

DAC ’19, June 2ś6, 2019, Las Vegas, NV, USA M.N. Bojnordi and N. Nasrullah

2.1 DRAM Controllers

A DRAM controller receives a request stream from the processor,

and generates a corresponding DRAM command stream. Every

memory request needs to access a block of data within a row of the

DRAM subsystem. An activate command is required to load the

row into (local and global) row buffers prior to accessing data. Con-

secutive accesses to the same row, called row hits, enjoy the lowest

access energy and latency. A row miss may occur if the row buffers

do not contain the desired row, which may require a precharge

command that precharges the bitlines prior to activating the next

row. Over the past two decades, DRAM control policies have been

extensively studied in the context of off-chip main memory sys-

tems [16ś26]. Other proposals aimed to reduce the adverse effects

of DRAM refresh on system performance [27, 28].

2.2 Existing In-Package Cache Proposals

The architecture of large DRAM cache has achieved significant

attention in recent years mainly to alleviate the key problems of

cache design. There exists two main categories of DRAM cache

architectures based on storage, allocation, and replacement policies

for tag and data: fine granularity and coarse granularity DRAM

cache. Fine granularity DRAM cache mainly manages 64byte cache

lines and requires significant storage for the tags, which makes it

impractical to keep the tags in on-chip SRAM. For example, a 1GB

DRAM cache needs 128MB tag storage, where each tag is 8 bytes

wide. For the same reason, almost all state of the art DRAM cache

designs propose to store tags in the in-package DRAM, thereby

introducing tag access latency and bandwidth consumption. Recent

proposals on Alloy [29] and Loh-Hill [30] cache architectures have

examined techniques to improve access latency. Alloy cache [29]

is a direct map cache whose tag storage, cache allocation, and

replacement mechanism work on cache line granularity. Data and

tag are placed adjacent to each other and accessed together, which

helps to improve cache read hit latency. However, read misses or

write accesses do not get benefit from this and cause extra traffic

on both in-package DRAM channel and off-chip DRAM.

The Bear cache [31] proposes three optimization techniques to

reduce the unnecessary traffic on DRAM channel for cache access.

Bandwidth aware bypass scheme predicts cache data reuse behavior

in run time and bypasses cache miss-fill during low re-use situation.

The bandwidth efficient write probe and on-chip neighboring tag

cache (NTC) helps to optimize DRAMcache bandwidth by removing

some of the tag check accesses to DRAM. R-Cache [32] proposes

an RRAM based in-package memory that eliminates the bandwidth

overhead of tag checks via in-situ comparison.

Unison cache [33] is a page granularity set associative DRAM

cache which improves cache hit latency by reading all the tags and

a predicted data block. If the hit prediction is correct, the access is

roughly the same as a single DRAM access; otherwise, it is doubled.

Coarse granularity DRAM cache pays huge bandwidth penalty on

every cache miss due to loading the entire page even if the program

does not exhibit significant spatial locality. In its worst case, if

the victim block is dirty, a write back for the entire page will be

issued to main memory. This consumes significant bandwidth of off-

chip DRAM channel which is already limited. TDC [34] proposes a

new software-hardware based architecture which obviates the tag

checking operation for page granularity DRAM cache. It, however,

adds software complexity and extra on-chip buffer to maintain the

address mapping coherency. FTDC [35] and Banshee [36] adopt

similar architecture to TDC [34] but also improve off-chip memory

bandwidth by introducing frequency based reuse prediction. The

mechanism avoids cache replacement on every miss; it performs a

cache replacement only if the currently accessed block is predicted

to be highly reused in future based on reuse counter.

3 DESIGN OVERVIEW

A significant challenge in designing gigascale cache architectures

is often the limited bandwidth efficiency of memory. We propose

ReTagger that optimizes the tag and data management policy of

the in-package cache with respect to the DRAM row buffer status.

3.1 Tag and Data Management in DRAM Cache

A typical coarse-grained cache may provide 1ś4KB cache blocks,

hence it may significantly suffer from moving unnecessary data

between cache and main memory on every tag miss and block

eviction [33ś36]. Fine-grained cache architectures employ smaller

cache blocks (e.g., 64B) to reduce the amount of unnecessary data

movement between main memory and in-package cache. The fine

block granularity, however, results in significant memory and band-

width overheads for tag management. A fine-grained DRAM cache

needs to manage a large amount of meta data (including dirty, valid,

tag, and error correction bits) per each cache block [29ś31]. To

alleviate the memory costs, meta data is typically collocated with

the data blocks in the DRAM layers. For example, a cache block of

64B data may need 8B meta data, which translates to an additional

12.5% DRAM storage. Moreover, tag checks may exert a substantial

bandwidth overhead to the in-package memory interface and may

increase the cache access latency. As a result, tag and data manage-

ment has become the main concern in DRAM cache architectures.

Figure 2 illustrates general forms of the existing proposals for

direct mapped and set associative in-package cache systems. In the

direct mapped approach, a data block and its tag are accessed using

a single read; therefore, the data can be immediately used on a

read hit [29, 30]. An additional write may be required to update the

cache block on a write hit. All tag mismatches result in forwarding

the cache requests to main memory. However, installing the cache

block in the DRAM cache is up to the cache controller. For example,

the Bear cache employs stochastic mechanisms to skip the DRAM

cache and forward the requests to main memory [35].

 Cache Controller

T D T D T D T D T D T D...

 Cache Controller T DT DT DT DT DT D...

(b) Set Associative

(a) Direct Mapped Tag+Data

Tags

Data

Figure 2: General forms of the existing DRAM cache propos-

als.

DAC ’19, June 2ś6, 2019, Las Vegas, NV, USA M.N. Bojnordi and N. Nasrullah

the tags are accessed quickly when the row is open, and (4) the

ReTags are only accessed if no outstanding requests for the bank

exists.

4 PROPOSED ARCHITECTURE

This section provides a system overview and explains the proposed

architectural mechanism for row scheduling.

4.1 System Overview

Figure 5 shows an overview of the proposed architecture used by

a multicore system with an on-chip cache connected to the HBM

layers via an eight-channel WideIO interface. An off-chip DRAM

system is employed as the main memory under a DDR4 interface.

Similar to prior work on fine-grained caches [29, 31], tags are collo-

cated with the data blocks in the HBM layers. Moreover, each HBM

channel is provided with an HBM controlling unit that comprises

a cache controller for block management and a command sched-

uler for generating WideIO commandsÐe.g., refresh, precharge,

read, and write. The cache controller is designed after the state-of-

the-art DRAM cache controllers [29, 31] and is responsible for high

level block management tasks, such as receiving requests form the

processor side, accessing tags in the HBM layers, performing tag

checks to determine match/mismatch, installing a cache block in

the HBM cache on a miss, evicting a cache block from the HBM

and producing writeback traffic to the main memory if the evicted

blocks are dirty, monitoring the cache bandwidth and skipping the

HBM if necessary to improve performance.

Cores

Main Memory

Interface

DDRx

Controllers

On-Chip

Cache

HBM

Layers
Command

Scheduler

HBM

Layers

Memory Request

Cache

Controller

DDRx Interface

HBM Cache Controllers

Figure 5: Illustrative top view of the proposed ReTagger ar-

chitecture in a multicore system.

We observe that command scheduling plays a significant role in

improving the efficiency of HBM cache system. Figure 6 shows the

relative execution times for a set of ten parallel applications using

three different scheduling policiesÐnamely FCFS, FR-FCFS (O), and

FR-FCFS (C)Ðbased on the algorithms from prior work on DRAM

access scheduling [16].1 The FCFS policy implements a first-come

first-serve algorithm for servicing the requests in order; whereas,

the FR-FCFS policy implements an out-of-order algorithm for pri-

oritizing the ready row hits over long latency row miss requests.

The out-of-order scheduling exhibits a superior performance com-

pared to the FCFS algorithm. In this experiment, we consider two

variations of the FR-FCFS algorithm with respect to row buffer

management. FR-FCFS(O) represents an open row policy where

the row buffer holds the currently open row even after serving

the last outstanding request. This policy will be beneficial to the

future accesses made to the same row. FR-FCFS(C) is the closed

1More details on the experimental setup are provided in Section 5.

row version of the algorithm that sends a precharge to any active

banks that has no outstanding requests at the scheduler. This policy

is well-suited for any future request that would be a miss in the row

buffer. We observe that the two row management policies perform

similarly for the HBM cache system.

0

0.2

0.4

0.6

0.8

1

CG CH FT
H
IS

T IS

LR
EG M

G
O
CN

W
SP

W
N
S

G
eo

M
ea

n

R
e

L
a

ti
v

e
 E

x
e

c
u

ti
o

n

T
im

e

FCFS FR-FCFS (O) FR-FCFS (C)

Figure 6: Performance of various policies for HBM cache

scheduling.

4.2 Proposed ReTag Management

Similar to the closed row policy, the proposed row scheduler sends a

precharge command to any bank that has no outstanding requests

at the cache controller. Figure 7 shows the proposed mechanism

for managing ReTags at the row scheduler. Prior to generating

any WideIO commands, all incoming cache requests are inserted

into a scheduling queue. The command scheduler will then access

the queue to issue proper WideIO commands. The ReTag Manager

supplements the command scheduler by monitoring the schedul-

ing queue and issuing commands to the HBM layers. Two ReTag

management tasks are necessary at the row scheduler.

• ReTag Fetch is an operation required to read the ReTags

from HBM layers before closing the current row. This oper-

ation is performed on a row buffer using a single WideIO

read. A no outstanding signal is used to indicate when the

ReTag manager can issue the read command.

• ReTag update is only required when a new block is installed

in the HBM cache. The ReTag manager keeps track of all the

installed blocks from the time a row is opened in the row

buffer. Right before closing the row, a single write may be

issued to update the ReTags only if at least one block install

has been performed to the row.

The proposed controller requires an insignificant amount of ad-

ditional hardware for generating the no outstanding signal and

storing/tracking the ReTags. For an HBM cache channel with a to-

tal of 16 banks using 2KB rows to store 64B data blocks, the on-die

storage overhead is only 448 bytes.

ReTag Management in the Row Scheduler

Scheduling Queue

FR-FCFS

ReTag

ManagerNo Outstanding

Cache Request

WideIO

Command

Figure 7: ReTag management in the row schedule.

ReTagger: An Efficient Controller for DRAM Cache Architectures DAC ’19, June 2ś6, 2019, Las Vegas, NV, USA

5 EVALUATIONS

This section explains the evaluation methodologies and results for

the proposed DRAM caching mechanism.

5.1 Methodology

We evaluate the power/energy and delay of the proposed architec-

ture based on hardware synthesis with the FreePDK [38] library

at the 45nm CMOS technology. We use McPAT [39] to estimate

the overall processor power consumption. To assess the energy

and performance potentials of DRAM memories, CACTI IO [40],

Micron power calculator [41, 42], and DRAMPower [43] are used.

We use a similar approach to the one used in the prior work [44]

to estimate the energy consumption of the HBM memory system.

A heavily modified version of ESESC [45] is used to model a mul-

ticore processor using the proposed 3D DRAM cache system. For

the baseline DRAM cache architecture, we implement the state-of-

the-art controller proposed by the Bear cache [31]. Table 1 shows

the simulation parameters for the evaluated systems.

Table 1: System parameters.

Core four 4-issue OoO cores, 128 ROB entries, 3.2 GHz

IL1/DL1 cache 32KB, 4-way, LRU, 64B block, hit/miss delay 1/1

L2 cache 4MB, 8-way, LRU, 64B block, hit/miss delay 8/2,

(shared) MESI protocol

Temperature 360 K (77 ◦C)

8 channels, 1 rank/channel, 16 banks/rank,

HBM 1GB DDR4, 800MHz, tRCD: 44, tCAS: 44,

tRP: 44, tRTP: 46, tRAS: 112, tWR: 4

1 channel, 2 ranks/channel, 8 banks/rank,

DDR4 32GB tRCD: 44, tCCD: 61, tWTR: 31, tWR: 4, tRTP: 46,

tRP: 44, tRRD: 16, tRAS: 112, tRC: 271, tFAW: 181

Amix of ten data intensive parallel applications fromPhoenix [46],

NAS [47], and SPLASH-2 [48] benchmark suites are used to evaluate

the performance potentials of the proposed caching mechanism.We

run the simulations until completion for power and performance

evaluations. Table 2 summarizes the evaluated benchmarks and

their input sets.

Table 2: Applications and data sets.

Label Benchmarks Suite Input

FT Fourier Transform NAS OpenMP Class A

IS Integer Sort NAS OpenMP Class A

MG Multi-Grid NAS OpenMP Class A

CG Conjugate Gradient NAS OpenMP Class A

CH Cholesky SPLASH-2 tk 15.0

OCN Ocean SPLASH-2 514x514 ocean

WSP Water-Spatial SPLASH-2 512 molecules

WNS Water-NSquared SPLASH-2 512 molecules

HIST Histogram Phoenix 100MB file

LREG Linear Regression Phoenix 50MB key file

5.2 Simulation Results

Performance. Figure 8 shows the relative execution times of the

evaluated applications normalized to the FR-FCFS(O) baseline. The

results indicate that the proposed ReTag mechanism can reduce

the average execution time by 20% compared to the FR-FCFS(O)

baseline. The FR-FCFS(C) achieves within 1% of the average ex-

ecution time as compared to FR-FCFS(O). We also evaluated the

execution time of Row Fetch, which is a variation of the ReTagger

architecture. Similar to ReTag, Row Fetch monitors the scheduling

queue to detect a no outstanding signal. However, it transfers the

entire row from the HBM layers to the cache controller rather than

tag bits only; therefore, it imposes a significant bandwidth overhead

to the HBM interface. The motivation for modeling Row Fetch is to

assess the performance potentials of accelerating the łrow miss, tag

matchž read access in Figure 3. We observe that Row Fetch results

in significant performance degradation compared to ReTag.

0

0.5

1

1.5

CG CH FT
H
IS

T IS

LR
EG M

G
O
CN

W
SP

W
N
S

G
eo

M
ea

n

R
e

la
t
iv

e
 E

x
e

c
u

t
io

n
 T

im
e FR-FCFS (O) FR-FCFS (C) Row Fetch ReTag

Figure 8: The relative execution times of the evaluated appli-

cations using the proposed and baseline cache controllers.

System Energy. The performance improvements gained by Re-

Tagger translates to a reduction in the system energy due to (1)

reducing the time and consequently static energy in the processor,

HBM cache, and main memory, (2) reducing the total number of

refresh operations in all DRAM arrays due to a faster execution,

and (3) eliminating unnecessary accesses to HBM for the łrow miss,

tag mismatchž and łrow hit, tag matchž writes (Section 3). Figure 9

shows the system energy consumed by the proposed and baseline

architectures when executing the evaluated benchmark applica-

tions. ReTagger achieve an average of 24% reduction in the system

energy, which is the highest saving compared to all of the evaluated

DRAM cache interfaces.

0

0.5

1

1.5

CG CH FT
H
IS

T IS

LR
EG M

G
O
CN

W
SP

W
N
S

G
eo

M
ea

nR
e

la
ti

v
e

 S
y

st
e

m
 E

n
e

rg
y FR-FCFS (O) FR-FCFS (C) Row Fetch ReTag

Figure 9: The relative system energy of the evaluated sys-

tems using the proposed and baseline cache controllers.

6 CONCLUSION

3D die-stacking has enabled energy-efficient solutions for near data

processing by integrating multiple dice of high-density memory

layers and processor cores within the same package. This paper

presented a novel design approach to HBM cache controllers that

relies on monitoring the cache traffic at run time and optimizing

the HBM command schedule for better bandwidth and energy-

efficiency. We evaluated the proposed mechanism on a set of ten

DAC ’19, June 2ś6, 2019, Las Vegas, NV, USA M.N. Bojnordi and N. Nasrullah

data-intensive applications that indicate an average performance

improvement of 20% over the state-of-the-art DRAM architectures.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for useful

feedback. This work was supported in part by the National Science

Foundation (NSF) under Grant CCF-1755874.

REFERENCES
[1] łThe exponential growth of data.ž https://insidebigdata.com/2017/02/16/

the-exponential-growth-of-data/.
[2] J. Ousterhout, C. Kozyrakis, D. Mazières, A. Narayanan, D. Ongaro, M. Rosenblum,

S. Rumble, and R. Stutsman, łRamcloud: Scalable high-performance storage
entirely in dram,ž 2009.

[3] ITRS, International Technology Roadmap for Semiconductors: 2013 Edition. http:
//www.itrs.net/Links/2013ITRS/Home2013.htm.

[4] łThe top ten exascale research challenges,ž Report of the Advanced Scientific
Computing Advisory Committee Subcommittee, 2014.

[5] J. Bolaria, łMicron reinvents dram memory: New architecture and packaging
density and peformance,ž Microprocessor Report, pp. 1ś6, 2011.

[6] H. M. C. Consortium, łAbout hybrid memory cube.ž http://www.
hybridmemorycube.org/technology.html.

[7] M. P. (Intel), An Intro to MCDRAM (High Bandwidth Memory) on Knights Land-
ing. Intel, January 2016. https://software.intel.com/en-us/blogs/2016/01/20/
an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.

[8] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, łPim-enabled instructions: A low-overhead,
locality-aware processing-in-memory architecture,ž in Computer Architecture
(ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on, pp. 336ś348,
IEEE, 2015.

[9] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, łNeurocube:
A programmable digital neuromorphic architecture with high-density 3d mem-
ory,ž in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on, pp. 380ś392, IEEE, 2016.

[10] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S.W. Keckler, łTransparent offloading andmapping (tom): Enabling
programmer-transparent near-data processing in gpu systems,ž in Proceedings of
the 43rd International Symposium on Computer Architecture, pp. 204ś216, IEEE
Press, 2016.

[11] S. Khan, C. Wilkerson, Z. Wang, A. R. Alameldeen, D. Lee, and O. Mutlu, łDetect-
ing and mitigating data-dependent dram failures by exploiting current memory
content,ž in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 27ś40, ACM, 2017.

[12] C. Chou, A. Jaleel, and M. K. Qureshi, łBear: Techniques for mitigating bandwidth
bloat in gigascale dram caches,ž in 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), pp. 198ś210, June 2015.

[13] V. Young, P. J. Nair, and M. K. Qureshi, łDice: Compressing dram caches for band-
width and capacity,ž in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, (New York, NY, USA), pp. 627ś638, ACM,
2017.

[14] łSilicon interposer design: Architecture through implementation.ž
[15] łWide i/o 2 (wideio2).ž http://www.jedec.org/standards-documents/results/

jesd229-2.
[16] S. Rixner et al., łMemory access scheduling,ž in Proceedings of the 27th annual

international symposium on Computer architecture, May 2000.
[17] I. Hur and C. Lin, łA comprehensive approach to dram power management.,ž in

HPCA’08, pp. 305ś316, 2008.
[18] O. Mutlu and T. Moscibroda, łParallelism-aware batch scheduling: Enhancing

both performance and fairness of shared dram systems,ž in in Proceedings of the
35th Annual International Symposium on Com- puter Architecture, pp. 32ś41, ACM
Press, 2008.

[19] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, łAtlas: A scalable and high-
performance scheduling algorithm for multiple memory controllers,ž in High
Performance Computer Architecture (HPCA), 2010 IEEE 16th International Sympo-
sium on, pp. 1 ś12, jan. 2010.

[20] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N.
Patt, łParallel application memory scheduling,ž in The 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-44), December 2011.

[21] Y. Kim,M. Papamichael, O.Mutlu, andM. Harchol-Balter, łThread cluster memory
scheduling: Exploiting differences in memory access behavior,ž in Proceedings of
the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO ’43, (Washington, DC, USA), pp. 65ś76, IEEE Computer Society, 2010.

[22] B. Diniz, D. O. G. Neto, W. M. Jr., and R. Bianchini, łLimiting the power consump-
tion of main memory,ž in ISCA, pp. 290ś301, 2007.

[23] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu, łMini-rank: Adap-
tive dram architecture for improving memory power efficiency,ž in Microarchi-
tecture, 2008. MICRO-41. 2008 41st IEEE/ACM International Symposium on, pp. 210
ś221, nov. 2008.

[24] C. Isen and L. John, łEskimo - energy savings using semantic knowledge of
inconsequential memory occupancy for dram subsystem,ž in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pp. 337
ś346, dec. 2009.

[25] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, andA. Davis,
łMicro-pages: increasing dram efficiency with locality-aware data placement.,ž in
ASPLOS’10, pp. 219ś230, 2010.

[26] M. N. Bojnordi et al., łPardis: A programmable memory controller for the ddrx
interfacing standards,ž in ISCA, 2012.

[27] J. Stuecheli, D. Kaseridis, H. C. Hunter, and L. K. John, łElastic refresh: Techniques
to mitigate refresh penalties in high density memory,ž in MICRO, pp. 375ś384,
2010.

[28] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, łFlikker: saving dram
refresh-power through critical data partitioning.,ž in ASPLOS (R. Gupta and T. C.
Mowry, eds.), pp. 213ś224, ACM, 2011.

[29] M. K. Qureshi and G. H. Loh, łFundamental latency trade-off in architecting dram
caches: Outperforming impractical sram-tags with a simple and practical design,ž
in Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 235ś246, IEEE Computer Society, 2012.

[30] G. H. Loh and M. D. Hill, łEfficiently enabling conventional block sizes for very
large die-stacked dram caches,ž in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 454ś464, ACM, 2011.

[31] C. Chou, A. Jaleel, and M. K. Qureshi, łBear: techniques for mitigating bandwidth
bloat in gigascale dram caches,ž in Computer Architecture (ISCA), 2015 ACM/IEEE
42nd Annual International Symposium on, pp. 198ś210, IEEE, 2015.

[32] P. Behnam, A. P. Chowdhury, and M. N. Bojnordi, łR-cache: A highly set-
associative in-package cache using memristive arrays,ž in 2018 IEEE 36th In-
ternational Conference on Computer Design (ICCD), pp. 423ś430, IEEE, 2018.

[33] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, łUnison cache: A scalable and
effective die-stacked dram cache,ž in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 25ś37, IEEE Computer Society,
2014.

[34] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, łA fully associative,
tagless dram cache,ž in ACM SIGARCH Computer Architecture News, vol. 43,
pp. 211ś222, ACM, 2015.

[35] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee, łEfficient footprint
caching for tagless dram caches,ž in High Performance Computer Architecture
(HPCA), 2016 IEEE International Symposium on, pp. 237ś248, IEEE, 2016.

[36] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, łBanshee: Bandwidth-
efficient dram caching via software/hardware cooperation,ž arXiv preprint
arXiv:1704.02677, 2017.

[37] V. Young, C. Chou, A. Jaleel, and M. Qureshi, łAccord: Enabling associativity for
gigascale dram caches by coordinating way-install and way-prediction,ž in ISCA,
IEEE, 2018.

[38] łFree PDK 45nm open-access based PDK for the 45nm technology node.ž http:
//www.eda.ncsu.edu/wiki/FreePDK.

[39] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
łMcPAT: An integrated power, area, and timing modeling framework for mul-
ticore and manycore architectures,ž in International Symposium on Computer
Architecture, 2009.

[40] N. P. Jouppi et al., łCacti-io: Cacti with off-chip power-area-timingmodels,ž TVLSI,
2015.

[41] łMicron DDR4 power calculator.ž DDR4SDRAMSystem-PowerCalculator(xlsm)
-Micron.

[42] łMicron LPDDR3 power calculator.ž http://www.micron.com/.
[43] K. Chandrasekar et al., łDrampower: Open-source dram power & energy estima-

tion tool,ž URL: http://www. drampower. info, 2012.
[44] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W. Keckler, and

W. J. Dally, łFine-grained dram: energy-efficient dram for extreme bandwidth
systems,ž in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 41ś54, ACM, 2017.

[45] E. K. Ardestani and J. Renau, łESESC: A Fast Multicore Simulator Using Time-
Based Sampling,ž in International Symposium on High Performance Computer
Architecture, HPCA’19, 2013.

[46] R. M. Yoo et al., łPhoenix rebirth: Scalable mapreduce on a large-scale shared-
memory system,ž in IISWC, 2009.

[47] D. H. Bailey et al., łThe nas parallel benchmarks,ž in HPCA, 1991.
[48] S. C. Woo et al., łThe splash-2 programs: Characterization and methodological

considerations,ž in ISCA, IEEE, 1995.

