
uniformity levels of the two
distributions

FIGURE 7. The two non-uniform distributions in use

In the optimization process, we use the limit of the empirical moments (59)
(n — o0) as our input moments. As before, we use a trust-region algorithm, see
e.g., [47], which is a gradient-based method. To fix the initialization between the
different cases, we start the search with the zero volume. In cases of non-uniform
distribution, we provide a random non-uniform distribution to start with. Our
method is implemented in MATLAB R2017b, and we calculated the example on a
laptop with a 2.9 GHz Intel Core i5 processor and 16 GB 2133 MHz memory.

The result we present next is obtained after 60 iterations of trust-region, each
iteration usually uses up to 30 inner iterations to estimate the most accurate step
size. The runtime of this example is about 55 minutes for each model, where
at this point, our naive implementation does not support any parallelization which
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potentially can lead to a significant improvement in the total runtime. For example,
the evaluation of the second moment and its associated gradient part are related
to the leading complexity term as described in Section 4.5. Their implementation
is based upon matrix product as seen in the form (35). This part can remarkably
benefit from parallel execution. Note that evaluating the PSWF functions, as well
as the product Clebsch-Gordan coefficients (which appears in the moments), are all
calculated offline as a preprocessing step.

We present a comparison between the different FSC curves for the three cases. As
implied by Figure 8, the resolution increases (lower FSC cut) as the non-uniformity
becomes more significant. Specifically, with the uniform distribution we obtain
merely 39.1A, where for the two other non-uniform cases we get 22.5A and 19.0A
as the non-uniformity increases in the examples of Figure 8.

1 --39.1 A
o9f \ 225 A

0.7
0.6
0.5
0.4
0.3
0.2

0.1

0.014 0.027 0.041 0.054 0.068 0.082 0.095 0.109 0.122 0.136
1/A

FiGURE 8. The FSC curves of the three test cases. The dashed
curve (in black) is of the uniform distribution, the dot line (blue)
is of the less radical non-uniform case, and the solid curve (red) is
of the most non-uniform distribution case. As customary, we use
the conventional FSC cutoff value of 0.5.

A visual demonstration of the output of the optimization is presented in Figure 9,
where we plot side by side the ground truth and three models, from the uniform to
the most non-uniform one.

4.10. Recovery from noisy images. We conclude this section with an example
of recovering a volume from its noisy projection images. The volume is a mixture
of six Gaussians, synthetically designed to have no spatial symmetry. The volume’s
size is 15 x 15 x 15 and its full PSWF expansion is of length L = 13, with band limit
¢ chosen as the Nyquist frequency and 3-D truncation parameter (75) of § = 0.99.
We use an in-plane uniform distribution of rotations, very localized on a 45 degree
cone, represented with an expansion length of P = 3. The distribution function is
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FIGURE 9. The estimations which were obtained by inverting the
moments via optimization. The ground truth volume appears on
the left (in gray), where the models are on the right (in yellow),
ordered as associated with the different distributions, from uniform
on the left to the most non-uniform on the right.

shown on Figure 10 and can model a realistic scenario of highly anisotropic viewing
directions (see, e.g., [4]). Using the distribution, we generated projection images
to obtain 200,000 observations. These images were then contaminated with noise.
The SNR of an image I; with the noise term ¢; is SNR; = ||Ij - 5j||2 /||st2, using
the Frobenius norm. The noise was chosen to achieve an average SNR value of 1/3.
Three examples of clean images and their noisy versions are depicted in Figure 11.
As seen in Figure 11, the projections are hardly noticed in the noisy images for the

naked eye.
i 0.25
0.2
0.15
0.1
0.05

FI1GURE 10. The distribution function on the sphere.

We expand the noisy images using a 2-D PSWF basis, as appears in (14). Then,
the coefficients and their double-products are averaged to estimate the first and
second moments as in (59). The reconstruction uses the empirical moments to
estimate the volume and distribution. For the volume, our gradient-based least-
squares algorithm targets its full expansion, which consists of 192 unknowns. The
unknown distribution includes 8 unknowns spherical harmonics coefficients. We
reached the result we present next very quickly, starting from a random initial
guess. It took about 15 iterations of trust-region; each iteration could use up to
30 inner iterations to estimate the most accurate step size. The runtime of this
example is less than 10 minutes.

A visual demonstration of the estimated volume is provided in Figure 12. We
present the estimation, side by side, to the original volume. As seen in the vari-
ous pictures, the reconstruction, while not perfect, captures most features and the
general shape of the structure. This encouraging result indicates that inverting
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FIGURE 11. Three projection images: in upper row as clean
and noisy images. The resulted SNR is about 1/3.

the moments is possible also from noisy moments and that the mapping has some
robustness to small perturbations.

Y ¥|o -

FIGURE 12. Reconstruction from moments of noisy images: an il-
lustration taken from four different viewing angles. The estimation
appears in yellow (left volume on the top left corner picture) and
the original volume is in gray.

5. Discussion and Conclusion. The method of moments offers an attractive
approach for modeling volumes in cryo-EM. This statistical method completely by-
passes the estimation of viewing directions by treating them directly as nuisance
parameters. The assumption of a non-uniform distribution of viewing angles en-
ables in many cases volume estimation using only the first and second moments
of the data. This phenomenon opens the door for fast, single-pass reconstruction
algorithms, based on inverting the map from the volume and distribution to the
low-order statistics of the projection images.
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This paper extended Zvi Kam’s original method of moments for cryo-EM to the
setting of a non-uniform distribution of viewing directions. We formulated the re-
construction problem using appropriate discretizations for the images, the volume,
and the distribution. Then, we derived moment formulas using properties of the
spherical harmonic functions and Wigner matrix entries. Computational algebra
was employed to analyze the resulting large-scale system of polynomial equations.
The analysis shows the seeming complication of an unknown, non-uniform distribu-
tion renders 3-D reconstruction easier than in the uniform case, as now only first
and second moments are required to determine a low-resolution expansion of the
molecule, up to finitely many solutions. Intermediate cases were treated; remark-
ably, when the distribution is known and totally non-uniform over SO(3), there is
an efficient, provable algorithm to invert the first and second moments non-linearly.
Additionally, our work addressed several numerical and computational aspects of
the method of moments. An implementation of a trust-region method was presented
and used to illustrate the advantages of our approach over Kam’s classical approach
by numerical experiments involving synthetic volumes.

We regard our work as a definite, albeit initial step toward developing the method
of moments for ab initio modeling from experimental datasets. Firstly, even in the
synthetic cases considered here, further work on the optimization side is warranted.
Variations on our nonlinear cost function that incorporate a pre-conditioner, e.g.,
(61), could be considered. Secondly, other techniques for large-scale nonlinear least
squares optimization should be tried, such as Levenberg-Marquardt [40] or Variable
Projection [18], where in the latter one can exploit the linearity in the moments with
respect to the distribution, by eliminating out the distribution. Thirdly, to get our
method working on images, further effects, such as the CTF and imperfect centering
of picked particles, should be incorporated into the moment formulas. Fourthly,
accurate covariance estimation in high dimensions requires eigenvalue shrinkage
[22], the theory for which may call for a modification in the non-uniform setting.

To simplify our exposition, we have stuck to the asymmetric and homogeneous
cases here, although both of these can be relaxed in the method of moments. Specif-
ically, as already noted in Kam’s original paper [33], point symmetries of molecules
are reflected in the vanishing of certain expansion coefficients, see also [63]. There-
fore, MoM can be reformulated using fewer coefficients for symmetric molecules.
This fact, alongside with further improvement of the representation of the distribu-
tion, may pave the way for recovery under practical cases of very restricted viewing
angles, as reported in literature [4, 26, 44, 59]. At the same time, heterogeneity, at
least if it is finite and discrete, can be expressed using a mixture of volumes and a
corresponding mixture of moments, see [14, 5]. In future work, computational alge-
bra should be applied to these cases to check whether the first and second moments
remain sufficient for unique recovery.

To conclude, we raise one further possibility, in some sense at odds with the
message of this paper. In the non-uniform case, we have determined that the first
and second moments are sufficient information-theoretically for volume recovery.
Nonetheless, the resulting optimization landscape is potentially challenging, due
to non-convexity or ill-conditioning. Thus, despite the increased statistical cost
of estimating the third moment, it seems worthwhile to ask what can be gained
computationally by reprising the third moment in MoM (or at least, using a carefully
chosen slice of the third moment). Specifically, we would like to answer this question:
can the third moment facilitate more efficient modeling at higher resolution?
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Appendix A. Prolate Spheroidal Wave Functions. Here we describe key
properties of the PSWFs, and propose a method for setting the expansion parame-
ters L, S(£), Q, and T(q). We begin with the three-dimensional PSWFs, where we
describe important properties established in the literature [57, 34, 53], and outline
our choice for setting L and S(¢), accordingly. Then, we proceed with a short analo-
gous description for the two-dimensional PSWFs (summarizing results of [57]), and
derive a method for choosing @ and T'(q) by directly exploiting the fact that the
images to be expanded are tomographic projections of a bandlimited and localized
volume function (employing our previous representation for the volume function).

A.1. Volume function representation with three-dimensional PSWFs. Let
® : R?® — R be a square integrable (volume) function on R?, representing the true
underlying electric potential of the molecule, and denote by d its three-dimensional
Fourier transform. It is common practice to assume that ®(x) is bandlimited (i.e.,
d is restricted to a ball) while being localized in space. Functions satisfying this
property are naturally represented by three-dimensional PSWFs, as detailed next.

We say that the function ®(z) as c-bandlimited if ®(w) vanishes outside a ball
of radius ¢. That is, ® is c-bandlimited if

B(z) = (;ﬁ)S/B bw)e dw, T € R, (68)

where B is the unit ball. Among all ¢-bandlimited functions, the three-dimensional
PSWFs on B [57] are the most energy concentrated in B, while constituting an
orthonormal system over £2(B). Namely, they satisfy

\II,L‘ = argmillw ||'¢)||L2(R3)

. o 69
subject to |9 z2m) = 1, <1/),\Ifj>£2(B) =0, Vj<i, (69)

for i = 1,2,..., i.e., ¥y is the most energy concentrated c-bandlimited function,
W, is the most energy concentrated c-bandlimited function orthogonal to ¥, and
so on. Three-dimensional PSWFs can be obtained as the solutions to the integral
equation

a¥(x) :/B\I/(w)ew“mdw, z €B, (70)

where we denote the solutions (the PSWFs with bandlimit ¢) as Vg, (z) and
their corresponding eigenvalues as of,, ., where the enumeration over ¢ in (69)
is replaced with an enumeration over the triplet ¢, m, s described below, and the
eigenvalues appear in non-increasing ordering with respect to the original enumerate
i. Vi, (z) and o,  together form the eigenfunctions and eigenvalues of (70),
with m € Z, £ € NU {0}, and s € N. Furthermore, the functions ¥§ () are
orthogonal on both B and R? using the standard £? inner products on B and R3,
respectively, and are dense in both the class of £2(B) functions and in the class
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of c-bandlimited functions on R?. In spherical coordinates, the functions g, (x)
agree with the form in the right-hand side of (8), and can be expressed as

\I]Zm,s(rv 0, 90) = FZS(T)YZm(G’ 90)7 (71)

where Y;"(0, ) are the spherical harmonics (see (9)). Numerical evaluation of
the three-dimensional PSWFs (in particular of the radial part Fj,) was considered
in [39].

From the properties of the three-dimensional PSWFs mentioned above, any vol-
ume function ®(z) € L2(R3) can expanded in B as

[e%) l [e%s)
o) =3 S N A U5, (@), 7€B,  Apn.= /B & () T5,, (a)d,

=0 m=—¥ s=1

(72)

where () denotes complex conjugation. Next, we consider the truncation of the
expansion in (72), where it is convenient to bound the resulting truncation error in
terms of the assumed spatial localization of ®(z). Towards this end, we say that
the function ®(x) is e-concentrated if

1// |®(z) | de < e. (73)
z¢B

Additionally, we define the normalized eigenvalues

C 3 2
c
)‘Z,m,s = (2’]T> ‘ae,m7s

c
l,m,s

; (74)

where we mention that 0 < A7, <1, A = A{ ., for all triplets (£,m, s), and

Af s — 0 for every £. Now, we propose to set S({) according to
T s —00
S(f):maglc{s: A§0525}, (75)
pos 0,

where 6 € (0,1) is some constant, and set L to be the largest ¢ for which S(¢) is
defined (i.e., such that the set {3 : )\2075 >4 } is non-empty). Correspondingly, the

volume function resulting from the truncating the expansion in (72), according to
the chosen S(¢) and L, is

L ¢ SO
@)=Y > D Arms Vi) (76)
£=0 m=—¢ s=1

The following proposition bounds the error of approximating ®(x) by ¢(x).

Proposition 1. Let ®(x) be c-bandlimited with a unit £ (B) norm and assume it
is e-concentrated. Then,

0
1-6

The proof follows immediately from Theorem 5 in [34] and from our choices of
S(¢) and L. It is evident that the approximation error in the right-hand side of (77)
can be made arbitrarily small by taking ¢ sufficiently small. Furthermore, in the

case that ®(x) is localized in space, i.e., ¢ < 1, we can take ¢ to be large, possibly
even close to 1, and still get approximation errors sufficiently small for our purposes.

||@_¢|‘£2(B) <e (77)
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A.1.1. Length of the expansion. Clearly, the number of basis functions taking part in
the expansion (76), which is given explicitly by Ze 0 Zm_7 ,S(¢), depends on the
number of normalized eigenvalues A7 . & exceeding d. In this respect, the normalized
eigenvalues A7 |,  are known to admit the following three distinct regions of behavior
(when sorted in descending order). The first is called the “flat region”, where A ms
take values very close to 1, the second is called the “transitional region”, where
Af.m,s shift rapidly from values close to 1 to values close to 0, and the third is called
the “decay region”, where A7 ., = are very close to 0 and exhibit a super-exponential
decay rate. As for the number of basis functions chosen according to (75), the
following holds [53]:

L 0
>N s = ’{(z,m,s): A s 25}’
=0 m=—¢ C3 ,

= o+ 53 log (c)log (¥) +o(c*log (), (78)

where the first, second, and third terms on the right-hand side of (78) correspond
to the number of normalized eigenvalues A7, . exceeding ¢ from the flat region, the
transitional region, and the decay region of the eigenvalues, respectively. Clearly,
the asymptotically dominant term is O(c?), which corresponds to the number of
terms in the expansion chosen from the flat region. Additionally, we need an extra
O(c?log (c)) terms if we take d to be small (note that the second term in the right
hand-side of (78) is negative for 6 > 0.5, meaning that asymptotically we need less
than ¢3/4.57 terms for values of § close to 1). The remaining o(c?log (c)) terms
from the decay region are negligible compared to the leading asymptotic terms.

A.1.2. Fourier domain representation. Up to this point, we have shown that three-
dimensional PSWFs are naturally adapted for expanding a volume function ®(z)
which is bandlimited and localized in space, where we provided an appropriate error
bound (77). However, note that in (8) we actually expand the Fourier transform of
the molecular potential. We now connect our previous expansion of ®(z) with the
expansion of its Fourier transform, and show that in fact (and uniquely for PSWFs)
the two coincide, in the sense that expanding a function in three-dimensional PSWFs
is equivalent to expanding its Fourier transform in three-dimensional PSWFs (af-
ter an appropriate scaling and dilation). Let ‘i’z,m,s denote the three-dimensional
Fourier transform of ¥y ,, ,, then by (70) it is easy to verify that

\ilé,m,s(w)

I
~
5
S
w
—
~—
[t
o
W
—
&
~

(79)

where 1.g(w) is the indicator function on ¢B. It is evident that the Fourier trans-
form of each three-dimensional PSWF is equal to itself up to a constant factor, a
dilation by ¢, and a restriction to a ball of radius ¢. Consequently, by taking the
Fourier transform of (76) we have

L ¢ S
A w
W=D >0 D Arm Vi (D) weB, (80)

£=0 m=—¢ s=0

where

AZ,Tms - WAﬁ,mﬂs- (81)
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We conclude this part as follows. Given a bandlimit ¢ (typically chosen as the
Nyquist frequency corresponding to the projection images’ resolution), we take the
radial part Fym (k) of (8) as Fy, (k/c)/c3? - 1.(k), where 1.(k) is the indicator
function on [0, ¢], and Fy,, ((r) is the radial part of the three-dimensional PSWFs
on B (the factor 1/¢/2 ensures that Fy ,, (k) are orthonormal over [0, 00) w.r.t the
measure k%dk). Then, setting S(¢) according to (75) for a given parameter § allows
for the controlled approximation error (77).

A.2. Projection image representation with two-dimensional PSWFs. In
the sequel, we are interested in providing a suitable representation for the pro-
jection images of the rotated copies of ¢(x). By the Fourier slice theorem, the
two-dimensional Fourier transforms of such projections are equal to slices from the
three-dimensional Fourier transform of ¢(z) (i.e., of ¢(w)). Therefore, if ¢(z) is
c-bandlimted, then the projection images are bandlimited to a disk of radius c¢. Ad-
ditionally, we expect the projection images to be localized in the unit disk if ¢(x) is
sufficiently localized in the unit ball. For such projection images, two-dimensional
PSWFs are expected to provide a natural representation (see [36]).

We briefly summarize properties of the two-dimensional PSWFs which are used
in our context. In essence, the properties of the two-dimensional PSWFs are anal-
ogous to those of the three-dimensional PSWFs when replacing the unit ball B
with the unit disk D. Let P : R2 — R be a square integrable function on R?,
representing a tomographic projection of ¢. We say that P(z) as c-bandlimited if
its two-dimensional Fourier transform, denoted by P(w), vanishes outside a disk of
radius c. That is, P is c-bandlimited if

2

P(x) = (1> / P(w)e™?dw, xeR2. (82)
2T D

Among all e-bandlimited functions, the two-dimensional PSWFs on D are the most

energy concentrated in D, that is, they satisfy (69) when replacing B with D, while

constituting an orthonormal system over £2(D). The two-dimensional PSWFs were

derived and analyzed in [57], and were shown to be the solutions to the integral

equation
B(x) :/ Y(w)e“?dw, x € D. (83)
D

We denote the PSWFs with bandlimit ¢ as ¢Z,t($)7 and their corresponding eigen-
values as 37 ;, which together form the eigenfunctions and eigenvalues of (83), with
q € Z, and t € N. Furthermore, the functions ¢; ,(x) are orthogonal on both D and
R? using the standard £2 inner products on D and R?, respectively, and are dense
in both the class of £2(D) functions and in the class of c-bandlimited functions on
R2. In polar coordinates, the functions Y 1(x) agree with the form in the right-hand
side of (14), and can be expressed as

1
Vi 9) = o fadr)e e, (84)

where the eigenfunctions ¢ ,(2) are normalized to have an £?(D) norm of 1. Nu-
merical evaluation of the two-dimensional PSWFs was considered in [54].
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From the properties of the two-dimensional PSWFs mentioned above, any func-
tion P(z) € £L2(R?) can be expanded in D as

S S Gt (x), €D, - /D P(a)UE, (@)dr.  (85)

q=—o00 t=0
Now, considering the truncated expansion

Q T(q)

= > D Agtile), (86)

——Q t=0

we are interested in controlling the error

1P — 1|7 = Z ST fagel® + 30 S gl (87)

—Qt>T(q) la|>Q t=0
From (83), the Fourier transform of v, » can be expressed as

472

Vnbl) =

Ymi(Z) - Lep (@), (88)

where 1.p(w) is the indicator function on ¢D, which is analogous to the relation

between the three-dimensional PSWFs W¢ and their Fourier transforms W¢

£,m,s £,m,s
n (79). Continuing, taking the Fourier transform of (86) gives
Q T(9)
Z Z aq,twq, \/ 7/c, w e cD (89)
—Q t=0
where
(271')3/2~
Gqt = 90
q,t Cﬁq,t ( )

We will now relate 2D basis representation error to that of the 3D basis functions.
Comparing the 2D expansion (89) with the relation between 2-D and 3-D coeffi-
cients (19), while employing (90) and (81) we have

cﬂ L S ¢
oo = Gapipta = 50 3 Auns UL (Bl oD

L=|q| s=1 m=—¢

for |¢| < L, where aq4, = 0 for |¢| > L, and

nqi _ Pt 8r? Vq,t _ (277)3/ Bq,t qt
L,s (2ﬂ)3/2 C3/2O¢£,m,s L,s \[Oée,m,s l,s)

(92)
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where ’yg’st is from (20). Using the Cauchy—Schwarz inequality, we can write

L S ¢

|aqt\< ZZ Z |A€ms mq( )ng:;

{=|q| s=1 m=—4

L SO ¢ V20 s e 1/2
< ZZZ’AEM SN U R) |
L=|q| s=1 m=—¢ {=|q| s=1 m=—4
L S50 1/2
<Nl oy - | D2 D el . (93)
l=|q| s=1

where we also used the fact that U*(R) is a unitary matrix. Finally, taking Q = L
and assuming w.l.o.g that ||§|;2g) = 1, we obtain from (87) and (93) that

L S(¢)

1P —1|Z2 < Z Y>> ikl (94)

q=—L t>T(q) t=|q| 5=1

Given a prescribed accuracy e, for every —L < ¢ < L we choose T(q) to be the
smallest integer such that

L S(¥)

PIIDSD MMy (95)

t>T(q) (=|q| s=1

which results in
1P =172 <e (96)

where 772’2 are computed by evaluating 'yé”; of (20) via numerical integration (using
Gauss-Legendre quadratures). Note that the right-hand side of (95) is determined
by the decay rate of nz,’ﬁ in ¢, which is dominated by the decay rate of the the
eigenvalues of the two-dimensional PSWFs f3, ;. Those are known to admit a rapid
decay in the form of a super-exponential decay rate following a certain transitional
region (see [13, 53]). Hence, if T'(q) is sufficiently large then (95) can be satis-
fied for an arbitrarily small ¢ with a marginal increase in the number of required
terms. Last, we mention that when provided with images sampled on a Cartesian
grid, the coefficients a4+ can be approximated accurately from the images by fast
algorithms [36, 37].

Appendix B. Linearizing polynomial maps with the Jacobian matrix. In
this section, we describe the linearization technique from computational algebraic
geometry we used to obtain the uniqueness results in Tables 1, 2, 3 from Section 3.
The first paper to apply algebraic geometry techniques to cryo-EM was [5]. Nev-
ertheless, similar Jacobian tests have been used in other applications such as for
testing rigidity in sensor network localization, see e.g., [27] and testing whether a
matrix can be completed into a low-rank matrix [55].

To state the method, we fix CN = CN" @ CN", let 7/ and " be projection onto
the factors, and consider a polynomial map F = (Fy,..., Fy) : CN — CM (that is,
each coordinate function F; = Fj(xy,..., 7)) is a polynomial on CV). While F is
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generally a nonlinear map, its first derivative at ¢ € CV is a linear map represented

by the Jacobian matrix
_ (95
dF = ( axi)i_m (o7)

j=1,...N

In addition, we define the fiber in ¢ € CV by
Fy:={qeC" | F(q) = F(¢9)} c C",
and the projected fiber by
7' (F,) c CN.
For ¢' € CN" and ¢’ € CN”, define the specialized fiber by

(Flovag:),, = @ €€ | F@ ) = Fld @)} < .

Because F' is described by polynomials, there is a tight relationship between the
dimension of fibers of F' (as algebraic varieties) and the dimension of the kernels of
dF (as linear spaces). This is summarized by the Jacobian tests below. Somewhat
remarkably, the linear algebra tests are done at a single point in the domain of F,
but imply algebraic geometric statements for almost all points in the domain of F'.

Theorem 6. Suppose it is known that, generically, the fiber, projected fiber and
specialized fiber have dimensions > dy,ds, ds, respectively (if we have no such knowl-
edge, then di = dy = d3 = 0). Choose particular points qo € CV, ¢} € CcN' and
1" N"
q € CY .
— Vanilla Jacobian test: if rank dF'(¢g) = N — di, then generic fibers have di-
mension exactly dy .

— Projected Jacobian test: if dim 7'(ker dF'(qo)) = da, then generic projected
fibers have dimension exactly ds.

— Specialized Jacobian test: if rank d (F‘CN’@%') (¢0) = N’ — ds, then generic
specialized fibers have dimension exactly ds.

TABLE 4. Vanilla, projected and specialized Jacobian tests: these
show that a system of polynomial equations generically has only
finitely solutions. Notation: F : CN¥ — CM is a polynomial map,
CN =N @CN" where 7/, 7 are orthogonal projections onto the
factors, and dy, do, d3 are the dimension bounds in Theorem 6.

polynomial map arbitrary choices linearization rank check
vanilla cN E, oM qgecN eV DM ank(dF(g) =N — ds
, cN' ocCN = N cN¥ ccN o
projected oN F, oM geC 4F(g) s dim (' (ker dF(q))) = da2
’ " ’ N’
specialized e = ¢ € CN,, c / 619/ ¢ rank d (F‘CN’GB«;”) (@)
o I, oM q"ecN LR om =N’ —ds

Several technical remarks are in order. Firstly, in Theorem 6, the fiber, projected
fiber and specialized fiber are affine algebraic varieties and hence a dimension is
defined for each of their irreducible components according to [20]. The meaning of
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the theorem is that each component has dimension exactly di, ds, d3, respectively.
Crucially, affine algebraic varieties have finitely many components. Thus the the-
orem implies “finitely many solutions” up to symmetries, if the symmetries give
dy, d2, d3-dimensional ambiguities, respectively. Secondly, “generic” in Theorem 6 is
with respect to the Zariski topology. Concretely, there exists some polynomial G on
C¥ such that for all ¢ € CV with G(q) # 0 the implications in the theorem hold.
In particular, any property that holds generically holds on a Lebesgue full measure
subset of points. Thirdly, the Jacobian ranks in Theorem 6 take on generic values,
as each minor of the relevant matrix is a polynomial in ¢,q’,¢".

Theorem 6 states rigorous conclusions if the Jacobian rank tests are passed. On
the other hand, if the tests fail for qo,q, q(, and qo, q}, g) were drawn randomly
from any continuous distribution on FV, then by genericity of the Jacobian ranks,
with probability 1, the generic fibers, projected fibers, or specialized fibers of F'
have dimension strictly more than dy, ds, or ds,

We applied the specialized test in subsection 3.2 with d; = 0, the vanilla and
projected tests in subsection 3.3 with d; = do = 3 and the vanilla test in subsec-
tion 3.4 with d; = 3. The settings of 3 reflect the fact, in the latter two subsections,
that the fibers are SO(3)-sets and we are interested in solutions modulo global ro-
tation. The bounds may be seen as instances of the orbit-stabilizer theorem, see
[5, Proposition 4.11]. When the Jacobian rank tests were passed, this meant that,
generically, there are only finitely many solutions up to global ambiguities.

In practice, we ran the Jacobian tests in floating-point arithmetic and used SVD
for robust rank estimation. Namely, we looked at multiplicative gaps between con-
secutive singular values, and regarded any gap exceeding a predefined threshold
(10°%) as evidence that all lower singular values should be regarded as zero. While
these computations fall short of a fully rigorous mathematical proof due to the
possibility of rounding errors in floating-point arithmetic, it was typically evident
which singular values ought to be counted as zero or non-zero.
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