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Abstract—We introduce a framework for recovering an image
from its rotationally and translationally invariant features based
on autocorrelation analysis. This work is an instance of the
multi-target detection statistical model, which is mainly used to
study the mathematical and computational properties of single-
particle reconstruction using cryo-electron microscopy (cryo-EM)
at low signal-to-noise ratios. We demonstrate with synthetic
numerical experiments that an image can be reconstructed from
rotationally and translationally invariant features and show that
the reconstruction is robust to noise. These results constitute an
important step towards the goal of structure determination of
small biomolecules using cryo-EM.

Index Terms—autocorrelation analysis, multi-target detection,
single-particle cryo-electron microscopy

I. INTRODUCTION

A. Problem statement

We consider the problem of estimating a target image from
a large m×m noisy measurement M that contains p randomly
rotated copies of the target. More precisely, suppose that f :
R2 → R is a target image supported on the open unit disc,
and fφ is the rotation of f by angle φ about the origin. Let
Fφ : Z2 → R be a discrete version of fφ defined by

Fφ(~x) := fφ (~x/n) , for ~x ∈ Z2, (1)

where n � m is a fixed positive integer. We assume the
measurement M : {1, . . . ,m}2 → R is of the form

M(~x) :=

p∑
j=1

Fφj (~x−~xj)+ε(~x), for ~x ∈ {1, . . . ,m}2, (2)

where φ1, . . . , φp ∈ [0, 2π) are uniformly random angles,
~x1, . . . , ~xp ∈ {n, . . . ,m − n + 1}2 are translations of the
target images, and ε(~x) is i.i.d. Gaussian noise with mean
0 and variance σ2. For simplicity, we assume that images in
the measurement are separated by at least one image diameter,
see (5). Recent work on a related problem suggests that this
separation restriction can be alleviated [13].

Our goal is to recover the image f from the noisy mea-
surement M . We emphasize that with respect to this goal, the
rotations φ1, . . . , φp and translations ~x1, . . . , ~xp are nuisance
parameters that do not necessarily need to be estimated. If
the signal-to-noise ratio (SNR) is high as in Figure 1(a), then
estimating these rotations and translations is straightforward,
and the image can be recovered by aligning and averaging its
different copies in the measurement. However, if the SNR is
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Fig. 1. Two measurements M with the same five rotated copies of a target
image, but different noise levels: SNR = 10 (left), and SNR = 0.1 (right).

low as in Figure 1(b), which is the case of interest in this study,
then this approach may be problematic as even detecting the
image occurrences becomes challenging [1], [4].

We are interested in the following question: given a large
enough measurement M , can we recover the target image f
regardless of the level of noise? More precisely, if the number
of target image occurrences p grows at a constant rate γ with
the size m2 of the measurement M , can we recover the image
f for any fixed noise variance σ2 as m→∞?

B. Motivation

We are motivated by challenges in single-particle recon-
struction using cryo-electron microscopy (cryo-EM). The mea-
surements in cryo-EM consist of 2-D tomographic projections
of identical biomolecules of unknown 3-D orientations em-
bedded in a large noisy image, called a micrograph. In the
current analysis workflow of cryo-EM data [2], [7], [8], [17],
[19], [20], the 2-D projections are first detected and extracted
from the micrograph, and later rotationally and translationally
aligned to reconstruct the 3-D molecular structure. This ap-
proach is problematic for small molecules, which are difficult
to detect due to their lower SNR. This difficulty of detection
in turn sets a lower bound on the usable molecule size in the
current analysis workflow of cryo-EM data [9]. To circumvent
this fundamental barrier, recent papers [3], [4] suggest to di-
rectly estimate the 3-D structure from the micrograph, without
an intermediate detection stage; this approach was inspired by
Kam [11] who introduced autocorrelation analysis to cryo-EM.

The estimation problem described in Section I-A is a
simplified version of the cryo-EM reconstruction problem: the
tomographic projection operator is omitted and we observe
the same 2-D image multiple times with random in-plane
rotations. This image recovery problem is an instance of



the multi-target detection statistical model, in which a set
of signals appear multiple times at unknown locations in a
noisy measurement [3], [4], [13]. Here, we extend previous
works by taking in-plane rotations into account, which forms
an important step towards the analysis of the full cryo-EM
problem.

C. Main contribution
The principal contribution of this paper is to demonstrate

that a target image f can be recovered from a measurement
M of the form (2) without estimating the rotations and trans-
lations of the images in the measurement. As a consequence,
limits on estimating these nuisance parameters do not impose
limits on estimating the target image f . In particular, we
empirically demonstrate that the estimation of f is feasible
at any noise level given a large enough measurement. From a
computational perspective, this approach is highly efficient as
it requires only one pass over the measurement to calculate
the autocorrelations; this is in contrast to the likelihood-
based techniques that may become prohibitive as the data size
increases. For a more detailed discussion, see [13].

II. ROTATIONALLY AND TRANSLATIONALLY INVARIANT
FEATURES

We begin by studying invariance in the continuous setting.
The simplest invariant to both rotations and translations is

s1 :=

∫
R2

f(~x)d~x,

which is the mean of the image; however, clearly more
information is needed to recover the image. Motivated by
autocorrelation analysis we next consider the rotationally-
averaged second-order autocorrelation s2 : R2 → R by

s2(~x1) :=

∫ 2π

0

∫
R2

fφ(~x)fφ(~x+ ~x1)d~xdφ.

By a change of variables of integration, it is clear that s2 is
only a function of |~x1|, that is, it is a 1-D function, and thus
does not contain enough information to encode a 2-D image.
Thus, we proceed to consider the rotationally-averaged third-
order autocorrelation s3 : R2 × R2 → R defined by

s3(~x1, ~x2) :=

∫ 2π

0

∫
R2

fφ(~x)fφ(~x+ ~x1)fφ(~x+ ~x2)d~xdφ.

It is straightforward to verify that s3 is a function of three
parameters: |~x1|, |~x2| and θ(~x1, ~x2), where θ(~x1, ~x2) denotes
the angle between the vectors ~x1, ~x2 ∈ R2. In this work, we
show empirically that f can be recovered from S3 : Z2×Z2 →
R, which is a discrete version of s3 defined by

S3(~x1, ~x2) :=

∫ 2π

0

∑
~x∈Z2

Fφ(~x)Fφ(~x+~x1)Fφ(~x+~x2)dφ. (3)

We claim that the function S3 can be approximated from the
measurement M by computing the third-order autocorrelation
A3 : Z2 × Z2 → R defined by

A3(~x1, ~x2) :=
1

m2

∑
~x∈Z2

M(~x)M(~x+ ~x1)M(~x+ ~x2). (4)

Indeed, recall that the images are assumed to be separated in
the measurement by one image diameter:

|~xj1 − ~xj2 | > 4n, for j1 6= j2, (5)

and that the rotations in the measurement are chosen uniformly
at random. Under these assumptions it is straightforward to
show, see for example [3], that if p/m2 → γ, then

A3(~x1, ~x2)→ γ

2π
S3(~x1, ~x2)

+ σ2 γS1

2π

(
δ( ~x1) + δ( ~x2) + δ( ~x1 − ~x2)

)
, (6)

as m→∞ for any fixed noise level σ2, where

S1 :=

∫ 2π

0

∑
~x∈Z2

Fφ(~x)dφ,

and δ(~x) = 1 if ~x = ~0 and is zero otherwise. Crucially,
equation (6) relates A3, a quantity that can be estimated
accurately from the data, with functions of the target: S1 and
S3, while averaging out the effects of the nuisance variables.
In practice, σ2 and γS1 can be estimated from M . More
specifically, σ2 can be estimated by the variance of the pixel
values of M in the low SNR regime, while γS1 can be
estimated by the empirical mean of M . As a result, S3 can be
estimated from A3 up to a constant factor γ.

The analysis above motivates the following question: can the
image f be robustly reconstructed from S3? We demonstrate
empirically that the answer to this question is positive. For
simplicity of exposition, we describe a method of recovering
f that just involves S3, although we note that S1 and S2, which
represent the discrete analogs of s1 and s2, may be used to
aid in the reconstruction process.

The problem of estimating f from M , as described in
Section I-A, should not be confused with the related problem
of recovering an image from a set of measurements {Mj}nj=1,
each of which has exactly one shifted and rotated observation.
Several moment-based techniques have been proposed to ad-
dress this problem at high noise levels, see for instance [12],
[15], [16], [18], but none can be applied directly to our
problem where only a single, large observation M is available.

III. IMAGE RECOVERY FROM INVARIANTS

A. Steerable basis

Recall that the target image f : R2 → R is supported on
the unit disc. We assume that f is bandlimited in the basis of
Dirichlet Laplacian eigenfunctions on the unit disk. In polar
coordinates (r, θ), these eigenfunctions are of the form

ψν,q(r, θ) := Jν (λν,qr) e
iνθ, for (ν, q) ∈ Z× Z>0, (7)

where Jν is the ν-th order Bessel function of the first kind,
and λν,q > 0 is the q-th positive root of Jν . The eigenvalue
associated with ψν,q is λ2ν,q , and thus, the assumption that f
is bandlimited can be written as

f(r, θ) =
∑

(ν,q):λν,q≤λ

αν,qψν,q(r, θ), for r ≤ 1, (8)



where λ > 0 is the bandlimit frequency, and αν,q are the
associated expansion coefficients. If we further define

gν(r, θ) =
∑

q:λν,q≤λ

αν,qψν,q(r, θ),

then we can write

f(r, θ) =

νmax∑
ν=−νmax

gν(r, θ), (9)

where νmax := max{ν : λν,1 ≤ λ}. An advantage of
expressing a function in Dirichlet Laplacian eigenfunctions is
that the basis is steerable in the sense that it diagonalizes the
rotation operator: rotating f by φ corresponds to multiplying
each term of gν by eiνφ:

f(r, θ + φ) =

νmax∑
ν=−νmax

gν(r, θ)eiνφ. (10)

B. Computing invariants

Recall that Fφ : Z2 → R is the discretely sampled version
of fφ, which is defined by Fφ(~x) = fφ (~x/n) for ~x ∈ Z2. In
the following, we consider Fφ as a function on

J := {−2n, . . . , 2n− 1}2 ⊂ Z2.

Since fφ is supported on the open unit disc, it follows that

supp(Fφ) ⊂ {~x ∈ J : |~x| < n}.

Let F̂φ : J → C by

F̂φ(~k) =
∑
~x∈J

Fφ(~x)e−2πi
~k·~x/4n, for ~k ∈ J ,

denote the discrete Fourier transform (DFT) of Fφ. Similarly,
we can consider S3 as a function on J × J and define its
DFT Ŝ3 : J × J → C by

Ŝ3(~k1, ~k2) :=
∑

~x1,~x2∈J

S3(~x1, ~x2)e−2πi(
~k1·~x1+~k2·~x2)/4n, (11)

for ~k1, ~k2 ∈ J . By substituting (3) into (11), it is straightfor-
ward to show that

Ŝ3(~k1, ~k2) =

∫ 2π

0

F̂φ(~k1)F̂φ(~k2)F̂φ(−~k1 − ~k2)dφ. (12)

The triple product in (12) corresponds to the Fourier transform
of the third-order autocorrelation. This triple product is called
the bispectrum [21] and many of its analytical and compu-
tational properties have been studied; see for instance [5],
[18]. We note that the bispectrum can be generalized to
more involved operations, such as 2-D rotations [14], 3-D
rotations [12], and general compact groups [10].

Define Ψν,q : J → C as the discrete samples of the
Dirichlet Laplacian eigenfunctions:

Ψν,q(~x) = ψν,q(~x/n), for ~x ∈ J ,

where ψν,q is considered as a function supported on the unit
disc. With this notation, we can express Fφ as

Fφ(~x) =
∑

(ν,q):λν,q≤λ

αν,qΨν,q(~x)eiνφ

=

νmax∑
ν=−νmax

 ∑
q:λν,q≤λ

αν,qΨν,q(~x)

 eiνφ.

As a consequence, the products Fφ(~x)Fφ(~x+ ~x1)Fφ(~x+ ~x2)
that appear in (3) are bandlimited by 3νmax with respect to
φ. Therefore, we can replace the integral over φ in (12) by a
summation over angles sampled at the Nyquist rate, that is,

Ŝ3(~k1, ~k2) =

6νmax−1∑
ν=0

F̂φν (~k1)F̂φν (~k2)F̂φν (−~k1 − ~k2),

where φν := 2πν/(6νmax). By linearity of the DFT, we have

F̂φ(~k) =
∑

(ν,q):λν,q≤λ

αν,qΨ̂ν,q(~k)eiνφ,

where Ψ̂ν,q : J → C denotes the DFT of Ψν,q : J → C.
Let V denote the set of all the pairs (ν, q) in the expan-

sion above. We define the column vector w~k,φ ∈ CV by
(w~k,φ)ν,q = Ψ̂ν,q(~k)eiνφ, and the column vector z ∈ CV by
(z)ν,q = αν,q; the latter encodes the parameters that describe
the target image. With this notation, F̂φ(~k) can be expressed
compactly as F̂φ(~k) = z>w~k,φ, and it follows that

Ŝz3 (~k1, ~k2) =
6νmax−1∑
ν=0

(
z>w~k1,φν

)(
z>w~k2,φν

)(
z>w−~k1−~k2,φν

)
, (13)

where we write Ŝz3 to emphasize the dependence on z. This
expression for Ŝz3 is particularly convenient for computational
purposes. In particular, the gradient of Ŝz3 (~k1, ~k2) with respect
to z is easy to compute, which is important for solving the
optimization problem defined in Section III-D.

C. Leveraging symmetries

Recall that S3(~x1, ~x2) is a discrete version of s3(~x1, ~x2),
which only depends on the three parameters: |~x1|, |~x2| and
θ(~x1, ~x2). Let S∗3 be the estimate of S3 from the noisy
measurement M via (6), that is, the de-biased and normalized
autocorrelation of the measurement A3 (4), and Ŝ∗3 denote the
DFT of S∗3 . Since the noise is assumed to be i.i.d. Gaussian
with mean 0, its Fourier transform is also i.i.d. Gaussian with
mean 0 in Fourier space. Therefore, we can reduce the effect of
noise by binning the entries of Ŝ∗3 with similar values of |~k1|,
|~k2| and θ(~k1, ~k2). Numerically, the binning is done through
the mapping B : J × J → I by

B(~k1, ~k2) =
(⌊
b1|~k1|

⌋
,
⌊
b1|~k2|

⌋
,
⌊
b2θ(~k1, ~k2)

⌋)
,

where I ⊂ Z3
≥0 represents the set of the bins, and b1, b2 ∈ R

determine the bin sizes.



D. Optimization problem

Suppose that we are given an estimate of Ŝ∗3—the de-biased
and normalized third-order autocorrelation of the measure-
ment. For a fixed model and any coefficient vector z ∈ CV , we
can compute Ŝz3 via (13). In order to estimate the coefficient
vector that is consistent with Ŝ∗3 , we define the cost function

f(z) :=
∑
~j∈I

 ∑
(~k1,~k2):B(~k1,~k2)=~j

Ŝz3 (~k1, ~k2)− Ŝ∗3 (~k1, ~k2)

2

. (14)

Minimizing this cost function is a non-convex (polynomial
of degree 6) least squares optimization problem, and thus, a
priori, there is no reason to suspect that the global minimum
of this problem can be attained; however, our numerical
results indicate that standard gradient-based methods result
in accurate and stable recovery of the parameters z. We
note that computing the cost and gradient involves O(n4νmax)
operations in each iteration of the optimization.

IV. NUMERICAL RESULTS

We first consider the problem of recovering a model im-
age from a noiseless set of Ŝ∗3—namely, from the exact
rotationally-averaged third-order autocorrelation. This reflects
the case where the noise level is fixed and m → ∞. The
model image is generated by expanding a 65 × 65 image of
a tiger (Figure 2) into a linear combination of the first 600
Dirichlet Laplacian eigenfunctions, sorted by the eigenvalues
in ascending order. We denote this model image by F0. Since
Ŝ∗3 is noiseless in this case, we accelerate the optimization
by only choosing one entry from each bin in I instead of
summing all the entries to calculate the cost and gradient,
which reduces the computational cost by O(n).

Let Fz be the image formed by the coefficients z that were
recovered by minimizing the least squares (14). Since Ŝ∗3 is
invariant under in-plane rotations of the model image, we
only expect to reconstruct the image F0 up to some arbitrary
rotation φ. As a result, we define the reconstruction error by

errorrecon := inf
φ∈[0,2π)

‖F0 − Fφz ‖2
‖F0‖2

,

where Fφz is the rotation of Fz by an angle φ. Using the BFGS
optimization algorithm, we recovered the image in Figure 2
with errorrecon = 5× 10−12. The optimization took 6.5× 104

seconds parallelized over 100 CPUs in total.
In the second experiment, we study the robustness of

the reconstruction to noise. Limited by the computational
resources, we downsample the image of tiger to 17 × 17
pixels, and expand the image into the first 100 Dirichlet
Laplacian eigenfunctions. From the expansion we compute the
rotationally-averaged third-order autocorrelation S3, which is
further contaminated by i.i.d. Gaussian noise with mean 0 and
variance σ2. A total of 10 different values of σ are used to
model the noisy counterparts S∗3 estimated from measurements
of different SNR. The relative error of S∗3 is quantified by

errorS∗
3

:=
‖S3 − S∗3‖2
‖S3‖2

.

Fig. 2. A 65×65 image of a tiger expanded in the first 600 eigenfunctions,
which can be recovered from a noiseless set of Ŝ∗

3 to high precision.

The relative errors of the reconstructed images from the 10 sets
of Ŝ∗3 are shown in Figure 3. We observe that the images can
be reliably recovered over a wide range of noise levels. The
high correlation between errorS∗

3
and errorrecon might indicate

that the optimization landscape is benign.
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Fig. 3. We consider S∗
3 with 10 different levels of Gaussian noise quantified

by errorS∗
3

. For each level of noise, we run the optimization five times with
random initializations; we report errorrecon corresponding to the trial that
minimizes the cost function (14); this procedure can be preformed in practice
and makes the results highly consistent. The slope of the best-fit line is 0.97.

V. DISCUSSION

This work serves as a proof of concept for the feasibility of
estimating a target image from its rotational and translational
invariants. We have demonstrated the reconstruction of a target
image from its noiseless invariants, and showed that our
algorithmic approach is robust to noise. In future work, we
intend to extend the framework to include the recovery of
the target image from the observation M , to mitigate the
separation condition [13], and to allow the recovery of multiple
images simultaneously, in a similar fashion to [4], [6]. From a
theoretical perspective, we wish to complement the empirical
results of this work by proving that indeed a generic image f
is determined uniquely by its rotationally-averaged third-order
autocorrelation.
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