A CENTRAL LIMIT THEOREM FOR RANDOM CLOSED
GEODESICS: PROOF OF THE CHAS-LI-MASKIT CONJECTURE

ILYA GEKHTMAN, SAMUEL J. TAYLOR, AND GIULIO TIOZZO

ABSTRACT. We prove a central limit theorem for the length of closed geodesics in any
compact orientable hyperbolic surface. In the special case of a hyperbolic pair of pants,
this settles a conjecture of Chas—Li—Maskit.

1. INTRODUCTION

Let X be a compact orientable hyperbolic surface whose boundary, if any, is geodesic,
and let G denote its fundamental group. By a standard generating set S for G we mean
the following: when G is free (i.e. when 9% # () S is a free basis for G. Otherwise, ¥ is
a closed orientable surface of genus g > 2 and S is the generating set used in the usual
presentation G = (a1, ...,aq,b1,...bg : [[;lai, b;] = 1).

Now fix a standard generating set S of G, and let |g| be the word length of g with
respect to S. For each g € G, let [g] denote its conjugacy class, and for any conjugacy
class 7 = [g] define its conjugacy length [|v|| = [|g]| := miny_, |g| to be the minimum
word length over all elements representing .

Any conjugacy class 7 is represented by a closed geodesic in X, and let 7(vy) denote the
length of this geodesic in the hyperbolic metric. Let p, denote the uniform distribution
on the set F,, of conjugacy classes of length n. The goal of this note is to prove the
following central limit theorem:

Theorem 1. There exist constants L > 0, 0 > 0 such that for any a,b € R with a < b

we have )
7(v) —nL ) 1 / _a?
n . ———¢€la,b | > — e 2 dx
1 (’y T [a, b] 5 ).

Motivated by experimental evidence, Chas-Li-Maskit [7] conjectured that the con-
clusion of Theorem 1 holds for a hyperbolic pair of pants. This followed an earlier
central limit theorem by Chas-Lalley [6] for the distribution of self-intersection numbers
of random geodesics.

The proof of Theorem 1 uses the central limit theorem for Holder continuous observ-
ables on a mixing Markov chain following Ruelle [20] and Bowen [2] (see also Pollicott—
Sharp [17] and Calegari [4]), combined with estimates on Gromov products by the authors
[10]. The Markov chain which encodes closed geodesics on a surface is provided by Series
[21, 22, 23] (see also Wroten [25]).

as n — 00.
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We note that P. Park has recently written up a related result where the uniform
distribution on conjugacy classes is replaced by the nt" step distribution of a simple
random walk on G [16]. Let us note that counting for the simple random walk and
counting with respect to balls in the Cayley graph are in general different, and many
authors addressed the question of how they are related on various groups.

Acknowledgments. We thank the referee for useful suggestions that improved our
exposition.

2. PRELIMINARIES

The geometric setup. Since our argument will use tools from coarse geometry, we
begin with some basic definitions; additional background can be found in [4].

Let (X, d) be a §-hyperbolic geodesic metric space, for some § > 0. Recall this means
that between any two points z,y € X there is some geodesic segment [x,y] in X, and
for any geodesic triangle [x,y], [y, 2], [z, 2] in X with x,y,z € X, one has the inclusion
[z,y] C N5 ([y, 2] U [z, x]), where N5 denotes the é-neighborhood in X. In this paper, X
will usually be either the hyperbolic plane H? or the Cayley graph of a free or surface
group with respect to a fixed generating set. These are standard examples of -hyperbolic
spaces (for different 0).

For z,y,z € X, the Gromov product (z,y), is defined to be

(2,): = 5 (A(z,2) +d(z,9) — d(z, )

We now specialize to the case of interest, where G = 71 (X) for some hyperbolic surface
31 as in the introduction. Throughout we identify the universal cover 3 with a convex
subspace of the hyperbolic plane H? and consider G as a discrete group of isometries of
H?. When ¥ is closed, G is a cocompact Fuchsian group. Otherwise, 9% # () and G is
the free group Fy for some N > 2. In this case, we have that X is the convex core of
H? /G, where G acts on H? as a Schottky group.

Fix a base point z € H?. Then for v = [g], 7(7) = 7(g) equals the (stable) translation
length of g on H2. Hence, one has the formula (see e.g. [15, Proposition 5.8])

(1) 7(9) = d(gz,2) — 2(92,9™ '2) + O(9)

where (x,%). is the Gromov product in H?. Here A = B + O(§) means that there
is a constant C, which depends only on the hyperbolicity constant & of H?, such that
|A— B| < C. (In fact, a standard computation shows that one can take § = log(1 ++v/2),
but we will not need this fact.)

Some basic probability. We begin by recording a few basic lemmas that will be needed
for our arguments.

Lemma 2. Let (Ay) be any sequence of measurable sets in a probability space, (P,) a
sequence of probability measures, and let (By) be a sequence such that

lim P,(B,) = 1.

n—o0
Then
limsup |Py,(4,) — Pp(A, N By)| = 0.
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Proof. By elementary set theory,
Pn(4,) =P, (A, N By) + Pp(A,\ By) <Po(A, N By,) +Pu(Br)
which yields the claim. O

Lemma 3. Let (P,,) be a sequence of probability measures on a Borel space X, and let
F,G : X — R be two measurable functions. Suppose that P, (|G(z)| > €) — 0 for any
e >0, and let (c,) be a sequence of positive real numbers with lim, o ¢, = 1. Suppose
that there exists a continuous function p: R — R such that

b
lim P, (F(x) € [a,b]) :/ p(x) dx.

n—oo

lim P, (F(x)*G(m) c [a,b]> _ /ab,o(:c) da.

Then

n—oo Cn,

Proof. Fix € > 0, and denote @, := f: p(x) dz. If n is sufficiently large, then by setting
Y, = % we have
{F(z) € [a+¢b—¢| and |G(z)| < e/2} C{Y, € [a,b]}
hence using Lemma 2
liminf P, (Y, € [a,b]) > liminf P, (F € [a +¢,b— €] and |G| < ¢/2) =
=liminfP,(F € [a +€,b—€]) = Pyyepe.
On the other hand
{Y, € [a,b] and |G| < ¢€/2} C{F €a—¢,b+¢€|}

hence
limsup P, (Y}, € [a,b]) = limsup P, (Y,, € [a,b] and |G| < €/2) <
<limsupP,(F € [a —€,b+¢€]) = Py_c pre
and taking € — 0 completes the proof. O

For the following lemma, recall that the total variation of a signed measure p on a
measure space (X,.A) is defined as ||u||7v := supgey [1(A)], where the supremum is
taken over all measurable subsets A C X.

Lemma 4. If \,v are purely atomic probability measures on a set X and A is absolutely
continuous with respect to v, then

dA
A=l < |5 -1
v oo
where || - |7y denotes the total variation of a measure.
Proof. Since the measures are atomic,
dA A
(z) = (z) for any = € X.

dv v(z)
Then
A= vllrv = sup [A(A) —v(4)] < Sup Y @) —v(@)| <

z€EA
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completing the proof. O

dA
<s 2
CEE(a

o0

3. THE CENTRAL LIMIT THEOREM FOR DISPLACEMENT

The proof of Theorem 1 uses equation (1): basically, one proves a CLT for the displace-
ment function d(z,gz), and then shows that the contribution of the term 2(gz, g7 '2).
tends to zero. These two facts will suffice by Lemma 3. We will start by establishing the
CLT for displacement.

Coding for closed geodesics. First of all, we use that conjugacy classes in free and
surface groups can be encoded by a finite graph.

Lemma 5 (21, 19]). Let G = m1(X) where 3 is an orientable hyperbolic surface of finite
type. Let S be a standard generating set for G. Then there exists an oriented graph T’
whose edges are labeled by elements of SU S™! and such that:

(1) cycles in I' of length n are in bijection with conjugacy classes C(G) of length n
i the group, except for finitely many exceptions;

(2) a conjugacy class is primitive if and only if the corresponding cycle in the graph
is primitive, i.e. not the power of a shorter cycle;

(3) the adjacency matriz M for this graph is aperiodic.

For closed surface groups, Lemma 5 is precisely ([19], Lemma 1.1), and we direct the
reader there for a proof which assembles work of Series [21, 22, 23]. Very briefly, this
coding goes back to Bowen—Series [3] who use the action G ~ 9H? = S' to build a
(Markov) map f: S! — S! having the following property: there is a partition of S! into
a finite union of intervals {J;};_, disjoint except at their endpoints, such that for each ¢,
f(J;) is a union of intervals in the partition. Moreover, for each i there is a generator s;
in SUS~! such that f and si_l have the same restriction to J;. The graph I' is then the
oriented graph whose vertices are the intervals {.J;} with a directed edge labeled s; from
Ji to J; if J; C f(J;). Another coding for closed surfaces is given by Wroten [25] and
also yields this result. The much easier case of free groups is briefly explained below.

Recall that a matrix M is aperiodic if there exists an integer k > 1 such that all entries
of M* are positive. By the Perron-Frobenius theorem, the matrix M has a unique, simple
eigenvalue A > 1 of maximum modulus. Also, if ev denotes the map which reads the
labels off of oriented edges of I', then ev extends to the evaluation map from directed
paths in ' to G. In details, if a directed path p is a concatenation of oriented edges
€1,...,en, then ev(p) = ev(e1)---ev(ey) in G. It is this map that induces the bijection
in item (1) of Lemma 5. We further remark that Lemma 5 implies that directed paths in
I" map to geodesics in G; that is, if p is a directed path of length n in ', then |ev(p)| = n
with respect to the generating set S.

We note that for free groups, the construction of the graph I' is immediate. Let
G = Fy and fix a basis {a1,...,an} of Fiy. Then the graph I" has 2N vertices, labelled
ai withi =1,..., N, e = . For each vertex v = a$, there exists an edge labelled a? to the
vertex a;? unless i = j and € = —n. In this case, nontrivial cyclically reduced words (i.e.
words that do not end with the inverse of their first letter) are in bijection with oriented
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based closed paths since such a word can only be read as a closed path by starting at
the vertex corresponding to the label on its last letter. As two cyclically reduced words
represent conjugate elements if and only if they differ by cyclic permutation, which
corresponds to changing the basepoint of the loop, this establishes items (1) and (2). (In
this case, the only exception in item (1) is for the trivial conjugacy class, which can be
read as the trivial cycle based at each vertex.) Item (3) is clear from the construction.

Let Ay, be the uniform distribution on the set C,, of (based) closed paths of length n in
I'. A short counting argument shows the following, which is a variation of ([6], Lemma
4.1):

Lemma 6. Let p,: C, — F, be the map from closed paths to conjugacy classes induced
by the evaluation map. Then

| (Pr)sAn = pinllTv — 0 as n — 0o,
where || - |7y denotes the total variation of a measure.

Proof. Let T',, denote the set of primitive cycles of length n (without remembering the
basepoint). Note that Tr M™ = A" + Zle A", where [A\;| < A. Hence A" < Tr M"™ <
cA" where ¢ only depends on M, and lim, % = 1. Moreover, by definition
> g A(#'a) = Tr M", so n(#I',) < Tr M™ < cA". Hence, the set of non-primitive

closed paths of length n has cardinality

cn
Tr M™ — n(#I,) = dzd; d(#Ty) < ?A”/Z

#Fn

n—o00 AT

=1

Then for any set A C F,, and any n > 1 sufficiently large (using the bijection provided
by Lemma 5 with n large enough to avoid the exceptions)

(4) = Yan#ANLa)  #(ANT,) + O(n\"?)
I T T @) (#T) + O

and, since the map p,, is exactly d-to-1 on the preimage of I'y,

1 2dn #ANTG) g (ANT,) + 0mAY?)
M) = T A T ) + O )

Hence

n(A) — ()] =0 [ X2 Lo,
@)

as n — 0o. This completes the proof. 0
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Markov chains. Let I' be a directed graph with vertex set V = V(I'), edge set E =
E(T), and aperiodic transition matrix M. For n > 0, we let Q™ denote the set of paths
of length n in I' starting at any vertex, and Q* = |J,~, Q" the set of all paths of finite
length. Also denote by € the set of all one-sided infinite directed paths starting at
vertices of I'. If we wish to focus on the subset of paths that start at the vertex v € V,
then we use v as a subscript as in €, or 2. We will associate to I' a probability on
each edge and a probability on each vertex so that the corresponding measure on the
space of infinite paths in I' is shift-invariant. (The reader is directed to [24, Section 8§]
for additional details of this standard construction.) Recall that if z = (x;)i>0 € Q is
a directed path in I, then the image of z under the shift T: Q@ — Q is Tx = (2;)i>1.
The assumption that M is aperiodic translates to the fact that the shift is topologically
mixing. For x € Q" we continue to use the notation 7%z to denote the image of x under
the shift for i < n.

Recall that A > 1 is the unique (simple) eigenvalue of M of maximum modulus. Fix a
right eigenvector v for M of eigenvalue A\ and a left eigenvector u of the same eigenvalue,
normalized so that u’v = 1. Let us now define the measure (m;)iev on the set of vertices
of I' where m; = u;v;, and for each edge in I' from ¢ to j let us define the probability

_ Mijv;
(2) qi; = SV

This defines a Markov chain on I', where ; is the probability of starting at vertex wv;,
and g;; is the probability of going from v; to v;.

This construction defines a shift invariant measure v (the so-called Parry measure) on
the set of infinite paths Q. Namely, let C(ig,1,...,ix) denote the set of infinite paths
which start with the path v;; — v;; — --- — v;,. This is a cylinder set of {2 and we set
its measure to be

V(C(i(b i, .- ’Zk?)) = Tio4ipi1Qirio - - - Qig_1ip»
and this determines a shift invariant measure v on Q. (In fact, this defines the measure
of maximal entropy for the shift 7: Q — Q [24, Theorem 8.10].) Now for each n, let v,
be the pushforward of v with respect to the map  — Q" which takes an infinite path to
its prefix of length n. The measure v, is the distribution of the n‘* step of the Markov
chain whose initial distribution is (7;);cy, and v, is supported on the set of paths of
length n.

As before ev : E(I') — G is the evaluation map which associates to each edge its label
in SUS~! C G. By concatenation, the map extends to a map ev : Q* — G from the set
of all finite paths to G. Hence, if z € Q" is a path of length n given as a sequence of
vertices (x;);, associated to the edge path eq,..., ey, then ev(z) = ev(er)---ev(e,) in
G. In particular, if x is a single vertex (i.e. a path of length 0) then ev(x) = 1.

3.1. The Central Limit Theorem for Hoélder observables. Here we briefly recall
the classical CLT from Thermodynamic Formalism as we will need it. We closely follow
Bowen [2, Chapter 1].

Let T: Q — Q be a topologically mixing shift of finite type and v a shift-invariant
Gibbs measure on 2. (For us, v will always be the measure of maximal entropy on the
Markov chain €2, defined as above.) We have a metric dg on the space Q* U of all
directed paths defined by do(z,y) = 27 where K is the largest nonnegative integer
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such that x; = y; for i < K. We note that with this metric, 2 is the set of limit points
of the discrete set 2*. Topologically, 2 is a Cantor set.

A function f: Q — Ris Hélder continuous if for all x,y € Q, | f(z)—f(y)| < Cda(z,y)*
for some C, e > 0.

The following result is a combination of Theorem 1.27 of [2] and the remark that
follows it. It states that a central limit theorem holds with positive variance as long
as the Livsic cohomological equation [14] has no solutions. We will use the notation

2
1 b _z=
Nop = Ton fa e 2 dx.

Theorem 7 ([2], Theorem 1.27). Suppose that f: Q — R is Hélder and that there does
not exist a Holder function u: @ — R such that f =u—uoT + [ fdv. Then there is a
constant o > 0 such that for any a < b,

-1 ;
v (az e . Lizo f(T'0) —n [ f dv
ov/n
3.2. Displacement and the CLT. The main result of this section is the following

central limit theorem for displacement along the Markov chain. First, fix a basepoint
z € H2.

E[a,H) —)A@b.

Theorem 8. There exist constants L > 0 and o > 0 such that for any a,b € R with

a < b we have

d(ev(z)z,z) —nL
oy/n

The proof of Theorem 8 requires the following setup, which approximately follows the

discussion in Calegari [4, Section 3.7]. For g € G and s € S U S™!, define D;F(g) =
d(z,9z) — d(z,sgz). Note that by the triangle inequality

(3) |DsF(g)| = |d(z,92) — d(s™'2,92)| <d(z,5s'2) < max d(z,s2).
seSus—1

For a finite path z € Q*, let DF(z) = Dy-1F(ev(z)), where s labels the first edge of .
This defines a function DF': 2 — R on the set of all finite paths such that

DF(z) =d(z,ev(z)z) — d(z,ev(Tz)z).

U (:): eQ" . € [a,b]) — Ngp.

In particular, if x € Q", then we note that

n—1

(4) Z DF(T'z) = d(z,ev(x)z).

1=0

To apply the central limit theorem (Theorem 7), one needs to verify the Holder con-
tinuity property of the observable, and so we use the following proposition of Pollicott
and Sharp. For the statement, if g, h € G, then (g, h) will denote their Gromov product
based at the identity 1 € G. That is,

(9,) := (9.1 = 5 (|o] + [A] — lg ™A}

We note that this quantity is always positive by the triangle inequality.
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Lemma 9 ([17], Proposition 1; [18], Lemma 1 and Proposition 3). There exist constants
C >0 and a > 1 such that for any h,g € G, any s € SUS™!

(5) [DsF(g) — DsF(h)| < Ca™0h),
Since the evaluation map ev: Q* — G is geodesic, we claim that for any x,y € Q*
o~ @@evW) < o dg(z,y)"

where 1 = logy(a). Indeed, suppose dg(z,y) = 275 so that we can write z = pz’ and
y = py’ where p is the (possibly empty) length £k = K — 1 common prefix of z and y in
0*. (Recall that K is the number of initial vertices in common.) Then directly from the
definition of the Gromov product and the fact that ev: Q* — G maps paths of length
n to elements of word length n, we have (ev(x),ev(y)) = k + (ev(a/),ev(y')) > K — 1.
From this the claim is evident.

This observation plus Lemma 9 directly implies that DF': Q* — R is Holder. For this,
let z,y € Q*. First, note that |DF(x) — DF(y)| < 2max,cgu9-1 d(z,sz) by (3), and this
suffices whenever x and y do not share an initial edge, since in this case dqo(z,y) > 1/2.
Otherwise, « and y have a common initial edge with label s € S U S~ and Lemma 9
gives

|DF(z) — DF(y)| = |Ds-1F(ev(z)) — D1 F(ev(y))|
< Ca~lev@eviy)
< Ca dQ(‘T’la y)nv

as required.

Hence, the function DF on Q* is Holder continuous and therefore has a unique con-
tinuous extension to the Hélder function DF': 2 — R on the space of all infinite paths
Q

'For x € §, define
F.(z) = DF(z) + DF(Tx) + ...+ DF(T" '2).
If we let 2™ € Q" denote the prefix of z of length n, we have that
F,(z") =d(z,ev(z")z),
by (4). Whereas for an infinite path = € Q, we have

F,(z) = lim (d(z,ev(xk)z) - d(z,eV(T”xk)z)).

k—o00

However, the following lemma bounds how far F,(z) can be from the displacement

F,(z") =d(z,ev(z")z).

Lemma 10. The difference |F,,(x) — F,(z™)| is uniformly bounded, independent of x €
andn > 1.



A CENTRAL LIMIT THEOREM FOR RANDOM CLOSED GEODESICS 9

Proof. Write x = y1ys2 ..., where the y; are edges of I, i.e. we represent x as an edge
path in T'. Then z¥ = y1y5...yx. Also, let ev(y;) = g;. Then

[Fa@™) = Faa)| = lim (dz,91.+902) + Az, gns1- - 062) = dlz, 91 962)

= lim (d(z,91 - gnz) +d(g1 - gnz,91- .- grz) —d(z,91 ... gr2))

=2 lim (Z,ev(xk)z)

b soo ev(zn)z’

Since G ~ H? is convex cocompact and the path i — ev(z®) = g ...g; is geodesic in
G, the path i — ev(z')z is a uniform quasigeodesic. That is, i — ev(z%)z is a (K, C)—
quasigeodesic in H? for K > 1 and C' > 0 not depending on z. This (together with
the stability of quasigeodesics in the hyperbolic space H?) immediately implies that the
quantity (z,ev(mk)z)ev(mn)z is uniformly bounded for every k& > n. This completes the

proof. O
Finally, the following lemma is needed to establish positivity of o in Theorem 8.
Lemma 11. There does not exist a function u: Q2 — R and L € R such that
DF =u—wuoT+ L.

Proof. Suppose not. Then
”z_:l DF(T"(x)) = u(x) — uw(T™(x)) + nL
i=0
Thus, if « € Q is a periodic point of period n for T', then
Fo(z) = nzl DF(T(x)) = nL.
i=0

Next, a direct computation shows that if g = ev(z™), then
7(g9) = 1(ev(z")) = Fu(z) = nL.

Indeed, as in [12, Lemma 4.2], since T"z = z, F,;(x) = kF,,(z) and we see that F,;(z) =
Fop(2™) 4+ O(1) (Lemma 10) implies

Fala) = Jim 2 For(e™) = lim 2d(z, "),
which, by definition, equals the translation length 7(g).

Hence, we conclude using Lemma 5 that 7([g]) = Ll|g| for all but finitely many
conjugacy classes in G. This, however, contradicts the fact that in every noncyclic
subgroup of G there exist conjugacy classes whose geodesic representatives on > have
incommensurable lengths (see, for example, [13]). O

Proof of Theorem 8. Since DF is a Holder continuous function on a mixing shift of finite
type, Theorem 7 along with Lemma 11 give

y(m  Fu(x)—nL

P — N,
U\/ﬁ c [a,b]) — Nab,
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where as before F,(r) = DF(x) + DF(Tx) + ...+ DF(T" 'z). But by Lemma 10, the

probability
n
U(.’L’ : [ (2") — Fo(2)] Z€> 0,
Vn
as n — oo, for any € > 0. Hence, applying Lemma 3 gives the CLT for the displacement
Fo(2™) = d(z,ev(z™)z) for x € Q with respect to the measure v. Since the distribution
of x™ € Q™ is v,, this completes the proof of the theorem. O

4. CONVERGENCE TO THE COUNTING MEASURE FOR CLOSED PATHS

Next we use the Theorem 8 (which is about the Markov chain) to study the distribution
of closed paths. Given a path z of length n, let Z denote the prefix of = of length n—logn.

Recall that A, is the uniform distribution on the set C,, of based closed paths of length
nin I'. Since C,, C ", A, defines a measure on Q" supported on C,,. Let A, ,,, denote the
distribution of the prefix of length n — m of a uniformly chosen closed path of length n.
Said differently, My, is the distribution on paths of length n — m obtained by pushing
An forward under the prefix map. In particular, if x has distribution A,, then Z has
distribution A, 1ogn. We define v, 5, in the same way, using v, in place of \,. By the
Markov property, vpm = Vp—m.

Proposition 12. With notation as above, A, ., is absolutely continuous with respect to
Un,m, and moreover

dA
sup D () — 1' —0
yeEQR—m Vn,m
as min{m,n} — oo.
Proof. Given a path v =eq-...-e,—p with starting vertex v; and end vertex v; we have

_ #{paths of length m from v; to v;}
B #{closed paths of length n}
e}FMmei

~ Tr M

An,m (7)

where e; is the " basis vector.

Now, recall that we have fixed a right eigenvector v for M of eigenvalue A, and a left
eigenvector u of the same eigenvalue, normalized so that u’v = 1. Since M is irreducible
and aperiodic, by the Perron-Frobenius Theorem we have

M™
lim — = vu’
n—oo A"
and in particular
Tarn
. e M"e;
lim ———7 = el'vule; = vu;.
n—oo P\
As before the measure (7;) where m; = w;v; is stationary for the Markov chain defined
as q;j = m/\zf} % so we consider this Markov chain with the stationary measure as starting
k2

distribution. Let v, = vp—pm be the pushforward of the Markov measure on the set of
paths of length n — m. Then
™V N U; V5

VAT o \n—m’

Vnm () =
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Hence
dAnm, e;FMmei ATm emeei AT
AVp,m, (v) = Tr M™  w;v, - Ay Tr M -1
as min{m,n} — oo. O

We conclude this section by promoting the CLT for displacement from the Markov
chain (Theorem 8) to the counting measure \,,.

Theorem 13. For any a,b € R with a < b one has

An <x . d(eV($;Z\’/%) —nl

S [a, b]) — Na,b
as n — oQ.

Proof. Since logn/\/n — 0, Theorem 8 (together with Lemma 3) implies

d(ev(x)z,z) —nL
Un—logn <.CIZ : 0'\/’71 < [a,b] — Na,b-

Now, since vV, _jogn = Vnlogn and by Proposition 12 and Lemma 4 we get

||Vn,logn - )\n,lognHTV —0

hence
d(ev(x)z,z) —nL

A 1 T
n,logn O'\/ﬁ

Moreover, by the definition of Z,

N <x | d(ev(f{)fz\,/%) kg b}) Ao (x dlev@e,z) —nl b]) |

Finally, note the since the orbit map G — H? is Lipschitz, we have
|d(ev(z)z, z) — d(ev(Z)z, z)| < Clogn

where C' is the Lipschitz constant. Then using Lemma 3

S [a, b]) — Na,b-

—nlL T —nlL
lim A, <ZE : dlev(w)z 2) =n € [a, b]> = lim A\, <:L" : dlev(@)z,2) =n € [a,b]>
n—00 U\/ﬁ n—00 U\/ﬁ
= LVab
which completes the proof. ]

5. THE GROMOV PRODUCT

The remaining step of our proof is to turn the statement about displacement (Theorem
13) into a statement about translation length. This is done by controlling the Gromov
product.

We begin with the following easy computation. Recall that (2" is the set of all paths
of length n and C,, C Q2" is the subset of closed paths.

Lemma 14. There is a constant D > 0 such that
n
#OM _

PEe) <
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Proof. We know that #(C,,) = Tr M™ = A" 4+ > . A, where X is the Perron-Frobenius
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eigenvalue of M and |\;| < A. Also, #(Q") = ||M"||; < DA™ for some D > 1. O

Next, we will see that the Gromov product of a random element and its inverse grows
slowly in word length. This is our key estimate for relating displacement to translation
length.

Proposition 15. For any ¢ > 0,

An( (ev(z)z, ev(z)12), < evn) — 1,
as n — 00.

Proof. Fix € > 0 and a vertex v of I.

Recall that €, is the set of one-sided, infinite paths in the graph starting at v. Let us
denote as P, := v(- | Q,) the conditional probability of v given Q,. This is a probability
measure on ), C €2, and is defined on a cylinder set C(ig,1,...,1x) as

Py (C(io, i1, - - -+ 9k)) = Ov,igGio,ir - - - Qin_1in

where d,,, = 1 if v = i, and 0,3, = 0 otherwise and the ¢;; are as in (2). Let
Zn: 0y — Q7 be the prefix map which sends an infinite paths starting at v to its prefix
of length n. Define

A={z e : (ev(z)z,ev( L > e\/E}

where |z| denotes the length of z. By [10, Section 6] for any vertex v of T" one has

P, ((ev(wn)z,ev(xn)_lz)z > ey/n) — 0.

(Lemma 6.26 of [10] explicitly gives this statement where v is the “initial vertex” of the
directed graph, however the same argument gives the more general result for all vertices.)
Next, consider any path p € Q7 of length n starting at v. If v is the I vertex of
I’ and the terminal endpoint of p is the k' vertex, then the n*" step measure of p is
P2 (p) = /\%— (Here, P? is the measure supported on Q2 which is the pushforward of
P, under the prefix map Q, — Q)
Then, for any subset B C (J,,~;

1 T
n B) = oA Z’l}k # B N ngk)
k=1
and
#BNQ" = Z# (BnQy,.)

where Q7 , is the set of paths of length n startlng at v and ending at w. Moreover, by
[10, Lemma 2.3 (3)], there is a constant K > 0 such that K~1\" < #Q" < K\" for any
n > 0. Hence, there is a constant ¢ > 1, depending only on the adjacency matrix M,

such that

E.WSPH(B)SC.

#(BNQY)
c  #y '

L
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In particular, we conclude that

ANQP
(6) HAND) <c-P, ((ev(xn)z,ev(xn)_lz)z > ey/n) — 0,
#
as n — oo.
Hence, by summing over all vertices v € V
7#(14 na) — 0.
Q"

Then by combining this with Lemma 14,
#ANC) _ #ANQY #0°
#Cn T #O" #Cn

An(A) = 0.

O

Remark 16. The main estimate (6) in the proof of Proposition 15 can also be obtained
via a trick using more recent work of the authors [11]. Using terminology there, one may
define a geodesic graph structure (G,T') by declaring that v be the initial vertex of T'.
Such a structure may not be surjective, but this is not necessary. Then [11, Proposition
5.8] precisely gives the required decay result.

Proof of Theorem 1. We can now complete the proof of Theorem 1.

Proof of Theorem 1. Let d,, := M, t, = Tlev(@)=nl = ond D =ty — dy =

o\/n o\/n )
2(ev($)z’evégf/)%lz)z+o(5). By the CLT for displacement (Theorem 8), for any a < b

An(x : dy € [a,b]) = Ngp.
Moreover, by decay of Gromov products for any € > 0 (Proposition 15) we have

Al |pn] > €) =0

hence by Lemma 3

M <33 : W € la, b]) S N

Finally, by Lemma 6 this implies

fin (v : T(?\;ﬁnL € [a, b]> — Nap

which completes the proof. [l

6. GENERALIZATIONS

While many generalization of Theorem 1 are possible, we record the most immediate
one here. The proof is the same as the one given above, using that Lemma 9 holds for
convex cocompact actions on CAT(—1) spaces [18].

Theorem 17. Let G ~ X be any convex cocompact action of a closed orientable surface
group on a CAT(—1) space. Then the conclusion of Theorem 1 holds. The same is true
for any convex cocompact free group action on a CAT(—1) space X as long as the lengths
of closed geodesics on X/G are not all contained in cZ for some ¢ > 0.
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The condition on lengths of closed geodesics is known to hold whenever G ~ X is a
discrete action on a CAT(—1) space satisfying at least one of the following:

e the limit set A(G) C 0X has an infinite connected component (in particular
when G is a surface group) [1];

e X is itself a surface (so that X/G is a locally CAT(—1) surface) [9];

e X is a rank 1 symmetric space [13].
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