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ABSTRACT
Understanding spectrum characteristics with little prior knowl-
edge requires fine-grained spectrum data in the frequency,
spatial, and temporal domains; gathering such a diverse set
of measurements results in a large data volume. Analysis
of the resulting dataset poses unique challenges; methods
in the status quo are tailored for specific spectrum-related
applications (apps), and are ill equipped to process data of
this magnitude. In this paper, we design BigSpec, a general-
purpose framework that allows for fast processing of apps.
The key idea is to reduce computation costs by performing
computation extensively on compressed data that preserves
signal features. Adhering to this guideline, we build solu-
tions for three apps, i.e., energy detection, spatio-temporal
spectrum estimation, and anomaly detection. These apps
were chosen to highlight BigSpec’s efficiency, scalability,
and extensibility. To evaluate BigSpec’s performance, we
collect more than 1 terabyte of spectrum data spanning a
year, across 300MHz-4GHz, covering 400 km2. Compared
with baselines and prior works, we achieve 17× run time
efficiency, sublinear rather than linear run time scalability,
and extend the definition of anomaly to different domains
(frequency & spatio-temporal). We also obtain high-level
insights from the data to provide valuable advice on future
spectrum measurement and data analysis.
CCS CONCEPTS
• Information systems Spatial-temporal systems;
Data analytics; • Networks Network measurement .
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1 INTRODUCTION
The Federal Communications Commission (FCC) believes
that the scarcely available spectrum will soon be insufficient
to meet the ever-growing demand for mobile broadband ser-
vices [9]. Therefore, there is a strong requirement to better
understand spectrum characteristics. Prior work targeted at
understanding spectrum utilization primarily involved large
longitudinal (temporal) studies [6, 7, 40, 53, 57] or made mea-
surements across specific (spatial) environments [14, 39, 46,
59, 61]. These efforts disregard analyzing spectrum proper-
ties that span both spatial and temporal domains. However,
understanding spectrum characteristics across large areas -
such as across a city or nation - and over long time periods -
multiple months or years is critical. For example, a regula-
tion authority would like to find out which frequency bands
are inactive for a long period in a large area and consider
opening these bands for secondary users.

We fill this crucial gap by mounting a spectrum analyzer
on a bus, and collecting data as the bus travels around a city
for a year. Compared with a fixed spectrum analyzer, e.g. in
Microsoft Spectrum Observatory (MSO) [6], mobility does
not introduce extra monetary cost but covers significantly
more locations, whose spectrum characteristics can be drasti-
cally different from each other. Thus, our approach achieves
a better tradeoff between cost and spatial coverage.
Nevertheless, analyzing the resulting data is even more

challenging. A commercial spectrum analyzer nowadays can
easily record measurement of 100MHz band with kHz res-
olution in several seconds; sensors used to record spatial
and temporal variations can generate measurements contin-
uously for months, at numerous locations covering a city
scale area or larger. Thus, the data gathered is on the order of
terabytes (TB) or more. In comparison, prior spectrum data
analysis methods [14, 39, 58, 61] often operates on datasets
recording channel level information and in the order of a
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few gigabytes (GB) or less. Therefore, they are not geared to
operate on data size of this magnitude, i.e. they are inefficient
on or hardly scalable to high dimensional data of TB scale.
Two projects based on MSO [50, 66] have attempted to

infer high-level insights from large volumes of spectrum
data. SpecInsight [50] analyzes the signal patterns in each
band, and TxMiner [66] identifies transmitters of active sig-
nals. While these systems produce accurate results through
recursively aggregating observations from small segments
of spectrum data, they tend to be customized to a specific
task, i.e. they are not always designed to be extensible.

To address these limitations, our goal is to design a general-
purpose spectrum data analysis framework, through which
a user can efficiently enable various applications (apps) to
answer his/her spectrum related queries of interest, even if
the user is not very familiar with sophisticated (big) data
analytics. BigSpec achieves its desired performance through
the interaction between a distributed data store, a scalable ex-
ecution engine, and an extensible data pipeline (comprising
of several modules). The key idea behind designing BigSpec
is, in addition to utilizing standard big data techniques, to
transform the raw data into a dimension reduced space that
preserves useful signal features apps can leverage, and perform
extensive computations in this space. BigSpec is easily exten-
sible to enable various spectrum related apps, for example:
• App1 (energy detection):What frequency ranges are usu-
ally active in different spectrum bands? Inactive bands in
large spatio-temporal scales are ideal for secondary users.
• App2 (spatio-temporal spectrumestimation):Can the
system estimate spectrum activities at an unmeasured time/
location?We cannot measure every location and time given
a limited budget of sensing platform.
• App3 (anomaly detection): Are there any obvious viola-
tions that mismatch how spectrum is normally used? We
would like to detect anomalous usage of the spectrum that
has limited usage of legal users, e.g. in TV channel 51 [2]
and military bands.

In this paper, we discuss solutions implemented for these
apps. These appswere specifically chosen to highlight BigSpec’s
efficiency, scalability, and extensibility.

To evaluate the performance of BigSpec, we collected spec-
trum data over a year, and obtained more than 1 terabyte data
measured across a wide swath of spectrum (between 300MHz
and 4GHz) and covering a 400 km2 area. We also obtain high-
level insights from the data, which provide valuable advice
on future spectrummeasurement and data analysis. The data
and code are available at https://wings.cs.wisc.edu/projects/
for future extension and analysis.

In summary, the key technical contributions of this paper
are the following:
• This is the first study that analyzes long-term wideband
spectrum measurement data with large-scale spatial varia-
tions captured by a mobile spectrum analyzer.

• For App1, BigSpec offers the first solution that quickly de-
tects the active frequency ranges of different spectrum bands
in large volumes spectrum data instead of gradually aggre-
gating observations from single measurements. Efficient
algorithms that operate on compressed data are proposed
to detect both spatio-temporal long-lived and short-lived
energy. Compared with a baseline method (K-Means), we
provide finer-grained information in spectrum utilization
and 17× improvement in run time efficiency (§7.1.2).
• For App2, given a spectrum band and GPS information
that includes time and location, BigSpec provides the first
spectrum estimation method, using a neural network, that
considers both spatial and temporal domains with the origi-
nal frequency resolution. It achieves accuracy comparable
to the state-of-the-art method (Kriging, which works for
spatial or temporal estimation only), but significantly out-
performs in the scalability of run time for high dimensional
spectrum data (sublinear rather than linear). Furthermore,
it is more robust to GPS noise (§7.1.3).
• For App3, BigSpec is the first to detect two kinds of anom-
alies - frequency domain anomalies and spatio-temporal
domain anomalies, via extending the analysis for App1 &
App2. Real world examples from our dataset show that
frequency domain anomalies have the potential to differ-
entiate anomalous users from legal users that rarely use
the band, and spatio-temporal domain anomalies have the
potential to detect unusual usage pattern due to special
events, which are impossible for previous work (§7.1.4).
Analyzing the data we collected for the three apps via

BigSpec yielded the following new insights:
• Common spectrum utilization patterns observed may not
comply with prior knowledge. (§7.2).
• Fine-grained spectrum estimation in large spatio-temporal
scales can be hard; to improve estimation accuracy, we
need a larger sensing platform of both static and mobile
wideband sensing devices. (§7.2.2).
• Anomalies can be caused by sporadic legal users; a unified
platform including accurate and fine-grained rule/allocation
database, spectrummeasurement and data analysis is needed
to do illegal user detection. (§7.2.3).

2 MOTIVATION & CHALLENGES
Motivation: "There exists rich prior knowledge as to how the
spectrum is utilized" - this fundamental assumption guides
prior work [14, 39, 46, 57, 59, 61]. According to channel allo-
cations and other rules made by the regulatory authorities,
one can simply record the sum power of a given channel and
make simple assumptions about its utilization pattern. For
example, it is common to assume that up to a predefined dis-
tance, two locations have similar channel utilization pattern.
As a result, measurements needed for prior work are in the
order of a few gigabytes or less - a relatively small dataset.



However, one cannot guarantee that every spectrum user
respects these rules. Hence, measurements collected could
be inconsistent with any prior assumptions. Additionally, as-
sumptions made are not universally applicable. For example,
two locations within the predefined distance may, in real-
ity, not close enough to maintain similar channel utilization
pattern due to path loss or blockage of buildings. Thus, in
our operational ecosystem, we assume the opposite, i.e. there
exists little prior knowledge about how spectrum is utilized.

20km

19km

Figure 1: Locations of measurements.

ID
No. of single meas-
urements/100MHz

Time period
Raw data

size
Dataset 1 ∼50k 10 months ∼1.1TB
Dataset 2 ∼20k 4 months ∼470GB
Table 1: Summary of the datasets used in this paper.

Data Collection: To compensate for the aforementioned
limitations, spectrum measurements in our ecosystem record
a very wide band with high resolution, and cover both tempo-
ral and spatial variations. Similar to V-Scope [61], we deploy
a commercial spectrum analyzer, WSA4000 from ThinkRF
[11], on a metro bus traveling in and around a mid-sized
U.S. city. The spectrum measurement is carried out on a per
100MHz basis (defined as a single measurement), looping
from 300MHz to 4GHz (37 100MHz bands in total, defined as
a single sweep). A single measurement takes 3 seconds1 and
a single sweep takes 2 minutes. For a single measurement,
we record power spectrum density (PSD) data with 26215 en-
ergy readings (frequency bins). We also record the time and
location information of each measurement using a GPS mod-
ule. Since the bus changes its route regularly, a large fraction
of outdoor city roads in and around the city is covered. Fig. 1
illustrates the position of each measurement with each dot
on the map representing a single measurement, and we can
see that the spatial distance between two locations can be
arbitrarily small to maintain the similar channel utilization
pattern. We deployed the spectrum analyzer for more than a
year, and Table 1 summarizes the datasets we have gathered
and used in this paper. Compared with regular wardriving,
e.g. [61], we record fine-grained wideband measurements
over a long period rather than channel level information

1The location change during pure measurement can be ignored; most
of a single measurement’s time is for data recording, and sensor reconfigu-
ration.

for a short duration, or for specific technologies covering at
least one order of magnitude less spectrum. For simplicity we
denote each 100MHz band by its start frequency, i.e. 300MHz-
400MHz as 300MHz band, hereafter.
Challenges: Analyzing wideband spectrum data in a large
spatio-temporal scale has the following challenges.
• High dimensional data of large size. As one can see, the spec-
trum data we gathered is of high dimensionality (26215),
and large size (TB). This property renders previous meth-
ods untangible to analyze the data efficiently.
• Burstiness in temporal domain and unevenness in spatial
domain. Although we can get denser data by adding more
sensors, the measurements captured using mobile sensors
are always bursty in temporal domain and uneven in spa-
tial domain. In our case, this is because measurements are
only captured when the bus is operational (e.g. almost
no measurements between 12AM-6AM) and the locations
along popular routes (e.g. downtown area) are covered
more frequently. Thus, it requires considering spatial and
temporal domain as a whole.
• Lack of prior knowledge. For some apps, it can be hard to get
the ground truth. This makes applying supervised learning
techniques challenging and unsupervised/semi-supervised
learning techniques more desirable.

3 BIGSPEC OVERVIEW

distributed and fault-tolerant 
storage (HDFS)

scalable and efficient
execution engine (Spark)

extensible and flexible data 
analysis pipeline (APIs)

Analysis Modules
App/Result

User

Figure 2: Architecture of BigSpec.
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Figure 3: Data analysis pipeline of BigSpec.
We aim to design a general-purpose framework, BigSpec,

that is efficient, scalable, and extensible to analyze spectrum
data in large spatio-temporal scales. Performing computa-
tions on data of TB magnitude is usually ineffective on a
single computer - it is bottlenecked by both relatively small
amount of memory and CPU cores; prior work e.g. Elec-
trosense [40] leverages the parallelism and consequent scal-
ability offered by standard big data techniques running in
clusters, yet limited to processing data from static sensors.
BigSpec starts from a similar architecture, which is shown in
Fig. 2, but makes it versatile to fulfill the challenges in § 2. At
the bottom layer, we utilize a distributed and fault-tolerant
file system to store the raw data. In the middle, we lever-
age an efficient and scalable execution engine to perform



computation on the raw data. At the top layer, users submit
their code through APIs and form an extensible and flexible
data analysis pipeline. Nevertheless, a general guideline of
designing the data analysis pipeline is still missing and poor
data pipeline design will still result in slow computation.
The key idea of our data analysis pipeline design is to

perform dimension reduction on the raw data to transform
it to a less complex space that preserves signal features, and
perform computation extensively in this space. For example,
as shown in Fig. 3, in order to enable the three apps in §1,
BigSpec’s data analysis pipeline relies on 5 modules – (i) fre-
quency domain singular value decomposition (SVD) (§ 4.1),
(ii) data (de)compression (§ 4.2), (iii) energy detection (§ 5.1),
(iv) spatio-temporal structure learning (& estimation) (§ 5.2),
and (v) anomaly detection (§ 5.3). The first two modules (in
blue) are for preprocessing to reduce dimensionality, while
the remainder are to perform app specific computations in
the dimension-reduced space (yellow blocks) or in both the
dimension-reduced and the original space (green block). The
data analysis pipeline for each app is a combination of pre-
processing modules, and app specific modules. We describe
these modules in detail in § 4 & § 5, and new modules fol-
lowing the key idea can always be added to the pipeline to
support other apps efficiently. Moreover, although app spe-
cific modules can be affected by whether sensors are mobile
or static, the app-agnostic preprocessing modules are not af-
fected. The reason is that the preprocessing modules reduce
the dimensionality while maintaining almost all useful infor-
mation no matter if the sensor is mobile or static, although
the meaning of each reduced dimension can be changed.

While some modules, e.g. data compression, support real-
time streaming data and can be migrated to sensors, we focus
on batch data in this paper because we would like to know
how spectrum is utilized over the entire spatio-temporal
space rather than within a short time window. However, we
still have a requirement on how much time the computa-
tion should be finished, though not as strong as real-time.
Since almost no measurement is collected between 12AM to
6AM, we would like the computation to be finished within
a few hours so that no data backlog is built up. Moreover,
because the monetary cost to run computations in cluster is
usually related to the configuration of machines (memory
and CPU cores), number of machines, and the duration of
utilization, we believe leveraging our key idea for different
apps to reduce computational cost is a good direction.

4 BIGSPEC PREPROCESSING MODULES
Preprocessing is a critical step in data mining. Since our spec-
trum data is high dimensional, dimension reduction, a form
of feature extraction, is essential to realize fast analysis. Our
contributions here are (i) how to determine the number of
preserved dimensions to achieve a good balance between

compression ratio and information loss, compared with chan-
nel allocation based compression and lossless compression,
and (ii) how to interpret the preserved dimensions.
4.1 Frequency Domain SVD
We would like to have an app-agnostic dimension reduction
technique so that various app specific modules can leverage
its result. This requires the features (preserved dimensions)
somehow reflect the wireless signals in the data so that most
app specific modules can utilize them in common. Among
well-known dimension reduction methods, we find trun-
cated singular value decomposition (SVD) uniquely meets
our requirement. It outputs the orthogonal directions with
largest variations in data, and the large variations are actu-
ally caused by the variations of signal strength at different
time and location. Thus, these features capture the wireless
signals, which are frequently sensed, in several ways. This
can be observed from Fig. 4, and we will explain the meaning
of these features in more detail at the end of this subsection.
Although truncated SVD is fairly standard, BigSpec is the
first system to apply it to fine-grained measurements rather
than channel occupancy [33] to the best of our knowledge,
thanks to a distributed implementation that enables fast com-
putation. Note that calculating the total power based on the
channel allocation is also a method for dimension reduction.
However, it has deficiencies: (i) it cannot distinguish different
signals that occupy the same channel, e.g. the primary and
secondary users of TV channels, and (ii) one must assume the
channel allocation scheme is known beforehand and every
user follows this scheme - assumptions that are not always
true. We now provide more details about truncated SVD.
Truncated SVD: Consider the PSD data of each 100MHz
band as a real matrix Dm×n with m rows and n columns,
wherem is the number of measurements and n is the number
of frequency bins. Its truncated SVD with dimension k is

Dm×n ≈ Um×k · Sk×k · (Vn×k )
T . (1)

We focus on Vn×k = [v1, v2, ..., vk ], i.e. the top k right sin-
gular vectors, because they contain information about the
spectrum utilization. We refer these k column vectors as the
first k principal components (PCs) of Dm×n . 2 If k ≪ m,n
and an app specific algorithm operates on these PCs and/or
the corresponding projections, it can be computed quickly.
Determining k: The challenge of using truncated SVD, and
dimension reduction techniques in general, is to determine
the appropriate value of k . If k is too small, important spec-
trum utilization information is lost; if k is very large, it se-
verely increases the computation time without obtaining any
additional useful information. Our contribution here is how
to determine the appropriate k , which is as follows:

2Compared with PCA, truncated SVD does not remove the mean of
each column. In addition, if vi is the ith PC of Dm×n , −vi is also the ith
PC of Dm×n . To avoid this ambiguity, we multiply vi by -1 if the sum of
the projections of Dm×n on vi is less than 0.
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(b) The 136th PC of 700MHz.
Test significance is 0.9901.

Figure 5: The test significance of the PCs..
Step 1: Forward estimation based on history. Consider the
optimal k , k0, as a function of number of measurementsm,
i.e. k0 (m). Assume that withm1 number of measurements
until time t1, the optimal k (determined by Step 2 below) is
k0 (m1). Then, for m2 number of measurements until time
t2 > t1 (including the ones obtained up to t1), the dimension
k for truncated SVD at time t2 is (k0 (m1) · m2)/m1. Since
k0 (m) is a sublinear function (refer § 7.1.5 for more details),
this estimation is conservative. At the beginning whenm1
is 0 andm2 is small (< 1000), one can set k = m2, i.e. com-
plete decomposition is computed, because in this case the
computation does not consume too much time.
Step 2: Backward estimation correction to find the optimal
dimension k0 (m2) that should have been used. Although we
perform truncated SVD with dimension k determined in
the previous step, we only keep those PCs with meaningful
information, the number of which is smaller than k . We find
that there exists a k0 (m2) ≥ 1 such that the (k0 (m2) + 1)th
PC through the kth PC are all very similar to Gaussian white
noise, and we are not interested in these PCs. Fig. 5(a) shows
an example of such PC. To check if a PC is noise, we compute
the Shapiro-Wilk test significance [43, 48] for the n elements
of the PC. This determines if the PC can be well modeled by
a Gaussian distribution. A test significance (ranging from
0 to 1) which is higher implies that the samples are more
probably drawn from a normal distribution.

We compute the test significance in the reverse order, i.e.,
k,k − 1, . . . , 2. We filter out the PCs until we reach the first
one whose test significance is less than the threshold of 0.99.
We choose this threshold because we observe that the PCs

whose test significance exceed this value do not contain
noticeable signals. Fig. 5(b) shows the PC we filter out with
least test significance using our data. After encountering the
first one whose test significance is less than the threshold,
we stop computing the test significance and keep all the
remaining k0 (m2) PCs. This backward estimation correction
provides the foundation for future forward estimation.

State-of-the-art SVD related works usually use one of the
following two ways to determine k : (i) do a full SVD and
check how many dimensions to retain so that the top k
singular values contain a portion of matrix energy larger
than a predefined threshold [18], and (ii) blindly apply a
k beforehand [33, 47]. Compared with these two methods,
our method is more suitable for noisy fine-grained spectrum
measurement because it only retains PCs that are statistically
not noise.
Interpretation: From Fig. 43 we observe that the first PC
reflects the average utilization of the corresponding 100MHz
band and thus can be used to detect spatio-temporal long-
lived energies. For the second to the kth0 PC, they usually
capture three metrics - (i) the variance of the spatio-temporal
long-lived energies with no notable shape change or spatio-
temporal short-lived energies if there is no long-lived en-
ergy in a 100MHz band, (ii) the shape change of the spatio-
temporal energy, and (iii) if there aremultiple spatio-temporal
energy patterns occupying different frequencies in a 100MHz
band, a PC can also capture the energy differences between
multiple energy patterns, which is common for bands that
have energy detected. We offer our approach to detect no-
table spatio-temporal energy from the PCs in § 5.1.

4.2 Data (De)compression
The purpose of our compression module is not to efficiently
reduce the size of spectrum data only. More importantly,
it enables transformation of the data into a less complex
space where we can obtain insights efficiently. Note that

3The 2nd PC in Fig. 4 is omitted because it only contains one spatio-
temporal short-lived energy occupying 2505-2525MHz but not multiples
ones, which is less representative compared with the 3rd PC.



Algorithm 1 Spatio-temporal long-lived energy detection
Input: ṽ300, ṽ400, ..., ṽ3900, N
Output: L
i ← 1,L ← ∅
while true do

Run K-Means(̃v300, ṽ400, ..., ṽ3900) with i centroids
if all ṽj , j ∈ N are in the same cluster (say, id k) then

i ← i + 1
L ← all 100MHz bands not in cluster k

else
return L

end if
end while

traditional lossless compression does not work well on our
dataset because of noise in the measurements. Moreover,
decompression is also needed for visualization and some
apps, e.g. reconstruction error based anomaly detection.
Compression: After frequency domain SVD and the steps
described in § 4.1, we obtain a matrix Vn×k0 , which consists
of all retained PCs, for each 100MHz band. We can then
compress the dataset and reduce its dimension by calculating
the projection of Dm×n on each PC using

Cm×k0 = Dm×n ·Vn×k0 . (2)
Ideally, the compression ratio of keeping Cm×k0 and Vn×k0
instead of Dm×n is mn/((m + n)k0). However, we cannot
achieve this in practice because we need to retain the exact
GPS information of each measurement.
Decompression: To decompress, we compute

D ′m×n = Cm×k0 · (Vn×k0 )
T . (3)

Since the compression is lossy, D ′m×n is only approximately
equal to Dm×n . In fact, it is the best rank k0 approximation
of Dm×n . The reconstruction error Em×n is defined to be

Em×n = D ′m×n − Dm×n . (4)

5 BIGSPEC APP SPECIFIC MODULES
In this section, we present our algorithms for the three apps
proposed in §1. Although the algorithms are app specific,
they follow the same key idea, i.e. performing most of the
computation in the dimension-reduced space.

5.1 Energy Detection
Detecting energies of wireless transmitters from a single
spectrum measurement has been widely studied in previ-
ous work. However, little work has been done on directly
detecting energies from a large number of measurements.
Following the key idea of BigSpec, our technique directly
infers the existence of energies for each 100MHz band from
the PCs, and significantly outperforms the algorithms that
operate in the uncompressed space in run time efficiency.
We classify the energies of wireless transmitters into two
categories - (i) spatio-temporal long-lived energies are those

that persist regardless of variations in time or location4, and
(ii) spatio-temporal short-lived energies are those that can
be observed frequently, but not at every location/time. Note
that “long-lived” and “short-lived” are not solely referring to
the temporal domain, but the spatio-temporal domain.
Long-lived energies: We first remove any artifact intro-
duced by the sensing device, i.e. perform noise floor shape
extraction, before we detect long-lived energies based on the
first PCs of all 100MHz bands. As we will show in § 7.1.2, this
has a large impact on detecting the active frequency range of
low power long-lived energies5. To summarize the method of
noise floor shape extraction, we identify the 100MHz bands
that have only one PC retained (meaning no spectrum activ-
ity is observed), and form a matrix with n columns using the
first PCs of these 100MHz bands. We then calculate the first
PC of this matrix using SVD, similar to the method in § 4.1, to
get the common noise floor of the sensing device. We finally
remove its effect on each 100MHz band by subtracting its
projection from every first PC of all 100MHz bands.
We now explain how we obtain the 100MHz bands that

contain long-lived energies. Let ṽ300, ṽ400, ..., ṽ3900 represent
the first PC of 300MHz, 400MHz, ..., 3900MHz after noise floor
shape extraction respectively. Assume set N contains the
100MHz bands that retain only the first PC. We get the set L
that includes all 100MHz bands that have long-lived energies
using Algorithm 1. The intuition of Algorithm 1 is that the
first PC after noise floor shape extraction of a 100MHz band
with long-lived energies should be significantly different
from that of a 100MHz band with no spectrum activities
observed. We use the K-Means algorithm to capture the
difference, and stop increasing the number of centroids when
the similarity within the set of all 100MHz bands with no
spectrum activities observed breaks down.
Short-lived energies: We focus on the 100MHz bands for
which no long-lived energy is detected and multiple PCs are
retained. Let Cm×k0 = [c1, c2, ..., ck0], where ci represents
the projections of Dm×n on the ith PC. Consider them ele-
ments in ci as them samples of a random variable Ci . We
observe that the correlation between Ci (i > 1) and C1 is
relatively stronger (absolute value no less than 0.1) if the
ith PC captures short-lived energies. Otherwise, the corre-
lation is relatively weaker (absolute value smaller than 0.1).
This is because the projections on the PCs capturing spatio-
temporal energy shape changes are only weakly correlated
with the projections on the first PC, if they are correlated at
all. However, if the ith PC captures short-lived energies, then
the bigger projection on the ith PC requires the smaller pro-
jection on the first PC in order to make up for the stable noise

4We do not distinguish energies that have the same frequency domain
features from different transmitters for this module.

5More likely they are short-lived energies in the band with long-lived
energies. However, our goal is to detect active frequency ranges. Thus, we
do not distinguish these two carefully.



floor value. This also implies that the stronger correlation is
the one that is negative.
Note that the above algorithms only output the PCs that

contain spatio-temporal long-lived and short-lived energy
patterns. Currently, we manually get the active frequency
ranges these patterns occupy from the PCs. Obtaining the
active frequency ranges automatically needs further analysis
and we leave it as future work; with little prior knowledge, it
is hard to find a general method that works well for all kinds
of energy patterns, e.g. narrowband or wideband, low-power
or high-power, etc.

5.2 Spatio-Temporal Structure Learning
Considering spatial and temporal domains as a whole is nec-
essary for spectrum estimation due to the fact that the data
is bursty in temporal domain and uneven in spatial domain.
However, previous spectrum estimation efforts e.g. [35, 57]
either estimate the sum power or occupancy of a particular
channel at different locations without considering tempo-
ral variations, or estimate its variations at different times-
tamps regardless of spatial variations. Considering spatial
and temporal domains together is difficult using state-of-the-
art interpolation methods such as Kriging [14, 39, 58]. These
methods are all based on the assumption that a location’s
reading can be inferred from measurements that are at a
small distance from this location. Although the distance here
is clearly defined only for the temporal domain or the spatial
domain, it is hard to accurately define distance in spatio-
temporal domain based on (time, location) coordinates. In
addition, Kriging has several other limitations. To the best
of our knowledge, Kriging does not have a distributed im-
plementation that works well for large data volumes. It also
fails if two measurements have the same spatio-temporal
coordinates since the Kriging matrix is non-invertible in this
case. Last and most importantly, it cannot be parallelized if
the number of output dimensions is more than one, which
makes estimation at a frequency bin level challenging.
NN Configurations: In order to address the limitations of
current spectrum estimation methods, we decide to use a
feedforward neural network (NN) for each 100MHz band
to learn the spatio-temporal structure by formulating it as
a regression problem. We do not use more advanced NN
structures, e.g., Convolutional LSTM [55], because these
structures usually cannot handle the burstiness in temporal
domain and unevenness in spatial domain. For the inputs,
we convert the Unix timestamp of each measurement into
time of day, day of week, date in the month, and the month.
We also add latitude and longitude as spatial-related input
features and exclude other GPS readings, i.e. altitude and
speed. For the outputs, we choose the projections of the
dataset on each PC. Since we have reduced the number of
dimensions of the data in the earlier preprocessing step, it

provides superior scalability in run time. An essential design
choice in using a NN is selecting the activation function for
the neurons, and the loss function for stochastic gradient
descent (SGD). We choose Rectified Linear Unit (ReLU) as
the activation function for fast convergence rate in all layers
except for the output layer, which uses a linear function.
For the loss function, we first decompress the estimation
error vector in the compressed space and then use the sum
of squared error (SSE) of the estimation error vector in the
uncompressed space. Decompression is important as the es-
timation accuracy in the uncompressed space is what we
really care about.
Benefits of NN: Using a NN overcomes the limitations of
Kriging. First, via feature standardization, we need not worry
about how to define distance in spatio-temporal domain.
Second, NNs have efficient and distributed implementations
e.g. Tensorflow [13]. Third, for two measurements having
the same spatio-temporal coordinates, gradients can still be
computed during the SGD process. Finally, since each output
neuron shares the same previous layers, the learning process
can be parallelized if the number of output dimension is more
than one. Another advantage of using a NN compared to
Kriging is that the NN is more robust to GPS noise because
input noise is equivalent to a form of regularization [17].
5.3 Anomaly Detection
We would like to stress that anomaly detection is not equiv-
alent to illegal user detection because of little prior knowl-
edge. Illegal user detection needs further verification, which
requires a human-in-the-loop, so naive strategies such as
observing all measurements for every detected energy are
not scalable. Therefore, filtering energy patterns which are
more likely to come from illegal users based on statistics is
necessary. This is the goal of our anomaly detection.

Although anomaly detection has been well studied in the
context of cooperative spectrum sensing [15, 24, 34, 54], pre-
vious work focuses on the data that records the total power
of a particular channel. We, however, investigate how to de-
tect anomalies in high dimensional spectrum data. We define
two types of anomalies by extending previous analysis: (a)
a frequency domain anomaly is a point anomaly, where a
single measurement can be considered anomalous with re-
spect to the rest of the data, and (b) a spatio-temporal domain
anomaly is a contextual anomaly, where a single measure-
ment is anomalous in a specific spatio-temporal context. The
benefit of distinguishing these two types of anomalies is that
frequency domain anomaly has the potential to differentiate
anomalous users from legitimate ones that seldom use the
band (i.e. sporadic legal users), and spatio-temporal domain
anomaly has the potential to detect unusual usage pattern
due to special event.
Frequency domain anomaly:We detect frequency domain
anomaly for each 100MHz band based on the reconstruction



error (eq. 4). Let ei be the ith row of Em×n in eq. 4, ē be the
mean of all ei , and estd be the standard deviation of all ei .
Anomaly detection is typically computed as some function
of the L2 or L1 norm of ei [21, 41] with normal distribution
assumption of anomaly score; we, however, use a different
metric and define anomaly score

ẽi = ∥ (ei − ē) ⊘ estd ∥2, (5)
where ⊘ denotes element-wise division and ∥ · ∥ represents
the L2 norm. The reason for this is that ẽ should follow a Chi-
square distribution with degree of freedom n as ei − ē should
be a Gaussian random vector in the normal case, similar
to [32]. We can then apply a threshold on the anomaly score
and determine a measurement as anomalous if its anomaly
score is greater than the threshold.
Spatio-temporal domain anomaly:We directly detect spatio-
temporal domain anomaly for each band based on the es-
timation error in compressed space produced by the NN.
The method for detecting spatio-temporal domain anom-
aly is similar to frequency domain anomaly detection, but
simply modifying the dimension of the vectors to length
k0 is not accurate. In the frequency domain anomaly case,
ei − ē is a Gaussian random vector, where we assume that
the errors added to different dimensions are not correlated.
However, this is not true in the spatio-temporal anomaly
setting; in the NN, each output neuron shares the same pre-
vious layers, introducing correlation. To address this issue,
we need to whiten (decorrelate) the errors of different di-
mensions before calculating the anomaly score, and we use
ZCA whitening [16] to achieve this in our system.
Note that the optimal thresholds on the anomaly scores

are not determined due to the unsupervised nature. Initially,
one can determine the threshold by indicating a significance
factor that represents the probability that an anomaly has
occurred, and then check the value of the inverse survival
function of Chi-square distribution corresponding to this
significance factor to get the threshold. After having an ini-
tial impression of the optimal thresholds, more advanced
techniques can be used to determine the optimal thresholds
using (semi-)supervised learning, e.g. SVM.

6 IMPLEMENTATION
Implementation of BigSpec requires a cloud infrastructure
described in Fig. 2. While any compatible systems can be
used to implement the variousmodules and layers of BigSpec,
we discuss the specifics of our implementation.

We configure an 8-node cluster in CloudLab [1, 44]; each
node has two 14-core 2.00 GHz Intel CPUs, 256GB RAM, and
dual-port Intel 10GbE NIC. On top of the cluster, we install
CDH5 from Cloudera [22], which integrates distributed fault-
tolerant storage HDFS [51], scalable in-memory execution
engine Spark [8], etc. We also install Tensorflow [13] as the
execution engine for running the NNs. The data pipeline

is realized using a combination of Scala and Python. Note
that Spark supports both Scala and Python, but the choice
of language has a direct implication for the run time. If a
module requires direct operations on the uncompressed data,
we choose Scala because of its superior run time. However, if
a module does the computation on the compressed data, we
can implement the module using Python because of greater
flexibility and the various packages offered. Additionally,
the performance of Spark is related to several other issues,
e.g. the number of partitions of the data, the memory con-
figuration. We do not present the details here because it is
beyond the scope of this paper.
7 EVALUATION AND RESULTS
The purpose of our evaluation is two-fold. First, we evaluate
BigSpec using the datasets gathered (§ 7.1) to highlight the
ease of the respective solutions we built, which is impossible
with earlier work. Second, we present high-level insights
from our data (§ 7.2). Due to space limitations, we only report
results using dataset 1, except for § 7.1.5 and § 7.1.6.
7.1 Evaluation of BigSpec
7.1.1 System Level Performance.

Run time breakdown: Recall that we do not collect data
between 12AM-6AM every day; during this period, the data
analysis is performed. Thus, there is an implicit constraint
that the data analysis pipeline should be completed within
several hours. Fig. 6 shows the run time breakdown of each
module. From Fig. 6 we see that the total data analysis time
canmeet our requirement, and SVD is themost time-consuming
module - it involves operations on the uncompressed data.
Moreover, energy detection can be completed within 3 min-
utes because its computation is performed purely in the
compressed space. Note that the computation time of spatio-
temporal learning and estimation is adjustable based on the
batch size of SGD and the number of epochs that learning is
performed, such that it is not the bottleneck.
7.1.2 Energy Detection.

Ground truth and baseline method: We obtain ground
truth by manually investigating all the retained PCs of all
100MHz bands, and determining whether there is a signal,
and its starting and ending frequencies if there are any.
We also confirm our observations using the FCC allocation
chart [3] and an online spectrum wiki [10]. As a baseline
(running in cloud), we run K-Means on the columns of the
data matrix Dm×n of each 100MHz band for k = 1, 2 respec-
tively, and calculate the within set sum of squared errors
(WSSSE), the sum of the distances from each observation
to its centroids in all partitions, for each k . If the WSSSE
when k = 2 is smaller than the WSSSE when k = 1 times a
constant between 0 and 1 (0.95 in practice, which is empiri-
cally optimized based on the ground truth), then there are
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Figure 7: BigSpec energy detection.

energies from wireless transmitters in this 100MHz band.6 In
this case, the cluster of columns (frequency bins) with higher
mean power contains the energies. Note that the baseline
does not follow the key idea of BigSpec; it does computations
on uncompressed data.
Observations: 1. Detected Energies. Fig. 7 compares the per-
formance between BigSpec energy detection and K-Means.
Fig. 7(a) shows that both BigSpec and K-Means detect all
100MHz bands that contain (multiple) long-lived energies.
These 100MHz bands are 300MHz (satellite), 500MHz (TV),
600MHz (TV), 700MHz (LTE), 800MHz (GSM), 1900 MHz
(PCS), and 2100MHz (PCS). However, K-Means cannot detect
any short-lived energies. BigSpec, on the other hand, can
detect 12 out of 13 100MHz bands that contain (multiple)
short-lived energies. Detailed results of short-lived energies
are omitted here due to space constraints. BigSpec misses
out on the 3600MHz (CBRS) band, and we observe that the
correlation coefficient computed is -0.099, which is slightly
greater than the threshold -0.1. We believe that this threshold
can be further optimized through supervised learning.
Moreover, even for the long-lived energy detection, K-Means
cannot offer as much detail as BigSpec, e.g., signal features
and modulation scheme, relative power comparison between
multiple signals. Fig. 7(b) shows the result of K-Means for
2100MHz. We can see that it only offers occupancy infor-
mation and three energy patterns, i.e., 2130-2135MHz, 2140-
2145MHz, and 2145-2155MHz, are detected. However, as
Fig. 7(c) shows, for BigSpec, three more energy patterns
are detected, which are 2110-2120MHz, 2120-2130MHz, and
2135-2140MHz. In addition, frequency bin level details are
maintained using BigSpec.
2. Computation Time. The run time of K-Means is 51 minutes,
and the run time of BigSpec without counting preprocessing

6This method can be generalized to keep increasing the number of
centroids until the WSSSE stops decreasing significantly, and theoretically
all energies from wireless transmitters can be found in this way. However,
we empirically find that the stop condition is met when k = 2.

is only 3 minutes, which is 17× smaller than that of K-Means.
This exemplifies the efficacy of BigSpec’s key idea, i.e., per-
forms computations on compressed data. Even if the run
time of preprocessing is counted, the run time of BigSpec
and K-Means are still comparable, with the benefit that other
apps can access the same compressed data.
Effect of noise floor extraction: Fig. 8 suggests that the
noise floor in our device is not flat.7 We believe this is not
a unique phenomenon specific to our device because of the
nonlinearity in devices, and the unavoidable effect of adding
a time window before performing a FFT. We also notice
that there are some peaks in addition to the slowly varying
noise floor, which means that the readings of these particu-
lar bins may be unreliable. As a result, if the noise floor is
not removed for long-lived energy detection, we will lose
some information. For example, Fig. 7(d) shows the first PC
of 2100MHz without noise floor removal. Compared with
Fig. 7(c), it is clear that detecting 2110-2120MHz and 2120-
2130MHz energy patterns is hard if the noise floor is not
extracted.
SNR sensitivity: We evaluate BigSpec energy detection’s
SNR sensitivity using 3600MHz data because it has only one
transient energy pattern, 3650-3660MHz, which is missed
by BigSpec. We keep artificially adding the same energy to
the readings of 3650-3660MHz in all measurements until it
can be detected as short-lived and long-lived energy. Fig. 9
shows the result. We can see that the original missed energy
pattern has a similar CDF with noise except for a large tail
of 8dB. When 0.5dB/3.3dB more energy per measurement is
added, it is detected as short/long-lived energy respectively.
7.1.3 Spatio-Temporal Structure Learning.

Method to get bin-level estimation precision: We run
10-fold cross validation on the projection data of a particular
band (Cm×k0 ) as well as the GPS readings of measurements,

7The algorithm’s output is a unit vector. We time it with average pro-
jection for better visualization. Similar for Fig. 7(c), 7(d), & 17.



-140

-120

-100

-80

-60

 500  520  540  560  580  600

p
o
w

e
r(

d
B

m
)

frequency(MHz)

real
estimate

(a) Example of spatio-temporal esti-
mation.

-89
.45

-89
.44

-89
.43

-89
.42

-89
.41

-89
.4

-89
.39

Lon

 43.068

 43.072

 43.076

-70
-65
-60
-55
-50

TV
 c

h1
9 

Po
w

er
(d

Bm
)

Lat

(b) Example of spatial heatmap.

 15

 16

 17

 18

 19

 20

 0  1  2  3  4  5  6
 0.92

 0.94

 0.96

 0.98

 1

 1.02

e
rr

o
r(

d
B

)

n
o
rm

a
liz

e
d
 t
im

e

No. of hidden layers

99% error
training time

(c) Influence of hidden layers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

C
D

F

absolute error(dB)

3600MHz
900MHz

1900MHz

(d) Error distribution.

Figure 10: BigSpec spatio-temporal estimation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

C
D

F

Estimation error(dB)

BigSpec
Kriging

(a) Accuracy.

 1

 3

 5

 7

 9

 11

 0  100  200  300  400  500  600  700

n
o
rm

a
liz

e
d

ru
n
 t
im

e

No. of output dimensions

BigSpec
Kriging

(b) Run time vs. output dimensions.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0  50  100  150  200

n
o
rm

a
liz

e
d

9
9
%

 e
rr

o
r

GPS noise(m)

BigSpec
Kriging

(c) Robustness against GPS noise.

Figure 11: Performance of BigSpec spatio-temporal estimation compared with Kriging using 500MHz data.

and decompress the estimated projections back into bin pow-
ers for each measurement. We then compare the estimated
bin powers of each measurement with the power readings
of the same measurement after compression/decompression
(D ′m×n ). Fig. 10(a) shows an example of the spatio-temporal
estimation as well as the corresponding real measurement
after (de)compression. One can see that we can estimate the
spectrum usage at the frequency bin-level and preserve de-
tails, e.g., pilots of TV signals. Spatial heatmap (e.g. Fig. 10(b))
and temporal waterfall chart (omitted due to space con-
straint) can also be easily generated based on the NNs.
Number of hidden layers: Adding more hidden layers can
improve the accuracy of the NN at the expense of increased
training time. To that end, we vary the number of hidden
layers in the NN to measure the trade-off between the 99th
percentile error and training time. Fig. 10(c) shows the results
using 500MHz band data. It can be seen that adding more
hidden layers indeed improves the precision of estimation.
However, when the number of hidden layers is greater than
3, the 99th percentile error stops improving significantly, and
the training time starts to increase unfavourably. For the rest
of this subsection, we fix the number of hidden layers at 3.
Estimation accuracy:We apply the aforementionedmethod
to get bin-level estimation precision of all the bands. Fig. 10(d)
shows the CDF of the absolute error of spatio-temporal struc-
ture learning and estimation. The red, green, and blue lines
represent the best, median, and worst case of the bands with
long-lived or short-lived energies. The results for other bands,
which are better than the best case here, are not shown for
clarity of presentation. The definitions of the best, median,
and worst cases are in terms of the 99th percentile value. We
can see that in the best case, the NN can make near perfect
estimations. In the median case, the 99th percentile absolute
error is less than 3dB. The NN produces less accurate estim-
ations for the GSM and PCS bands, which have multiple

long-lived active and time-varying channels. The 99th per-
centile absolute error is around 17dB. This estimation error
may seem high because these bands have random utilization
nature while NN can only output a deterministic estima-
tion. Furthermore, since we use cross validation, which di-
vides dataset randomly rather than spatial/temporal distance-
based8, the estimation result can be affected by outdated
history pattern or significantly different future pattern. In
terms of the type of PCs, NN makes less accurate predictions
of the projections on the PCs that capture energy shape
changes, which can be observed from Fig. 10(a). The reason
is that the projections on these PCs are relatively random,
and independent of input features.
ComparisonwithKriging: In practice, Kriging only works
for spatial interpolation or temporal interpolation, but not
spatio-temporal interpolation. Thus, we choose the 500MHz
TV band dataset as it has large spatial variations with little
temporal variation. Note that we have multiple preserved di-
mensions in the data; thus the Kriging method we implement
interpolates each preserved dimension, then decompresses
the aggregated results to obtain the final results. We also
add a small random noise to the latitude and longitude read-
ings if needed to ensure that the Kriging matrix is invertible.
Moreover, to enable a fair comparison, the NN to compare
with Kriging only takes spatial coordinates as input. Our
observations are as follows:
1. Accuracy. Fig. 11(a) compares the CDF of estimation error
for BigSpec and Kriging. It can be seen that BigSpec achieves
very similar levels of accuracy with Kriging.
2. Run time vs. output dimensions. 500MHz data has 681 di-
mensions retained after frequency domain SVD; larger the
number of dimensions needs longer run time (training and

8Dividing the dataset based on spatial/temporal distance and then
evaluating estimation accuracy is hard for our dataset due to its uneven-
ness/burstiness in spatial/temporal domain.



inference). Fig. 11(b) shows the normalized run time as a func-
tion of the number of output dimensions. From Fig. 11(b),
we can see that run time grows linearly for Kriging but sub-
linearly using the NN. This demonstrates BigSpec’s superior
scalability and the significance of performing computation
on compressed data that retain signal features. For absolute
run time, running a NN with 681 dimensions takes 2 hours,
which is the same as Kriging with 3 dimensions.
3. Robustness against GPS noise. Another benefit of using
NN over Kriging is its robustness against GPS noise. GPS
readings can be noisy due to the blocking of signals from
buildings. We characterize its influence by injecting noise to
the spatial coordinates with uniform random direction from
0 to 360 degrees and uniform radius from 0 to a varying max-
imum value. As Fig. 11(c) shows, with growing maximum
radius of injected GPS noise, the change in 99th percentile
error of BigSpec is significantly smaller than that of Kriging.
7.1.4 Anomaly Detection.
Comparison with baselines: We compare our (frequency)
anomaly detection method against ones using L2 and L1
norm to compute the anomaly score with normal distribu-
tion assumption, which are similar to recent work SAIFE [41]
(L1 norm based). After computing the anomaly score for each
measurement, we order the measurements by their scores
and obtain the top 50. We obtain the ground truth by man-
ually comparing each measurement with its reconstructed
signal in terms of frequency domain features and use the
following two metrics to compare the sensitivity and speci-
ficity: (i) number of true positives (TPs) before the first false
positive (FP), and (ii) number of false positives (FPs) in the 50
positive (P) outputted anomalies. From Fig. 12(a) we can see
that BigSpec achieves better performance in both metrics.
Frequency domain anomaly example: Fig. 12(b) and 12(c)
show a frequency domain anomaly and a spatio-temporal
domain anomaly in the 600MHz TV band respectively. In
2011, the FCC freezed all future applications for broadcast
stations requesting to use channel 51 (692-698MHz) to pre-
vent interference to the A-Block of the 700MHz LTE band [2].
If we are only provided with the sum power of the TV chan-
nel, we will be unable to correctly determine whether the
anomaly is due to an anomalous user or a legacy TV user.
However, as shown in Fig. 12(b) and 12(c), because BigSpec
preserves the frequency bin level details, we canmanually dif-
ferentiate these two without difficulties. A TV signal should
occupy 6MHz bandwidth and have a rectangular-shape in
frequency domain but the frequency domain anomaly shown
in Fig. 12(b) contains a 2MHz bandwidth spike-shape sig-
nal (in green box). Thus, we are sure the frequency domain
anomaly shown in Fig. 12(b) is caused by a non-TV signal.
This proves that frequency domain anomaly has the poten-
tial to differentiate anomalous users from legal ones that
seldom use the band.

Spatio-temporal domain anomaly example: We notice
that at 9PM, Aug. 7th, there is a burst of spatio-temporal
anomalies in both 700MHz (LTE) band and 800MHz (GSM)
band. The real measurements show that these two bands
are busier than the expectations of the NNs. Therefore, one
convincible explanation is that there is a special event so
that a lot of people gathered at a location which is near the
measurement location, at that time. We obtained the location
of the anomalies, and manually found the special event that
is mostly likely to cause these two anomalies among all
events documented on the local website. It was an event
for LGBT community with over 100 attendants [12] within
250 meters at that time. Fig. 12(d) illustrates the locations of
the spatio-temporal anomaly and the local event. Although
we are not 100 percent certain this is the root cause of the
spatio-temporal domain anomaly burst (which is a common
problem for using real world measurements e.g. in [63]), we
believe this shows that the spatio-temporal anomaly has the
potential to detect unusual usage pattern due to special event.
7.1.5 Frequency Domain SVD.

Number of retainedPCs after backward estimation cor-
rection: Fig. 13 shows the CDF of the number of retained
PCs in the two datasets. From Fig. 13, we can see that 80%
of the 100MHz bands have less than or equal to 100 PCs
retained. In the worst case, dataset 1 has fewer than 700
PCs retained and dataset 2 has fewer than 350 PCs retained.
These two numbers are still significantly smaller than the
original 26215 dimensions.
Accuracy of forward estimation: Fig. 14 compares the
results of forward estimation (red line) and backward estima-
tion correction (blue line) using 500MHz data as an example.
The black arrows show the process of forward estimation
and backward correction. From Fig. 14, it can be seen that for-
ward estimation is indeed a conservative estimation. When
the number of measurements is small, the difference between
forward estimation and backward estimation correction is
relatively large. This is tolerable because when the num-
ber of measurements is small, the time to compute SVD is
also relatively small. On the other hand, when the number
of measurements is large enough, we can see that forward
estimation is a very tight bound of backward estimation
correction. Furthermore, the blue line in Fig. 14 also shows
that k0 grows sub-linearly as a function of the number of
measurementsm. (Note that it also goes through (0,0), (1,1).)
7.1.6 Data Compression.

Performance comparison with baselines: We choose a
lossless general compression Gzip [5, 38] and a lossy com-
pression for spectrum data Airpress [65] as the baselines. We
evaluate both compression ratio and compression time.
1. Compression ratio. Fig. 15(a) shows the CDF of the compres-
sion ratio of each 100MHz band for dataset 2. From Fig. 15(a),
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it can be seen that for 80% of the 100MHz bands, the com-
pression ratio of BigSpec is greater than 100. In the worst
case, the compression error is still around 30. For compar-
ison, the compression ratio of Gzip is only around 2.5 and
Airpress is around 64, and our median compression ratio is
104× better than Gzip and 25× better than Airpress. This
suggests lossy compressions are more suitable than lossless
ones for spectrum data. In addition, for 90% 100MHz bands,
BigSpec has better compression ratio than Airpress.
2. Compression time. Fig. 15(b) shows the CDF of the com-
pression time of each 100MHz band. We can see that the com-
pression time of BigSpec and Airpress is around 1 minute,
and the median compression time of Gzip is 10× higher. This
shows that by using lossy compression, we also significantly
reduce the compression time.
Compression error: 1. Distribution. We benchmark the er-
ror introduced by compression/decompression using dataset
2 in Fig. 16. Fig. 16(a) illustrates the CDF of the absolute
error for each frequency bin. The red line represents the
best case, and the green line represents the worst case. The
definitions of the best and worst cases are in terms of 99th
percentile error. Fig. 16(a) shows that the worst case is very
close to the best case, which means the error introduced by
compression/decompression is equivalent in all the bands. In
Fig. 16(a), the 99th percentile absolute error is around 17dB.
Although this number may seem high, the compression still
maintains all useful information in the data except for a few
frequency domain anomalies, e.g. Fig. 12(b), and the error is
introduced almost entirely by noise.
2. Error pattern. We also evaluate the error pattern introduced
by compression/decompression. Ideally, we would like the
error to be small for measured high energy bins, and we can
tolerate more error for very low energy bins. Fig. 16(b) shows
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Figure 15: Performance comparison against baselines.
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Figure 16: Compression error.
the error pattern of 500MHz in dataset 2 as an example. The
x axis is the measured bin power and the y axis is the bin
power after reconstruction. From Fig. 16(b) we can see that
BigSpec indeed achieves lower error for high energy bins.
7.2 Insights from the Data
We conclude our evaluation by discussing the new insights
obtained using BigSpec, which differ from the assumptions/con-
clusions of prior works. These insights provide valuable ad-
vice on future spectrum measurement and data analysis.
7.2.1 Energy Detection.

It is not unusual that common spectrum utilization pattern
does not comply with prior knowledge. Previous work e.g. [14,
39, 57, 61, 65] implicitly assume all legal users follow chan-
nel allocations/rules made by the regulation authorities so
that this rich prior knowledge makes coarse spectrum mea-
surement good enough. However, we find that this is not
the case and use 500MHz TV band as an example, whose
first PC is shown in Fig. 17. According to FCC’s allocation,
starting from 500MHz, each TV channel occupies 6MHz and
is adjacent to each other, i.e. 500-506MHz, 506-512MHz, etc.
Nevertheless, from Fig. 17 we can see that 5 detected long-
lived energy patterns from TV signals (in red boxes) do not
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Figure 17: Long-lived energy patterns that contradict
the prior knowledge in 500MHz TV band.
comply with this prior knowledge. In other words, if one uni-
formly samples a location/time in the spatio-temporal space
we measured, the expectation of spectrum utilization con-
tains 5 TV signals that do not comply with prior knowledge.
Moreover, their pilot tones are close to the upper edges of the
channels rather than the lower edges, which also contradicts
with the prior knowledge.

7.2.2 Spatio-temporal Structure Learning.

Fine-grained spectrum estimation in large spatio-temporal
scales can be hard, and we need a larger sensing platform of
both static and mobile wideband sensors to improve accuracy.
Previous works [14, 39, 57, 58] show that coarse spectrum es-
timation is accurate in small spatio-temporal scales. However,
this is not always true for fine-grained estimation in large
spatio-temporal scales, where we can have large tail error for
dynamic bands, e.g. cellular bands. The 99th percentile error
for 1900MHz PCS band can be as high as 17dB. To improve ac-
curacy and identify spatio-temporal patterns accurately, we
need denser data in spatio-temporal domain; this requires a
larger sensing platform with multiple sensors. Current spec-
trum measurement efforts usually use static sensors. They
have good temporal coverage but lack spatial coverage. On
the other hand, a sensing platform of a few mobile sensors
has the opposite property. Therefore, we need both static
and mobile sensors to complement each other. Moreover,
there is a tradeoff between cost and bandwidth/resolution of
sensors. This further requires the platform can handle data
from sensors of different quality, which we will discuss more
in § 8.
7.2.3 Anomaly Detection.

Anomalies can be caused by sporadic legal users; a unified plat-
form including accurate and fine-grained rule/allocation data-
base, spectrum measurement and data analysis is necessary
to do illegal user detection. Contrary to prior works [15, 19,
24, 29, 34, 54] where anomalies are assumed to be caused by
malicious illegal users, a large fraction of detected anomalies
is in fact sporadic legal users of the spectrum; for example,
frequency domain anomalies detected in 2400MHz band are
mostly Bluetooth signals. Thus, for an illegal user detection
system, semi-supervised learning with a small percentage of
labeled data is more realistic. Our anomaly detection method
in fact provides the advice on what data are more desirable

to be labeled/further verified, as long as illegal users rarely
appear. However, labeling requires accurate and fine-grained
prior knowledge, but currently we only have the FCC alloca-
tion chart and online documentation about (i) how particu-
lar frequency bands are allocated, and (ii) for what services,
which is very coarse information. We do not know what
types of signals can be transmitted and are being transmit-
ted for every time, location, and frequency band. Therefore,
we need a unified platform that combines accurate and fine-
grained rule/allocation database, spectrummeasurement and
data analysis. This accurate and fine-grained rule/allocation
database enables us to query about who can utilize a specific
band with what regulation constraints are in play at a spe-
cific location/time accurately, which is essential for further
verification to accurately identify illegal users.

8 DISCUSSION AND FUTUREWORK
Othermeasurementmethods: 1. I/Q samples: BigSpec can
potentially support I/Q samples in addition to energy read-
ings given the fact that SVD can be generalized to complex
numbers. Although the current Spark implementation does
not support computing SVD for a complex matrix, it is possi-
ble to achieve this when only real SVD is available by using
its equivalent real matrix [23].
2. Multiple sensing devices and crowdsourcing: If multiple
devices all have the same frequency resolution, and measure
the same bands with identical bandwidth, we can combine
their data. In fact, as long as we fix the number of frequency
bins per measurement and the start and end frequency for
each band, we can tolerate different bandwidths for each
band (and consequently different frequency resolution). If
multiple devices have significantly different performance
(in terms of resolution, bandwidth), we envision a solution
where low resolution devices can detect any anomaly based
on the data gathered by high resolution devices and ask
the nearest user with a high resolution device to verify this
anomaly.

Generalizing to other apps: There are other apps that
may be of interest. For example, can BigSpec identify the sig-
nal pattern, feature, modulation, and technology of different
types of transmitter? What portion of the users in a shared
spectrum is primary/secondary users respectively? Gener-
alizing BigSpec to other apps needs to design algorithms of
app specific modules. However, we believe an efficient and
scalable app specific module that analyzes spectrum utiliza-
tion over the entire spatio-temporal space rather than within
a short time window should always perform computations
on compressed data that retain signal features. As shown
previously, lossless compression is unhelpful and channel
allocation based compression offers coarse information only.
Thus, we believe our app-agnostic preprocessing modules
are a good example of the entire class of algorithms that



reduce the number of dimensions but still preserve (almost)
all useful features, so that a balance between high compres-
sion ratio and easiness to extract fine-grained information is
achieved. Furthermore, if more preprocessing modules are
going to be added to BigSpec, we believe they should have
the same idea as ours to reach this balance. This is the reason
why we think BigSpec is generalizable, and we hope it can
form a new spectrum (batch) data analysis paradigm, similar
to how classic MapReduce paradigm used to shape the way
people do computations on big data.

9 RELATEDWORK
Spectrummeasurement and spectrumobservatory: Pre-
vious spectrum measurement efforts either fix the locations
and only record the temporal variations, e.g. [6, 28, 57], or
record spatial discrepancies and assume time-invariance,
e.g. [45, 46, 61]. Our effort, however, assumes little prior
knowledge and records both spatial and temporal variations.
Recent research efforts also include low cost sensing de-
vices [36, 37, 49, 62] and quick sensing methods [25, 26, 60].
Although some work has been done on indoor measure-
ment [20, 59], outdoor measurement gains more attention
and wideband long-term outdoor efforts have led to the
work of building spectrum observatories [40, 50, 53, 66]. [50]
and [66] also offer solution to analyze signal patterns and
to detect transmitters respectively from MSO’s data. Com-
pared with these works, we provide a general-purpose frame-
work for efficiently doing spectrum data analysis of massive
amount of data, whose key idea is to perform computations
on compressed data that retain signal features, and we illus-
trate this point with three example apps.

Signal detection from spectrum measurement: Sig-
nal detection from a single spectrum measurement has been
extensively studied. Classical methods can usually be cat-
egorized as energy detection or feature detection [31, 56].
[52] gives a survey. Recent work [63] also detects signals
in transformed space but it still focuses on single/small
spatio-temporal scale measurement(s). We, however, focus
on how to directly detect energy of signals from a large
number/spatio-temporal scale of spectrum measurements,
a direction which has attracted little attention in previous
work.

Spectrum estimation: There are two main directions in
spectrum estimation, i.e. channel energy/occupancy estima-
tion [4, 35, 57] and transmitter type/location estimation [27,
30, 42, 64]. State-of-the-art method for dealing with time
invariant channel energy estimation is Kriging [14, 39, 58].
Our method, however, is different in two respects. First, we
consider the spatial and temporal domains together instead
of separately. Second, we provide estimated frequency bin
level energy rather than channel level energy/occupancy.

Moreover, although we do not address transmitter type esti-
mation in this paper, an efficient module following the same
key idea can always be added to BigSpec to solve it.

Spectrum anomaly detection: Spectrum anomaly de-
tection has been well studied in the context of cooperative
sensing [15, 24, 29, 34, 54]. However, they are all based on
the sum power readings of particular channels, hence can-
not distinguish between frequency domain anomaly and
spatio-temporal domain anomaly. Our method, however, can
distinguish these two different anomalies andwe have shown
the benefits. Recent work SAIFE [41] also can detect anom-
alies from high dimensional PSD or I/Q data, but it is based
on L1 norm of reconstruction error and works on data with
temporal variations only.

Spectrum data compression: Airpress [65] also noted
the scalability issue of spectrum inventory. Thus, it mainly
focuses on how to minimize the size of data with maximal
compression ratio 64. We take a step further and consider
data compression as a preprocessing step to transfer the data
into a less complex space with signal features retained, so
that we can enable different apps efficiently.
10 CONCLUSIONS
We have presented BigSpec, a general-purpose framework
that can enable different spectrum related apps efficiently on
large volume of spectrum data. Although we only evaluate
the performance of BigSpec using three example apps in this
paper, we believe that the key idea of BigSpec enables us
to gain a deeper understanding of spectrum utilization in
large spatio-temporal scales with little prior knowledge. We
envision BigSpec to be extended with other building blocks
to enable more interesting apps by the community in the
future. We foresee that the new insights generated using
BigSpec are of considerable value in assisting users, service
providers, and regulation authorities to better measure and
utilize spectrum.
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