ReTagger: An Efficient Controller for DRAM Cache

Architectures
Mahdi Nazm Bojnordi Farhan Nasrullah
University of Utah University of Utah
bojnordi@cs.utah.edu farhan.nasrullah@utah.edu

ABSTRACT

3D die-stacking has enabled energy-efficient solutions for near data
processing by integrating multiple dice of high-density memory
layers and processor cores within the same package. One promising
approach is to employ the in-package memory as a gigascale last-
level cache for data-intensive computing. Most existing in-package
cache controllers rely on the command scheduling policies bor-
rowed from the off-chip DRAM system. Regrettably, these control
policies are not specifically tailored for in-package cache traffics,
which results in a limited bandwidth efficiency. This paper proposes
ReTagger, a DRAM cache controller that employs repeated tags to
alleviate the cost of DRAM row buffer misses. Our simulation re-
sults on a set of ten data-intensive applications indicate an average
of 20% performance improvement for the proposed controller over
the state-of-the-art DRAM caches.

ACM Reference Format:

Mahdi Nazm Bojnordi and Farhan Nasrullah. 2019. ReTagger: An Efficient
Controller for DRAM Cache Architectures. In The 56th Annual Design Au-
tomation Conference 2019 (DAC °19), June 2—6, 2019, Las Vegas, NV, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3316781.3317895

1 INTRODUCTION

As the demand for big data processing increases [1, 2], memory
bandwidth wall [3] and data movement problems [4] escalate in
all forms of computing systems from datacenters to mobile ap-
plications. One key response from industry to this ever-growing
problem has been the integration of disparate technologies within
the same package using 3D die-stacking to reduce the amount of
off-chip data movement. For example, Micron’s hybrid memory
cube (HMC) stacks multiple DRAM layers on a flexible logic layer
that communicate through energy-efficient and fast through: sili-
con vias (TSVs) [5, 6]; Intel integrates up to 16 GB of memory in a
multi-channel DRAM (MCDRAM) with 4x higher bandwidth than
DDR4 in Knights Landing processors [7]. As compared with off-
chip memory systems, in-package integration provides up to 10X
more bandwidth with a significantly lower power and a smaller
footprint, which make it an attractive solution for accelerating
a variety of data intensive applications from scientific and engi-
neering domains [8-10]. One promising approach that has been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. .. $15.00
https://doi.org/10.1145/3316781.3317895

examined by researchers in academia and industry is to employ the
in-package memory as a gigascale last-level cache [11-13]. How-
ever, due to the significant inefficiencies of the in-package memory
interface for cache traffics, it is unclear if the existing solutions
could address all the requirements of user applications in future
commodity computers.

2 BACKGROUND

Figure 1 shows an example processor (or accelerator) system that
consists of an in-package memory and multiple processor cores. The
processor cores and the in-package memory layers communicate
through a high bandwidth interface that includes high-bandwidth
controllers, TSVs, and often microbumps within a silicon inter-
poser [14]. The memory layers are typically divided into 4-8 in-
dependent channels (a.k.a., vaults) that provide the highest level
of parallelism in the memory system. Each channels is further
divided into 8-16 banks, which results in a total of 128 banks to
exploit data-level parallelism in user applications. The DRAM banks
are organized as arrays of rowsxcolumns, sharing common data
and address TSVs and on-die buses. Serving every read or write
request requires sending an appropriate sequence of commands—
ie., precharge, activate, read, and write—to the DRAM dice.
Moreover, a set of timing and power constraints defined by the in-
terfacing standard, e.g., JEDEC WidelO [15], dictate the minimum
delay between each pair of commands issued to the memory system.

Bank %% Interface In-Package
f—al——— Controller ~ Cache Controller
.
: Z W —z == X
Z ‘ ’_/ Processor Die

Silicon Interposer

ackage Substrate

Figure 1: Illustrative example of a high bandwidth memory
(HBM) system.

Most existing proposals for in-package cache architectures bor-
row the control policies from off-chip memory controllers to per-
form command scheduling, refresh management, quality of service
maintenance, and power optimization. However, major differences
between in-package and off-chip memory interfaces, as well as
the inherently different cache traffic from main memory result in
unprecedented power and performance challenges that may not be
effectively addressed through the existing control policies.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

2.1 DRAM Controllers

A DRAM controller receives a request stream from the processor,
and generates a corresponding DRAM command stream. Every
memory request needs to access a block of data within a row of the
DRAM subsystem. An activate command is required to load the
row into (local and global) row buffers prior to accessing data. Con-
secutive accesses to the same row, called row hits, enjoy the lowest
access energy and latency. A row miss may occur if the row buffers
do not contain the desired row, which may require a precharge
command that precharges the bitlines prior to activating the next
row. Over the past two decades, DRAM control policies have been
extensively studied in the context of off-chip main memory sys-
tems [16—26]. Other proposals aimed to reduce the adverse effects
of DRAM refresh on system performance [27, 28].

2.2 Existing In-Package Cache Proposals

The architecture of large DRAM cache has achieved significant
attention in recent years mainly to alleviate the key problems of
cache design. There exists two main categories of DRAM cache
architectures based on storage, allocation, and replacement policies
for tag and data: fine granularity and coarse granularity DRAM
cache. Fine granularity DRAM cache mainly manages 64byte cache
lines and requires significant storage for the tags, which makes it
impractical to keep the tags in on-chip SRAM. For example, a 1GB
DRAM cache needs 128MB tag storage, where each tag is 8 bytes
wide. For the same reason, almost all state of the art DRAM cache
designs propose to store tags in the in-package DRAM, thereby
introducing tag access latency and bandwidth consumption. Recent
proposals on Alloy [29] and Loh-Hill [30] cache architectures have
examined techniques to improve access latency. Alloy cache [29]
is a direct map cache whose tag storage, cache allocation, and
replacement mechanism work on cache line granularity. Data and
tag are placed adjacent to each other and accessed together, which
helps to improve cache read hit latency. However, read misses or
write accesses do not get benefit from this and cause extra traffic
on both in-package DRAM channel and off-chip DRAM.

The Bear cache [31] proposes three optimization techniques to
reduce the unnecessary traffic on DRAM channel for cache access.
Bandwidth aware bypass scheme predicts cache data reuse behavior
in run time and bypasses cache miss-fill during low re-use situation.
The bandwidth efficient write probe and on-chip neighboring tag
cache (NTC) helps to optimize DRAM cache bandwidth by removing
some of the tag check accesses to DRAM. R-Cache [32] proposes
an RRAM based in-package memory that eliminates the bandwidth
overhead of tag checks via in-situ comparison.

Unison cache [33] is a page granularity set associative DRAM
cache which improves cache hit latency by reading all the tags and
a predicted data block. If the hit prediction is correct, the access is
roughly the same as a single DRAM access; otherwise, it is doubled.
Coarse granularity DRAM cache pays huge bandwidth penalty on
every cache miss due to loading the entire page even if the program
does not exhibit significant spatial locality. In its worst case, if
the victim block is dirty, a write back for the entire page will be
issued to main memory. This consumes significant bandwidth of off-
chip DRAM channel which is already limited. TDC [34] proposes a
new software-hardware based architecture which obviates the tag

M.N. Bojnordi and N. Nasrullah

checking operation for page granularity DRAM cache. It, however,
adds software complexity and extra on-chip buffer to maintain the
address mapping coherency. FTDC [35] and Banshee [36] adopt
similar architecture to TDC [34] but also improve off-chip memory
bandwidth by introducing frequency based reuse prediction. The
mechanism avoids cache replacement on every miss; it performs a
cache replacement only if the currently accessed block is predicted
to be highly reused in future based on reuse counter.

3 DESIGN OVERVIEW

A significant challenge in designing gigascale cache architectures
is often the limited bandwidth efficiency of memory. We propose
ReTagger that optimizes the tag and data management policy of
the in-package cache with respect to the DRAM row buffer status.

3.1 Tag and Data Management in DRAM Cache

A typical coarse-grained cache may provide 1-4KB cache blocks,
hence it may significantly suffer from moving unnecessary data
between cache and main memory on every tag miss and block
eviction [33-36]. Fine-grained cache architectures employ smaller
cache blocks (e.g., 64B) to reduce the amount of unnecessary data
movement between main memory and in-package cache. The fine
block granularity, however, results in significant memory and band-
width overheads for tag management. A fine-grained DRAM cache
needs to manage a large amount of meta data (including dirty, valid,
tag, and error correction bits) per each cache block [29-31]. To
alleviate the memory costs, meta data is typically collocated with
the data blocks in the DRAM layers. For example, a cache block of
64B data may need 8B meta data, which translates to an additional
12.5% DRAM storage. Moreover, tag checks may exert a substantial
bandwidth overhead to the in-package memory interface and may
increase the cache access latency. As a result, tag and data manage-
ment has become the main concern in DRAM cache architectures.

Figure 2 illustrates general forms of the existing proposals for
direct mapped and set associative in-package cache systems. In the
direct mapped approach, a data block and its tag are accessed using
a single read; therefore, the data can be immediately used on a
read hit [29, 30]. An additional write may be required to update the
cache block on a write hit. All tag mismatches result in forwarding
the cache requests to main memory. However, installing the cache
block in the DRAM cache is up to the cache controller. For example,
the Bear cache employs stochastic mechanisms to skip the DRAM
cache and forward the requests to main memory [35].

(a) Direct Mapped Tug+Data

Cache Controller

~
DEID DD D] .. [iID

(b) Set Associative Tags

™S
Cache Controller

PEEEET .. [p[p[p]p[D[D

Data

Figure 2: General forms of the existing DRAM cache propos-
als.

ReTagger: An Efficient Controller for DRAM Cache Architectures

Figure 2 (b) shows another form of caching that reads multiple
cache tags first and reaches the cache data in the second access. This
way, both read and write accesses need two steps on hit. Similar
to the direct mapped mechanism, a tag mismatch is detected after
the first access and will be forwarded to the main memory. This
two-step approach is suitable for building set associative DRAM
caches [30]. However, recent work has shown a limited performance
beyond 2-way set associativity for DRAM caches [37].

3.2 Row Buffer Access

The existing DRAM cache proposals mainly focus on improving
bandwidth and cache access latency through novel tag layouts, way
prediction, block installation, and cache access suppression. This
paper considers an often overlooked detail in performing DRAM op-
erations to further optimize the performance and energy-efficiency
of DRAM cache controllers. Prior to any tag checks for an incoming
request, the cache controller needs to ensure that the target DRAM
row is placed in the row buffer. Satisfying this requirement, the
controller may need to issue precharge and activate commands
to the DRAM layers. Only then, a read request can be issued to
access the Tag or Data. For an incoming cache request, a row hit oc-
curs if the target row is already placed in the row buffer; otherwise,
the request encounters a row miss. Therefore, each incoming cache
request encounters one of the four possible conditions based on
the row buffer status and the outcome of tag comparison. Figure 3
shows the four possibilities for two example applications, namely
FT and HIST. A relatively larger fraction of the cache requests in FT
benefit from row hits, which are faster and more energy efficient
than row misses. However, the majority of cache requests for both
FT (71%) and HIST (90%) suffer from the high energy, bandwidth,
and latency overheads of row misses. The worst case is a row miss
resulting in a tag mismatch, thereby necessitating a main memory
access after a row miss.

HIST 6% FT

1 Row Miss, Tag Mismatch
22%
1 Row Miss, Tag Match
7%
g = Row Hit, Tag Mismatch

B Row Hit, Tag Match

Figure 3: Possible tag check scenarios with respect to the row
buffer status.

3.3 The Proposed Row Scheduler

The goal of this paper is to reduce the diverse impacts of row buffer
misses on the cache performance and energy efficiency. We pro-
pose a row scheduler that can be integrated in the existing cache
controllers for managing row buffers and expediting the tag check
process. Figure 4 illustrates an overview of the proposed DRAM
caching mechanism using the row scheduler. Similar to the exist-
ing fine-grained DRAM caches, the proposed mechanism relies on
partitioning rows into blocks of data and tags. For example, a 2KB
row buffer can store up to 28 blocks, each of which comprises 64B
data and 8B metadata. (A similar partitioning approach is employed
by the prior work on Bear [31].) Please notice that 32B of each

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

row remains unused. The proposed row scheduler makes use of
these otherwise unused bytes to repeat the tag bits of all the blocks
within each row. Assuming that every block has an eight-bit tag,
a total of 28B is needed to store the repeated tags (ReTag). ReTags
are store as the last bytes of the row so that they can be read or
written in one access.

Proposed DRAM Caching Tug+ Data ReTag

Row Scheduler il |_| D |_| D |_| D |_| D |_| D | e |_| l}m

Precharge
W

Figure 4: Illustrative example of the proposed DRAM
caching mechanism.

Key Idea. The key idea of the proposed row scheduler is to monitor
the cache traffic at run time and proactively prepare the row buffers
for future incoming cache requests. To reduce the impacts of row
misses, the row scheduler sends a precharge command to a bank if
there is no outstanding requests on that bank at the cache controller.
This is similar to the basic closed row (page) policy employed by off-
chip DRAM controllers. However, closing the row buffer can impact
the future row hits and misses both: (1) a row miss may be serviced
faster if the row buffer is empty and (2) a row hit may become a
row miss after issuing the precharge command. We observe that a
closed row policy is not beneficial for the evaluated applications
mainly because of the latter issue (see Section 5).

Instead, the row scheduler employs ReTags to reduce the cost of
converting possible row hits to misses; while, it opportunistically
closes the row buffer as soon as all of its outstanding requests at
the cache controller are serviced. The proposed scheduling policy
is orthogonal to the existing cache control policies and can be used
to further improve the bandwidth efficiency and performance of
in-package caches. The ReTag bits enable the controller to make a
performance critical decision on if a request should be serviced at
the cache or to be forwarded to the main memory. This decision
can only be made if the cache controller knows the outcome of
tag comparison, which may be significantly delayed due to a row
buffer miss. The proposed architecture fetches the row ReTags and
stores them on the processor die before closing a row buffer. Thus,
the controller can employ the ReTags to determine if a future cache
request leads to a match or mismatch. The results of such pre-
processing at the cache controller can improve the access latency
and cache bandwidth through

e accelerating the decision made for those requests with “row
miss, tag mismatch” in Figure 3 and forwarding them to the
main memory; and

e eliminating the need for tag check reads in the case of write
requests that result in "row miss, tag match" and making
them single HBM access rather than double.

The main challenge, however, is the overhead of accessing ReTags
per each row. To reduce the bandwidth and storage costs, (1) ReTags
are designed to contain only the tag bits rather than all of the
metadata, (2) a copy of all the tags in a DRAM row are bundled and
accessed in one shot, (3) each row stores its own ReTags therefore

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

the tags are accessed quickly when the row is open, and (4) the
ReTags are only accessed if no outstanding requests for the bank
exists.

4 PROPOSED ARCHITECTURE

This section provides a system overview and explains the proposed
architectural mechanism for row scheduling.

4.1 System Overview

Figure 5 shows an overview of the proposed architecture used by
a multicore system with an on-chip cache connected to the HBM
layers via an eight-channel WidelO interface. An off-chip DRAM
system is employed as the main memory under a DDR4 interface.
Similar to prior work on fine-grained caches [29, 31], tags are collo-
cated with the data blocks in the HBM layers. Moreover, each HBM
channel is provided with an HBM controlling unit that comprises
a cache controller for block management and a command sched-
uler for generating WidelO commands—e.g., refresh, precharge,
read, and write. The cache controller is designed after the state-of-
the-art DRAM cache controllers [29, 31] and is responsible for high
level block management tasks, such as receiving requests form the
processor side, accessing tags in the HBM layers, performing tag
checks to determine match/mismatch, installing a cache block in
the HBM cache on a miss, evicting a cache block from the HBM
and producing writeback traffic to the main memory if the evicted
blocks are dirty, monitoring the cache bandwidth and skipping the
HBM if necessary to improve performance.

} HBM Cache Controllers

Cores e
Memory Request
HBM On-Chip i |

Layers Cache ;o l

/| HBM Command Cache
! Layers Scheduler Controller
Interface | :

DDRx[] |
Main Memory ‘ DDRx Interface 1

Figure 5: Illustrative top view of the proposed ReTagger ar-
chitecture in a multicore system.

We observe that command scheduling plays a significant role in
improving the efficiency of HBM cache system. Figure 6 shows the
relative execution times for a set of ten parallel applications using
three different scheduling policies—namely FCFS, FR-FCEFS (O), and
FR-FCFS (C)—based on the algorithms from prior work on DRAM
access scheduling [16].! The FCFS policy implements a first-come
first-serve algorithm for servicing the requests in order; whereas,
the FR-FCFS policy implements an out-of-order algorithm for pri-
oritizing the ready row hits over long latency row miss requests.
The out-of-order scheduling exhibits a superior performance com-
pared to the FCFS algorithm. In this experiment, we consider two
variations of the FR-FCFS algorithm with respect to row buffer
management. FR-FCFS(O) represents an open row policy where
the row buffer holds the currently open row even after serving
the last outstanding request. This policy will be beneficial to the
future accesses made to the same row. FR-FCFS(C) is the closed

!More details on the experimental setup are provided in Section 5.

M.N. Bojnordi and N. Nasrullah

row version of the algorithm that sends a precharge to any active
banks that has no outstanding requests at the scheduler. This policy
is well-suited for any future request that would be a miss in the row
buffer. We observe that the two row management policies perform
similarly for the HBM cache system.

WMFCFS OFR-FCFS (O) @FR-FCFS (C)

Relative Execution
Time
o
sy

e & <&

A o o O Q <)
\Z\\(_) \ \?& K 0& $") $$ @Q,’bo

&
Figure 6: Performance of various policies for HBM cache
scheduling.

4.2 Proposed ReTag Management

Similar to the closed row policy, the proposed row scheduler sends a
precharge command to any bank that has no outstanding requests
at the cache controller. Figure 7 shows the proposed mechanism
for managing ReTags at the row scheduler. Prior to generating
any WidelO commands, all incoming cache requests are inserted
into a scheduling queue. The command scheduler will then access
the queue to issue proper WidelO commands. The ReTag Manager
supplements the command scheduler by monitoring the schedul-
ing queue and issuing commands to the HBM layers. Two ReTag
management tasks are necessary at the row scheduler.

e ReTag Fetch is an operation required to read the ReTags
from HBM layers before closing the current row. This oper-
ation is performed on a row buffer using a single WideIO
read. A no outstanding signal is used to indicate when the
ReTag manager can issue the read command.

e ReTag update is only required when a new block is installed
in the HBM cache. The ReTag manager keeps track of all the
installed blocks from the time a row is opened in the row
buffer. Right before closing the row, a single write may be
issued to update the ReTags only if at least one block install
has been performed to the row.

The proposed controller requires an insignificant amount of ad-
ditional hardware for generating the no outstanding signal and
storing/tracking the ReTags. For an HBM cache channel with a to-
tal of 16 banks using 2KB rows to store 64B data blocks, the on-die
storage overhead is only 448 bytes.

ReTag Management in the Row Scheduler
Scheduling Queue

Cache Request FR-FCFS
WidelO

ReTag Command
Manager

No O di

Figure 7: ReTag management in the row schedule.

ReTagger: An Efficient Controller for DRAM Cache Architectures

5 EVALUATIONS

This section explains the evaluation methodologies and results for
the proposed DRAM caching mechanism.

5.1 Methodology

We evaluate the power/energy and delay of the proposed architec-
ture based on hardware synthesis with the FreePDK [38] library
at the 45nm CMOS technology. We use McPAT [39] to estimate
the overall processor power consumption. To assess the energy
and performance potentials of DRAM memories, CACTI IO [40],
Micron power calculator [41, 42], and DRAMPower [43] are used.
We use a similar approach to the one used in the prior work [44]
to estimate the energy consumption of the HBM memory system.
A heavily modified version of ESESC [45] is used to model a mul-
ticore processor using the proposed 3D DRAM cache system. For
the baseline DRAM cache architecture, we implement the state-of-
the-art controller proposed by the Bear cache [31]. Table 1 shows
the simulation parameters for the evaluated systems.

Table 1: System parameters.
Core four 4-issue Q0O cores, 128 ROB entries, 3.2 GHz
IL1/DL1 cache| 32KB, 4-way, LRU, 64B block, hit/miss delay 1/1

L2 cache 4MB, 8-way, LRU, 64B block, hit/miss delay 8/2,
(shared) MESI protocol
Temperature 360K (77 °C)
8 channels, 1 rank/channel, 16 banks/rank,
HBM 1GB DDR4, 800MHz, tRCD: 44, tCAS: 44,

tRP: 44, tRTP: 46, tRAS: 112, tWR: 4
1 channel, 2 ranks/channel, 8 banks/rank,
DDR4 32GB | tRCD: 44, tCCD: 61, tWTR: 31, tWR: 4, tRTP: 46,
tRP: 44, tRRD: 16, tRAS: 112, tRC: 271, tFAW: 181

A mix of ten data intensive parallel applications from Phoenix [46],
NAS [47], and SPLASH-2 [48] benchmark suites are used to evaluate
the performance potentials of the proposed caching mechanism. We
run the simulations until completion for power and performance
evaluations. Table 2 summarizes the evaluated benchmarks and
their input sets.

Table 2: Applications and data sets.

l Label [Benchmarks [Suite [Input ‘
FT Fourier Transform | NAS OpenMP Class A
IS Integer Sort NAS OpenMP Class A
MG Multi-Grid NAS OpenMP Class A
CG | Conjugate Gradient | NAS OpenMP Class A
CH Cholesky SPLASH-2 tk 15.0
OCN Ocean SPLASH-2 514x514 ocean
WSP Water-Spatial SPLASH-2 512 molecules
WNS | Water-NSquared SPLASH-2 512 molecules
HIST Histogram Phoenix 100MB file
LREG | Linear Regression Phoenix 50MB key file

5.2 Simulation Results

Performance. Figure 8 shows the relative execution times of the
evaluated applications normalized to the FR-FCFS(O) baseline. The
results indicate that the proposed ReTag mechanism can reduce
the average execution time by 20% compared to the FR-FCFS(O)

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

baseline. The FR-FCFS(C) achieves within 1% of the average ex-
ecution time as compared to FR-FCFS(O). We also evaluated the
execution time of Row Fetch, which is a variation of the ReTagger
architecture. Similar to ReTag, Row Fetch monitors the scheduling
queue to detect a no outstanding signal. However, it transfers the
entire row from the HBM layers to the cache controller rather than
tag bits only; therefore, it imposes a significant bandwidth overhead
to the HBM interface. The motivation for modeling Row Fetch is to
assess the performance potentials of accelerating the “row miss, tag
match” read access in Figure 3. We observe that Row Fetch results
in significant performance degradation compared to ReTag.

15 W FR-FCFS (O) OFR-FCFS (C) O RowFetch mReTag

1

05

Relative Execution Time

6 X & L& L 0 & O s
cch\\gio@ocga&é@@

&

Figure 8: The relative execution times of the evaluated appli-
cations using the proposed and baseline cache controllers.

System Energy. The performance improvements gained by Re-
Tagger translates to a reduction in the system energy due to (1)
reducing the time and consequently static energy in the processor,
HBM cache, and main memory, (2) reducing the total number of
refresh operations in all DRAM arrays due to a faster execution,
and (3) eliminating unnecessary accesses to HBM for the “row miss,
tag mismatch” and “row hit, tag match” writes (Section 3). Figure 9
shows the system energy consumed by the proposed and baseline
architectures when executing the evaluated benchmark applica-
tions. ReTagger achieve an average of 24% reduction in the system
energy, which is the highest saving compared to all of the evaluated
DRAM cache interfaces.

WFR-FCFS (O) DOFR-FCFS (C) @RowFetch mReTag

& 15
Q

E

£ 1
3

1’

& 05
()

2

E o0
Q

& RS <{\§ \L’\g&@ ®© 0@ $‘3 4\@@&«\

&
Figure 9: The relative system energy of the evaluated sys-
tems using the proposed and baseline cache controllers.

6 CONCLUSION

3D die-stacking has enabled energy-efficient solutions for near data
processing by integrating multiple dice of high-density memory
layers and processor cores within the same package. This paper
presented a novel design approach to HBM cache controllers that
relies on monitoring the cache traffic at run time and optimizing
the HBM command schedule for better bandwidth and energy-
efficiency. We evaluated the proposed mechanism on a set of ten

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

data-intensive applications that indicate an average performance
improvement of 20% over the state-of-the-art DRAM architectures.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for useful
feedback. This work was supported in part by the National Science
Foundation (NSF) under Grant CCF-1755874.

REFERENCES

[1] “The exponential growth of data

[2

3

[4

=

i)

https://insidebigdata.com/2017/02/16/
the-exponential-growth-of-data/.

J. Ousterhout, C. Kozyrakis, D. Maziéres, A. Narayanan, D. Ongaro, M. Rosenblum,
S. Rumble, and R. Stutsman, “Ramcloud: Scalable high-performance storage
entirely in dram,” 2009.

ITRS, International Technology Roadmap for Semiconductors: 2013 Edition. http:
//www.itrs.net/Links/2013ITRS/Home2013 . htm.

“The top ten exascale research challenges,” Report of the Advanced Scientific
Computing Advisory Committee Subcommittee, 2014.

[5] J. Bolaria, “Micron reinvents dram memory: New architecture and packaging

(6

[7

8

[9

[10

[11

[12

]

]

=

[13]

[14]

[15

[16

]

[17]

[18

[19

]

]

[20]

[21]

[22

density and peformance,” Microprocessor Report, pp. 1-6, 2011.
H. M. C. Consortium, “About hybrid memory cube”
hybridmemorycube.org/technology.html.

M. P. (Intel), An Intro to MCDRAM (High Bandwidth Memory) on Knights Land-
ing. Intel, January 2016. https://software.intel.com/en-us/blogs/2016/01/20/
an-intro-to-mcdram- high-bandwidth-memory-on-knights-landing.

J. Ahn, S. Yoo, O. Mutly, and K. Choi, “Pim-enabled instructions: A low-overhead,
locality-aware processing-in-memory architecture,” in Computer Architecture
(ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on, pp. 336348,
IEEE, 2015.

D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube:
A programmable digital neuromorphic architecture with high-density 3d mem-
ory,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on, pp. 380-392, IEEE, 2016.

K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent offloading and mapping (tom): Enabling
programmer-transparent near-data processing in gpu systems,” in Proceedings of
the 43rd International Symposium on Computer Architecture, pp. 204-216, IEEE
Press, 2016.

S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, “Detect-
ing and mitigating data-dependent dram failures by exploiting current memory
content,” in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 27-40, ACM, 2017.

C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: Techniques for mitigating bandwidth
bloat in gigascale dram caches,” in 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), pp. 198-210, June 2015.

V. Young, P. J. Nair, and M. K. Qureshi, “Dice: Compressing dram caches for band-
width and capacity,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA *17, (New York, NY, USA), pp. 627-638, ACM,
2017.

“Silicon interposer design: Architecture through implementation.”

“Wide i/o 2 (wideio2)” http://www.jedec.org/standards-documents/results/
jesd229-2.

S. Rixner et al., “Memory access scheduling,” in Proceedings of the 27th annual
international symposium on Computer architecture, May 2000.

L. Hur and C. Lin, “A comprehensive approach to dram power management.,” in
HPCA’08, pp. 305-316, 2008.

O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared dram systems,” in in Proceedings of the
35th Annual International Symposium on Com- puter Architecture, pp. 32-41, ACM
Press, 2008.

Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable and high-
performance scheduling algorithm for multiple memory controllers,” in High
Performance Computer Architecture (HPCA), 2010 IEEE 16th International Sympo-
sium on, pp. 1 -12, jan. 2010.

E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N.
Patt, “Parallel application memory scheduling,” in The 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-44), December 2011.

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread cluster memory
scheduling: Exploiting differences in memory access behavior,” in Proceedings of
the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 43, (Washington, DC, USA), pp. 65-76, IEEE Computer Society, 2010.
B. Diniz, D. O. G. Neto, W. M. Jr., and R. Bianchini, “Limiting the power consump-
tion of main memory,” in ISCA, pp. 290-301, 2007.

http://www.

(23]

[24]

[25]

[27

(28]

[29

(30]

=)
=

(32]

[33

(34]

@
i

[36

[37

[38

[39

M.N. Bojnordi and N. Nasrullah

H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, “Mini-rank: Adap-
tive dram architecture for improving memory power efficiency,” in Microarchi-
tecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on, pp. 210
—221, nov. 2008.

C. Isen and L. John, “Eskimo - energy savings using semantic knowledge of
inconsequential memory occupancy for dram subsystem,” in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pp. 337
-346, dec. 2009.

K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Davis,
“Micro-pages: increasing dram efficiency with locality-aware data placement.” in
ASPLOS’10, pp. 219-230, 2010.

M. N. Bojnordi et al., “Pardis: A programmable memory controller for the ddrx
interfacing standards,” in ISCA, 2012.

J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John, “Elastic refresh: Techniques
to mitigate refresh penalties in high density memory,” in MICRO, pp. 375-384,
2010.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving dram
refresh-power through critical data partitioning.,” in ASPLOS (R. Gupta and T. C.
Mowry, eds.), pp. 213-224, ACM, 2011.

M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in architecting dram
caches: Outperforming impractical sram-tags with a simple and practical design,”
in Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 235-246, IEEE Computer Society, 2012.

G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes for very
large die-stacked dram caches,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 454-464, ACM, 2011.

C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: techniques for mitigating bandwidth
bloat in gigascale dram caches,” in Computer Architecture (ISCA), 2015 ACM/IEEE
42nd Annual International Symposium on, pp. 198-210, IEEE, 2015.

P. Behnam, A. P. Chowdhury, and M. N. Bojnordi, “R-cache: A highly set-
associative in-package cache using memristive arrays,” in 2018 IEEE 36th In-
ternational Conference on Computer Design (ICCD), pp. 423-430, IEEE, 2018.

D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A scalable and
effective die-stacked dram cache,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 25-37, IEEE Computer Society,
2014.

Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A fully associative,
tagless dram cache,” in ACM SIGARCH Computer Architecture News, vol. 43,
pp. 211-222, ACM, 2015.

H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee, “Efficient footprint
caching for tagless dram caches,” in High Performance Computer Architecture
(HPCA), 2016 IEEE International Symposium on, pp. 237-248, IEEE, 2016.

X. Yu, C.J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee: Bandwidth-
efficient dram caching via software/hardware cooperation,” arXiv preprint
arXiv:1704.02677, 2017.

V. Young, C. Chou, A. Jaleel, and M. Qureshi, “Accord: Enabling associativity for
gigascale dram caches by coordinating way-install and way-prediction,” in ISCA,
IEEE, 2018.

“Free PDK 45nm open-access based PDK for the 45nm technology node” http:
//www.eda.ncsu.edu/wiki/FreePDK.

S.Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“McPAT: An integrated power, area, and timing modeling framework for mul-
ticore and manycore architectures,” in International Symposium on Computer
Architecture, 2009.

N. P. Jouppi et al., “Cacti-io: Cacti with off-chip power-area-timing models,” TVLSIL,
2015.

“Micron DDR4 power calculator” DDR4SDRAMSystem-PowerCalculator(xlsm)
-Micron.

“Micron LPDDR3 power calculator” http://www.micron.com/.

K. Chandrasekar et al., “Drampower: Open-source dram power & energy estima-
tion tool,” URL: http://www. drampower. info, 2012.

M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler, and
W. J. Dally, “Fine-grained dram: energy-efficient dram for extreme bandwidth
systems,” in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 41-54, ACM, 2017.

E. K. Ardestani and J. Renau, “ESESC: A Fast Multicore Simulator Using Time-
Based Sampling,” in International Symposium on High Performance Computer
Architecture, HPCA’19, 2013.

R. M. Yoo et al., “Phoenix rebirth: Scalable mapreduce on a large-scale shared-
memory system,” in IISWC, 2009.

D. H. Bailey et al., “The nas parallel benchmarks,” in HPCA, 1991.

S. C. Woo et al., “The splash-2 programs: Characterization and methodological
considerations,” in ISCA, IEEE, 1995.

