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Abstract. We prove a central limit theorem for the length of closed geodesics in any
compact orientable hyperbolic surface. In the special case of a hyperbolic pair of pants,
this settles a conjecture of Chas–Li–Maskit.

1. Introduction

Let Σ be a compact orientable hyperbolic surface whose boundary, if any, is geodesic,
and let G denote its fundamental group. By a standard generating set S for G we mean
the following: when G is free (i.e. when ∂Σ 6= ∅) S is a free basis for G. Otherwise, Σ is
a closed orientable surface of genus g ≥ 2 and S is the generating set used in the usual
presentation G = 〈a1, . . . , ag, b1, . . . bg :

∏
i[ai, bi] = 1〉.

Now fix a standard generating set S of G, and let |g| be the word length of g with
respect to S. For each g ∈ G, let [g] denote its conjugacy class, and for any conjugacy
class γ = [g] define its conjugacy length ‖γ‖ = ‖g‖ := min[g]=γ |g| to be the minimum
word length over all elements representing γ.

Any conjugacy class γ is represented by a closed geodesic in Σ, and let τ(γ) denote the
length of this geodesic in the hyperbolic metric. Let µn denote the uniform distribution
on the set Fn of conjugacy classes of length n. The goal of this note is to prove the
following central limit theorem:

Theorem 1. There exist constants L > 0, σ > 0 such that for any a, b ∈ R with a < b
we have

µn

(
γ :

τ(γ)− nL
σ
√
n

∈ [a, b]

)
→ 1√

2π

∫ b

a
e−

x2

2 dx

as n→∞.

Motivated by experimental evidence, Chas–Li–Maskit [7] conjectured that the con-
clusion of Theorem 1 holds for a hyperbolic pair of pants. This followed an earlier
central limit theorem by Chas–Lalley [6] for the distribution of self-intersection numbers
of random geodesics.

The proof of Theorem 1 uses the central limit theorem for Hölder continuous observ-
ables on a mixing Markov chain following Ruelle [20] and Bowen [2] (see also Pollicott–
Sharp [17] and Calegari [4]), combined with estimates on Gromov products by the authors
[10]. The Markov chain which encodes closed geodesics on a surface is provided by Series
[21, 22, 23] (see also Wroten [25]).
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We note that P. Park has recently written up a related result where the uniform
distribution on conjugacy classes is replaced by the nth step distribution of a simple
random walk on G [16]. Let us note that counting for the simple random walk and
counting with respect to balls in the Cayley graph are in general different, and many
authors addressed the question of how they are related on various groups.

Acknowledgments. We thank the referee for useful suggestions that improved our
exposition.

2. Preliminaries

The geometric setup. Since our argument will use tools from coarse geometry, we
begin with some basic definitions; additional background can be found in [4].

Let (X, d) be a δ-hyperbolic geodesic metric space, for some δ > 0. Recall this means
that between any two points x, y ∈ X there is some geodesic segment [x, y] in X, and
for any geodesic triangle [x, y], [y, z], [z, x] in X with x, y, z ∈ X, one has the inclusion
[x, y] ⊂ Nδ ([y, z] ∪ [z, x]), where Nδ denotes the δ-neighborhood in X. In this paper, X
will usually be either the hyperbolic plane H2 or the Cayley graph of a free or surface
group with respect to a fixed generating set. These are standard examples of δ-hyperbolic
spaces (for different δ).

For x, y, z ∈ X, the Gromov product (x, y)z is defined to be

(x, y)z =
1

2
(d(z, x) + d(z, y)− d(x, y)) .

We now specialize to the case of interest, where G = π1(Σ) for some hyperbolic surface

Σ as in the introduction. Throughout we identify the universal cover Σ̃ with a convex
subspace of the hyperbolic plane H2 and consider G as a discrete group of isometries of
H2. When Σ is closed, G is a cocompact Fuchsian group. Otherwise, ∂Σ 6= ∅ and G is
the free group FN for some N ≥ 2. In this case, we have that Σ is the convex core of
H2/G, where G acts on H2 as a Schottky group.

Fix a base point z ∈ H2. Then for γ = [g], τ(γ) = τ(g) equals the (stable) translation
length of g on H2. Hence, one has the formula (see e.g. [15, Proposition 5.8])

(1) τ(g) = d(gz, z)− 2(gz, g−1z)z +O(δ)

where (x, y)z is the Gromov product in H2. Here A = B + O(δ) means that there
is a constant C, which depends only on the hyperbolicity constant δ of H2, such that
|A−B| ≤ C. (In fact, a standard computation shows that one can take δ = log(1 +

√
2),

but we will not need this fact.)

Some basic probability. We begin by recording a few basic lemmas that will be needed
for our arguments.

Lemma 2. Let (An) be any sequence of measurable sets in a probability space, (Pn) a
sequence of probability measures, and let (Bn) be a sequence such that

lim
n→∞

Pn(Bn) = 1.

Then

lim sup
n
|Pn(An)− Pn(An ∩Bn)| = 0.
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Proof. By elementary set theory,

Pn(An) = Pn(An ∩Bn) + Pn(An \Bn) ≤ Pn(An ∩Bn) + Pn(Bc
n)

which yields the claim. �

Lemma 3. Let (Pn) be a sequence of probability measures on a Borel space X, and let
F,G : X → R be two measurable functions. Suppose that Pn(|G(x)| ≥ ε) → 0 for any
ε > 0, and let (cn) be a sequence of positive real numbers with limn→∞ cn = 1. Suppose
that there exists a continuous function ρ : R→ R+ such that

lim
n→∞

Pn(F (x) ∈ [a, b]) =

∫ b

a
ρ(x) dx.

Then

lim
n→∞

Pn
(
F (x) +G(x)

cn
∈ [a, b]

)
=

∫ b

a
ρ(x) dx.

Proof. Fix ε > 0, and denote Φa,b :=
∫ b
a ρ(x) dx. If n is sufficiently large, then by setting

Yn := F+G
cn

we have

{F (x) ∈ [a+ ε, b− ε] and |G(x)| ≤ ε/2} ⊆ {Yn ∈ [a, b]}
hence using Lemma 2

lim inf Pn(Yn ∈ [a, b]) ≥ lim inf Pn(F ∈ [a+ ε, b− ε] and |G| ≤ ε/2) =

= lim inf Pn(F ∈ [a+ ε, b− ε]) = Φa+ε,b−ε.

On the other hand

{Yn ∈ [a, b] and |G| ≤ ε/2} ⊆ {F ∈ [a− ε, b+ ε]}
hence

lim supPn(Yn ∈ [a, b]) = lim supPn(Yn ∈ [a, b] and |G| ≤ ε/2) ≤
≤ lim supPn(F ∈ [a− ε, b+ ε]) = Φa−ε,b+ε

and taking ε→ 0 completes the proof. �

For the following lemma, recall that the total variation of a signed measure µ on a
measure space (X,A) is defined as ‖µ‖TV := supA∈A |µ(A)|, where the supremum is
taken over all measurable subsets A ⊆ X.

Lemma 4. If λ, ν are purely atomic probability measures on a set X and λ is absolutely
continuous with respect to ν, then

‖λ− ν‖TV ≤
∥∥∥∥dλdν − 1

∥∥∥∥
∞
,

where ‖ · ‖TV denotes the total variation of a measure.

Proof. Since the measures are atomic,

dλ

dν
(x) =

λ(x)

ν(x)
for any x ∈ X.

Then
‖λ− ν‖TV = sup

A⊆X
|λ(A)− ν(A)| ≤ sup

A

∑
x∈A
|λ(x)− ν(x)| ≤
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≤ sup
A

∑
x∈A

∣∣∣∣λ(x)

ν(x)
− 1

∣∣∣∣ ν(x) ≤ sup
A

(∥∥∥∥dλdν − 1

∥∥∥∥
∞
ν(A)

)
≤
∥∥∥∥dλdν − 1

∥∥∥∥
∞
,

completing the proof. �

3. The central limit theorem for displacement

The proof of Theorem 1 uses equation (1): basically, one proves a CLT for the displace-
ment function d(z, gz), and then shows that the contribution of the term 2(gz, g−1z)z
tends to zero. These two facts will suffice by Lemma 3. We will start by establishing the
CLT for displacement.

Coding for closed geodesics. First of all, we use that conjugacy classes in free and
surface groups can be encoded by a finite graph.

Lemma 5 ([21, 19]). Let G = π1(Σ) where Σ is an orientable hyperbolic surface of finite
type. Let S be a standard generating set for G. Then there exists an oriented graph Γ
whose edges are labeled by elements of S ∪ S−1 and such that:

(1) cycles in Γ of length n are in bijection with conjugacy classes C(G) of length n
in the group, except for finitely many exceptions;

(2) a conjugacy class is primitive if and only if the corresponding cycle in the graph
is primitive, i.e. not the power of a shorter cycle;

(3) the adjacency matrix M for this graph is aperiodic.

For closed surface groups, Lemma 5 is precisely ([19], Lemma 1.1), and we direct the
reader there for a proof which assembles work of Series [21, 22, 23]. Very briefly, this
coding goes back to Bowen–Series [3] who use the action G y ∂H2 = S1 to build a
(Markov) map f : S1 → S1 having the following property: there is a partition of S1 into
a finite union of intervals {Ji}ri=1, disjoint except at their endpoints, such that for each i,
f(Ji) is a union of intervals in the partition. Moreover, for each i there is a generator si
in S ∪S−1 such that f and s−1

i have the same restriction to Ji. The graph Γ is then the
oriented graph whose vertices are the intervals {Ji} with a directed edge labeled si from
Ji to Jj if Jj ⊂ f(Ji). Another coding for closed surfaces is given by Wroten [25] and
also yields this result. The much easier case of free groups is briefly explained below.

Recall that a matrix M is aperiodic if there exists an integer k ≥ 1 such that all entries
of Mk are positive. By the Perron-Frobenius theorem, the matrix M has a unique, simple
eigenvalue λ > 1 of maximum modulus. Also, if ev denotes the map which reads the
labels off of oriented edges of Γ, then ev extends to the evaluation map from directed
paths in Γ to G. In details, if a directed path p is a concatenation of oriented edges
e1, . . . , en, then ev(p) = ev(e1) · · · ev(en) in G. It is this map that induces the bijection
in item (1) of Lemma 5. We further remark that Lemma 5 implies that directed paths in
Γ map to geodesics in G; that is, if p is a directed path of length n in Γ, then |ev(p)| = n
with respect to the generating set S.

We note that for free groups, the construction of the graph Γ is immediate. Let
G = FN and fix a basis {a1, . . . , aN} of FN . Then the graph Γ has 2N vertices, labelled
aεi with i = 1, . . . , N , ε = ±. For each vertex v = aεi , there exists an edge labelled aηj to the

vertex aηj unless i = j and ε = −η. In this case, nontrivial cyclically reduced words (i.e.

words that do not end with the inverse of their first letter) are in bijection with oriented
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based closed paths since such a word can only be read as a closed path by starting at
the vertex corresponding to the label on its last letter. As two cyclically reduced words
represent conjugate elements if and only if they differ by cyclic permutation, which
corresponds to changing the basepoint of the loop, this establishes items (1) and (2). (In
this case, the only exception in item (1) is for the trivial conjugacy class, which can be
read as the trivial cycle based at each vertex.) Item (3) is clear from the construction.

Let λn be the uniform distribution on the set Cn of (based) closed paths of length n in
Γ. A short counting argument shows the following, which is a variation of ([6], Lemma
4.1):

Lemma 6. Let pn : Cn → Fn be the map from closed paths to conjugacy classes induced
by the evaluation map. Then

‖(pn)?λn − µn‖TV → 0 as n→∞,

where ‖ · ‖TV denotes the total variation of a measure.

Proof. Let Γn denote the set of primitive cycles of length n (without remembering the

basepoint). Note that Tr Mn = λn +
∑k

i=1 λ
n
i , where |λi| < λ. Hence λn ≤ Tr Mn ≤

cλn where c only depends on M , and limn→∞
Tr Mn

λn = 1. Moreover, by definition∑
d|n d(#Γd) = Tr Mn, so n(#Γn) ≤ Tr Mn ≤ cλn. Hence, the set of non-primitive

closed paths of length n has cardinality

Tr Mn − n(#Γn) =
∑

d|n,d 6=n

d(#Γd) ≤
cn

2
λn/2

and so

lim
n→∞

n(#Γn)

λn
= 1.

Then for any set A ⊆ Fn and any n ≥ 1 sufficiently large (using the bijection provided
by Lemma 5 with n large enough to avoid the exceptions)

µn(A) =

∑
d|n #(A ∩ Γd)∑
d|n(#Γd)

=
#(A ∩ Γn) +O(nλn/2)

(#Γn) +O(nλn/2)

and, since the map pn is exactly d-to-1 on the preimage of Γd,

λn(p−1
n (A)) =

∑
d|n d#(A ∩ Γd)∑
d|n d(#Γd)

=
n#(A ∩ Γn) +O(nλn/2)

n(#Γn) +O(nλn/2)
.

Hence ∣∣µn(A)− λn(p−1
n (A))

∣∣ = O

(
nλn/2

(#Γn)

)
→ 0,

as n→∞. This completes the proof. �
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Markov chains. Let Γ be a directed graph with vertex set V = V (Γ), edge set E =
E(Γ), and aperiodic transition matrix M . For n ≥ 0, we let Ωn denote the set of paths
of length n in Γ starting at any vertex, and Ω? =

⋃
n≥1 Ωn the set of all paths of finite

length. Also denote by Ω the set of all one-sided infinite directed paths starting at
vertices of Γ. If we wish to focus on the subset of paths that start at the vertex v ∈ V ,
then we use v as a subscript as in Ωv or Ωn

v . We will associate to Γ a probability on
each edge and a probability on each vertex so that the corresponding measure on the
space of infinite paths in Γ is shift-invariant. (The reader is directed to [24, Section 8]
for additional details of this standard construction.) Recall that if x = (xi)i≥0 ∈ Ω is
a directed path in Γ, then the image of x under the shift T : Ω → Ω is Tx = (xi)i≥1.
The assumption that M is aperiodic translates to the fact that the shift is topologically
mixing. For x ∈ Ωn, we continue to use the notation T ix to denote the image of x under
the shift for i ≤ n.

Recall that λ > 1 is the unique (simple) eigenvalue of M of maximum modulus. Fix a
right eigenvector v for M of eigenvalue λ and a left eigenvector u of the same eigenvalue,
normalized so that uTv = 1. Let us now define the measure (πi)i∈V on the set of vertices
of Γ where πi = uivi, and for each edge in Γ from i to j let us define the probability

(2) qij =
mijvj
λvi

.

This defines a Markov chain on Γ, where πi is the probability of starting at vertex vi,
and qij is the probability of going from vi to vj .

This construction defines a shift invariant measure ν (the so-called Parry measure) on
the set of infinite paths Ω. Namely, let C(i0, i1, . . . , ik) denote the set of infinite paths
which start with the path vi0 → vi1 → · · · → vik . This is a cylinder set of Ω and we set
its measure to be

ν(C(i0, i1, . . . , ik)) = πi0qi0i1qi1i2 . . . qik−1ik ,

and this determines a shift invariant measure ν on Ω. (In fact, this defines the measure
of maximal entropy for the shift T : Ω→ Ω [24, Theorem 8.10].) Now for each n, let νn
be the pushforward of ν with respect to the map Ω→ Ωn which takes an infinite path to
its prefix of length n. The measure νn is the distribution of the nth step of the Markov
chain whose initial distribution is (πi)i∈V , and νn is supported on the set of paths of
length n.

As before ev : E(Γ)→ G is the evaluation map which associates to each edge its label
in S ∪ S−1 ⊂ G. By concatenation, the map extends to a map ev : Ω? → G from the set
of all finite paths to G. Hence, if x ∈ Ωn is a path of length n given as a sequence of
vertices (xi)

n
i=0 associated to the edge path e1, . . . , en, then ev(x) = ev(e1) · · · ev(en) in

G. In particular, if x is a single vertex (i.e. a path of length 0) then ev(x) = 1.

3.1. The Central Limit Theorem for Hölder observables. Here we briefly recall
the classical CLT from Thermodynamic Formalism as we will need it. We closely follow
Bowen [2, Chapter 1].

Let T : Ω → Ω be a topologically mixing shift of finite type and ν a shift-invariant
Gibbs measure on Ω. (For us, ν will always be the measure of maximal entropy on the
Markov chain Ω, defined as above.) We have a metric dΩ on the space Ω? ∪ Ω of all
directed paths defined by dΩ(x, y) = 2−K where K is the largest nonnegative integer
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such that xi = yi for i < K. We note that with this metric, Ω is the set of limit points
of the discrete set Ω?. Topologically, Ω is a Cantor set.

A function f : Ω→ R is Hölder continuous if for all x, y ∈ Ω, |f(x)−f(y)| ≤ CdΩ(x, y)ε

for some C, ε > 0.
The following result is a combination of Theorem 1.27 of [2] and the remark that

follows it. It states that a central limit theorem holds with positive variance as long
as the Livšic cohomological equation [14] has no solutions. We will use the notation

Na,b := 1√
2π

∫ b
a e
−x2

2 dx.

Theorem 7 ([2], Theorem 1.27). Suppose that f : Ω→ R is Hölder and that there does
not exist a Hölder function u : Ω→ R such that f = u− u ◦ T +

∫
fdν. Then there is a

constant σ > 0 such that for any a < b,

ν

(
x ∈ Ω :

∑n−1
i=0 f(T ix)− n

∫
f dν

σ
√
n

∈ [a, b]

)
→ Na,b.

3.2. Displacement and the CLT. The main result of this section is the following
central limit theorem for displacement along the Markov chain. First, fix a basepoint
z ∈ H2.

Theorem 8. There exist constants L > 0 and σ > 0 such that for any a, b ∈ R with
a < b we have

νn

(
x ∈ Ωn :

d(ev(x)z, z)− nL
σ
√
n

∈ [a, b]

)
→ Na,b.

The proof of Theorem 8 requires the following setup, which approximately follows the
discussion in Calegari [4, Section 3.7]. For g ∈ G and s ∈ S ∪ S−1, define DsF (g) =
d(z, gz)− d(z, sgz). Note that by the triangle inequality

(3) |DsF (g)| = |d(z, gz)− d(s−1z, gz)| ≤ d(z, s−1z) ≤ max
s∈S∪S−1

d(z, sz).

For a finite path x ∈ Ω?, let DF (x) = Ds−1F (ev(x)), where s labels the first edge of x.
This defines a function DF : Ω? → R on the set of all finite paths such that

DF (x) = d(z, ev(x)z)− d(z, ev(Tx)z).

In particular, if x ∈ Ωn, then we note that

n−1∑
i=0

DF (T ix) = d(z, ev(x)z).(4)

To apply the central limit theorem (Theorem 7), one needs to verify the Hölder con-
tinuity property of the observable, and so we use the following proposition of Pollicott
and Sharp. For the statement, if g, h ∈ G, then (g, h) will denote their Gromov product
based at the identity 1 ∈ G. That is,

(g, h) := (g, h)1 =
1

2

(
|g|+ |h| − |g−1h|

)
.

We note that this quantity is always positive by the triangle inequality.
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Lemma 9 ([17], Proposition 1; [18], Lemma 1 and Proposition 3). There exist constants
C > 0 and α > 1 such that for any h, g ∈ G, any s ∈ S ∪ S−1

|DsF (g)−DsF (h)| ≤ Cα−(g,h).(5)

Since the evaluation map ev : Ω? → G is geodesic, we claim that for any x, y ∈ Ω?

α−(ev(x),ev(y)) ≤ α dΩ(x, y)η

where η = log2(α). Indeed, suppose dΩ(x, y) = 2−K so that we can write x = px′ and
y = py′ where p is the (possibly empty) length k = K − 1 common prefix of x and y in
Ω?. (Recall that K is the number of initial vertices in common.) Then directly from the
definition of the Gromov product and the fact that ev : Ω? → G maps paths of length
n to elements of word length n, we have (ev(x), ev(y)) = k + (ev(x′), ev(y′)) ≥ K − 1.
From this the claim is evident.

This observation plus Lemma 9 directly implies that DF : Ω? → R is Hölder. For this,
let x, y ∈ Ω?. First, note that |DF (x)−DF (y)| ≤ 2 maxs∈S∪S−1 d(z, sz) by (3), and this
suffices whenever x and y do not share an initial edge, since in this case dΩ(x, y) ≥ 1/2.
Otherwise, x and y have a common initial edge with label s ∈ S ∪ S−1 and Lemma 9
gives

|DF (x)−DF (y)| = |Ds−1F (ev(x))−Ds−1F (ev(y))|

≤ Cα−(ev(x),ev(y))

≤ Cα dΩ(x, y)η,

as required.
Hence, the function DF on Ω? is Hölder continuous and therefore has a unique con-

tinuous extension to the Hölder function DF : Ω → R on the space of all infinite paths
Ω.

For x ∈ Ω, define

Fn(x) = DF (x) +DF (Tx) + . . .+DF (Tn−1x).

If we let xn ∈ Ωn denote the prefix of x of length n, we have that

Fn(xn) = d(z, ev(xn)z),

by (4). Whereas for an infinite path x ∈ Ω, we have

Fn(x) = lim
k→∞

(
d(z, ev(xk)z)− d(z, ev(Tnxk)z)

)
.

However, the following lemma bounds how far Fn(x) can be from the displacement
Fn(xn) = d(z, ev(xn)z).

Lemma 10. The difference |Fn(x)−Fn(xn)| is uniformly bounded, independent of x ∈ Ω
and n ≥ 1.
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Proof. Write x = y1y2 . . ., where the yi are edges of Γ, i.e. we represent x as an edge
path in Γ. Then xk = y1y2 . . . yk. Also, let ev(yi) = gi. Then

|Fn(xn)− Fn(x)| = lim
k→∞

(
d(z, g1 . . . gnz) + d(z, gn+1 . . . gkz)− d(z, g1 . . . gkz)

)
= lim

k→∞

(
d(z, g1 . . . gnz) + d(g1 . . . gnz, g1 . . . gkz)− d(z, g1 . . . gkz)

)
= 2 lim

k→∞

(
z, ev(xk)z

)
ev(xn)z

.

Since G y H2 is convex cocompact and the path i→ ev(xi) = g1 . . . gi is geodesic in
G, the path i → ev(xi)z is a uniform quasigeodesic. That is, i → ev(xi)z is a (K,C)–
quasigeodesic in H2 for K ≥ 1 and C ≥ 0 not depending on x. This (together with
the stability of quasigeodesics in the hyperbolic space H2) immediately implies that the
quantity

(
z, ev(xk)z

)
ev(xn)z

is uniformly bounded for every k ≥ n. This completes the

proof. �

Finally, the following lemma is needed to establish positivity of σ in Theorem 8.

Lemma 11. There does not exist a function u : Ω→ R and L ∈ R such that

DF = u− u ◦ T + L.

Proof. Suppose not. Then

n−1∑
i=0

DF (T i(x)) = u(x)− u(Tn(x)) + nL

Thus, if x ∈ Ω is a periodic point of period n for T , then

Fn(x) =
n−1∑
i=0

DF (T i(x)) = nL.

Next, a direct computation shows that if g = ev(xn), then

τ(g) = τ(ev(xn)) = Fn(x) = nL.

Indeed, as in [12, Lemma 4.2], since Tnx = x, Fnk(x) = kFn(x) and we see that Fnk(x) =
Fnk(x

nk) +O(1) (Lemma 10) implies

Fn(x) = lim
k→∞

1

k
Fnk(x

nk) = lim
k→∞

1

k
d(z, gkz),

which, by definition, equals the translation length τ(g).
Hence, we conclude using Lemma 5 that τ([g]) = L‖g‖ for all but finitely many

conjugacy classes in G. This, however, contradicts the fact that in every noncyclic
subgroup of G there exist conjugacy classes whose geodesic representatives on Σ have
incommensurable lengths (see, for example, [13]). �

Proof of Theorem 8. Since DF is a Hölder continuous function on a mixing shift of finite
type, Theorem 7 along with Lemma 11 give

ν

(
x :

Fn(x)− nL
σ
√
n

∈ [a, b]

)
→ Na,b,



10 I. GEKHTMAN, S.J. TAYLOR, AND G. TIOZZO

where as before Fn(x) = DF (x) +DF (Tx) + . . .+DF (Tn−1x). But by Lemma 10, the
probability

ν

(
x :
|Fn(xn)− Fn(x)|√

n
≥ ε
)
→ 0,

as n→∞, for any ε > 0. Hence, applying Lemma 3 gives the CLT for the displacement
Fn(xn) = d(z, ev(xn)z) for x ∈ Ω with respect to the measure ν. Since the distribution
of xn ∈ Ωn is νn, this completes the proof of the theorem. �

4. Convergence to the counting measure for closed paths

Next we use the Theorem 8 (which is about the Markov chain) to study the distribution
of closed paths. Given a path x of length n, let x̂ denote the prefix of x of length n−log n.

Recall that λn is the uniform distribution on the set Cn of based closed paths of length
n in Γ. Since Cn ⊂ Ωn, λn defines a measure on Ωn supported on Cn. Let λn,m denote the
distribution of the prefix of length n−m of a uniformly chosen closed path of length n.
Said differently, λn,m is the distribution on paths of length n −m obtained by pushing
λn forward under the prefix map. In particular, if x has distribution λn, then x̂ has
distribution λn,logn. We define νn,m in the same way, using νn in place of λn. By the
Markov property, νn,m = νn−m.

Proposition 12. With notation as above, λn,m is absolutely continuous with respect to
νn,m, and moreover

sup
γ∈Ωn−m

∣∣∣∣dλn,mdνn,m
(γ)− 1

∣∣∣∣→ 0

as min{m,n} → ∞.

Proof. Given a path γ = e1 · . . . · en−m with starting vertex vi and end vertex vj we have

λn,m(γ) =
#{paths of length m from vj to vi}

#{closed paths of length n}

=
eTj M

mei

Tr Mn

where ei is the ith basis vector.
Now, recall that we have fixed a right eigenvector v for M of eigenvalue λ, and a left

eigenvector u of the same eigenvalue, normalized so that uTv = 1. Since M is irreducible
and aperiodic, by the Perron-Frobenius Theorem we have

lim
n→∞

Mn

λn
= vuT

and in particular

lim
n→∞

eTi M
nej

λn
= eTi vu

Tej = viuj .

As before the measure (πi) where πi = uivi is stationary for the Markov chain defined
as qij =

mijvj
λvi

, so we consider this Markov chain with the stationary measure as starting
distribution. Let νn,m = νn−m be the pushforward of the Markov measure on the set of
paths of length n−m. Then

νn,m(γ) =
πivj

viλn−m
=

uivj
λn−m

.
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Hence
dλn,m
dνn,m

(γ) =
eTj M

mei

Tr Mn

λn−m

uivj
=

eTj M
mei

λmuivj

λn

Tr Mn
→ 1,

as min{m,n} → ∞. �

We conclude this section by promoting the CLT for displacement from the Markov
chain (Theorem 8) to the counting measure λn.

Theorem 13. For any a, b ∈ R with a < b one has

λn

(
x :

d(ev(x)z, z)− nL
σ
√
n

∈ [a, b]

)
→ Na,b

as n→∞.

Proof. Since log n/
√
n→ 0, Theorem 8 (together with Lemma 3) implies

νn−logn

(
x :

d(ev(x)z, z)− nL
σ
√
n

∈ [a, b]

)
→ Na,b.

Now, since νn−logn = νn,logn and by Proposition 12 and Lemma 4 we get

‖νn,logn − λn,logn‖TV → 0

hence

λn,logn

(
x :

d(ev(x)z, z)− nL
σ
√
n

∈ [a, b]

)
→ Na,b.

Moreover, by the definition of x̂,

λn

(
x :

d(ev(x̂)z, z)− nL
σ
√
n

∈ [a, b]

)
= λn,logn

(
x :

d(ev(x)z, z)− nL
σ
√
n

∈ [a, b]

)
.

Finally, note the since the orbit map G→ H2 is Lipschitz, we have

|d(ev(x)z, z)− d(ev(x̂)z, z)| ≤ C log n

where C is the Lipschitz constant. Then using Lemma 3

lim
n→∞

λn

(
x :

d(ev(x)z, z)− nL
σ
√
n

∈ [a, b]

)
= lim

n→∞
λn

(
x :

d(ev(x̂)z, z)− nL
σ
√
n

∈ [a, b]

)
= Na,b

which completes the proof. �

5. The Gromov product

The remaining step of our proof is to turn the statement about displacement (Theorem
13) into a statement about translation length. This is done by controlling the Gromov
product.

We begin with the following easy computation. Recall that Ωn is the set of all paths
of length n and Cn ⊂ Ωn is the subset of closed paths.

Lemma 14. There is a constant D ≥ 0 such that

1 ≤ #(Ωn)

#(Cn)
≤ D
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Proof. We know that #(Cn) = Tr Mn = λn +
∑

i λ
n
i , where λ is the Perron–Frobenius

eigenvalue of M and |λi| < λ. Also, #(Ωn) = ‖Mn‖1 ≤ Dλn for some D ≥ 1. �

Next, we will see that the Gromov product of a random element and its inverse grows
slowly in word length. This is our key estimate for relating displacement to translation
length.

Proposition 15. For any ε > 0,

λn
(
x : (ev(x)z, ev(x)−1z)z ≤ ε

√
n
)
→ 1,

as n→∞.

Proof. Fix ε > 0 and a vertex v of Γ.
Recall that Ωv is the set of one-sided, infinite paths in the graph starting at v. Let us

denote as Pv := ν(· | Ωv) the conditional probability of ν given Ωv. This is a probability
measure on Ωv ⊆ Ω, and is defined on a cylinder set C(i0, i1, . . . , ik) as

Pv(C(i0, i1, . . . , ik)) = δv,i0qi0,i1 . . . qik−1,ik

where δv,i0 = 1 if v = i0, and δv,i0 = 0 otherwise and the qij are as in (2). Let
xn : Ωv → Ωn

v be the prefix map which sends an infinite paths starting at v to its prefix
of length n. Define

A =
{
x ∈ Ω? : (ev(x)z, ev(x)−1z)z ≥ ε

√
|x|
}
,

where |x| denotes the length of x. By [10, Section 6] for any vertex v of Γ one has

Pv
(
(ev(xn)z, ev(xn)−1z)z ≥ ε

√
n
)
→ 0.

(Lemma 6.26 of [10] explicitly gives this statement where v is the “initial vertex” of the
directed graph, however the same argument gives the more general result for all vertices.)

Next, consider any path p ∈ Ωn
v of length n starting at v. If v is the lth vertex of

Γ and the terminal endpoint of p is the kth vertex, then the nth step measure of p is
Pnv (p) = 1

λn
vk
vl
. (Here, Pnv is the measure supported on Ωn

v which is the pushforward of

Pv under the prefix map Ωv → Ωn
v .)

Then, for any subset B ⊂
⋃
n≥1 Ωn

v ,

Pnv (B) =
1

vlλn

r∑
k=1

vk #(B ∩ Ωn
v,vk

)

and

#B ∩ Ωn
v =

r∑
k=1

#(B ∩ Ωn
v,vk

)

where Ωn
v,w is the set of paths of length n starting at v and ending at w. Moreover, by

[10, Lemma 2.3 (3)], there is a constant K > 0 such that K−1λn ≤ #Ωn
v ≤ Kλn for any

n ≥ 0. Hence, there is a constant c > 1, depending only on the adjacency matrix M ,
such that

1

c
· #(B ∩ Ωn

v )

#Ωn
v

≤ Pnv (B) ≤ c · #(B ∩ Ωn
v )

#Ωn
v

.
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In particular, we conclude that

#(A ∩ Ωn
v )

#Ωn
v

≤ c · Pv
(
(ev(xn)z, ev(xn)−1z)z ≥ ε

√
n
)
→ 0,(6)

as n→∞.
Hence, by summing over all vertices v ∈ V

#(A ∩ Ωn)

#Ωn
→ 0.

Then by combining this with Lemma 14,

λn(A) =
#(A ∩ Cn)

#Cn
≤ #(A ∩ Ωn)

#Ωn
· #Ωn

#Cn
→ 0.

�

Remark 16. The main estimate (6) in the proof of Proposition 15 can also be obtained
via a trick using more recent work of the authors [11]. Using terminology there, one may
define a geodesic graph structure (G,Γ) by declaring that v be the initial vertex of Γ.
Such a structure may not be surjective, but this is not necessary. Then [11, Proposition
5.8] precisely gives the required decay result.

Proof of Theorem 1. We can now complete the proof of Theorem 1.

Proof of Theorem 1. Let dn := d(z,ev(x)z)−nL
σ
√
n

, tn := τ(ev(x))−nL
σ
√
n

, and pn := tn − dn =

2(ev(x)z,ev(x)−1z)z+O(δ)
σ
√
n

. By the CLT for displacement (Theorem 8), for any a < b

λn(x : dn ∈ [a, b])→ Na,b.

Moreover, by decay of Gromov products for any ε > 0 (Proposition 15) we have

λn(x : |pn| ≥ ε)→ 0

hence by Lemma 3

λn

(
x :

τ(ev(x))− nL
σ
√
n

∈ [a, b]

)
→ Na,b.

Finally, by Lemma 6 this implies

µn

(
γ :

τ(γ)− nL
σ
√
n

∈ [a, b]

)
→ Na,b

which completes the proof. �

6. Generalizations

While many generalization of Theorem 1 are possible, we record the most immediate
one here. The proof is the same as the one given above, using that Lemma 9 holds for
convex cocompact actions on CAT(−1) spaces [18].

Theorem 17. Let Gy X be any convex cocompact action of a closed orientable surface
group on a CAT(−1) space. Then the conclusion of Theorem 1 holds. The same is true
for any convex cocompact free group action on a CAT(−1) space X as long as the lengths
of closed geodesics on X/G are not all contained in cZ for some c > 0.
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The condition on lengths of closed geodesics is known to hold whenever G y X is a
discrete action on a CAT(−1) space satisfying at least one of the following:

• the limit set Λ(G) ⊂ ∂X has an infinite connected component (in particular
when G is a surface group) [1];
• X is itself a surface (so that X/G is a locally CAT(−1) surface) [9];
• X is a rank 1 symmetric space [13].
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