
A Programming Framework for Differential Privacy
with Accuracy Concentration Bounds

Elisabet Lobo-Vesga, Alejandro Russo
Chalmers University of Technology, Sweden

Email: {elilob, russo}@chalmers.se

Marco Gaboardi
Boston University, USA
Email: gaboardi@bu.edu

Abstract—Differential privacy offers a formal framework for
reasoning about privacy and accuracy of computations on private
data. It also offers a rich set of building blocks for constructing
private data analyses. When carefully calibrated, these anal-
yses simultaneously guarantee the privacy of the individuals
contributing their data, and the accuracy of the data analyses
results, inferring useful properties about the population. The
compositional nature of differential privacy has motivated the
design and implementation of several programming languages
aimed at helping a data analyst in programming differentially
private analyses. However, most of the programming languages
for differential privacy proposed so far provide support for
reasoning about privacy but not for reasoning about the accuracy
of data analyses. To overcome this limitation, in this work
we present DPella, a programming framework providing data
analysts with support for reasoning about privacy, accuracy and
their trade-offs. The distinguishing feature of DPella is a novel
component which statically tracks the accuracy of different data
analyses. In order to make tighter accuracy estimations, this
component leverages taint analysis for automatically inferring
statistical independence of the different noise quantities added for
guaranteeing privacy. We evaluate our approach by implementing
several classical queries from the literature and showing how data
analysts can figure out the best manner to calibrate privacy to
meet the accuracy requirements.

Keywords-accuracy; concentration bounds; differential pri-
vacy; functional programming; databases; haskell

I. INTRODUCTION

Differential privacy (DP) [1] is emerging as a viable solution
to release statistical information about the population without
compromising data subjects’ privacy. A standard way to achieve
DP is adding some statistical noise to the result of a data
analysis. If the noise is carefully calibrated, it provides a privacy
protection for the individuals contributing their data, and at
the same time it enables the inference of accurate information
about the population from which the data are drawn. Thanks
to its quantitative formulation quantifying privacy by means of
the parameters ε and δ, DP provides a mathematical framework
for rigorously reasoning about the privacy-accuracy trade-offs.
The accuracy requirement is not baked in the definition of DP,
rather it is a constraint that is made explicit for a specific task
at hand when a differentially private data analysis is designed.
An important property of DP is composeability: multiple

differentially private data analyses can be composed with a
graceful degradation of the privacy parameters ε and δ. This
property allows to reason about privacy as a budget: a data
analyst can decide how much privacy budget (the ε parameter)

to assign to each of her analyses. The compositionality
aspects of DP motivated the design of several programming
frameworks [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and
tools [14, 15, 16, 17] with built-in basic data analyses to help
analysts to design their own differentially private consults. At a
high level, most of these programming frameworks and tools are
based on a similar idea for reasoning about privacy: use some
primitives for basic tasks in DP as building blocks, and use com-
position properties to combine these building blocks making
sure that the privacy cost of each data analysis sum up and that
the total cost does not exceed the privacy budget. Programming
frameworks such as [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
also provide general support to further combine, through
programming techniques, the different building blocks and
the results of the different data analyses. Differently, tools such
as [14, 15, 16, 17] are optimized for specific tasks at the price
of restricting the kinds of data analyses they can support.
Unfortunately, this simple approach for privacy cannot be

directly applied to accuracy. Reasoning about accuracy is less
compositional than reasoning about privacy, and it depends
both on the specific task at hand and on the specific accuracy
measure that one is interested in offering to data analysts.
Despite this, when restricted to specific mechanisms and
specific forms of data analyses, one can measure accuracy
through estimates given as confidence intervals, or error bounds.
As an example, most of the standard mechanisms from the
differential privacy literature come with theoretical confidence
intervals or error bounds that can be exposed to data analysts
in order to allow them to take informed decisions about the
consults they want to run. This approach has been integrated
in tools such as GUPT [15], PSI [17], and Apex [18]. Users
of these tools, can specify the target confidence interval they
want to achieve, and the tools adjust accordingly the privacy
parameters, when sufficient budget is available1.
In contrast, all the programming frameworks proposed so

far [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] do not offer any support
to programmers or data analysts for tracking, and reasoning
about, the accuracy of their data analyses. This phenomenon is
in large part due to the complex nature of accuracy reasoning,
with respect to privacy analyses, when designing arbitrary data
analyses that users of these frameworks may want to program

1Apex actually goes beyond this by also helping user by selecting the right
differentially private mechanism to achieve the required accuracy.

and run. In this paper, we address this limitation by building
a programming framework for designing differentially private
analysis which also supports a compositional form of reasoning
about accuracy.

Our Contribution
Our main contribution is showing how programming frame-

works can internalize the use of probabilistic bounds [19]
for composing different confidence intervals or error bounds,
in an automated way. Probabilistic bounds are part of the
classical toolbox for the analysis of randomized algorithms,
and are the tools that differential privacy algorithms designers
usually employ for the accuracy analysis of classical mech-
anisms [20, 21]. Two important probabilistic bounds are the
union bound, that can be used to compose errors with no
assumption on the way the random noise is generated, and
Chernoff bound, which applies to the sum of random noise when
the different random variables characterizing noise generation
are statistically independent (see Section IV). When applicable,
and when the number of random variables grows, Chernoff
bound usually gives a much “tighter” error estimation than the
union bound.
Barthe et. al [22] have shown how the union bound can

be internalized in a Hoare-style logic for reasoning about
probabilistic imperative programs, and how this logic can
be used to reason in a mechanized way about the accuracy
of probabilistic programs, and in particular of programs
implementing differentially private primitives.

Building on this idea, we propose a programming framework
where this kind of reasoning is automated, and can be combined
with reasoning about privacy. The aim of our framework is to
offer programmers the tools that they need for implementing
differentially private data analyses and explore their privacy-
accuracy trade-offs, in a compositional way. Our framework
supports not only the use of union bound as a reasoning
principle, but also the use of the Chernoff bound. Our insight is
that probabilistic bounds relying on probabilistic independence
of random variables can be smoothly integrated in a program-
ming framework by using techniques from information-flow
control [23] (in the form of taint analysis [24]). While these
probabilistic bounds are not enough to express every accuracy
guarantee one wants to express for arbitrary data analyses, they
allow the analysis of a large class of user-designed programs.
Our approach allow programmers to exploit the compositional
nature of both privacy and utility, complementing in this way
the support provided by tools such as GUPT [15], PSI [17],
which provide confidence intervals estimate only at the level of
individual queries, and by Apex [18], which provide confidence
intervals estimate only at the level of a query workload for
queries of the same type.
We implement our ideas into a programming framework

called DPella—an acronym for Differential Privacy in Haskell
with accuracy—where data analysts can explore the privacy-
accuracy trade-off while writing their differentially private data
analyses. DPella provides several basic differentially private
building blocks and composition techniques, which can be used

by a programmer to design complex differentially private data
analyses. The analyses that can be expressed in DPella are data
independent and can be built using primitives for counting,
average, max as well as any aggregation of their results. DPella
supports both pure-DP, with parameter ε, and approximate-DP,
with parameters ε and δ. Accordingly, it supports the use of
both Laplace and Gaussian noise, and the use of sequential or
advanced [20] composition, respectively, together with parallel
composition for both notions. For simplicity, in the main part
of the paper we focus only on ε-DP and we discuss the use of
the Laplace mechanism. DPella is implemented as a library in
the general purpose language Haskell; a programming language
that is well-known to easily support information-flow analyses
[25, 26]. Furthermore, DPella is designed to be extensible
through the addition of new primitives (see Section VI).
To reason about privacy and accuracy, DPella provides

two primitives responsible to symbolically interpret programs
(which implement data analyses). DPella’s symbolic interpreta-
tion for privacy consists on decreasing the privacy budget of a
query by deducing the required budget of its sub-parts. On the
other hand, the accuracy interpretation uses as abstraction the
inverse Cumulative Distribution Function (iCDF) representing
an upper bound on the (theoretical) error that the program incurs
when guaranteeing DP. The iCDF of a query is build out of
the iCDFs of the different components, by using as a basic
composition principle the union bound. These interpretations
provide overestimates of the corresponding quantities that they
track. In order to make these estimates as precise as possible,
DPella uses taint analysis to track the use of noise to identify
which variables are statistically independent. This information
is used by DPella to soundly replace, when needed, the union
bound with the Chernoff bound, something that to the best of
our knowledge other program logics or program analyses also
focusing on accuracy, such as [22] and [27], do not consider. We
envision DPella’s accuracy estimations to be used in scenarios
which align with those considered by tools like GUPT, PSI,
and Apex.
In summary, our contributions are:

! We present DPella, a programming framework that allows
data analysts to reason compositionaly about privacy-accuracy
trade-off.
! We show how to use taint analysis to detect statistical
independence of the noise that different primitives add, and
how to use this information to achieve better error estimates.
! We inspect DPella’s expressiveness and error estimations by
implementing PINQ-like queries from previous work [28, 2, 29]
and workloads from the matrix mechanism [30, 31, 32].

II. DPELLA BY EXAMPLE

We start by providing a brief background on the notions of
privacy and accuracy DPella considers.

A. Background

Differential privacy [1] is a quantitative notion of privacy
that bounds how much a single individual’s private data can

affect the result of a data analysis. More formally, we can
define differential privacy as a property of a randomized query
Q̃(·) representing the data analysis, as follow.

Definition II.1 (Differential Privacy (DP)[1]). A randomized
query Q̃(·) : db → R satisfies ε-differential privacy if and only
if for any two datasets D1 and D2 in db, which differ in one
row, and for every output set S ⊆ R we have

Pr[Q̃(D1) ∈ S] " eε Pr[Q̃(D2) ∈ S] (1)

In the definition above, the parameter ε determines a bound
on the distance between the distributions induced by Q̃(·) when
adding or removing an individual from the dataset—the farther
away they are, the more at risk the privacy of an individual is,
and vice versa. In other words, ε imposes a limit on the privacy
loss that an individual can incur in, as a result of running a
data analysis.
A standard way to achieve ε-differential privacy is adding

some carefully calibrated noise to the result of a query. To
protect all the different ways in which an individual’s data can
affect the result of a query, the noise needs to be calibrated to
the maximal change that the result of the query can have when
changing an individual’s data. This is formalized through the
notion of sensitivity.

Definition II.2 ([1]). The (global) sensitivity of a query Q(·) :
db → R is the quantity ∆Q = max{|Q(D1) − Q(D2)| for
D1, D2 differing in one row

The sensitivity gives a measure of the amount of noise
needed to protect one individual’s data. Besides, in order to
achieve differential privacy, it is also important the choice of
the kind of noise that one adds. A standard approach is based
on the addition of noise sampled from the Laplace distribution.

Theorem II.1 (Laplace Mechanism [1]). Let Q(·) : db → R be
a deterministic query with sensitivity ∆Q. Let Q̃(·) : db → R
be a randomized query defined as Q̃(D) = Q(D) + η, where
η is sample from the Laplace distribution with mean µ = 0
and scale b = ∆Q/ε. Then Q̃ is ε-differentially private.

Notice that in the theorem above, for a given query, the
smaller the ε is, the more noise Q̃(·) needs to inject in order to
hide the contribution of one individual’s data to the result—this
protects privacy but degrades how meaningful the result of the
query is—and vice versa. In general, the notion of accuracy
can be defined more formally as follows.

Definition II.3 (Accuracy, see e.g.[20]). Given an ε-
differentiallly private query Q̃(·), a target query Q(·), a
distance function d(·), a bound α, and the probability β, we
say that Q̃(·) is (d(·),α,β)-accurate with respect to Q(·) if
and only if for all dataset D:

Pr[d(Q̃(D)−Q(D)) > α] " β (2)

This definition allows one to express data independent error
statements such as: with probability at least 1− β the query
Q̃(D) diverge from Q(D), in terms of the distance d(·), for
less than α. Then, we will refer to α as the error and 1− β

as the confidence probability or simply confidence. In general,
the lower the β is, i.e., the higher the confidence probability
is, the higher the error α is.

As previously discussed, an important property of differential
privacy is composeability.

Theorem II.2 (Sequential Composition [1]). Let Q̃1(·) and
Q̃2(·) be two queries which are ε1- and ε2-differentially
private, respectively. Then, their sequential composition Q̃(·) =
(Q̃1(·), Q̃2(·)) is (ε1 + ε2)-differentially private.

Theorem II.3 (Parallel Composition [2]). Let Q̃(·) be a ε-
differentially private query. and data1, data2 be a partition
of the set of data. Then, the query Q̃1(D) = (Q̃(D ∩
data1), Q̃(D ∩ data2)) is ε-differentially private.

Thanks to the composition properties of differential privacy,
we can think about ε as a privacy budget that one can spend on
a given data before compromising the privacy of individuals’
contributions to that data. The global ε for a given program
can be seen as the privacy budget for the entire data. This
budget can be consumed by selecting the local ε to “spend” in
each intermediate query. Thanks to the composition properties,
by tracking the local ε that are consumed, one can guarantee
that a data analysis will not consume more than the allocated
privacy budget.
Given an ε, DPella gives data analysts the possibility to

explore how to spend it on different queries and analyze the
impact on accuracy. For instance, data analysts might decide to
spend “more” epsilon on sub-queries which results are required
to be more accurate, while spending “less” on the others. The
next examples (inspired by the use of DP in network trace
analyses [28]) show how DPella helps to quantify what “more”
and “less” means.

B. Example: CDF
Suppose we have a tcpdump trace of packets which yields a

table where each row is represented as list of String values
containing the following information:

[<id>, <timestamp>, <src>, <dest>, <protocol>,
<length>, <payload>]

From this table, we would like to inspect—in a differentially
private manner—the packet’s length distribution by comput-
ing its Cumulative Distribution function (CDF), defined as
CDF(x) = number of records with value " x. Hence, we are
just interested in the values of the attribute <length>.
McSherry and Mahajan [28] proposed three different ways

to approximate (due to the injected noise) CDFs with DP, and
they argued for their different levels of accuracy. We revise
two of these approximations (the third one can be found in
the extended version of the paper) to show how DPella can
assist in showing the accuracy of these analyses.

1) Sequential CDF: A simple approach to compute the CDF
consists in splitting the range of lengths into bins and, for
each bin, count the number of records that are " bin. A
natural way to make this computation differentially private is
to add independent Laplace noise to each count.

1 cdf1 bins eps dataset = do
2 sizes ← dpSelect getPktLen dataset
3 counts ← sequence [do elems ← dpWhere (" bin)
4 sizes
5 dpCount localEps elems
6 | bin ← bins]
7 return (norm∞ counts)
8 where localEps = eps / (length bins)

(a) Sequential approach

9 cdf2 bins eps dataset = do
10 sizes ← dpSelect ((" max bins) ◦ getPktLen) dataset
11 -- parts :: Map Integer (Value Double)
12 parts ← dpPartRepeat (dpCount eps) bins assignBin
13 sizes
14 let counts = Map.elems parts
15 cumulCounts = [add (take i counts)
16 | i ← [1 . . length counts]]
17 return (norm∞ cumulCounts)

(b) Parallel approach
Fig. 1: CDF’s implementations

We show how to do this using DPella in Figure 1a. We define
a function cdf1 which takes as input the list of bins describing
length ranges, the amount of budget eps to be spent by the
entire query, and the dataset where it will be computed. For
now, we assume that we have a fixed list of bins for packets’
length. cdf1 uses the primitive transformation2 dpSelect to
obtain from the dataset the length of each packet via a selector
function getPktLen::String → Integer (where :: is used to
describe the type of a term in Haskell). This computation results
in a new dataset sizes. Then, we create a counting query for
each bin using the primitive dpWhere. This filters all records
that are less than the bin under consideration (" bin). Finally,
we perform a noisy count using the DPella primitive dpCount.
The noise injected by the primitive dpCount is calibrated so
that the execution of dpCount is localEps-DP (line 8 3). The
function sequence then takes the list of queries and compute
them sequentially collecting their results in a list—to create a
list of noisy counts. We then return this list. The combinator
norm∞ in line 7 is used to mark where we want the accuracy
information to be collected, but it does not have any impact
on the actual result of the cdf.

To ensure that cdf1 is eps-differential privacy, we distributed
the given budget eps evenly among the sub-queries (this is
done in lines 5 and 8). However, a data analyst may forget
to do so, e.g., she can define localEps = eps, and in this
case the final query is (length bins)*eps-DP, which is a
significant change in the query’s privacy price. To prevent such
budget miscalculations or unintended expenditure of privacy
budget, DPella provides the analyst with the function budget
(see Section III) that, given a query, statically computes an

2Anticipating on Section III, in our code we will usually use the red color
for transformations, the blue color for aggregate operations, and the green
color for combinators for privacy and accuracy.

3The casting operation fromIntegral is omitted for clarity

upper bound on how much budget it will spend. To see how to
use this function, consider the function cdf1 and a its modified
version cdf′1 with localEps = eps. Suppose that we want
to compute how much budget will be consumed by running
it on a list of bins of size 10 (identified as bins10) and on a
dataset networkTraffic. Then, the data analyst can ask this
as follow:

>budget (cdf1 bins10 1 networkTraffic)
ε = 1

>budget (cdf′1 bins10 1 networkTraffic)
ε = 10

The function budget will not execute the query, it simply
performs an static analysis on the code of the query by
symbolically interpreting it. The static analysis uses infor-
mation encoded by the type of the database networkTraffic
(explained in Section III).

DPella also provides primitives to statically explore the
accuracy of a query. The function accuracy takes a query Q(·)
and a probability β and returns an estimate of the (theoretical)
error that can be achieved with confidence probability 1− β.
Suppose that we want to estimate the error we will incur in by
running cdf1 with a budget of ε = 1 on with the same list of
bins and dataset as above, and we want to have this estimate
for β = 0.05 and β = 0.2, respectively. Then, the data analyst
can ask this as follow:

>accuracy (cdf1 bins10 1 networkTraffic) 0.05
α = 53

>accuracy (cdf1 bins10 1 networkTraffic) 0.2
α = 40

Since the result of the query is a vector of counts, we
measure the error α in terms of &∞ distance with respect to
the CDF without noise. This is the max difference that we can
have in a bin due to the noise. The way to read the information
provided by DPella is that with confidence 95% and 80%, we
have errors 53 and 40, respectively. These error bounds can be
used by a data analyst to figure out the exact set of parameters
that would be useful for her task.

2) Parallel CDF: Another way to compute a CDF is by first
generating an histogram of the data according to the bins, and
then building a cumulative sum for each bin. To make this
function private, an approach could be to add noise at the
different bins of the histogram, rather than to the cumulative
sums themself, so that we could use the parallel composition,
rather than the sequential one [28], which we show how to
implement in DPella in Figure 1b. —where double-dashes are
used to introduce single-line comments.
In cdf2, we first select all the packages whose length

is smaller than the maximum bin, and then we partition
the data accordingly to the given list of bins. To do this,
we use dpPartRepeat operator to create as many (disjoint)
datasets as given bins, where each record in each parti-
tion belongs to the range determined by an specific bin—
where the record belongs is determined by the function

0 50 100 150 200 250 300

0

1,000

2,000

Sub-queries

α

cdf1 Empiric
cdf1 Theoretic
cdf2 Empiric
cdf2 Theoretic

Fig. 2: Error comparison (95% confidence)

assignBin :: Integer → Integer. After creating all par-
titions, the primitive dpPartRepeat computes the given query
dpCount eps in each partition—the name dpPartRepeat
comes from repetitively calling dpCount eps as many times
as partitions we have. As a result, dpPartRepeat returns a
finite map where the keys are the bins and the elements are
the noisy count of the records per partition—i.e., the histogram.
In what follows (lines 15–17), we compute the cumulative
sums of the noisy counts using the DPella primitive add, and
finally we build and return the list of values denoting the CDF.
The privacy analysis of cdf2 is similar to the one of cdf1.

The accuracy analysis, however, is more interesting: first it gets
error bounds for each cumulative sum, then these are used to
give an error bound on the maximum error of the vector. For
the error bounds on the cumulative sums DPella uses either the
union bound or the Chernoff bound, depending on which one
gives the lowest error. For the maximum error of the vector,
DPella uses the union bound, similarly to what happens in
cdf1. A data analyst can explore the accuracy of cdf2.

>accuracy (cdf2 bins10 1 networkTraffic) 0.05
α = 22

>accuracy (cdf2 bins10 1 networkTraffic) 0.2
α = 20

3) Exploring the privacy-accuracy trade-off: Let us assume
that a data analyst is interested in running a CDF with an error
bounded with 90% confidence, i.e., with β = 0.1, having three
bins (named bins3), and ε = 1. With those assumptions in
mind, which implementation should she use? To answer that
question, the data analyst can ask DPella:

>accuracy (cdf1 bins3 1 networkTraffic) 0.1
α = 11

>accuracy (cdf2 bins3 1 networkTraffic) 0.1
α = 12

So, the analyst would know that using cdf1 in this case would
give, likely, a lower error. Suppose further that the data analyst
realize that she prefers to have a finer granularity and have 10
bins, instead of only 3. Which implementation should she use?
Again, she can compute:

>accuracy (cdf1 bins10 1 networkTraffic) 0.1
α = 46

>accuracy (cdf2 bins10 1 networkTraffic) 0.1
α = 20

So, the data analyst would know that using cdf2 in this case
would give, likely, a lower error. One can also use DPella to
show a comparison between cdf1 and cdf2 in terms of error
when we keep the privacy parameter fixed and we change
the number of bins, where cdf2 gives a better error when the
number of bins is large [28] as illustrated in Figure 2. In the
figure, we also show the empirical error to confirm that our
estimate is tight—the oscillations on the empirical cdf1 are
given by the relative small (300) number of experimental runs
we consider.

Now, what if the data analyst choose to use cdf2 because
of what we discussed before but she realizes that she can
afford an error α " 50; what would be then the epsilon that
gives such α? One of the feature of DPella is that the analyst
can write a simple program that finds it by repetitively calling
accuracy with different epsilons—this is one of the advantages
of providing a programming framework. These different use
cases shows the flexibility of DPella for different tasks in
private data analysis.
Synthetic data: When compared with (non-compositional)

approaches for estimating accuracy based on synthetic or public
data, such as [33], the static analysis of DPella can be used in
a complimentary manner to quickly (and precisely) estimate
privacy and accuracy for a wide range of simple queries. There
are also certain kind of queries (e.g., k-way marginal) where it
is more convenient to use our static analysis than synthetic data
for high-dimensional datasets—see Appendix G for details.
The following sections will introduce the theoretical and

technical aspects of DPella.

III. PRIVACY
DPella have two kind of actors: data curators, owners of

the private dataset that decide the global privacy budget and
split it among the data analysts, the ones who write queries to
mine useful information from the data and spend the budget
they received. DPella is designed to help data analysts to have
an informed decision about how to spend their budget based
on exploring the trade-offs between privacy and accuracy.

A. Components of the API
Figure 3 shows part of DPella API. DPella introduces two

abstract data types to respectively denote datasets and queries:

data Data s r -- datasets
data Query a -- queries

The attentive reader might have observed that the API also
introduces the data type Value a. This type is used to capture
values resulting from data aggregations. However, we defer its
explanation for Section IV since it is only used for accuracy
calculations—for this section, readers can consider the type
Value a as isomorphic to the type a. It is also worth noticing
that the API enforces an invariant by construction: it is not
possible to branch on results produced by aggregations—
observe that there is no primitive capable to destruct a value

-- Transformations (data analyst)
dpWhere :: (r → Bool) → Data s r → Query (Data s r)
dpSelect :: (r → r′) → Data s r → Query (Data s r′)
dpGroupBy :: Eq k ⇒ (r → k) → Data s r

→ Query (Data (2*s) (k, [r]))
dpIntersect :: Eq r ⇒ Data s1 r → Data s2 r

→ Query (Data (s1+s2) r)
dpUnion :: Data s1 r → Data s2 r

→ Query (Data (s1+s2) r)
dpPart :: Ord k ⇒ (r → k) → Data s r

→ Map k (Data s r) → Query (Value a))
→ Query (Map k (Value a))

-- Aggregations (data analyst)
dpCount :: Stb s ⇒ ε → Data s r → Query (Value Double)
dpSum :: Stb s ⇒ ε → (r → Double) → Data s r

→ Query (Value Double)
dpAvg :: Stb s ⇒ ε → (r → Double) → Data s r

→ Query (Value Double)
dpMax :: Eq a ⇒ ε → Responses a → (r → a)

→ Data 1 r → Query (Value a)

-- Budget
budget :: Query a → ε
-- Execution (data curator)

dpEval :: (Data 1 r → Query (Value a)) → [r] → ε → IO a

Fig. 3: DPella API: Part I

of type Value a. While it might seem restrictive, it enables
to write counting queries, which are the bread and butter of
statistical analysis and have been the focus of the majority of
the work in DP. Section VI discusses, however, how to lift this
limitation for specific analyses.
Values of type Data s r represent sensitive datasets

with accumulated stability s, where each row is of type r.
Accumulated stability, on the other hand, is instantiated to
type-level positive natural numbers, i.e., 1, 2, etc. Stability is
a measure that captures the number of rows in the dataset that
could have been affected by transformations like selection or
grouping of rows. In DP research, stability is associated with
dataset transformations rather than with datasets themselves.
In order to simplify type signatures, DPella uses the type
parameter s in datasets to represent the accumulated stability
of the transformations for which datasets have gone through—
as done in [34]. Different than, e.g., PINQ [2], one novelty of
DPella is that it computes stability statically using Haskell’s
type-system.

Values of type Query a represent computations, or queries,
that yield values of type a. Type Query a is a monad [35],
and because of this, computations of type Query a are built
by two fundamental operations:

return :: a → Query a
(>>=) :: Query a → (a → Query b) → Query b

The operation return x outputs a query that just produces the
value x without causing side-effects, i.e., without touching any
dataset. The function (>>=)—called bind—is used to sequence
queries and their associated side-effects. Specifically, qp>>= f
executes the query qp, takes its result, and passes it to the
function f, which then returns a second query to run. Some

languages, like Haskell, provide syntactic sugar for monadic
computations known as do-notation. For instance, the program
qp1 >>= (λx1 → qp2 >>= (λx2 → return (x1, x2))), which
performs queries qp1 and qp2 and returns their results in a pair,
can be written as do x1 ← qp1; x2 ← qp2; return (x1, x2)
which gives a more “imperative” feeling to programs. We split
the API in four parts: transformations, aggregations, budget
prediction, and execution of queries—see next section for the
description of API’s accuracy components. The first three parts
are intended to be used by data analysts, while the last one is
intended to be only used by data curators4.

1) Transformations: The primitive dpWhere filters rows in
datasets based on a predicate functions (r → Bool). The
created query (of type Query (Data s r)) produces a dataset
with the same row type r and accumulated stability s as
the dataset given as argument (Data s r). Observe that if
we consider two datasets which differ in s rows in two
given executions, and we apply dpWhere to both of them,
we will obtain datasets that will still differ in s rows—thus,
the accumulated stability remains the same. The primitive
dpGroupBy returns a dataset where rows with the same
key are grouped together. The functional argument (of type
r → k) maps rows to keys of type k. The rows in the return
dataset (Data (2*s) (k, [r])) consist of key-rows pairs of type
(k, [r])—syntax [r] denotes the type of lists of elements of
type r. What appears on the left-hand side of the symbol ⇒
are type constraints. They can be seen as static demands for the
types appearing on the right-hand side of ⇒. Type constraint
Eq k demands type k, denoting keys, to support equality;
otherwise grouping rows with the same keys is not possible.
The accumulated stability of the new dataset is multiplied by
2 in accordance with stability calculations for transformations
[2, 34]—observe that 2*s is a type-level multiplication done
by a type-level function (or type family [37]) *. Our API also
considers transformations similar to those found in SQL like
intersection (dpIntersect), union (dpUnion), and selection
(dpSelect) of datasets, where the accumulated stability is
updated accordingly. Providing a general join transformation
is known to be challenging [2, 38, 39, 40]. The output of a join
may contain duplicates of sensitive rows, which makes difficult
to bound the accumulated stability of datasets. However, and
similar to PINQ, DPella supports a limited form of joins, where
a limit gets imposed on the number of output records mapped
under each key in order to obtain stability. For brevity, we skip
its presentation and assume that all the considered information
is contained by the rows of given datasets.
2) Partition: Primitive dpPart deserves special attention.

This primitive is a mixture of a transformation and aggregations
since it partitions the data (transformation) to subsequently
apply aggregations on each of them. More specifically, it splits
the given dataset (Data s r) based on a row-to-key mapping
(r → k). Then, it takes each partition for a given key k
and applies it to the corresponding function Data s r →
Query (Value a), which is given as an element of a key-

4A separation that can be enforced via Haskell modules [36]

query mapping (Map k ((Data s r) → Query (Value a))).
Subsequently, it returns the values produced at every partition
as a key-value mapping (Query (Map k (Value a))). The
primitive dpPartRepeat, used by the examples in Section II,
is implemented as a special case of dpPart and thus we do
not discuss it further.
Partition is one of the most important operators to save

privacy budget. It allows to run the same query on a dataset’s
partitions but only paying for one of them—recall Theorem II.3.
The essential assumption that makes this possible is that
every query runs on disjoint datasets. Unfortunately, data
analysts could ignore this assumption when writing queries—
see Appendix A for an example. To catch such possible coding
errors, DPella deploys an static information-flow control (IFC)
analysis similar to that provided by MAC [41]. IFC ensures
that queries run by dpPart do not perform queries on shared
datasets by attaching provenance labels to datasets Data s r
indicating to which part of the query they are associated with
and propagates that information accordingly. The implemented
IFC mechanism is transparent to data analysts and curators,
i.e., they do not need to understand how it works. Analysts and
curators only need to know that, when the IFC analysis raises
an alarm, is due to a possibly access to non-disjoint datasets
when using dpPart.

3) Aggregations: DPella presents primitives to count
(dpCount), sum (dpSum), and average (dpAvg) rows in datasets.
These primitives take an argument eps :: ε, a dataset, and
build a Laplace mechanism which is eps-differentially private
from which a noisy result gets return as a term of type
Value Double. The purpose of data type Value a is two
fold: to encapsulate noisy values of type a originating from
aggregations of data, and to store information about its
accuracy—intuitively, how “noisy” the value is (explained
in Section IV). The injected noise of these queries gets
adjusted depending on three parameters: the value of type ε,
the accumulated stability of the dataset s, and the sensitivity of
the query (recall Definition II.2). More specifically, the Laplace
mechanism used by DPella uses accumulated stability s to scale
the noise, i.e., it consider b from Theorem II.1 as b = s · ∆Q

ε .
The sensitivity of DPella’s aggregations are hard-coded into the
implementation—similar to what PINQ does. The sensitivities
of dpSum and dpAvg are set to 1 and 2, respectively, by
applying a clipping function (r → Double). This function
maps the values under scrutiny into the interval [−1, 1] before
executing the query. The sensitivity of dpCount and dpMax
is set to 1. To implement the Laplace mechanism, the type
constrain Stb s in dpCount, dpSum, and dpAvg demands the
accumulated stability parameter s to be a type-level natural
number in order to obtain a term-level representation when
injecting noise. Finally, primitive dpMax implements report-
noisy-max [20]. This query takes a list of possible responses
(Responses a is a type synonym for [a]) and a function of
type r → a to be applied to every row. The implementation
of dpMax adds uniform noise to every score—in this case, the
amount of rows voting for a response—and returns the response
with the highest noisy score. This primitive becomes relevant

to obtain the winner option in elections without singling out
any voter. However, it requires that the accumulated stability of
the dataset to be 1 in order to be sound [22]. DPella guarantees
such requirement by typing: the type of the given dataset as
argument is Data 1 r.

4) Privacy budget and execution of queries: The primitive
budget statically computes how much privacy budget is
required to run a query. It is worth notice that DPella returns
an upper bound of the required privacy budget rather than the
exact one—an expected consequence of using a type-system
to compute it and provide early feedback to data analysts.
Finally, the primitive dpEval is used by data curators to run
queries (Query a) under given privacy budgets (ε), where
datasets are just lists of rows ([r]). It assumes that the initial
accumulated stability as 1 (Data 1 r) since the dataset has
not yet gone through any transformation, and DPella will
automatically calculate the accumulated stability for datasets
affected by subsequent transformations via the Haskell’s type
system. This primitive returns a computation of type IO a,
which in Haskell are computations responsible to perform side-
effects—in this case, obtaining randomness from the system
in order to implement the Laplace mechanism.
5) Implementation: DPella is implemented as a deep em-

bedded domain-specific language (EDSL) in Haskell. Due to
such design choice, data analysts can piggyback on Haskell’s
infrastructure to build queries in a creative way. For instance, it
is possible to leverage on any of Haskell’s pure functions. The
following one-liner (of type Query [Value Double]) shows
how to write a query that generates possibly non-disjoint
datasets from ds :: Data s r based on different criteria for
then performing a counting.

mapM (flip dpSelect ds>=>dpCount eps) fs

Variable eps is the epsilon to spend in each counting while
fs :: [r → Bool] is the criteria list. The high-order functions
flip, mapM, and (>=>) are standard in Haskell and represent
a function who switches arguments, the monadic versions of
map, and the Kleisli arrow, respectively. Despite DPella being a
first-order interface, data analysts can use Haskell’s high-order
functions to compactly describe queries.

IV. ACCURACY

DPella uses the data type Value a responsible to store a
result of type a as well as information about its accuracy.
For instance, a term of type Value Double stores a noisy
number (e.g., coming from executing dpCount) together with
its accuracy in terms of a bound on the noise introduced to
protect privacy.
DPella provides an static analysis capable to compute the

accuracy of queries via the following function

accuracy :: Query (Value a) → β → α

which takes as an argument a query and returns a function,
called inverse Cumulative Distribution Function (iCDF), captur-
ing the theoretical error α for a given confidence 1-β. Function
accuracy does not execute queries but rather symbolically

-- Accuracy analysis (data analyst)
accuracy :: Query (Value a) → β → α
-- Norms (data analyst)

norm∞ :: [Value Double] → Value [Double]
norm2 :: [Value Double] → Value [Double]
norm1 :: [Value Double] → Value [Double]
rmsd :: [Value Double] → Value [Double]

-- Accuracy combinators (data analyst)
add :: [Value Double] → Value Double
neg :: Value Double → Value Double

Fig. 4: DPella API: Part II

interpret all of its components in order to compute the accuracy
of the result based on the sub-queries and how data gets
aggregated. DPella follows the principle of improving accuracy
calculations by detecting statistical independence. For that, it
implements taint analysis [24] in order to track if values were
drawn from statistically independent distributions.

A. Accuracy calculations
DPella starts by generating iCDFs at the time of running

aggregations based on the following known result of the Laplace
mechanism:

Definition IV.1 (Accuracy for the Laplace mechanism). Given
a randomized query Q̃(·) : db → R implemented with the
Laplace mechanism as in Theorem II.1, we have that

Pr
[
|Q̃(D)−Q(D)| > log(1/β) · ∆Q

ε

]
" β (3)

Recall that the Laplace mechanism used by DPella utilizes
accumulated stability s to scale the noise, i.e., it consider
b from Theorem II.1 as b = s · ∆Q

ε . Consequently, DPella
stores the iCDF λβ → log(1/β) · s · ∆Q

ε for the values of
type Value Double returned by aggregation primitives like
dpCount, dpSum, and dpAvg. However, queries are often more
complex than just calling aggregation primitives—as shown by
CDF2 in Figure 1b. In this light, DPella provides combinators
responsible to aggregate noisy values, while computing its
iCDFs based on the iCDFs of the arguments. Figure 4 shows
DPella API when dealing with accuracy.
1) Norms: DPella exposes primitives to aggregate the

magnitudes of several errors predictions into a single measure—
a useful tool when dealing with vectors. Primitives norm∞,
norm2, and norm1 take a list of values of type Value Double,
where each of them carries accuracy information, and produces
a single value (or vector) that contains a list of elements
(Value [Double]) whose accuracy is set to be the well-
known &∞-, &2-, &1-norms, respectively. Finally, primitive rmsd
implements root-mean-square deviation among the elements
given as arguments. In our examples, we focus on using norm∞,
but other norms are available for the taste, and preference, of
data analysts.

2) Adding values: The primitive add aggregates values and,
in order to compute accuracy of the addition, it tries to apply the
Chernoff bound if all the values are statistically independent;
otherwise, it applies the union bound. More precisely, for the
next definitions we assume that primitive add receives n terms

0 20 40 60 80 100
0

1,000

2,000
2303

155

Sub-queries

α

Union
Chernoff

Fig. 5: Union vs. Chernoff bounds

v1::Value Double, v2::Value Double, ... , vn::Value Double.
Importantly, since we are calculating the theoretical error, we
should consider random variables rather than specific numbers.
The next definition specifies how add behaves when applying
union bound.

Definition IV.2 (add using union bound). Given n # 2 random
variables Vj with their respective iCDF j , where j ∈ 1 . . . n,
and αj = iCDFj(

β
n), then the addition Z =

∑n
j=1 Vj has

the following accuracy:

Pr[|Z| >
∑n

j=1 αj] " β (4)

Observe that to compute the iCDF of Z, the formula uses
the iCDFs from the operands applied to β

n . Union bound
makes no assumption about the distribution of the random
variables Vj .

In contrast, the Chernoff bound often provides a tighter
error estimation than the commonly used union bound when
adding several statistically independent queries sampled from
a Laplace distribution. To illustrate this point, Figure 5 shows
that difference for the cdf2 function we presented in Section II
with ε = 0.5 (for each DP sub-query) and β = 0.1. Clearly, the
Chernoff bound is asymptotically much better when estimating
accuracy, while the union bound works best with a reduced
number of sub-queries—observe how lines get crossed in Figure
5. In this light, and when possible, DPella computes both
union bound and Chernoff bound and selects the tighter error
estimation. However, to apply Chernoff bound, DPella needs
to be certain that the events are independent. Before explaining
how DPella detects that, we give an specification of the formula
we use for Chernoff.

Definition IV.3 (add using Chernoff bound [42]). Given
n # 2 independent random variables Vj ∼ Lap(0, bj),
where j ∈ 1 . . . n, bM = max {bj}j=1...n, and ν >

max{
√∑n

j=1 b
2
j , bM

√
ln 2

β }, then the addition Z =
∑n

j=1 Vj

has the following accuracy:

Pr[|Z| > ν ·
√

8 ln 2
β] " β (5)

DPella uses the value ν = max{
√∑n

j=1 b
2
j , bM

√
ln 2

β } +
0.00001 to satisfy the conditions of the definition above when
applying the Chernoff bound—any other positive increment to

the computed maximum works as well5.
Lastly, to support subtraction, DPella provides primitive

neg responsible to change the sign of a given value. We next
explain how DPella checks that values come from statistically
independent sampled variables.
3) Detecting statistical independence: To detect statistical

independence, we apply taint analysis when considering terms
of type Value a. Specifically, every time a result of type
Value Double gets generated by an aggregation query in
DPella’s API (i.e., dpCount, dpSum, etc.), it gets assigned
a label indicating that it is untainted and thus statistically
independent. The label also carries information about the scale
of the Laplace distribution from which it was sampled—a
useful information when applying Definition IV.3. When the
primitive add receives all untainted values as arguments, the
accuracy of the aggregation is determined by the best estimation
provided by either the union bound (Definition IV.2) or the
Chernoff bound (Definition IV.3). Importantly, values produced
by add are considered tainted since they depend on other
results. When add receives any tainted argument, it proceeds
to estimate the error of the addition by just using union bound—
we refer readers to Appendix B for a piece of DPella code
which intituively illustrates how our taint analysis works. In
the next Section, we proceed to formally define our accuracy
analysis.

B. Implementation

The accuracy analysis consists on symbolically interpreting
a given query, calculating the accuracy of individual parts,
and then combining them using our taint analysis. We in-
troduce two polymorphic symbolic values: D :: Data s r
and S[iCDF, s, ts] :: Value a. Symbolic dataset D represents
concrete datasets arising from data transformations. A symbolic
value S[iCDF, s, ts] represents concrete values with tags ts
and a iCDF which is computed assuming a noise scale s. Tags
are used to detect the provenance of symbolic values and when
they arise from different noisy sources.
Function accuracy takes queries that produce a result

of type Value a. Such queries are essentially built by
performing data aggregation queries (e.g., dpCount) preceded
by a (possibly empty) sequence of other primitives like data
transformations6. Figure 6 and 7 show the interesting parts
of our analysis—Appendix C shows the calculation of norms
and thus we skip them here for brevity. Given a well-typed
query q :: Query (Value a), accuracy q = iCDF where
q$ S[iCDF, s, ts] for some s and ts. The rules in Figure 6
are mainly split into two cases: considering data aggregation
queries and sequences of primitives glued together with (>>=).
The symbolic interpretation of dpCount is captured by

rule DPCOUNT—see Figure 6a. This rule populates the iCDF
of the return symbolic value with the corresponding error

5 There are perhaps other ways to compute the Chernoff bound for the sum
of independent Laplace distributions, changing this equation in DPella does
not require major work.

6We ignore the case of return val ::Query (Value a) since the definition
of accuracy is trivial for such case.

DPCOUNT
dataset :: Data s r

iCDF = λβ → log(
1
β
) · s · 1

ε
t fresh

dpCount ε dataset$ S[iCDF, s · 1
ε
, {t}]

(a) DP-queries

SEQ-TRANS
k D %∗ next next$ S[iCDF, s, ts]

transform>>= k$ S[iCDF, s, ts]

SEQ-QUERY
query$ S[iCDFq, sq, tsq]

k (S[iCDFq, sq, tsq]) %∗ next next$ S[iCDF, s, ts]
query>>= k$ S[iCDF, s, ts]

(b) Sequential traversal

SEQ-PART
(m j D %∗ nextj)j∈dom(m)

(nextj $ S[iCDFj , sj , tsj])j∈dom(m)

m’ = (j %→ S[iCDFj , sj , tsj])j∈dom(m)

k m’ %∗ next next$ S[iCDF, s, ts]
dpPart sel dataset m>>= k$ S[iCDF, s, ts]

(c) Accuracy calculation when partitioning data
Fig. 6: Accuracy analysis implemented by accuracy

calculations for Laplace as presented in Definition A.1 (with
the scale adjusted with the accumulated stability). Observe
that it extracts the stability information from the type of
the considered dataset (ds :: Data s r) and attaches a fresh
tag indicating an independently generated noisy value. The
symbolic interpretation of dpSum and dpAvg proceeds similarly
to dpCount and we thus omit them for brevity. We also omit
the symbolic interpretation of dpMax for brevity—readers can
refer to Appendix D for details.
To symbolically interpret a sequence of primitives, the

analysis gets further split into two cases depending if the first
operation to interpret is a transformation or an aggregation,
respectively—see Figure 6b. Rule SEQ-TRANS considers the
former, where transform can be any of the transformation
operations in Figure 3. It simply uses the symbolic value D to
pass it to the continuation k. It can happen that k D does not
match (yet) any part of DPella’s API required for our analysis
to continue7. However, the EDSL nature of DPella makes
Haskell’s to reduce k D to the next primitive to be considered,
which we capture as k D %∗ next—and we know that it will
occur thanks to type preservation. We represent % (%∗) to
pure reduction(s) in the host language like function application,
pair projections, list comprehension, etc. The analysis then
continues symbolically interpreting the next yield instruction.
Rule SEQ-QUERY computes the corresponding symbolic value
for the aggregation query. The symbolic value is then passed
to the continuation, and the analysis continues with the next

7For instance, k D = (λx → dpCount 1 x) D, and thus ((λx →
dpCount 1 x) D) %∗ dpCount 1 D.

UNION-BOUND
vj = S[iCDFj, sj, tsj]

αj = iCDFj(
b
n
) iCDF = λβ →

n∑

j=1

αj

ub [v1, v2, ..., vn] % iCDF

CHERNOFF-BOUND
vj = S[iCDFj, sj, tsj] vM = max {sj}j=1...n

ν = max{
√∑n

j=1 s
2
j , vM

√
ln 2

β }+ 0.0001

iCDF = λβ → ν ·
√

8 ln 2
β

cb [v1, v2, ..., vn] % iCDF

ADD-UNION
(∃j · tsj = ∅) ∨

⋂
j=1...n tsj)= ∅

add [v1, v2, ..., vn] % S[ub [v1, v2, ..., vn], 0, ∅]

ADD-CHERNOFF-UNION
vj = S[iCDFj, sj, tsj] (∀j · tsj)= ∅)

⋂
j=1...n tsj = ∅

iCDF = λβ → min (ub [v1, v2, ..., vn] β) (cb [v1, v2, ..., vn] β)

add [v1, v2, ..., vn] % S[iCDF, 0, ∅]

Fig. 7: Calculation of concentration bounds

yield instruction.
Rule SEQ-PART shows the symbolic interpretation of

dpPart. The argument m :: Map k (Data s r →
Query (Value a)) describes the queries to execute once given
the corresponding bins. Since these queries produce values,
we need to symbolically interpret each of them to obtain their
accuracy estimations. The rule applies each of those queries
to a symbolic dataset (m j D)8. The symbolic values yield
by each bin are collected into the mapping m’, which is then
passed to continuation k in order to continue the analysis on
the next yield instruction.

Figure 7 shows the part of our analysis responsible to apply
concentration bounds. Rules UNION-BOUND and CHERNOFF-
BOUND define pure functions (reduction %) which produce
the concentration bounds as described in Definitions IV.2 and
IV.3, respectively. We define the function add based on two
cases. Rule ADD-UNION produces a symbolic value with a
iCDF generated by the union bound (ub [v1, v2, ..., vn]). The
symbolic value is tainted, which is denoted by the empty
tags (∅). The scale 0 denotes that the scale of the noise and
its distribution is unknown—adding Laplace distributions do
not yield a Laplace distribution. (However, the situation is
different with Gaussians where the analysis keeps the scale
of the noise and taint tags—see Appendix E for details.)
This rule gets exercised when either the list of symbolic
values contains a tainted one (∃j · tsj = ∅) or have not
been independently generated (

⋂
k=1...n tsj += ∅). Differently,

ADD-CHERNOFF-UNION produces a symbolic value with a
iCDF which chooses the minimum error estimation between
union and Chernoff bound for a given β—sometimes union

8For simplicity, we assume that maps are implemented as functions

bound provides tighter estimations when aggregating few noisy-
values (recall Figure 5). This rule triggers when all the values
are untainted (∀j · tsj += ∅) and independently generated
(
⋂

j=1...n tsj = ∅). At a first glance, one could believe that
it would be enough to use the scale of the noise to track when
values are untainted, i.e., if the scale is different from 0, then the
value is untainted. Unfortunately, this design choice is unsound:
it will classify adding a variable twice as an independent
sum: do x ← dpCount ε ds; return (add [x, x]). It is also
possible to consider various ways to add symbolic values to
boost accuracy. We could easily write a pre-processing function
which, for instance, firstly partitions the arguments into subset
of independently generated values, applies add to them (thus
triggering ADD-CHERNOFF-UNION), and finally applies add
to the obtained results (thus triggering ADD-UNION). The
implementation of DPella enables to write such functions in a
few lines of code.

V. CASE STUDIES

Category Application Programs

PINQ-like

CDFs [28] cdf1, cdf2,
cdfSmart

Term
frequency [2]

queryFreq,
queriesFreq

Network
analysis [28]

packetSize,
portSize

Cumulative
sums [29]

cumulSum1
cumulSum2
cumulSumSmart

Counting
queries

Range queries via Identity,
Histograms [31], and
Wavelet [32]

i_n
h_n
y_n

TABLE I: Implemented literature examples

In this section, we will discuss the advantages and limitations
of our programming framework. Moreover, we will go in-
depth into using DPella to analyze the interplay of privacy and
accuracy parameters in hierarchical histograms.

A. DPella expressiveness
First, we start by exploring the expressiveness of DPella. For

this, we have built several analyses found in the DP literature—
see Table I—which we classify into two categories, PINQ-like
queries and counting queries. The former class allows us to
compare DPella expressivity with the one of PINQ, while the
latter with APEx.

PINQ-like queries: We have implemented most of PINQ’s
examples [2, 28], such as, different versions of CDFs (sequen-
tial, parallel, and hybrid) and network tracing-like analyses
(such as determining the frequency a term or several terms
have been searched by the users, and computing port’s and
packets’ size distribution); additionally, we considered analyses
of cumulative sums [29]—which are queries that share some
commonalities with CDFs. The interest over differentially
private CDFs and cumulative partial sums applications rely on
the existing several approaches to inject noise, such choices
will directly impact the accuracy of our results, and therefore,

are ideal to be tested and analyzed in DPella. The structures of
these examples follow closely the ones of the CDFs presented
in previous sections, which are straightforward implementations.
DPella supports these queries naturally since its expressiveness
relies on its primitives and, by construction, they follow PINQ’s
ones very closely. However, as stated in previous sections, our
framework goes a step further and exposes to data analysts
the accuracy bound achieved by the specific implementation.
This feature allows data analyst to reason about accuracy of
the results—without actually executing the query—by varying
i) the strategy of the implementation ii) the parameters of
the query. For instance, in Section II, we have shown how an
analyst can inspect the error of a sequential and parallel strategy
to compute the CDF of packet lengths. Furthermore, the data
analyst can take advantage of DPella being an embedded DSL
and write a Haskell function that takes any of the approaches
(cdf1 or cdf2) and varies epsilon aiming to certain error
tolerance (for a fixed confidence interval), or vice versa. Such
a function can be as simple as a brute force analysis or as
complex as an heuristic algorithm.





1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 0 0
0 1 1 0
0 1 1 1
0 0 1 0
0 0 1 1
0 0 0 1





Fig. 8: WR4

Counting queries: To compare our ap-
proach with the tool APEx [18], we consider
range queries analyses—an specific subclass
of counting queries. APEx uses the matrix
mechanism [30] to compute counting queries.
This algorithm answers a set of linear queries
(called the workload) by calibrating the
noise to specific properties of the workload
while preserving differential privacy. More
in detail, the matrix mechanism uses some
query strategies as an intermediate device to
answer a workload; returning a DP version

of the query strategies (obtained using the Laplace or Gaussian
mechanism), from which noisy answers of the workload are
derived. The matrix mechanism achieves an almost optimal
error on counting queries. To achieve such error, the algorithm
uses several non-trivial transformations which cannot be
implemented easily in terms of other components. APEx
implements it as a black-box and we could do the same in
DPella (see Section VI). Instead, in this section we show
how DPella can be directly used to answer sets of counting
queries using some of the ideas behind the design of the matrix
mechanism, and how these answers improve with respect to
answering the queries naively, thanks to the use of partition
and the Chernoff bound.

To do this, we have implemented several strategies to answer
an specific workload WR: the set of all range queries over
a domain. Figure 8 illustrates the workload that would be
answer for a frequency count of four ranges. Having the
identity I4, hierarchical H4 and wavelet Y4 strategies to
compute the noisy count of each range, binary hierarchy of
sums, and the Haar wavelet, respectively. Our implementation
generates noisy counts and any possible combination of them
will yield (at least) the same error as using strategy I4. In
other words, the more accurate answer for WR will be yield
by the identity strategy. This is not unexpected, since in order

512

448

384

320

256

192

128

64

1

 1 64 128 192 256 320 384 448 512

Left Bound

R
ig

h
t
B

o
u
n
d

30

60

90

120

Error

Fig. 9: Error of each range query in WR using strategy In
with n = 512, ε = 1, and β = 0.05

to use the other queries strategies more efficiently we would
need transformations similar to the ones used in the matrix
mechanism.
Figure 9 exposes the error of answering each range query

(i.e., each row) in WR with strategy In and n = 512. While
we use the same kind of plot, this error cannot be directly
compared with the one shown in Figure 7 of [30], since we use
a different error metrics: (α,β)-accuracy vs MSE. Nonetheless,
we share the tendency of having lower error on small ranges and
significant error on large ranges. Now, since the noisy values
that will be added (using the function add) are statistically
independent, we can use the Chernoff bound to show that the
error is approximately O(

√
n) for each range query, and a

maximum error of O(
√
n log n) for answering any query in

WR. If we compare our maximum error O(
√
n log n) with

the one of the matrix mechanism based on the identity strategy
O(n/ε2), it becomes evident how Chernoff bound is useful to
provide tighter accuracy bounds. Unfortunately, as previously
stated, the error of strategies Hn and Yn in DPella is not better
than the one of the strategy In, so we cannot reach the same
accuracy the matrix mechanism achieves with these strategies
(see Figure 7 of [30]). This limitation can be addressed by
leveraging the fact that DPella is a programming framerwork
that could be extended by adding the matrix mechanism—and
some other features—as black-box primitives.

VI. LIMITATIONS & EXTENSIONS

We have discussed so far the use of DPella as an API
allowing a programmer to implement her own data analyses.
However, we foreseen DPella to also serve as a ”glue” which
enables a programmer to integrate arbitrary DP-algorithms, as
(black-box) building blocks while reasoning about accuracy. In
this light, our design supports the introduction of new primitives
when some analyses cannot be directly implemented because
either (i) the static analysis for accuracy provided by DPella
is too conservative, or (ii) DPella’s API building blocks are
not enough to express the desired analysis. Below, we describe
several possible such extensions.
The matrix mechanism (MM): As we discussed in the

previous section, in some situations DPella allows to answer
in an accurate way multiple counting queries in a way that is
similar to the MM. As an example, DPella estimates accuracy
better then MM for the strategy I—recall Section V. However,

for other workloads and other strategies the accuracy provided
by DPella is too conservative. To consider other workloads
and strategies, the MM can be incorporated into DPella as a
primitive for answering counting queries. The requirements for
this are that the return values are tainted, and that we have an
iCDFs for it—this can be calculated as in [18]. In general, it
is sound to add new primitives which permit a more precise
accuracy analysis as long as the return values are tainted, and
an accuracy information is provided—thus effectively allowing
to further compose the primitive with other analyses by means
of the union bound.

Primitives with non-compositional privacy analyses: Several
DP-algorithms have a privacy analysis which does not follow
directly by composition. Some well-known examples are report-
noisy-max, the exponential mechanism, and the sparse-vector
technique—see [20] and [43] for more details. In their natural
implementations, these algorithms branch on the result of
some noised query’s result, and the privacy analyses use
some properties of the noise distributions that are not directly
expressible in terms of composition of differentially private
components. Because DPella’s API does not allow to branch
on the results of noised queries, and because the privacy
analyses that DPella support are based on composition, we
cannot implement these analyses directly using the DPella API.
However, we can provide them as (black-box) primitives. We
already discussed how to integrate report-noisy-max through a
primitive dpMax (Figure 3). The exponential mechanism (EM)
can be incorporated into DPella in a similar way. One subtleties
that one has to consider is the fact that the privacy guarantee of
EM depends on a bound of the sensitivity of the score function.
We handle this by requiring the score function’s output to be
bound between 0 and 1, bounding the sensitivity to be at most
1. As with dpMax, the output of EM is tainted. The EM is an
important mechanism which allows to implement many other
techniques. In particular, we can use EM to implement the
offline version of the sparse vector technique, as discussed
in [20]. These components allow DPella to support automated
reasoning about accuracy for complex algorithms such as the
offline version of the MWEM algorithm [44] following an
analysis similar to the one discussed in [22].
Online adaptive algorithms: Several DP-algorithms have

different implementations depending if they work offline—
where all the decision are taken upfront before running the
program—or online—where some of the decision are taken
while running the program. Online algorithms usually have a
more involved control flow which depend on information that
are available at runtime. As an example, the online version
of the sparse vector technique uses the result of a DP query
to decide whether to stop or not the computation (or whether
to stop or not giving meaningful answers). These kind of
algorithms usually are based on some re-use of a noised result
which correspond to a taint value in DPella. So, the current
design of DPella cannot support them. We plan to explore as
future how to integrate these algorithms in DPella.

Improving accuracy through post-processing: Several works
have explored the use of post-processing techniques to improve

on accuracy, e.g. [31, 45, 46]. Most of these works use accuracy
measure that differ from the one we consider here, and use
some specific properties of the particular problem at hand. As
an example, the work by Hay et al. [31] describes how to
boost accuracy in terms of Mean Squared Error (MSE) for DP
hierarchical queries by post-processing the DP results by means
of some relatively simple optimization. This improvement in
accuracy relies among other things on the impact that the
optimization has on the MSE, which does not directly apply
to the α-β notion of accuracy we use here. We expect that,
also for the notion of α-β accuracy we use, it is possible to
use post-processing for improve accuracy. However, we leave
this for future works. Moreover, the reason for us to chose
α-β accuracy as the principal notion of accuracy in DPella is
because of its compositional nature expressible through the use
of probability bounds. It is an interesting future direction to
design a similar compositional theory also for other accuracy
notions such as MSE. We expect DPella to be extensible to
incorporate such a theory, once it is available.

VII. RELATED WORK

Programming frameworks for DP: PINQ [2] uses dynamic
tracking and sensitivity information to guarantee privacy
of computations. Among the frameworks and tools sharing
features with PINQ we highlight: Airavat [3] ; wPINQ [47];
DJoin [38]; Ektelo [12]; Flex [40]; and PrivateSQL [48]. In
contrast to DPella, none of these works keeps track of accuracy,
nor static analysis for privacy or accuracy. As discussed in
Section III, DPella supports a limited form of joins, and it is still
able to provide accuracy estimates. We leave as future work to
support more general join operations through techniques similar
to the ones proposed in Flex and PrivateSQL. While several
of the components from the frameworks discussed above are
not supported in the current implementation of DPella, these
can be added as black-box primitives, as we discussed in
Section VI. All the programming frameworks discussed above
support reasoning about privacy for complex data analyses
while neglecting accuracy, whereas DPella supports accuracy,
but restricts the programming framework to rule out certain
analysis (e.g., adaptive ones) for which we do not have a
general compositional theory, yet.

Tools for DP: In a way similar to DPella, there exist tools
which support reasoning about accuracy and restrict the kind of
data analyses they support. GUPT [15] is a tool based on the
sample-and-aggregate framework for differential privacy [49].
GUPT allows analysts to specify the target accuracy of the
output, and compute privacy from it—or vice versa. This
approach has inspired several of the subsequent works and
also our design. The limitations of GUPT are that it supports
only analyses that fit in the sample-and-aggregate framework,
and it supports only confidence intervals estimates expressed
at the level of individual queries. In contrast, DPella supports
analyses of a more general class, such as the ones we discussed
in Section II and Section V, and it also allows to reason about
the accuracy of combined queries, rather that just about the
individual ones. PSI [17] offers to the data analyst an interface

for selecting either the level of accuracy that she wants to
reach, or the level of privacy she wants to impose. The error
estimates that PSI provides are similar to the ones that are
supported in DPella. However, similarly to GUPT, PSI supports
only a limited set of transformations and primitives, it supports
only confidence intervals at the level of individual queries, and
in its current form it does not allow analysts to submit their
own (programmed) queries.
APEx [18] has similar goals as DPella and it allows data

analysts to write queries as SQL-like statements. However, the
model that APEx uses is different from DPella’s. It supports
three kind of queries: WCQ (counting queries), ICQ (iceberg
counting queries), and TCQ (top-k counting queries). To answer
WCQ queries, APEx uses the matrix mechanism (recall Section
V) and applies a Monte Carlo simulations to achieve accuracy
bounds in terms of α and β, and to determine the least privacy
parameter (ε) that fits those bounds. We have shown how DPella
can be used to answer queries based on the identity strategies
using partition and concentration bounds. To answer effectively
different workloads and strategies as well as ICQ and TCQ
queries, we would need to extend DPella with the matrix
mechanism as a black-box (recall Section VI). While APEx
supports advanced query strategies, it does not provide means
to reason about combinations of analyses, e.g., it does not
support reasoning about the accuracy of a query using results
from WCQs queries to perform TCQs ones. DPella instead
has been designed specifically to support the combination of
different queries. As we discussed in Section VI, DPella can
be seen as a programming environment that could be combined
with some of the analyses supported by tools similar to PSI,
GUPT or APEx in order to reason about the accuracy of the
combined queries.

Formal Calculi for DP: There are several works on enforcing
differential privacy relying on different models and techniques.
Within this group are Fuzz [4]—a programming language
which enforces (pure) differential privacy of computations
using a linear type system which keeps track of program
sensitivity—and its derivatives DFuzz [6], Adaptive Fuzz [10],
Fuzzi [13], and Duet [50]. Hoare2 [7], a programming language
which enforces (pure or approximate) differential privacy using
program verification, together with its extension PrivInfer [8]
supporting differentially private Bayesian programming; and
other systems using similar ideas [43, 51, 9, 52].
Barthe et al. [29] devise a method for proving differential

privacy using Hoare logic. Their method uses accuracy bounds
for the Laplace Mechanism for proving privacy bounds of the
Propose-Test-Release Mechanism, but cannot be used to prove
accuracy bounds of arbitrary computations. Later, Barthe et
al. [22] develop a Hoare-style logic, named aHL, internalizing
the use of the union bound for reasoning about probabilistic
imperative programs. The authors show how to use aHL for
reasoning in a mechanized way about accuracy bounds of
several basic techniques such as report-noisy-max, sparse vector
and MWEM. This work has largely inspired our design of
DPella but with several differences. First, aHL mixes the
reasoning about accuracy with the more classical Hoare-style

reasoning. This choice makes aHL very expressive but difficult
to automate. DPella instead favors automation over expressivity.
As discussed before, the use of DPella to derive accuracy bound
is transparent to a programmer thanks to its automation. On
the other hand, there are mechanisms that can be analyzed
using aHL and cannot be analyzed using DPella, e.g. adaptive
online algorithms. Second, aHL supports only reasoning about
accuracy but it does not support reasoning about privacy. This
makes it difficult to use aHL for reasoning about the privacy-
accuracy trade-offs. Finally, aHL supports only reasoning using
the union bound and it does not support reasoning based
on the Chernoff bound. This makes DPella more precise
on the algorithms that can be analyzed using the Chernoff
Bound. Barthe et al [53] use aHL, in combination with a logic
supporting reasoning by coupling, to verify differentially private
algorithms whose privacy guarantee depends on the accuracy
guarantee of some sub-component. We leave exploring this
direction for future works. More recently, Smith et al. [27]
propose an automated approach for computing accuracy bounds
of probabilistic imperative programs. This work shares some
similarities with our. However, it does not support reasoning
about privacy, and it only uses the Union Bound and do not
attempt to reason about probabilistic independence to obtain
tighter bounds.
Other works: In a recent work, Ligett et al. [54] propose

a framework for developing differentially private algorithms
under accuracy constraints. This allows one to chose a given
level of accuracy first, and then finding the private algorithm
meeting this accuracy. This framework is so far limited to
empirical risk minimization problems and it is not supported
by a system, yet.

VIII. CONCLUSIONS

DPella is a programming framework for reasoning about
privacy, accuracy, and their trade-offs. DPella uses taint analysis
to detect probabilistic independence and derive tighter accuracy
bounds using Chernoff bounds. We believe the principles behind
DPella, i.e., the use of concentration bounds guided by taint
analysis, could generalize for more notions of privacy such
as Renyi-DP [55], concentrated differential privacy [56], zero
concentrated differential privacy [57], or truncated concentrated
differential privacy [58] (as done with (ε, δ)-DP). As future
work, we envision lifting the restriction that programs should
not branch on query outputs.

ACKNOWLEDGMENT

We thank the anonymous reviewers for constructive feedback
on an earlier version of this work. We would like to thank
Gilles Barthe for early feedback on the development of DPella.
This work was initiated by a STINT Initiation grant (IB 2017-
77023) and supported by the Swedish Foundation for Strategic
Research (SSF) under the project Octopi (Ref. RIT17-0023)
and WebSec (Ref. RIT17-0011) as well as the Swedish research
agency Vetenskapsrådet. Marco Gaboardi’s work was partially
funded by the National Science Foundation under Grants No.
1718220 and 1845803.

REFERENCES

[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” in Proceedings of
the Third Conference on Theory of Cryptography, ser. TCC’06,
2006, pp. 265–284.

[2] F. D. McSherry, “Privacy integrated queries: an extensible
platform for privacy-preserving data analysis,” in SIGMOD.
ACM, 2009.

[3] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for MapReduce,” in Proc. USENIX
Symposium on Networked Systems Design and Implementation,
NSDI, 2010.

[4] J. Reed and B. C. Pierce, “Distance makes the types grow
stronger: a calculus for differential privacy,” in Proc. ACM
SIGPLAN International Conference on Functional Programming,
2010.

[5] A. Haeberlen, B. C. Pierce, and A. Narayan, “Differential privacy
under fire,” in Proc. of USENIX Security Symposium, 2011.

[6] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce,
“Linear dependent types for differential privacy,” in Proc. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2013.

[7] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth,
and P.-Y. Strub, “Higher-order approximate relational refine-
ment types for mechanism design and differential privacy,” in
POPL’15. ACM, 2015.

[8] G. Barthe, G. P. Farina, M. Gaboardi, E. J. G. Arias, A. Gordon,
J. Hsu, and P. Strub, “Differentially private bayesian program-
ming,” in Proc. ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[9] D. Zhang and D. Kifer, “LightDP: towards automating differen-
tial privacy proofs,” in Proc. ACM SIGPLAN Symp. on Principles
of Programming Languages, 2017.

[10] D. Winograd-Cort, A. Haeberlen, A. Roth, and B. C. Pierce, “A
framework for adaptive differential privacy,” PACMPL, vol. 1,
no. ICFP, 2017.

[11] N. M. Johnson, J. P. Near, and D. Song, “Towards practical
differential privacy for SQL queries,” PVLDB, vol. 11, no. 5,
2018.

[12] D. Zhang, R. McKenna, I. Kotsogiannis, M. Hay, A. Machanava-
jjhala, and G. Miklau, “EKTELO: A framework for defining
differentially-private computations,” in Proc. International Con-
ference on Management of Data, 2018.

[13] H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and A. Roth,
“Fuzzi: A three-level logic for differential privacy,” in Proc. ACM
SIGPLAN International Conference on Functional Programming
(ICFP’19), 2019.

[14] A. Machanavajjhala, D. Kifer, J. M. Abowd, J. Gehrke, and
L. Vilhuber, “Privacy: Theory meets practice on the map,” in
Proc. International Conference on Data Engineering, ICDE,
2008.

[15] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. E. Culler,
“GUPT: privacy preserving data analysis made easy,” in Proc.
ACM SIGMOD International Conference on Management of
Data, SIGMOD, 2012.

[16] D. J. Mir, S. Isaacman, R. Cáceres, M. Martonosi, and R. N.
Wright, “DP-WHERE: differentially private modeling of human
mobility,” in Proc. IEEE International Conference on Big Data,
2013.

[17] M. Gaboardi, J. Honaker, G. King, K. Nissim, J. Ullman, and
S. P. Vadhan, “PSI (Ψ): a private data sharing interface,” CoRR,
vol. abs/1609.04340, 2016.

[18] C. Ge, X. He, I. F. Ilyas, and A. Machanavajjhala, “APEx:
Accuracy-aware differentially private data exploration,” in Proc.
International Conference on Management of Data, 2019.

[19] D. P. Dubhashi and A. Panconesi, Concentration of measure for

the analysis of randomized algorithms. Cambridge University
Press, 2009.

[20] C. Dwork and A. Roth, “The algorithmic foundations of
differential privacy,” Foundations and Trends in Theoretical
Computer Science, vol. 9, no. 3-4, pp. 211–407, 2014.

[21] C. Dwork, G. N. Rothblum, and S. P. Vadhan, “Boosting
and differential privacy,” in 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, 2010, pp. 51–60.

[22] G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub, “A
program logic for union bounds,” in International Colloquium
on Automata, Languages, and Programming, ICALP, ser. LIPIcs,
vol. 55. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2016.

[23] A. Sabelfeld and A. C. Myers, “Language-Based Information-
Flow Security,” IEEE J. Selected Areas in Communications,
vol. 21, no. 1, pp. 5–19, Jan. 2003.

[24] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld, “Ex-
plicit secrecy: A policy for taint tracking,” in IEEE European
Symposium on Security and Privacy, 2016, pp. 15–30.

[25] P. Li and S. Zdancewic, “Arrows for secure information flow,”
Theoretical Computer Science, vol. 411, no. 19, pp. 1974–1994,
2010.

[26] A. Russo, K. Claessen, and J. Hughes, “A library for light-weight
information-flow security in Haskell,” in Proc. ACM SIGPLAN
Symp. on Haskell. ACM Press, 2008.

[27] C. Smith, J. Hsu, and A. Albarghouthi, “Trace abstraction modulo
probability,” PACMPL, vol. 3, no. POPL, 2019.

[28] F. McSherry and R. Mahajan, “Differentially-private network
trace analysis,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 123–134, 2011.

[29] G. Barthe, M. Gaboardi, E. J. G. Arias, J. Hsu, C. Kunz, and
P. Strub, “Proving differential privacy in Hoare logic,” in Proc.
IEEE Computer Security Foundations Symposium, 2014.

[30] C. Li, G. Miklau, M. Hay, A. McGregor, and V. Rastogi, “The
matrix mechanism: optimizing linear counting queries under
differential privacy,” VLDB J., vol. 24, no. 6, 2015.

[31] M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the
accuracy of differentially private histograms through consistency,”
PVLDB, vol. 3, no. 1, 2010.

[32] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via
wavelet transforms,” IEEE Trans. Knowl. Data Eng., vol. 23,
no. 8, 2011.

[33] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang,
“Principled evaluation of differentially private algorithms using
DPBench,” in Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, 2016.

[34] H. Ebadi and D. Sands, “Featherweight PINQ,” Privacy and
Confidentiality, vol. 7, no. 2, 2017.

[35] E. Moggi, “Notions of computation and monads,” Inf. Comput.,
vol. 93, no. 1, pp. 55–92, 1991.

[36] D. Terei, S. Marlow, S. L. Peyton Jones, and D. Mazières, “Safe
Haskell,” in Proceedings of the 5th ACM SIGPLAN Symposium
on Haskell, Haskell 2012, Copenhagen, Denmark, 13 September
2012, 2012, pp. 137–148.

[37] R. A. Eisenberg, D. Vytiniotis, S. L. Peyton Jones, and
S. Weirich, “Closed type families with overlapping equations,”
in The ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2014.

[38] A. Narayan and A. Haeberlen, “DJoin: Differentially private
join queries over distributed databases,” in 10th USENIX
Symposium on Operating Systems Design and Implementation,
OSDI. USENIX Association, 2012.

[39] J. Blocki, A. Blum, A. Datta, and O. Sheffet, “Differentially
private data analysis of social networks via restricted sensitivity,”
in Innovations in Theoretical Computer Science, ITCS, 2013.

[40] N. M. Johnson, J. P. Near, and D. Song, “Towards practical

differential privacy for SQL queries,” PVLDB, vol. 11, no. 5,
2018.

[41] A. Russo, “Functional Pearl: Two Can Keep a Secret, if
One of Them Uses Haskell,” in Proc. of the ACM SIGPLAN
International Conference on Functional Programming. ACM,
2015.

[42] T.-H. H. Chan, E. Shi, and D. Song, “Private and continual
release of statistics,” ACM Transactions on Information and
System Security (TISSEC), vol. 14, no. 3, p. 26, 2011.

[43] G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P. Strub,
“Proving differential privacy via probabilistic couplings,” in Proc.
ACM/IEEE Symposium on Logic in Computer Science, 2016.

[44] M. Hardt, K. Ligett, and F. McSherry, “A simple and practical
algorithm for differentially private data release,” in Advances
in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems, 2012.

[45] M. Hardt and K. Talwar, “On the geometry of differential privacy,”
in Proc. of the 42nd ACM Symposium on Theory of Computing,
STOC, 2010.

[46] A. Nikolov, K. Talwar, and L. Zhang, “The geometry of
differential privacy: the sparse and approximate cases,” in
Symposium on Theory of Computing Conference, STOC’13, 2013.

[47] D. Proserpio, S. Goldberg, and F. McSherry, “Calibrating data
to sensitivity in private data analysis,” PVLDB, vol. 7, no. 8,
2014.

[48] I. Kotsogiannis, Y. Tao, X. He, M. Fanaeepour, A. Machanava-
jjhala, M. Hay, and G. Miklau, “PrivateSQL: A differentially
private SQL query engine,” Proc. VLDB Endow., vol. 12, no. 11,
pp. 1371–1384, Jul. 2019.

[49] K. Nissim, S. Raskhodnikova, and A. D. Smith, “Smooth
sensitivity and sampling in private data analysis,” in Proc. Annual
ACM Symposium on Theory of Computing, 2007.

[50] J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu,
L. Wang, N. Somani, M. Zhang, N. Sharma, A. Shan, and
D. Song, “Duet: An expressive higher-order language and linear
type system for statically enforcing differential privacy,” Proc.
ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019.

[51] A. Albarghouthi and J. Hsu, “Synthesizing coupling proofs of
differential privacy,” PACMPL, vol. 2, no. POPL, 2018.

[52] Y. Wang, Z. Ding, G. Wang, D. Kifer, and D. Zhang, “Proving
differential privacy with shadow execution,” in Proc. ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2019.

[53] G. Barthe, N. Fong, M. Gaboardi, B. Grégoire, J. Hsu, and
P. Strub, “Advanced probabilistic couplings for differential
privacy,” in Proc. ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[54] K. Ligett, S. Neel, A. Roth, B. Waggoner, and Z. S. Wu,
“Accuracy first: Selecting a differential privacy level for accuracy-
constrained ERM,” CoRR, vol. abs/1705.10829, 2017.

[55] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th
Computer Security Foundations Symposium (CSF). IEEE, 2017.

[56] C. Dwork and G. N. Rothblum, “Concentrated differential
privacy,” arXiv preprint arXiv:1603.01887, 2016.

[57] M. Bun and T. Steinke, “Concentrated differential privacy:
Simplifications, extensions, and lower bounds,” in Theory of
Cryptography Conference. Springer, 2016.

[58] M. Bun, C. Dwork, G. N. Rothblum, and T. Steinke, “Compos-
able and versatile privacy via truncated cdp,” in Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of
Computing. ACM, 2018, pp. 74–86.

[59] B. Balle and Y.-X. Wang, “Improving the gaussian mechanism
for differential privacy: Analytical calibration and optimal
denoising,” arXiv preprint arXiv:1805.06530, 2018.

[60] J. Thaler, J. Ullman, and S. P. Vadhan, “Faster algorithms for
privately releasing marginals,” in Automata, Languages, and
Programming - 39th International Colloquium, ICALP, 2012,

pp. 810–821.
[61] M. Gaboardi, E. J. G. Arias, J. Hsu, A. Roth, and Z. S. Wu,

“Dual query: Practical private query release for high dimensional
data,” in Proc. International Conference on Machine Learning,
ICML, 2014.

[62] G. Cormode, T. Kulkarni, and D. Srivastava, “Marginal release
under local differential privacy,” in Proc. of International
Conference on Management of Data, SIGMOD, 2018, pp. 131–
146.

APPENDIX

A. Primitive dpPart and disjoint datasets

1 q :: ε → [Color] → Data 1 Double
2 → Query (Map Color Double)
3 q eps bins dataset = dpPart id dataset dps
4 where dps = fromList [(c,λds → dpCount eps dataset)
5 -- dps = fromList [(c,λds → dpCount eps ds
6 | c ← bins]

Fig. 10: DP-histograms by using dpPart

We present the code in Figure 10. Query q produces a ε-
DP histogram of the colors found in the argument dataset,
which rows are of type Color and variable bins enumerates
all the possible values of such type. The code partitions the
dataset by using the function id ::Color → Color (line 2) and
executes the aggregation counting query (dpCount) in each
partition (line 3)—function fromList creates a map from a
list of pairs. The attentive reader could notice that dpCount
is applied to the original dataset rather than the partitions.
This type of errors could lead to break privacy as well as
inconsistencies when estimating the required privacy budget.
A correct implementation consists on executing dpCount on
the corresponding partition as shown in the commented line 4.
The IFC analysis assigns the provenance of dataset in

q to the top-level fragment of the query rather than to sub-
queries executed in each partition—and DPella will raise an
error at compile time when ds is accessed by the sub-queries!
Instead, if we comment line 3 and uncomment line 4, the
query q is successfully run by DPella (when there is enough
privacy budget) since every partition is only accessing their
own partitioned data (denoted by variable ds).

B. Taint analysis example
Figure 11 presents the query plan totalCount which

adds the results of hundred dpCount queries over different
datasets, namely ds1, ds2, . . . , ds100. (The ... denotes code
intentionally left unspecified.) The code calls the primitive add
with the results of calling dpCount. (We use [x1, x2, x3] to
denote the list with elements x1, x2, and x3.) What would it
be then the theoretical error of totalCount? The accuracy
calculation depends on whether all the values are untainted
in line 7. When no dependencies are detected between v1, v2,
. . . , v100, namely all the values are untainted, DPella applies
Chernoff bound in order to give a tighter error estimation.
Instead, for instance, if v3 were computed as an aggregation

1 totalCount :: Query (Value Double)
2 totalCount = do
3 v1 ← dpCount 0.3 ds1
4 v2 ← dpCount 0.25 ds2
5 ...
6 v100 ← dpCount 0.5 ds100
7 return (add [v1, v2, . . , v100])

Fig. 11: Combination of sub-queries results
NORM-INF

vj = S[iCDFj, sj, tsj]
iCDF = λβ → max {|iCDFj(

β
n
)|}j=1...n

norm∞ [v1, v2, ..., vn] % S[iCDFM, 0, ∅]

NORM-1

vj = S[iCDFj, sj, tsj] iCDF = λβ →
n∑

j=1

|iCDFj(
β
n
)|

norm1 [v1, v2, ..., vn] % S[iCDF, 0, ∅]

Fig. 12: Calculation of norms

of v1 and v2, e.g., let v3 = add [v1, v2], then line 7 applies
union bound since v3 is a tainted value. With taint analysis,
DPella is capable to detect dependencies among terms of
type Value Double, and leverages that information to apply
different concentrations bounds.

C. Norms calculation
Figure 12 shows our static analysis when computing norm∞

and norm1, respectively. There is nothing special about the
rules except to note that the results are symbolic values which
are tainted. The reason for that is that norms are designed to
condense (in one measure) the error of the list of the arguments.
By doing so, it is hard to assign an specific Laplace distribution
with sensitivity s to the overall given vector. We simply say
that the return symbolic values are tainted—thus they can only
be aggregated by ADD-UNION in Figure 7.

D. Accuracy for dpMax
Figure 13 shows the iCDF computed by dpMax, which aligns

with the one appearing in [22]. Observe that the return value
is tainted. The reason for that relies in the fact that the result,
which is one of the responses in res, contains no noise—it is
rather the process that lead to determining the winning response
which has been “noisy.” In this light, no scale of noise nor
distribution can be associated to the response—as we did, for
instance, with dpCount.

DPCOUNT

ds :: Data 1 r iCDF = λβ → 4
ε
· log(length res

β
)

dpMax ε res vote ds$ S[iCDF, 0, ∅]

Fig. 13: iCDF implemented by dpMax

DPCOUNT
ds :: Data s r σ = s · 1 ·

√
2 · log(1.25/δ)/ε

iCDF = λβ → σ ·
√

2 · log(2/β) t fresh

dpCount ε ds$ S[iCDF,σ2, {t}]

Fig. 14: Accuracy analysis for aggregations

CHERNOFF-BOUND
vj = S[iCDFj, sj, tsj]

iCDF = λβ →
√

2 ·
∑n

j=1 sj · log (1/β)

cb [v1, v2, ..., vn] % iCDF

ADD-CHERNOFF-UNION
vj = S[iCDFj, sj, tsj] (∀j · tsj)= ∅)

⋂
j=1...n tsj = ∅

iCDF = λβ → min (ub [v1, v2, ..., vn] β) (cb [v1, v2, ..., vn] β)

add [v1, v2, ..., vn] % S[iCDF,
∑n

j=1 sj,
⋃

j=1...n tsj]

Fig. 15: Calculation of concentration bounds

E. Accuracy of Gaussian mechanism

For Q : db → R an arbitrary function with sensitivity ∆Q

as defined in II.2, the Gaussian mechanism with parameter σ
add noise scaled to N (0,σ2) to its output.

Theorem A.1 (Gaussian Mechanism [59]). For any ε, δ ∈
(0, 1), the Gaussian output perturbation mechanism with stan-
dard deviation σ = ∆Q

√
2 log(1.25δ)/ε is (ε, δ)-differentially

private

Definition A.1 (Accuracy for the Gaussian mechanism). Given
a randomized query Q̃(·) : db → R implemented with the
Gaussian mechanism as previously described, we have that

Pr
[
|Q̃(D)−Q(D)| > σ

√
2 log (2/β)

]
" β (6)

Figure 15 shows how concentration bounds are applied
for the case of the Gaussian mechanism—UNION-BOUND
and ADD-UNION are omitted since they are the same as
the ones in Figure 7. In general, the accuracy analysis for
addition of aggregations follows the one presented in Section IV.
The main difference is seen when adding independent values.
In this case, we use the well-known fact the addition of
independent normally distributed random variables is also
normally distributed. This means that after executing the ADD-
CHERNOFF-UNION we do not lose information about the
distribution of our result as we used to do under the Laplacian
setting.

F. Privacy and accuracy trade-off analysis in DPella

We study histograms with certain hierarchical structure
(commonly seen in Census Bureaus analyses) where different
accuracy requirements are imposed per level and where
varying one privacy or accuracy parameter can have a cascade
impact on the privacy or accuracy of others. We consider the
scenario where we would like to generate histograms from the

Adult database9 to perform studies on gender balance. The
information that we need to mine is not only an histogram
of the genders (for simplicity, just male and female) but also
how the gender distributes over age, and within that, how
age distributes over nationality—thus exposing a hierarchical
structure of three levels.

1 hierarchical1 [e1, e2, e3] dat = do
2 -- h1 :: Map Gen (Value Double)
3 -- h2 :: Map (Gen, Age) (Value Double)
4 -- h3 :: Map (Gen, Age, Nationality) (Value Double)

5 h1 ← byGen e1 dat
6 h2 ← byGenAge e2 dat
7 h3 ← byGenAgeNat e3 dat
8 return (h1, h2, h3)

(a) Hierarchical histogram I: distribute budget among the levels

9 hierarchical2 e dat = do
10 h3 ← byGenAgeNat e dat
11 h2 ← level2 h3
12 h1 ← level1 h3
13 return (h1, h2, h3)

(b) Hierarchical histogram II: spend budget only on the most
detailed histogram

Fig. 16: Implementation of hierarchical histograms

Our first approach is depicted in Figure 16a, where query
hierarchical1 generates three histograms with different
levels of details. This query puts together the results produced
by queries byGen, byGenAge, and byGenAgeNationality
where each query generates an histogram of the specified set
of attributes. Observe that these sub-queries are called with
potentially different epsilons, namely e1, e2, and e3, then
under sequential composition, we expect hierarchical1 to
be e1+e2+e3-differentially private.
We proceed to explore the possibilities to tune the privacy

and accuracy parameters to our needs. In this case, we want
a confidence of 95% for accuracy, i.e., β = 0.05, with a total
budget of 3 (ε = 3). We could manually try to take the budget
ε = 3 and distribute it to the different histograms in many
different ways and analyze the implication for accuracy by
calling accuracy on each sub-query. Instead, we write a small
(simple, brute force) optimizer in Haskell that splits the budget
uniformly among the queries, i.e., e1 = 1, e2 = 1, and e3 = 1,
and tries to find the minimum epsilon that meets the accuracy
demands per histogram. In other words, we are interested
in minimizing the privacy loss at each level bounding the
maximum accepted error. The optimizer essentially adjusts the
different epsilons and calls accuracy during the minimization
process. To ensure termination, the optimizer aborts after a
fixed number of calls to accuracy, or when the local budget
ei is exhausted.
Table II shows some of our findings. The first row shows

what happens when we impose an error of 100 at every level
9https://archive.ics.uci.edu/ml/datasets/adult

Histogram α tolerance Status ε α
byGen 100 & 0.06 61.48
byGenAge 100 & 0.06 96.13
byGenAgeNat 100 & 0.11 85.74
byGen 10 & 0.41 8.99
byGenAge 50 & 0.16 36.05
byGenAgeNat 5 × MaxBud 1 9.43
byGen 5 & 0.76 4.85
byGenAge 5 × MaxBud 1 5.76
byGenAgeNat 10 & 0.96 9.82

TABLE II: Budgeting with α tolerances, β = 0.05, & total
ε = 3

of detail, i.e., each bar in all the histograms could be at most
+/ − 100 off. Then, we only need to spend a little part of
our budget—the optimizer finds the minimum epsilons that
adheres to the accuracy constrains. Instead, the second row
shows that if we ask to be gradually more accurate on more
detailed histograms, then the optimizer could fulfill the first
two demands and aborted on the most detailed histogram
(byGenAgeNat) since it could not find an epsilon that fulfills
that requirement—the best we can do is spending all the budget
and obtain and error bound of 9.43. Finally, the last row shows
what happens if we want gradually tighter error bounds on the
less detailed histograms. In this case, the middle layer can be
“almost” fulfilled by expending all the budget and obtaining an
error bound of 5.76 instead of 5. While the results from Table
II could be acceptable for some data analysts, they might not
be for others.

We propose an alternative manner to implement the same
query which consists on spending privacy budget only for
the most detailed histogram. As shown in Figure 16b, this
new approach spends all the budget e on calling h3 ←
byGenAgeNat e dat. Subsequently, the algorithm builds the
other histograms based on the information extracted from the
most detailed one. For that, we add the noisy values of h3
(using helper functions level2 and level1) creating the rest of
the histograms representing the Cartesian products of gender
and age, and gender, respectively. These methodology will
use add and norm∞ to compute the derived histograms, and
therefore will not consume more privacy budget. Observe that
the query proceeds in a bottom-up fashion, i.e., it starts with the
most detailed histogram and finishes with the less detailed one.
Now that we have two implementations, which one is better?
Which one yields the better trade-offs between privacy and
accuracy? Figure 17 shows the accuracy of the different level
of histograms, i.e., h1, h2, and h3, when fixing β = 0.05 and
a global budget of ε = 1 (h1-ε1, h2-ε2, and h3-ε3) and ε = 3
(h1-ε3, h2-ε3, and h3-ε3)—we obtained all this information by
running repetitively the function accuracy. Form the graphics,
we can infer that the splitting of the privacy budget per level
often gives rise to more accurate histograms. However, observe
the exception when ε = 3 for hierarchical2: in this case,
hierarchical1 will use an ε = 1 in that histogram so it will
receive a more noisy count than using ε = 3.

h1-ε1 h2-ε1 h3-ε1 h1-ε3 h2-ε3 h3-ε3

50

100

11 17
29

4 6 9

105

45

9

35
15

3

α

hierarchical1
hierarchical2

h1 = byGen, h2 = byGenAge, h3 = byGenAgeNat

Fig. 17: hierarchical1 vs. hierarchical2

G. K-way marginal queries on synthetic data
We focus on the problem of releasing, in a differentially

private manner, the k-way marginals of a binary dataset D ∈
(0, 1d)n. This is a classical learning problem that has been
extensively studied in the DP literature, see [60, 61, 62]
among others. A k-marginal query, also called a k-conjunction,
returns the count of how many individual records in D have
k < d attributes set to certain values. For simplicity, we focus
on 3-way marginal queries to compare performance between
DPella and using synthetic data. The goal of our analysis is to
release all the 3-way marginals of a dataset.
This is implemented through the following code:

1 -- Perform all 3-way combinations up to attribute dim

2 allChecks :: ε → Int → Data s {0, 1}d
3 → [Query (Value Double)]
4 allChecks localEps dim db = do
5 (i, j, k) ← combinatory (dim-1) 3
6 let allOne r = (r !! i) ≡ (r !! j) ≡ (r !! k) ≡ 1
7 return (do tab ← dpWhere allOne db
8 dpCount localEps tab
9)

10 -- Compute k-way marginals
11 threeMarginal :: ε → Int → Data s {0, 1}d
12 → Query (Value [Double])
13 threeMarginal localEps dim db = do
14 checks ← sequence (allChecks localEps dim db)
15 return (norm∞ checks)

Function allChecks counts how many records have 3-
attributes set to 1. Auxiliary function combinatory d k
generates k-tuples arising from the combination of indexes
0, 1, . . . , d taken k at the time. In our example, the number
of generated tuples is

(dim
3

)
. For each tuple, allChecks

filters the rows which have attributes i, j, and k set to
1 (dpWhere allOne db) for then making a noisy count
(dpCount localEps tab). Function threeMarginal collects

the counts for the different considered attributes and places
them into a vector (norm∞ checks).

We run threeMarginal considering a synthetic dataset (db)
which has only 1 row with all the attributes set to zeros. Setting
all the attributes to zero produces that all the counts are 0, thus
we are able to measure the noisy on each run and accuracy
accordingly. We run threeMarginal approx. 1000 times for
each dimension to measure the noisy magnitude, where we
took the 1-β percentile with β = 0.05 (as we did in many
of our case studies). Notice that we have

(dim
3

)
queries and

so
(dim

3

)
independent sources of noise, which need an high

number of runs to be well-represented. In general, for this kind
of task one is interested in bounding the max error that can
occur in one of the queries (the &∞ norm over the output). For
this task, the empirical error is well aligned with the theoretical
one provided by DPella by calling the function accuracy. The
latter is computed by taking a union bound over the error of
each individual query. For each query we have a tight bound
and the union bound gives us a tight bound over the max.
However, we observe a significant different in performance.

5 10 15 20
10−6

10−2

102

Dimension (dim)

Time(seconds)

accuracy
synthetic

Fig. 18: Performance comparison between accuracy (DPella)
and estimating errors using synthetic analysis

Figure 18 shows (in log scale) the time difference when
calculating accuracy by DPella and on synthetic data when the
dimension of the dataset increases. Already in low dimension,
the difference in performance is many orders of magnitude in
favor of DPella—a tendency which does not change when the
dimension goes above 20. The main reason for that comes down
to that DPella, as an static analysis, do not execute the filtering
dpWhere allOne db (as well as any other transformation,
recall Section IV-B) which an approach based on synthetic
data should do and many times—in our case 1000 iterations
for each dimension. We expect that for more complex tasks
this difference is even more evident.

