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Commuting integral and differential operators connect the top-

ics of signal processing, random matrix theory, and integrable

systems. Previously, the construction of such pairs was based on

direct calculation and concerned concrete special cases, leaving

behind important families such as the operators associated to the

rational solutions of the Korteweg–de Vries (KdV) equation. We

prove a general theorem that the integral operator associated

to every wave function in the infinite-dimensional adelic Grass-

mannian Grad of Wilson always reflects a differential operator (in

the sense of Definition 1 below). This intrinsic property is shown

to follow from the symmetries of Grassmannians of Kadomtsev–

Petviashvili (KP) wave functions, where the direct commutativity

property holds for operators associated to wave functions fixed

by Wilson’s sign involution but is violated in general. Based on

this result, we prove a second main theorem that the integral

operators in the computation of the singular values of the trun-

cated generalized Laplace transforms associated to all bispectral

wave functions of rank 1 reflect a differential operator. A 90◦

rotation argument is used to prove a third main theorem that

the integral operators in the computation of the singular val-

ues of the truncated generalized Fourier transforms associated to

all such KP wave functions commute with a differential opera-

tor. These methods produce vast collections of integral operators

with prolate-spheroidal properties, including as special cases the

integral operators associated to all rational solutions of the KdV

and KP hierarchies considered by [Airault, McKean, and Moser,

Commun. Pure Appl. Math. 30, 95–148 (1977)] and [Krichever,

Funkcional. Anal. i Priložen. 12, 76–78 (1978)], respectively, in the

late 1970s. Many examples are presented.

prolate-spheroidal integral operators | reflectivity | rational solutions

of the KdV and KP equations | Wilson’s adelic Grassmannian

In a pair of ground-breaking works from the late 1940s Claude
Shannon laid down the mathematical foundations of commu-

nication theory (1, 2). One of the key problems which he raised
was “What is the best information that one can infer for a signal
f (t) which is time limited to the interval [−τ , τ ] from knowing its
frequencies in the interval [−κ,κ]?” This double-concentration
problem leads to the study of the singular values of an operator
given by a finite Fourier transform

(Ef )(z )=

∫
τ

−τ

e
izx
f (x )dx , z ∈ [−κ,κ].

The central issue is the effective computation of the eigenfunc-
tions of the integral operator

(EE∗
f )(z )= 2

∫
κ

−κ

sin τ(z −w)

z −w
f (w)dw , z ∈ [−κ,κ]. [1]

This problem was beautifully solved by Slepian and Pollak (3)
and Landau and Pollak (4) in the early 1960s by showing that
the integral operator in Eq. 1 commutes with the differential
operator

R(z , ∂z )= ∂z (κ
2 − z

2)∂z − τ
2,

from which they described the common eigenfunctions via the
differential operator. Note that R(z , ∂z ) is the “radial part” of
the Laplacian in prolate-spheroidal coordinates, motivating our
title. The commuting property was used by Fuchs (5) and Slepian
(6) to carry out a detailed analysis of the asymptotics of the eigen-
values of EE∗, while Jimbo et al. (7) showed that its Fredholm
determinant is a τ function of Painlevé V.

Remarkably, this commuting property appeared as early as
1907 in the work of Bateman (ref. 8, equations 38–41 accompa-
nied by some differentiation) and later in the classical text by
Ince (9). Mehta (10) independently discovered and used it to
analyze the Fredholm determinant of the integral operator Eq. 1,
which he then applied to asymptotic problems in random matri-
ces. For recent numerical work on prolate-spheroidal operators
see ref. 11; for applications to geophysics see refs. 5–7 and 12.

Slepian (13) found an extension of the time-band limiting anal-
ysis to n dimensions. His method was based on passing to polar
coordinates and then relying on a different commutativity result.
He proved that for integer N the integral operator

(Ef )(z )=
∫ 1

0

JN (czw)
√
czwf (w)dw

acting on a subspace of L2(0, 1; dw) with appropriate boundary
conditions admits the commuting differential operator

∂z (1− z
2)∂z − c

2
z
2 +

1
4
−N 2

z 2
,

where JN (x ) denotes the Bessel function of the first kind.
In the early 1990s Tracy and Widom (14, 15) discovered 1

more remarkable commuting pair of integral and differential
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operators associated to the Airy kernel. They effectively used this
pair and a modification of the one for the Bessel kernel in their
study of the asymptotics of the level spacing distribution func-
tions of the edge scaling limits of the Gaussian unitary ensemble
and the Laguerre and Jacobi ensembles. More precisely, Tracy
and Widom (14, 15) proved that the integral operator with the
Airy kernel

A(z )A′(w)−A′(z )A(w)

z −w

acting on L2(τ , +∞; dw) admits the commuting differential
operator

∂z (τ − z )∂z − z (τ − z ),

where A(z ) denotes the Airy function.
All of the above developments fitted into 1 general scheme:

Commuting differential operators were constructed for an
integral kernel of the form

Kψ(z ,w) :=

∫

Γ2

ψ(x , z )ψ∗(x ,w)dx [2]

acting on L2(Γ1; dw), where Γ1 and Γ2 are contours in C, ψ(x , z )
is a wave function for the Kadomtsev–Petviashvili (KP) hierar-
chy, and ψ∗(x , z ) is its adjoint wave function. Note in Slepian’s
Bessel-type example above, we get this kernel form for the
square of his integral operator. Many other instances of such
commuting pairs were later discovered (16–19), to name a few,
and generalized to discrete and matrix-valued settings (20, 21).

The KP and Korteweg–de Vries Hierarchies

The Korteweg–de Vries (KdV) equation

∂tu + u∂xu + ∂3
xu =0

was introduced more than a century ago to model waves on shal-
low water surfaces. Its complete integrability was established by
Miura, Gardner, and Kruskal (22) and Lax (23). A wave function
for a solution u(x , t) is a function ψ(x , z ; t) satisfying

(∂2
x − u(x , t))ψ(x , z ; t)= z

2ψ(x , z ; t).

The KdV equation fits into an infinite system of completely
integrable nonlinear partial differential equations in variables
x , t0, t1, t2, . . . known as the KP hierarchy. Alternatively the
KdV equation fits into the KdV hierarchy describing KP
solutions independent of even times.

The KP hierarchy is an infinite-dimensional integrable system
whose wave functions ψ(x , z ) are eigenfunctions of differential
operators L(x , ∂x ) of higher order and more generally of for-
mal pseudo-differential operators. We refer the reader to van
Moerbeke’s exposition of the subject (24) from the point of view
of evolution on the (infinite-dimensional) Sato’s Grassmannian

GrSato and its applications to quantum gravity and intersection
theory on moduli spaces of curves via the Kontsevich theo-
rem (25). The latter concerns precisely the solution of the KP
hierarchy corresponding to the Airy wave function ψAi(x , z )=
A(x + z ).

In the late 1970s Airault, McKean, and Moser (26) found a
remarkable connection between the (infinite-dimensional) KdV
equation and finite-dimensional integrable systems. They proved
that any rational solution of the KdV equation that vanishes at
infinity has the form

u(x , t)=
1

2

n∑

i=1

1

(x − xi(t))2

and that the KP flow for t = t1 corresponds to the motion of the
poles (x1(t), . . . , xn(t)) according to the Calogero–Moser system

with Hamiltonian H =
∑

i
p2
i /2−

∑
i<j

(xi − xj )
−2. Krichever

(27) proved that this is true for every rational solution of KP
vanishing at infinity and that all solutions of the Calogero–Moser
system arise in this way.

Bispectrality and the Adelic Grassmannian

The bispectral problem, posed by Duistermaat and Grünbaum
in ref. 28, asks for a classification of all functions ψ(x , z ) on
a subdomain Ω1 ×Ω2 ⊆C

2 for which there exist 2 differential
operators L(x , ∂x ) and Λ(z , ∂z ) on Ω1 and Ω2 and 2 functions
θ : Ω1 →C, f : Ω2 →C, such that

L(x , ∂x )ψ(x , z )= f (z )ψ(x , z ),

Λ(z , ∂z )ψ(x , z )= θ(x )ψ(x , z ).

Many important relations of bispectrality to representation the-
ory and algebraic and noncommutative geometry were subse-
quently found. Early on it was realized that it is advantageous
to think of its solutions as wave functions of the KP hierarchy.
In this setting ref. 28 provided a classification of the second-
order bispectral operators L(x , ∂x ). Half of these come from
rational solutions of the KdV equation. The other half consists
of the Airy wave function ψAi(x , z )=A(x + z ), the Bessel wave
functions ψBe(ν)(x , z )=

√
xyJν(

√
xy) for ν ∈C\Z, and wave

functions obtained from them by “master symmetries” of the
KdV hierarchy (29).

Wilson made a deep insight into the bispectral problem (30),
providing the concept of classifying bispectral functions ψ(x , z )
according to their rank, defined as the greatest common divi-
sor of the orders of all differential operators L(x , ∂x ) having
ψ(x , z ) as an eigenfunction. For example, in the order 2 clas-
sification of ref. 28, the wave functions of the rational solu-
tions of KdV are of rank 1, while the remaining families are
of rank 2.

In ref. 30 Wilson classified all bispectral functions ψ(x , z ) of
rank 1 in terms of an infinite-dimensional sub-Grassmannian
Grad of Sato’s Grassamannian GrSato, called the adelic Grass-
mannian. Grad consists of those planes W ∈GrSato obtained
from the base plane W0 =C[z ] by imposing “adelic-type” con-
ditions at finitely many points. It was shown in ref. 31 that these
are precisely the KP wave functions ψ(x , z ) such that

ψ(x , z )=
1

p(x )q(z )
P(x , ∂x ) · e−xz

and

e
−xz =

1

p̃(x )q̃(y)
P̃(x , ∂x ) ·ψ(x , z )

for some differential operators P(x , ∂x ) and P̃(x , ∂x ) with poly-
nomial coefficients and polynomials p(x ), p̃(x ), q(z ), q̃(y). The

orders of the differential operators P and P̃ will be called degree
and codegree of ψ(x , z ), respectively.

Wilson (32) completed the circle back to Airault, McKean,
and Moser (26) and Krichever (27) by showing that the adelic
Grassmannian is the disjoint union of the Calogero–Moser
spaces CMn ⊂GrSato which are compactifications of the phase
spaces of the Calogero–Moser integrable systems on the rational
solutions of the KP hierarchy of refs. 26 and 27:

Grad =
⊔

n≥1

CMn . [3]

Integral Operators and Points of Grad

Reflectivity. The unifying feature of the diverse lines of research
described above is a collection of hand-made examples of inte-
gral operators with kernels of the form in Eq. 2 commuting
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with differential operators, obtained from certain specific wave
functions ψ(x , z ) in Grad.

For a long time, the examples provided above were the only
known examples, and for this reason it was tempting to believe
that it was a complete collection of examples. However, this is
not true at all! In this paper we give a general solution of the
problem that is applicable to the integral operators associated
to the wave functions of all points of the adelic Grassmannian.
It is based on a conceptual way of constructing the commuting
differential operators from bispectral algebras. Our key idea is
that the intrinsic property of all of these integral operators is a
more general one than a naive commutativity:

Definition 1. An integral operator T , acting on L2(Γ) for a contour
Γ⊂C, is said to reflect a differential operator R(z , ∂z ) if

T ◦R(−z ,−∂z )=R(z , ∂z ) ◦T

on a dense subspace of L2(Γ).
In the special case that a wave function ψ(x , z )∈GrSato

satisfies the symmetry condition ψ(x , z )=ψ(−x ,−z ), this prop-
erty for the kernel in Eq. 2 reduces to classical commutativity.
This happens, for example, in the case of master symmetries
(18). However, we will show that even more generally, imagi-
nary rotation arguments transform reflecting pairs to classically
commuting ones.

Remark 1. The reflection identity of Definition 1 is sensitive to the
extension of the differential operator R(z , ∂z ) to L2(Γ), which is
not unique, and may hold for a unique choice of this extension.
This is a technical point that is often omitted in the classical prolate-
spheroidal picture (33).

First General Theorem—Reflection vs. Commutation. Our first the-
orem associates to any wave function ψ(x , z )∈Grad an integral
operator T which reflects a differential operator. The reflected
differential operator R(z , ∂z ) resides in a natural algebra of
differential operators associated to ψ(x , z ), called the (right)
generalized Fourier algebra, defined in ref. 19 by

Fz (ψ) := {R : ∃ L with L(x , ∂x )ψ(x , z )=R(z , ∂z )ψ(x , z )}.

The differential operators L(x , ∂x ) that appear in the left-hand
side also form an algebra, called the (left) generalized Fourier
algebra and denoted by Fx (ψ). The map L(x , ∂x ) �→R(z , ∂z )
defines an algebra antiisomorphism

bψ :Fx (ψ)→Fz (ψ).

The algebras Fx (exp(−xz )) and Fz (exp(−xz )) are both equal
to the first Weyl algebra and the corresponding map b is closely
related to the Fourier transform.

Theorem 1. For every wave function ψ(x , z )∈Grad, the integral
operator Tψ on L2[t ,∞) with kernel

Kψ(z ,w) :=

∫ ∞

s

ψ(y , z )ψ∗(y ,w)dy [4]

reflects a (nonconstant) differential operator R(z , ∂z )∈Fz (ψ) of
order at most 2min(d1, d2), where d1 and d2 are the degree and
codegree of ψ(x , z ).

A key feature of the proof of Theorem 1, sketched below,
explicitly reduces the problem of finding the operator R(z , ∂z )
to a finite-dimensional linear algebra problem. This in turn
provides an effective algorithm for computing the reflected

differential operator for all ψ(x , z )∈Grad. In particular, we
obtain examples of integral operators commuting with differ-
ential operators of orders much higher than can be reasonably
found by hand, as shown in Examples 2 and 5 below.

Wilson’s 3 Involutions. In general the operator T defined by The-
orem 1 is not self-adjoint (even formally). In this way we may
gain additional insight into the spectra of nonself adjoint inte-
gral operators. In connection to Shannon’s original questions, we
have to be able to detect which operators in Theorem 1 are of
the form EE∗ and in particular are self-adjoint. For this we con-
sider the 3 natural involutions of the adelic Grassmannian Grad

introduced by Wilson in ref. 30, along with a fourth involution
not previously featured in this context corresponding to Schwartz
reflection.

Name Involution

Adjoint a(ψ)(x , z )=ψ∗(x , z )= p(x )−1p̃(x )−1

×P̃∗(x , ∂x ) · e
−xz

Bispectral b(ψ)(x , z )=ψ(z , x )
Sign s(ψ)(x , z )=ψ(−x ,−z )

Schwartz c(ψ)(x , z )=ψ(x , z )

Note that the adjoint involution was used implicitly in Eq. 2.
Wilson observed that the involutions a , b, and s have the
remarkable property that ab is not an involution, but rather

(ab)2 = s. [5]

Sketch of the Proof of Theorem 1

Step 1. Another way to phrase Wilson’s property in Eq. 5 is
that

baψ(b
−1
ψ (R)∗)∗(z , ∂z )=R(−z ,−∂z ), ∀R ∈Fz (ψ). [6]

Consider a differential operator Rs,t(z , ∂z )∈Fz (ψ) such that
both bilinear concomitants

C
b
−1

ψ
Rs,t

(f , g ; s) and CRs,t (f , g ;−t)

are identically 0. We refer the reader to ref. 34 for the definition
and properties of bilinear concomitants of differential operators.
Applying the identity in Eq. 6 together with integration by parts
and the maps b−1

ψ and baψ , we obtain that such an operator

Rs,t(z , ∂z ) satisfies

Rs,t(z , ∂z ) ·Kψ(z ,w)

=

∫ ∞

s

(Rs,t(z , ∂z ) ·ψ(x , z ))ψ(x ,w)∗dx

=

∫ ∞

s

(
b
−1
ψ (Rs,t)(x , ∂x ) ·ψ(x , z )

)
ψ(x ,w)∗dx

=

∫ ∞

s

ψ(x , z )
(
b
−1
ψ (Rs,t)

∗(x , ∂x ) ·ψ(x ,w)∗
)
dx

=

∫ ∞

s

ψ(x , z )
(
baψ(b

−1
ψ (Rs,t))

∗(w , ∂w ) ·ψ(x ,w)∗
)
dx

=R
∗
s,t(−w ,−∂w ) ·Kψ(z ,w).

This identity combined with 1 more integration by parts
proves that

Rs,t(z , ∂z ) ◦Tψ =Tψ ◦Rs,t(−z ,−∂z )

for the integral operator Tψ with kernel as in Eq. 4.

18312 | www.pnas.org/cgi/doi/10.1073/pnas.1906098116 Casper et al.
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The remainder of the proof of Theorem 1 revolves
around demonstrating the existence of a differential operator
Rs,t(z , ∂z )∈Fz (ψ) satisfying the conditions of step 1. Its exis-
tence, along with a sharp upper bound on its order, is obtained
by algebro-geometric arguments.

Step 2. The operators in the Fourier algebra Fx (ψ) naturally
have a co-order coordR(z , ∂z ) := ord(b−1

ψ R)(x , ∂x ). For a pair

of nonnegative integers ℓ,m , set

Fℓ,m
z (ψ) := {R ∈Fz (ψ) : ordR≤ ℓ, coordR≤m}.

Recall the decomposition in Eq. 3; let ψ(x , z )∈CMn ⊂Grad.
One shows that Fz (ψ) is isomorphic to the algebra of differen-
tial operators on a rank 1, torsion-free sheaf over the spectral
curve of the solution of KP with wave function ψ(x , z ). Inter-
preting n as the differential genus of the sheaf of the curve
in the sense of Berest and Wilson (35), and then convert-
ing it to the Letzter–Markar–Limanov invariant of the sheaf
show that

dimFℓ,m
z (ψ)= (ℓ+1)(m +1)−n

≥ (ℓ+1)(m +1)− 2min(d1, d2)
2

for ℓ,m ≥ 2min(d1, d2)− 1.
Step 3. For a differential operator R(z , ∂z ) of order ≤ ℓ, the

identical vanishing of the concomitant CR(f , g ;−t) is shown to
lead to at most ⌈ℓ/2⌉.⌈(ℓ+1)/2⌉ linearly independent (linear)
conditions on the coefficients of R and their derivatives.

This estimate, combined with that in step 2, proves the exis-
tence of a differential operator Rs,t(z , ∂z )∈Fz (ψ) satisfying the
conditions of Step 1 of order at most 2min(d1, d2). �

Remark 2.

1) Wilson’s identity on involutions in the Adelic Grassmannian
in Eq. 5 and its use in step 1 are the intrinsic reasons for the
appearance of reflectivity in Theorem 1 rather than classical
commutativity.

2) All previous approaches for constructing commuting pairs of
integral and differential operators, like those in refs. 3, 4, and
13–15, relied on a by-hand construction of a commuting differ-
ential operator. Step 1 of the proof is where bispectrality plays a
deep role and the operator is constructed from the generalized
Fourier algebra Fz (ψ).

The Laplace vs. Fourier Pictures

Second General Theorem—the Laplace Picture. Consider a wave
function ψ ∈Grad. We draw a parallel between the integral
operators from Theorem 1 and those of the form EE∗ by con-
sidering the following analogs of the Laplace transform and
its adjoint:

Lψ : f (x ) �→

∫ ∞

0

ψ(y , z )f (y)dy ,

L
∗
ψ : f (z ) �→

∫ ∞

0

ψ(x ,w)f (w)dw .

In the special case that ψ(x , z )= exp(−xz ), the operator Lψ
is precisely the Laplace transform. The time- and band-limited
versions of these are (for z ≥ t)

(Eψf )(z )= (χ[t,∞)Lψχ[s,∞)f )(z )=

∫ ∞

s

ψ(y , z )f (y)dy ,

and (for x ≥ s)

(E∗
ψf )(x )= (χ[s,∞)L

∗
ψχ[t,∞)f )(x )=

∫ ∞

t

ψ(x ,w)f (w)dw .

They give rise to the self-adjoint operator analogous to the one
considered by Landau, Pollak, and Slepian (3, 4),

(EψE
∗
ψf )(z )=

∫ ∞

t

Kψ(z ,w)f (w)dw , where

Kψ(z ,w)=

∫ ∞

s

ψ(y , z )ψ(y ,w)dy ,

viewed as an operator on L2(t ,∞). Under natural mild con-
ditions on ψ(x , z ), Theorem 1 determines the existence of dif-
ferential operators reflected by EψE

∗
ψ . For a different situation

involving the Laplace transform, see ref. 36.

Theorem 2. For every wave function ψ(x , z ) in Wilson’s adelic

Grassmannian, fixed under the involution ac of Grad (defined by
the table of involutions above), the integral operator EψE

∗
ψ reflects

a (nonconstant) differential operator R(z , ∂z )∈Fz (ψ) of order at
most 2min(d1, d2), where d1 and d2 are the degree and codegree
of ψ(x , z ).

Sketch of Proof: From the assumption that ψ(x , z ) is fixed

under the involution ac, one deduces that ψ∗(x , z )=ψ(x , z )
for x , z ∈R. From this one shows that EψE

∗
ψ equals the integral

operator with kernel Kψ from Theorem 1. �

Remark 3. Under the assumption that ψ(x , z ) is fixed by ac, the
reflected operator Rs,t(z , ∂z ) satisfies the identity R∗

s,t(z , ∂z )=
Rs,t(−z ,−∂z ). In this case, the reflection property may be restated
in the form

EψE
∗
ψ ◦R∗

s,t(z , ∂z )=Rs,t(z , ∂z ) ◦ EψE
∗
ψ.

Example 1. Consider the simplest case ψ(x , z )= exp(−xz ). The
integral operator

(EψE
∗
ψf )(z )=

∫ ∞

t

sinh(s(z +w))

z +w
f (w)dw

acting on L2(t ,∞) reflects the first-order differential operator

Rs,t(z , ∂z )= (z + t)∂z + sz .

All previous works on this kernel deal with a commuting second-
order differential operator.

The wave functions associated to rational solutions (26) of
KdV are automatically fixed by the involution a . Additionally,
those with real coefficients are fixed by c and thus satisfy the
assumptions of Theorem 2. These are precisely the bispectral
functions in the KdV family in ref. 28 with real coefficients
(associated to second-order differential operators of rank 1).
There has been a substantial effort since 1986 to find commut-
ing differential operators for the corresponding integral opera-
tors, but absolutely no examples have been found beyond the
case ψ(x , z )= exp(−xz ) or that in ref. 18. The next example
demonstrates how Theorem 2 resolves this problem.

Example 2. Let r ∈R
∗. Consider the function

ψ(x , z )=
(x + z−1)3 − z 3 + r

x3 + r
e
−xz ,

which up to a change of variables is precisely the first nontrivial
bispectral function in ref. 28, equation 1.39. The integral operator
EψE

∗
ψ has kernel

Casper et al. PNAS | September 10, 2019 | vol. 116 | no. 37 | 18313



Kψ(z ,w)=
ψ(s, z )ψx (s,w)−ψx (s, z )ψ(s,w)

z 2 −w2
.

By Theorem 2 it reflects a differential operator in Fz (ψ). Our
algorithm produces an operator of order 3, given by

Rs,t(z , ∂z )=−(z + t)2z∂3
z +

(

st
3 − 3stz 2 − 2sz 3 − t

3
rz

2

−t
2
rz

3 −
3

2
t
2 − 6tz −

9

2
z
2

)

∂
2
z +

(

s
2
t
2
z − s

2
z
3

−2st3rz 2 − 2st2rz 3 − 6stz − 6sz 2 − 2t3rz

−3t2rz 2 +6t2z−1 +6t − z
)

∂z − 6st3z−2 − 3t2z−2

+ s
3
tz

2 − s
2
t
3
rz

2 − s
2
t
2
rz

3 −
3

2
s
2
z
2 − 2st3rz

− 3st2rz 2 − t
2
rz +3.

Third General Theorem—The Fourier Picture. By performing a 90◦

rotation in the complex variable z , we move from the Laplace
transform picture to the Fourier transform picture. We prove
that in this way one can convert the reflected differential opera-
tors in the Laplace picture to commuting differential operators
in the Fourier picture. Specifically, we replace the operators Lψ
and L∗

ψ with their Fourier counterparts

Fψ : f (x ) �→

∫ ∞

−∞

ψ(y ,−iz )f (y)dy ,

F
∗
ψ : f (z ) �→

∫ ∞

−∞

ψ(x ,−iw)f (w)dw .

In the special case ψ(y , z )= exp(−yz ), the operator Fψ is
the Fourier transform. We define the time- and band-limited
operators Eψ and E∗

ψ similarly to Eψ and E∗
ψ:

(Eψf )(z )= (χ[t,∞)Fψχ[s,∞)f )(z )=

∫ ∞

s

ψ(y ,−iz )f (y)dy ,

(E∗
ψf )(x )= (χ[s,∞)F

∗
ψχ[t,∞)f )(x )=

∫ ∞

t

ψ(x ,−iw)f (w)dw .

The self-adjoint operator

(EψE
∗
ψf )(z )=

∫ ∞

s

∫ ∞

t

ψ(y ,−iz )ψ(y ,−iw)f (w)dwdy

acting on L2(t ,∞) no longer has a simple kernel expression as
above since the relevant integral does not converge outright, but
can be given sense as a distribution. Even so, the method of proof
of Theorem 1 applies, giving us a certain relationship between an
integral and differential operators. Serendipitously, due to the
change in sign with complex conjugation, in this case we obtain a
strict commutativity relation.

Theorem 3. For every wave function ψ(x , z ) in Wilson’s adelic

Grassmannian, fixed under the involution ac of Grad, the inte-
gral operator EψE

∗
ψ commutes with the differential operator

Rs,it(−iz , i∂z ), where Rs,t(z , ∂z ) is the corresponding differen-
tial operator in Theorem 2 (its coefficients are rational functions
in z , s, t).

In particular, we obtain that EψE
∗
ψ commutes with the self-

adjoint operator Rs,it(−iz , i∂z )R
∗
s,it(−iz , i∂z ).

Sketch of Proof: One repeats step 1 of the proof of Theorem
1 to show that Rs,it(−iz , i∂z ) commutes with EψE

∗
ψ for every

differential operator R(z , ∂z )∈Fz (ψ) for which both bilinear
concomitants

C
b
−1

ψ
Rs,it (−iz ,i∂z )

(f , g ; s) and CRs,it (−iz ,i∂z )(f , g ; it)

are identically 0. The operator Rs,t(z , ∂z ) from Theorem 2 has
these properties because its coefficients are rational functions
in z , s, t . This is proved by an analysis of the structure of the
algebra Fz (ψ). �

Note that for analytic reasons one cannot deduce Theorem 3
from Theorem 2 by an elementary change of variables.

Theorems 1–3 form the foundation for our study of the
asymptotics of the eigenvalues of the integral operators associ-
ated to the wave functions of the rational solutions of the KP
equation and the numerical properties of the associated eigen-
functions (which greatly generalize the prolate-spheroidal wave
functions).

Example 3. Consider the case ψ(x , z )= exp(−xz ) as in Example
1. The self-adjoint integral operator is given by

(EψE
∗
ψf )(z )=

∫ ∞

s

∫ ∞

t

e
iy(z−w)

f (w)dwdy .

The eigenvalues of this operator are precisely the singular values of
the semiinfinite time-band limiting of the Fourier transform. This
integral operator commutes with the first-order differential operator

Rs,it(−iz , i∂z )= (z − t)∂z − isz

obtained from the differential operator in Example 1. As a con-
sequence we obtain that EψE

∗
ψ commutes with the self-adjoint

second-order differential operator

−Rs,it(−iz , i∂z )R
∗
s,it(−iz , i∂z )= ∂z (z − t)2∂z

−is{z (z − t), ∂z},

where here {·, ·} denotes the anticommutator bracket.

Example 4. Consider the wave function

ψ(x , z )=
(x + z−1)3 − z 3 + r

x3 + r
e
−xz

from Example 2. The associated integral operator EψE
∗
ψ commutes

with the third-order differential operator R :=Rs,it(−iz , i∂z ),
where Rs,t(z , ∂z ) is the differential operator in Example 2. Its for-
mal adjoint is R∗ =−R+ s2t2 +4, so that EψE

∗
ψ commutes with

the sixth-order self-adjoint operator

−RR
∗ =R

2 − (s2t2 +4)R.

Simultaneous Reflectivity/Commutativity

The proof of Theorem 1 produces a large algebra of reflected
operators rather than a single one, because the argument can
be applied to the full Fourier algebra Fz (ψ) of ψ ∈Grad.
This can be used to prove the existence of universal opera-
tors which are simultaneously reflected by (or commute with)
finite-dimensional collections of integral operators.

Theorem 4.

1) Consider any finite collection of wave functions {ψk (x , z ) : 1≤

k ≤n}∈Grad and let Tk be the associated integral operators
as in Theorem 1 for the same values of s and t . There exists a
nonconstant differential operator in

⋂

k
Fz (ψk ) simultaneously

reflected by each of the integral operators Tk for all k .
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2) If, in addition, all wave functions ψk (x , z ) are fixed under

the involution ac of Grad, then there exists a differen-
tial operator Runiv

s,t (z , ∂z ) which is simultaneously reflected
by all integral operators spanned by EjE∗

k for 1≤ j , k ≤n .
This differential operator has rational coefficients in z , s, t

and R̃s,t(z , ∂z ) :=Runiv
s,it (−iz , i∂z ) commutes with all integral

operators EjE
∗
k for 1≤ j , k ≤n .

In the situation of part 2 all integral operators EjE
∗
k , 1≤ j , k ≤

n , commute with the self-adjoint operator R̃s,t(z , ∂z )R̃
∗
s,t(z , ∂z ).

Furthermore, since the Fourier algebra of exp(−xz ) is just
the algebra of differential operators with polynomial coeffi-

cients, we can force all of the coefficients of R̃s,t(z , ∂z ) to be
polynomials in z .

Example 5. Consider the pair of wave functions {ψ1(x , z ),
ψ2(x , z )} with ψn(x , z )=Kn(xz )

√
xz for Kn(z ) the modified

Bessel function of the second kind. Thus by Theorem 4 there should

exist a self-adjoint differential operator R̃s,t(z , ∂z ) in Fz (ψ1)∩
Fz (ψ2) with polynomial coefficients which commutes with the inte-
gral operators EkE

∗
j defined by the wave functions ψk (x , z ) for

k =1, 2. Note also that R̃s,t(z , ∂z ) will commute with the integral
operator EE∗ associated with the wave function from Example 2
for any r , since this operator will be a linear combination of the
EkE

∗
j s. Using our algorithm for Theorem 1, we obtain an operator

of order 6 of the form

R̃s,t(z , ∂z )=
3∑

m=0

∂
m
z fm(z )∂m

z ,

where

f0(z )=
z 2(3s6t3 − 54s4t)

6
+ s

6
z
5 − 3s6tz 4

2
+12s4z 3,

f1(z )= (z − t)
(
3s4z 4 − 3s4tz 3 +12 s

2
z
2 +9s2tz − 9s2t2

)
,

f2(z )= (z − t)2
(
3s2z 3 − 3s2tz 2

2
+12t

)
,

f3(z )= (z − t)3z 2
.

Concluding Remarks

We have presented a unified general construction of commuting
pairs based on the intrinsic properties of symmetries of soli-
ton equations. It has not escaped our notice that the specific
connection we have described between commuting integral and
differential operators and solutions of the KdV equation, in par-
ticular the critical role of the reflecting property in these classical
problems, opens up avenues of broad applications of integrable
systems to spectral analysis of integral operators, going far
beyond sinc, Bessel, and Airy kernels. Additionally, the con-
structed pairs of commuting integral and differential operators
may have a role to play in random matrix theory.
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