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Later, a variant of this technique, called data bus inversion (DBI) [4],

was applied to open drain interfaces to reduce the data movement

power by lowering the Hamming weight of the transferred data.

Recently, a cost aware flip optimization technique (CAFO) [5] has

been proposed for asymmetric memories that reduces the number

of 1 in a data block.

k limited weight codes (k-LWC) [6] belong to a sparse data

encoding class, where the codewords have a Hamming weight of

no more than k. For example, the 3-LWC maps every 11-bit data to

a 23-bit codeword with at most three 1s. A variation of the limited

weight codes, called SETS, is proposed by Song et al. [7] to reduce

bit-flips in last level caches. This method realizes an example of

sparse codes that consumes 4× more wires to represent one-hot

coded data transferred between the cache banks and the controller.

History based techniques have been explored to exploit the sim-

ilarities between the current and old data blocks to reduce bus

activity. BD encoding [8] compares the data to be sent over the data

bus with previously transferred blocks. Based on the outcome of

this comparison, only the difference between the data and the most

similar block along with its index are sent to the receiver. DESC [9]

employs synchronized counters at the receiver and transmitter to

represent data in terms of delay cycles between subsequent tran-

sitions. As a result, this mechanism can significantly reduce the

switching activity of the wires at the cost of longer transmission

times. The work in [10] proposes an adaptive approach that moni-

tors characteristics of applications and employs proper time-based

codes for LLC interconnects to reduce energy consumption consid-

erably.

3 STFL SIGNALING

To balance power and bandwidth in memory interfaces, the pro-

posed coding scheme exploits low power wires to achieve a lower

per-bit energy, and applies a novel STFL coding technique that in-

creases the throughput of those wires. On every STFL data transfer,

a transmitter encodes and sends information to a receiver over a set

of low power wires. STFL replaces the conventional voltage level

signaling with the transition signaling that makes it possible to

directly control the wire flips via encoding. (Instead of representing

1s with a high voltage level (VDD ) and 0s with ground, every 1

is signaled using a transition between VDD and ground; while, 0s

represented with the absence of transitions.) The proposed STFL

transmitter is connected to low power wires and sends the data

bits at the same rate of a high performance wire, which may re-

sult in signal deterioration if consecutive transitions (i.e., 1s) are

transferred. To avoid data loss due to the signal deterioration, the

STFL transmitter needs to pause the transmission by injecting delay

cycles after every transition (i.e., 1). Following the same conven-

tion, the STFL receiver samples the low power wires at the high

performance rate and removes the corresponding samples to those

delay cycles inserted by the transmitter.

Design Principles. Figure 2 shows an illustrative example of data

transmission using high speed wire, low power wire, and STFL

interface. In this example, transition signaling is used to transfer

four bits of data on a single wire. The high speed wire provides the

fastest transmission time (t ) at the cost of consuming more power,

whereas the low power wire is able to decrease power consumption

at the cost of doubling the transmission time (2t ). STFL employs

low power wire to keep the transmission power low; it injects a

delay cycle (D) after every 1 in the original data to create new

STFL codewords; and transfers them at the same rate as in the high

speed wire. Therefore, STFL can reduce the transition time down

to 1.5t . This can be viewed as a hybrid data transmission technique

that transfers 0s at high speed and 1s at low power. As a result of

optimizing both power and time, STFL is now able to improve the

energy efficiency of data transmission compared to the other two

techniques.

0 0 1 1

t

(a) High speed

0 0 1 1

reduced power

2t

(b) Low power 

0 0 1D 1D

reduced latency

1.5t

(c) STFL

Figure 2: Transferring a 4-bit data with transition signaling

on high speed wire (a), low power wire (b), and STFL inter-

face (c).

Design Challenges. One difficulty in realizing the proposed STFL

coding is the transmission time that increases with respect to the

number of 1s in the dataÐa.k.a., the Hamming weight. For example,

due to the additional delay cycles (Ds), transferring an all 1 pattern

requires double the transmission time of an all 0 block. (The longest

transition time is the same as that of the low power technique.)

STFL addresses this problem by leveraging encoding techniques

that limit the number of transferred 1s per transmission.

4 APPLYING STFL TO LARGE CACHES

Large caches are typically organized as a hierarchy of banks, sub-

banks, mats, sub-arrays, and multiple H-trees that are disciplined

by a cache controller. Independent banks are accessed simultane-

ously through a bank-level H-tree; each bank comprises a group of

sub-banks that share the wires of a vertical H-tree; within every

sub-bank, multiple mats are connected to a horizontal H-tree and

supply different bits of the cache block in a bit parallel fashion.

Every read and write access requires moving data over long and

capacitive wires within the H-trees, which results in significant

delay and power consumption [2, 9, 11]. STFL reduces the overall

data movement energy in the cache interconnects through (1) us-

ing low power wires in data H-trees, and (2) integrating a set of

STFL transmitters and receivers in the mats and cache controller to

perform data transmission.

We apply STFL to the input and output data buses transferring

a cache block between the cache controller and the selected mats

during every cache access. Figure 3 depicts transferring a 64-byte

cache block using an STFL interface with 16 groups. STFL divides

every cache block into multiple groups of four bytes. Each group is

converted to four STFL codewords transferred over four low power

data wires. STFL employs an existing low power wire to transfer the

encoding modes used for the four codewords. Finally, the receiver

detects the signals and converts the codes to the original data block.

4.1 Data Encoding with STFL

The proposed STFL mechanism exploits the similarities between

adjacent bytes (i.e., spatial locality) in every cache block to reduce
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Therefore, STFL is able to reduce both the static and dynamic power

dissipation in the cache interface. Transferring a codeword via the

proposed signaling technique requires a transmitter and a receiver.

Figure 7 shows how an 8-bit codeword is transferred over an exam-

ple STFL interface that includes three mechanisms for transmitting

codewords, receiving signals, and transferring mode bits.
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F

Transition 
Generator

Shift

Level 
Converter

8-bit 

Codeword

STFL-LLC Transmitter

Shift Register

Level 
Converter

F

Transition 
Detector STFL-LLC Receiver

Shift

8-bit 

Codeword
Low  Power Wire

Figure 7: Transferring STFL codewords.

Transmitting Encoded Data. To ensure the transition signals are

properly generated for each codeword, multiple steps are followed

by the STFL transmitter. First, STFL stores the eight-bit codeword

generated by the encoder in a parallel-in, serial-out shift register.

(Due to using the encoding modes as explained in Table 1, it is

guaranteed that every codeword contains no more than four 1s.)

STFL reads the code bits serially from the shift register and converts

them to transition signals using a transition generator comprising

a latch and an XOR gate. A delay injector controls the shift register

and maintains the previous output of the shift register. The delay

injector is connected to the shift register via an (active low) shift

signal; every 1 transmitted in the previous cycle disables the shift

register in the current cycle, thereby injecting a D after every 1

in the code. Since the shift register can now contain up to four

1s, the longest generated codeword is 12 bits long. To avoid the

complexity of variable length encoding, the transmitter is set to

produce fixed 12-bit codes (zero padding is required for the codes

with fewer 1s). The STFL codes are serially fed into a transition

generator circuit that translates every 1 into a flip on its output.

Finally, STFL employs the level converter to prepare the signals

prior to transmission on the low-power wires by converting from

full to low-swing.

Transmitting Mode Bits. Unlike codewords, mode bits can be

directly converted to the transition signals on the wire with no

need for delay injection. The STFL encoder generates a total of

12 mode bits for every four data bytes, where 1s are spaced out

by dummy 0s in the resultant bit pattern. Similarly to the data

codewords, transferring the mode bits requires 12 cycles.

Receiving STFL Signals. The STFL receiver makes use of a tran-

sition detector, consisting of an XOR gate and a flip-flop, to convert

the transition signals into 1s. From data wires, the result is sent to a

serial-in, parallel-out shift register. On every cycle, a newly detected

bit is fed to the shift register; moreover, the same bit controls the

shift operation. Every 0 results in shifting the content and inserting

the bit in the register; a 1, however, disables the shift operation

and overwrites the previously sampled valueÐwhich is a dummy 0.

Therefore, STFL removes all of the additional delay cycles by the

transmitter at the receiver. Finally, the result is sent to the STFL

decoder for extracting the original data block (Figure 4).

5 EVALUATIONS

5.1 Methodology

The area, delay, and power for the STFL encoders and decoders are

based on hardware synthesis with the FreePDK [14] library at the

45nm CMOS technology, which are then scaled to 22nm. We create

SPICE models using PTM [15] high-performance 22nm transistors

for all of the interfacing circuits and perform circuit simulations

to estimate energy and delay overheads. To make the interfacing

circuits practical, we sized the transistors for a safe setup and hold

time [16, 17]. Using McPAT [18], we estimate the overall processor

power consumption. A heavily modified version of ESESC [19]

is used to model the STFL interface in a multicore system that

simulates 12 memory-intensive applications from various multi-

threaded benchmark suites [20ś22] (Table 2).

Table 2: Applications and data sets.
Label Benchmarks Input Label Benchmarks Input

FT Fourier Transform Class A LU LU 1024 × 1024Matrix
IS Integer Sort Class A RAY Ray Trace car
MG Multi-Grid Class A OCN Ocean 514x514 ocean
CG Conjugate Gradient Class A FFT FFT 1048576 data points
BT Block Tri-diagonal Class A BRN Barnes 16K particles

HIST Histogram 100MB file WCNT Word Count 10MB text file

We model the existing encoding techniques such as bus invert

coding [3], time-based data representation with DESC [9], sparse

encoding with SETS [7], history based BD encoding [8], and two-

dimensional block coding with CAFO [5]. These encoding tech-

niques are compared with the conventional binary encoding when

applied to the last level cache interfaces. CAFO-LLC is applied to

8 × 8 bit data blocks. Due to the significant area, delay, and en-

ergy overheads introduced by large tables of BD encoding, (1) a

smaller entry size is chosen for last level cache and (2) BD encoding

is applied to the bank level H-trees of last level cache. Moreover,

we model a voltage and frequency scaled (VFS) baseline for com-

parisons through exploring the application of binary encoding in

low power wires with reduced frequency for the last level cache

interface. This is accomplished via employing low voltage-swing

wires in the H-trees of last level cache. Table 3 shows the simulation

parameters for the evaluated systems.

Table 3: System parameters.
Core four 4-issue OoO cores, 128 ROB entries, 3.2 GHz

IL1/DL1 cache 32KB, 4-way, LRU, 64B block, hit/miss delay 1/1

L2 cache (shared) 4MB, 8-way, LRU, 64B block, hit/miss delay 8/2, MESI protocol

Temperature 360 K (77 ◦C)

DDR4-2400 tRCD: 14.16, tCL: 13.32, tWL: 16, tCCD: 4, tWTR: 7.5, tWR: 12, tRTP: 7.5,
tRP: 13.32, tRRD: 4, tRAS: 32, tRC: 45.32, tFAW: 30

Exploring theCacheDesign Space.Amodified version of CACTI

6.0 [23] is used to find the best configurations for last level caches us-

ing the baseline full swing and STFL interfaces. We employ energy-

delay product (EDP) [24] as the energy-efficiency metric for finding

the best cache configurations.We explore the design space of caches

with and without the STFL interface by varying different cache

parameters such as the number of banks, the data bus width, asso-

ciativity, and the device types from ITRS high performance (HP) to
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low standby power (LSTP) and low power (LOP) transistors [25].4

We employ the parameters provided by the prior work [26] on

interconnect optimization to estimate the delay and energy of the

low power wires used for STFL.

5.2 Results

Synthesis. Table 4 shows the area overhead, critical path delay,

and power consumption of the required encoders and decoders

used for 64-bit interfaces using DBI, STFL, BD, CAFO, DESC, and

SETS encoding. (The table does not show the overheads of wires.)

Notice that the energy, delay, and area overheads of the encoders

and decoders for processing data blocks are negligible as compared

with those of the data wires and interfacing circuits. We imple-

ment each encoding technique while minimizing their direct and

indirect impacts on the system efficiency. Overall, STFL logic con-

sumes less area compared to CAFO and BD, while incurring an

acceptable delay and power overheads. We expect the additional

hardware impose negligible impact on die area and yield of modern

microprocessors [27].

Table 4: Overheads of various encoders and decoders.
DBI-LLC STFL BD-LLC CAFO DESC SETS

Area (µm2) 112.252 1642.816 2183.565 2638.72 1890.136 76.35
Encoder Interface Delay (ns ) 0.197 0.336 0.74 0.705 0.34 0.16

Power (mW ) 0.24 1.86 0.13 1.41 18.4 15.3

Area (µm2) 25.536 170.24 2183.565 51.072 2236.921 68.32
Decoder Interface Delay (ns ) 0.016 0.046 0.24 0.033 0.28 0.157

Power (mW ) 0.71 1.62 0.28 0.71 27.6 15.0

Energy. Figure 8 shows the impact of various encoding mecha-

nisms on the switching energy in the last level cache. (Additional

energy consumed for encoding/decoding data blocks is included in

the results.) The proposed STFL codes reduce the switching energy

of the last level cache by an average of 60% across all 12 benchmark

applications. This reduction is 4.3× of the energy savings achieved

by DBI, which employs a simple coding logic. The STFL savings are

at least 10% better than those gained by VFS, DESC, and SETS; how-

ever, these techniques expose significant indirect overheads to the

system. Notice that CAFO requires complex encoders and decoders

at the communication ends that result in large energy overheads,

thereby making it ill-suited for the last level cache interface.
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Figure 8: Total switching energy consumed by LLC.

Consuming less switching energy in the last level cache interface

may lead to a reduction in the overall processor energy only if the

encoding/decoding and indirect overheads are minimal. Figure 10

shows the overall processor energy when the proposed STFL and

baseline interfaces are applied to the last level cache interface. STFL

reduces the overall CPU energy by 27% averaged across all of the

evaluated applications. This energy reduction is 1.2× of the average

savings obtained by VFS, which is because of employing STFL

4Similar to prior work on DESC [9], our study indicates that using LSTP devices for
the SRAM cells and LOP for the peripheral circuits can significantly reduce dynamic
and static energy.

codes to improve bandwidth and reduce switching activity. Similar

to VFS, DESC and SETS are (even more significantly) impacted by

the undue performance overheads of data encoding and signaling.

The proposed STFL achieves an average of at least 21% processor

energy reduction over the DESC and SETS baselines. BD encoding

requires table lookups on every cache data transfer that increases

the execution time and per access energy, thereby diminishing the

energy benefits from switching reduction.

Performance. Figure 11 shows the relative system performance

of STFL and the baseline encoding techniques applied to the last

level cache. The results indicate that DESC and SETS suffer from

significant performance loss due to the large bandwidth overheads

consumed for signaling5. VFS employs low power wires and en-

counters an average of 6% performance loss, which also results in

consuming more static system energy. In addition to reducing the

overall system energy, STFL alleviates the adverse performance

impacts of low power wires and achieves 98% of the performance

gained by the high-performance binary encoding baseline.

Energy-Delay Product. Improving both energy and delay by STFL

results in a superior energy-efficiency compared to all of the eval-

uated baselines. Our simulation results indicate that SETS, DESC,

and CAFO result in a higher CPU energy-delay products. STFL and

VFS, however, can significantly reduce the energy-delay products.

STFL achieves 9% better CPU energy-delay product over VFS due

to improving bandwidth and reducing the switching energy.

0.7

0.8

0.9

1

1.1

Geomean (across all applications)

C
P

U
 E

n
e

rg
y

-
D

e
la

y
 P

ro
d

u
c

t 
N

o
rm

a
li

z
e

d
 t

o
 

B
in

a
ry

 

E
n

c
o

d
in

g

DBI-LLC

BD-LLC

DESC

SETS

CAFO-LLC

VFS-LLC

STFL-LLC

Figure 9: CPU energy-delay product.

Adapting to Random Data Patterns. As modern computer sys-

tems may adopt compression and encoding mechanisms in memory

channels [28, 29], we study the impact of randomness in data pat-

terns on the energy savings by DBI, BD, CAFO, VFS, and STFL

interfaces. We develop a C/C++ program that writes a synthetic

stream of random data to the memory system. A tunable parameter

p is used to determine the probability of setting every bit of the

data block to 1. Figure 12 shows the relative switching energy of

the last level cache normalized to the conventional binary encoding

with p = 0.1. STFL provides superior energy savings due to the

low power wires and the proposed encoding mechanism. For heavy

blocks, where p > 0.8, VFS can save more switching energy than

STFL due to the encoding/decoding overheads.

6 CONCLUSIONS

STFL is a hybrid technique for slow-transition, fast-level signaling

that creates a balance between power and bandwidth in the last level

cache interface. The proposed scheme create new opportunities

for enhancing the energy efficiency of low power interfaces and

designing efficient memory systems. As the need for data intensive

computing is expected to further grow in future, the proposed

5This is mainly because of consuming more wires or longer transmission time.
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technique holds the promise to help the system designers build

energy-efficient computing system.
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