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Abstract

12-oxo-phytodienoic acid (OPDA), an intermediate in the jasmonic acid (JA) biosynthesis
pathway, regulates diverse signaling functions in plants, including enhanced resistance to insect
pests. We previously demonstrated that OPDA promoted enhanced callose accumulation and
heightened resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking
insect pest of maize (Zea mays). In this study, we used the electrical penetration graph (EPG)
technique to monitor and quantify the different CLA feeding patterns on the maize JA-deficient
12-oxo-phytodienoic acid reductase (opr7oprS8) plants. CLA feeding behavior was unaffected on
B73, opr7opr8 control plants (- OPDA), and opr7opr§ plants that were pretreated with OPDA (+
OPDA). However, exogenous application of OPDA on opr7oprS8 plants prolonged aphid
salivation, a hallmark of aphids’ ability to suppress the plant defense responses. Collectively, our
results indicate that CLA utilize its salivary secretions to suppress or unplug the OPDA-mediated

sieve element occlusions in maize.

TEXT

The corn leaf aphid (CLA; Rhopalosiphum maidis), a piercing-sucking insect pest, is one of most
damaging pests of many cereal crops, including maize (Zea mays).' "¢ Unlike chewing
herbivores, CLA feed by inserting their slender stylets into phloem sieve elements to consume
the nutrients required for their growth and development. CLA feeding also transmits various
plant viral diseases.””*® In addition, the aphid honeydew, the digestive waste produced by aphids,
which are deposited on the leaves promotes sooty mold growth, thereby reducing the

photosynthetic efficiency of plants.’



We have previously shown that 12-oxo-phytodienoic acid (OPDA), an intermediate in the
jasmonic acid (JA) biosynthesis pathway, promotes heightened maize resistance against aphids.®
In addition, exogenous application of OPDA enhanced callose accumulation, one of the defense
mechanisms utilized by plants against insect attack, and also enhanced the expression of ethylene
biosynthesis and receptor genes that act as an important modulator in regulating maize insect
resistancel (mirl)-dependent maize defense to CLA.>® However, artificial diet aphid bioassays
confirmed that OPDA does not have a direct negative impact on CLA population, rather the
OPDA-induced activation of downstream defenses contributed to enhanced maize resistance to

CLA.®

Exogenous application of OPDA does not affect feeding of CLA on maize plants

In maize, two 12-Oxo-Phytodienoic acid Reductase (OPR7 and OPRS) genes are involved in the
conversion of OPDA to JA.!° Basal and wound-induced OPDA levels in opr7 opr8 double
mutants were reduced as compared to wild-type B73 plants, whereas JA induction was
undetectable in opr7opr8 plants.!! Previously, we showed that there was comparable CLA
numbers on B73 and opr7opr§ plants, however, exogenous application of OPDA showed
significantly lesser aphid numbers on opr7opr8 plants.® Similarly, exogenous application of
OPDA and feeding by CLA on opr7opr8 plants increased the callose accumulation compared to
opr7opr8 control plants and wild-type plants.® These findings suggested that the OPDA-
mediated resistance to CLA in maize can occur independently of the JA pathway and signaling
mechanisms. Strong antibiosis, which curtails insect fecundity and population growth, can also
influence insect's feeding behavior.” To determine if exogenous OPDA application can affect

CLA feeding behavior, we utilized the electrical penetration graph (EPG) technique®!'?'* to



monitor and quantify the different CLA feeding activities on opr7opr8 plants. Using EPG, the
various parameters measured included the time taken to first probe (FP), time taken to reach first
sieve element phase (f-SEP), time spent in the pathway phase that represent both the inter- and/or
intracellular aphid stylet routes during feeding (PP), total time spent in the SEP, total time spent
in the xylem phase (XP), and total time spent in nonprobing phase (NP). As shown in Figure 1,
there were no significant differences in any of these parameters measured for the CLA feeding
behavior on the wild-type (B73), opr7opr8 control plants (- OPDA) and OPDA pretreated
opr7opr8 (+ OPDA) plants. The EPG result suggests that OPDA pretreatment does not have an

effect on aphid feeding behavior.

OPDA pretreatment extends aphid salivation on maize plants

The SEP consists of E1 (salivation) and E2 (sap ingestion) phases.!®> E1 phase, the initial phase in
the SEP, represents aphid salivation and in general, could remain approximately for one minute.
E2 waveform represents subsequent ingestion of phloem sap with continuous salivation and it
could range from several minutes to hours.'> Aphids secrete watery saliva during E1 SEP, which
contains salivary effectors that alter host physiology for their own benefit and to assist continued
feeding from the sieve elements, before start ingesting phloem sap (E2).%!>"!7 Our results indicate
that CLA spent significantly longer time in the E1 phase of OPDA pretreated opr7opr§ (+
OPDA) plants compared to the wild-type (B73) and opr7opr8 control plants (- OPDA) (Figure
2A). In contrast, there was no significant difference in the E2 phase of CLA feeding on the wild-
type (B73), opr7opr8 control plants (- OPDA) and OPDA pretreated opr7opr8 (+ OPDA) plants
(Figure 2B). Figure 2C shows the representative E1 and E2 waveform patterns produced by

CLA feeding on maize plants.



Upon aphid feeding, as a counter-defense mechanism, plants induce the phloem wound

15,18 1t should also be

responses, such as aggregation of phloem proteins and callose deposition.
noted that the wound responses in sieve elements by aphid stylets compared to severing the sieve
elements by a glass needle, which mimics aphid feeding, are distinct and does not lead to the
activation of similar set of phloem proteins.'* Furthermore, studies have shown that an extended
E1 phase is indicative of the ability of the aphids to suppress the wound defense responses
induced by insect feeding.!>? It was previously shown that OPDA pretreatment enhanced
callose accumulation on maize plants.® It is highly likely that CLA may inject more watery saliva
into the sieve elements to suppress the defense responses, for example, suppression of sieve
element occlusion by dissolving callose accumulation. However, it remains unclear how aphid
salivation suppresses OPDA-mediated defenses. Ca®" is reported to have a major role in phloem
occlusion through its effect on callose deposition and coagulating phloem proteins.!**!*2 Ca?*
binding proteins are identified in the salivary glands of aphids*, suggesting that aphids may
inject these proteins during E1 phase to suppress the wound responses. Whether similar Ca>*

binding proteins and/or other salivary gland proteins are required for E1 salivation in CLA are

yet to be determined.
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Figure Legends

Figure 1. Electrical penetration graph (EPG) comparison of time spent by CLA in various
feeding activities on maize B73, opr7opr8, and opr7opr8 plants pretreated with OPDA in 8h of
recording time. FP, time taken to first probe; f-SEP, time taken to reach first sieve element phase;
PP, time spent in pathway phase; XP, total time spent in the xylem phase; SEP, total time spent in
the sieve element phase or phloem phase; NP, total time spent in nonprobing phase during the 8 h
recording time. Boxplots represent median and range for each treatment (n = 5-7). EPG was
analyzed by the non-parametric Kruskal-Wallis test. Statistically significant differences were not
observed among any of the aphid feeding parameters on B73, opr7oprS8, and opr7oprS plants

pretreated with OPDA.

Figure 2. Electrical penetration graph (EPG) comparison of time spent by CLA in the E1
(salivation) (A) and E2 (ingestion) (B) phases during the sieve element phase (SEP) on maize
B73, opr7opr8, and opr7opr8 plants pretreated with OPDA in 8h of recording time. Boxplots
represent median and range for each treatment (n= 5-7). Asterisks indicate significant difference
(P <0.05; Kruskal-Wallis test) among individual CLA feeding parameter on different maize
plants. C) Representative EPG waveform patterns of E1 and E2 during the CLA feeding on

maize plants for 10 seconds.
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Figure 1. Electrical penetration graph (EPG) comparison of time spent by CLA in various
feeding activities on maize B73, opr7opr8, and opr7opr8 plants pretreated with OPDA in 8h of
recording time. FP, time taken to first probe; f~-SEP, time taken to reach first sieve element phase;
PP, time spent in pathway phase; XP, total time spent in the xylem phase; SEP, total time spent in
the sieve element phase or phloem phase; NP, total time spent in nonprobing phase during the 8 h
recording time. Boxplots represent median and range for each treatment (n = 5-7). EPG was
analyzed by the non-parametric Kruskal-Wallis test. Statistically significant differences were not
observed among any of the aphid feeding parameters on B73, opr7opr8, and opr7opr8 plants
pretreated with OPDA .
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Figure 2. Electrical penetration graph (EPG) comparison of time spent by CLA in the E1
(salivation) (A) and E2 (ingestion) (B) phases during the sieve element phase (SEP) on maize
B73, opr7opr8, and opr7oprs plants pretreated with OPDA in 8h of recording time. Boxplots
represent median and range for each treatment (n= 5-7). Asterisks indicate significant difference
(P <0.05; Kruskal-Wallis test) among individual CLA feeding parameter on different maize
plants. (C) Representative EPG waveform patterns of E1 and E2 during the CLA feeding on
maize plants for 10 seconds.
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